
RGE: A Repulsive Graph Rectification for Node Classification via Influence

Jaeyun Song * 1 SungYub Kim * 1 Eunho Yang 1 2

Abstract
In real-world graphs, noisy connections are in-
evitable, which makes it difficult to obtain un-
biased node representations. Among various at-
tempts to resolve this problem, a method of es-
timating the counterfactual effects of these con-
nectivities has recently attracted attention, which
mainly uses influence functions for single graph
elements (i.e., node and edge). However, in this
paper, we argue that there is a strongly interact-
ing group effect between the influences of graph
elements due to their connectivity. In the same
vein, we observe that edge groups connecting to
the same train node exhibit significant differences
in their influences, hence no matter how negative
each is, removing them at once may have a rather
negative effect as a group. Based on this motiva-
tion, we propose a new edge-removing strategy,
Repulsive edge Group Elimination (RGE), that
preferentially removes edges with no interference
in groups. Empirically, we demonstrate that RGE
consistently outperforms existing methods on the
various benchmark datasets.

1. Introduction
Learning effective node representations becomes increas-
ingly crucial as the need for graph-structured data pro-
cessing increases in diverse industrial applications such as
social networks (Mohammadrezaei et al., 2018), bioinfor-
matics (Hamilton et al., 2017), and recommendation sys-
tems (Perozzi et al., 2016) to name a few. Recently, various
Graph Neural Networks (GNNs) have been proposed to in-
tegrate the topological information of graphs into node rep-
resentation, and have achieved unprecedented performance

*Equal contribution 1Graduate School of Artificial In-
telligence, Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, Korea 2AITRICS, Seoul, Ko-
rea. Correspondence to: Jaeyun Song <mercery@kaist.ac.kr>,
SungYub Kim <sungyub.kim@kaist.ac.kr>, Eunho Yang <eun-
hoy@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

improvements in many node classification tasks (Kipf &
Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017;
Wu et al., 2019). However, GNNs are still susceptible to
structural noises, such as task-irrelevant edges, in real-world
graphs (Zheng et al., 2020; Luo et al., 2021). Consequently,
these noises in graphs can hamper the use of GNNs in the
industry due to the deterioration in the generalization per-
formance.

Recently, several algorithms have been proposed to resolve
these structural noises using topological information from
graphs. ReNode (Chen et al., 2021) and TAM (Song et al.,
2022) modify loss functions (e.g., adjusting loss weights or
margins) to decrease the signals of deteriorating nodes. On
the other hand, NeuralSparse (Zheng et al., 2020) and PTD-
Net (Luo et al., 2021) remove edges by learning auxiliary
networks to sparsify graphs in an end-to-end manner. To the
best of our knowledge, none of the existing methods explain
why each edge is helpful or harmful, as they do not assess
the counterfactual effects of removing edges.

To mitigate this issue, Chen et al. (2022a) proposed an influ-
ence function for individual nodes and edges to estimate the
counterfactual effects of removing these elements. Based
on this, they found that removing negative influence edges,
called opponent edges (Pruthi et al., 2020), could signifi-
cantly improve classification performance. However, this
approach is intractable on graphs with many edges, as they
retrain GNNs for each accumulative opponent edge set and
select one using the validation accuracy of retrained GNNs.
Furthermore, this type of graph rectification cannot con-
sider the group effect of edges (i.e., how an edge’s influence
changes as neighboring edges are removed). For example, if
removing an edge makes the influence of surrounding edges
positive, preserving its neighbors will help generalize, and
vice versa.

Therefore, to develop more efficient and effective strate-
gies, we study a simple approach, Exhaustive edge Group
Elimination (EGE), that eliminates all opponent edges at
once. This approach can discover the most opponent set if
influence additivity holds (i.e. there does not exist any group
effect). Nevertheless, we hypothesize that neighboring op-
ponent edges mainly cause significant group effects. In fact,
we demonstrate that, due to group influence estimation error
(the gap between group influence and the sum of individual

1

RGE: A Repulsive Graph Rectification for Node Classification via Influence

influence), this approach degrades performance on synthetic
graphs. Furthermore, neighboring edges exhibit much larger
gaps compared to distant edges.

In light of this observation, we propose a new method,
Repulsive edge Group Elimination (RGE), that prefers to
remove distant edges over neighboring edges. As a single
iteration of RGE does not remove opponent edges at once,
we repeat removing the opponent edges using RGE and
retraining GNNs until no opponent edges are left. We show
that the edge group discovered by RGE has a smaller group
influence estimation error than EGE on diverse synthetic
graphs, and multiple iterations of RGE significantly improve
performance. Furthermore, RGE outperforms baselines on
standard benchmark datasets, such as citation networks (Sen
et al., 2008), commercial graphs (Shchur et al., 2018), We-
bKB, Actor Network (Pei et al., 2020), and Wikipedia net-
works (Rozemberczki et al., 2021).

Our contribution is threefold:

• We demonstrate that there are substantial differences
between group influence and the sum of individual in-
fluence for graph neural networks when an edge group
connects to the same train node.

• We propose an iterative framework for removing a re-
pulsive group of edges to avoid the aftermath of group
effects.

• Empirically, our method shows superior performance
to baselines on various benchmark datasets.1

2. Preliminary
2.1. Graph Neural Networks

Let us consider an undirected graph G = (V,E) where
V is a set of vertices (or nodes), and E is a set of edges.
We denote the adjacency matrix of G as A ∈ R|V |×|V |

and the degree matrix as D ∈ R|V |×|V |.2 Specifically, A
is a binary symmetry matrix where Aij = Aji = 1 for
eij ∈ E and 0 otherwise, and D is a diagonal matrix whose
v-th diagonal element is the node degree of v ∈ V (i.e.,
Dii =

∑
j∈V Aij). The set of nodes whose distance from

v ∈ V is less than or equal to k ∈ N is called a k-hop
neighborhood of v and is denoted by Nk(v). We refer to the
notation table in Appendix A for mathematical terms used
in the paper.

We target node classification tasks on G where each node
v ∈ V has representation xv ∈ RM and the corresponding
label yv ∈ RC . We assume nodes are divided into three

1Code will be available at https://github.com/
Jaeyun-Song/RGE.git

2We use |S| to indicate the cardinality of set S.

different subsets for training and evaluation: train nodes VTr
for training parameters, validation nodes VVal for selecting
hyperparameters and eliminating edges, and test nodes VTest
for evaluation.

The most significant difference between a classical neural
network and a GNN is whether each layer aggregates (inter-
mediate) features over neighboring nodes. For example, the
l-th layer of Graph Convolution Networks (GCN; Kipf &
Welling (2017)) pre-processes its input representation zl−1

v

as

z̃lv =
∑

u∈N1(v)

zl−1
u√

(Duu + 1)(Dvv + 1)

where xv is simply defined as z0v for notational convenience.
Then, standard feature transformation (with non-linear acti-
vation) is applied for the aggregated feature as

zlv = σ(z̃lvΘ
l)

where Θl are learnable parameters (i.e., weight and bias) of l-
th layer, and σ(·) is a component-wise non-linear activation
function (e.g., ReLU). In summary, the output of L-layer
GCN can be written concisely as

ŷv = softmax
(
Sσ(S · · ·σ(SxvΘ1) · · ·ΘL−1)ΘL

)
. (1)

Here, S = D̃−1/2ÃD̃−1/2 is the renormalized graph
Laplacian (Kipf & Welling, 2017) where Ã = A + I|V |

and D̃ is the degree matrix of Ã, and softmax(z) =

exp(z)/
∑K

k=1 exp(z)k for z ∈ RK . Recently, Wu et al.
(2019) proposed L-hop Simple Graph Convolution (SGC)
by removing activation functions in (1) so that we have

ŷv = softmax
(
SLxvΘ

)
(2)

where Θ =
∏L

l=1 Θ
l. Hereafter, we denote all parameters

of any GNN as θ ∈ RP to represent it as a single vector.

The empirical risk minimization (ERM) of node classifica-
tion tasks solves the following optimization problem

θ∗ := argmin
θ

LTr(G, θ) (3)

where LTr(G, θ) :=
∑

v∈VTr
ℓ
(
ŷv(G, θ), yv

)
/|VTr| for

cross-entropy loss ℓ(·, ·) for the training data VTr. Here, note
that we use ŷv(G, θ) for predictions to clarify the depen-
dency on G and θ. While both GCN and SGC refer to the
NL(v) for the prediction of v ∈ V in node classification,
training of SGC is more efficient and stable than GCN as
the loss function of SGC is convex w.r.t. θ.

We now define several relations among edges, including the
affected train node set, distant edges, and neighbor edges.

2

https://github.com/Jaeyun-Song/RGE.git
https://github.com/Jaeyun-Song/RGE.git

RGE: A Repulsive Graph Rectification for Node Classification via Influence

Neighboring
edge pair

Distant
edge pair

(a) Neighboring and distant edge pairs

0.005 0.004 0.003 0.002 0.001 0.000 0.001 0.002
Individual Edge Infl. Sum

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

Ed
ge

 G
ro

up
 In

fl.

(b) Influence of neighboring edge pairs

0.005 0.004 0.003 0.002 0.001 0.000 0.001 0.002
Individual Edge Infl. Sum

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

Ed
ge

 G
ro

up
 In

fl.

(c) Influence of distant edge pairs

Figure 1. The group influences plotted against the sum of individual influences. (a) indicates which kinds of edge pairs are a neighboring
edge pair or a distant edge pair under 1-hop SGC. (b) and (c) represent graphs between group influences and the sum of individual
influences for neighboring edge pairs and for distant edge pairs, respectively.

Definition 2.1. (Affected train node-set) For a given edge
set E′ ⊂ E, the affected train node-set is defined as:

VTr (E
′) :=

{
v ∈ VTr | ŷv

(
G(E′), θ∗

)
̸= ŷv (G, θ

∗)
}
,

(4)

where G(E′) = (V,E \ E′) is the graph when E′ is elimi-
nated from G.

With abuse of notation, we also use VTr for a single edge as
VTr(e) := VTr

(
{e}

)
.

Definition 2.2. (Distant edges) For given edges e, e′ ∈
E, we say e, e′ are distant edges if these edges satisfy the
following condition:

VTr (e) ∩ VTr (e
′) = ∅. (5)

In contrast, we say edges e, e′ are neighboring edges if (5)
does not hold. The concept figure for neighboring edges and
distant edges under 2-hop SGC is described in Figure 1(a).

2.2. Influence Estimation on Edges

Our goal is to find harmful edges, called opponent edges,
that can improve the test performance when removed from
the original graph G. Formally, we would like to identify
an edge set E′ ⊂ E such that θ′, the ERM solution (3) on
the modified graph G(E′) := (V,E \ E′), outperforms θ∗

in terms of test-time evaluation metrics such as the node
classification accuracy. However, since test nodes are not
available during the training phase, we define the influence
of E′ on validation loss as a surrogate:

ITrue(E′) := LVal(G, θ
′)− LVal(G, θ

∗) (6)

where LVal(G, θ) :=
∑

v∈VVal
ℓ
(
ŷv(G, θ), yv

)
/|VVal|.3 That

is, ITrue(E′) is the change in the loss after removing edges

3By using True, we indicate that we are computing the ground
truth influence.

in E′, hence, the more negative it is, the more opponent E′

is. Here, since retraining for an arbitrary edge set requires
a substantial computational cost where we have a huge
number of edges in graph datasets in practice, Chen et al.
(2022a) proposed an efficient approximation of ground truth
influence as follows

I(E′) := g̃⊤H−1 (g − g′) (7)

where g = ∇θLTr(G, θ
∗), g̃ = ∇θLVal(G, θ

∗), H :=
∇2

θLTr(G, θ
∗), and g′ = ∇θLTr

(
G(E′), θ∗

)
. Intuitively,

this approximation can be understood as a two-step approxi-
mation of ground truth influence in the sense that

ITrue(E′) ≈ Llin
Val(G, θ

′)− Llin
Val(G, θ

∗) (8)

= g̃⊤(θ′ − θ∗)

≈ g̃⊤H−1 (g − g′) (9)

where Llin
Val(G,ψ) := LVal(G, θ

∗) + g̃⊤(ψ − θ∗). Note that
(8) applies linearization to the validation loss and (9) ap-
proximates parameter difference θ′ − θ∗ as follows

θ′ ≈ θ∗ + H−1g︸ ︷︷ ︸
revert opt. for G

− H−1g′︸ ︷︷ ︸
modified opt. with G(E′)

.

Hereafter, we also useG, I asG(e) := G({e}) and I(e) :=
I({e}) for notational simplicity.

Armed with this approximation, Chen et al. (2022a) searches
for an opponent edge set, based on the individual edge
influence, among the relatively small pool of edge sets.
To construct the pool, they first sort edges in the ascend-
ing order of edge influence I(e), and then they accumu-
late one by one from the most negative influence edge:
E1 = {e1}, ..., Ei+1 = Ei ∪ {ei+1} where ei+1 is the
(i + 1)-th smallest edge in the sorting. Then, they pre-
pare the pool B by including all accumulated subsets:
B = {E1, E2, . . . , En}, where n is the number of oppo-
nent edges. Next, they retrain (or fine-tuned) GNNs on the

3

RGE: A Repulsive Graph Rectification for Node Classification via Influence

1 2 3 4 5
degree

0.
08

0.
15

0.
25

0.
4

0.
57

ho
m

op
hi

ly

3.0e-02 1.0e-01 1.4e-01 1.8e-01 4.3e-01

9.0e-03 8.7e-02 2.5e-01 2.7e-01 3.3e-01

2.3e-02 6.4e-02 1.9e-01 2.7e-01 3.5e-01

2.2e-02 1.1e-01 1.6e-01 2.1e-01 2.9e-01

3.0e-02 3.6e-02 1.3e-01 2.2e-01 1.8e-01

10 3

10 2

10 1

100

(a) Influence difference of EGE

1 2 3 4 5
degree

0.
08

0.
15

0.
25

0.
4

0.
57

ho
m

op
hi

ly

0.33 -0.50 -5.53 -2.61 -17.75

-0.49 -0.17 -6.61 -8.26 -6.05

0.94 1.04 -4.08 -7.27 -9.50

0.22 -2.52 -3.89 -2.92 -11.59

0.05 0.44 -2.20 -4.77 -2.37

3

2

1

0

1

2

3

(b) Performance gain of EGE

1 2 3 4 5
degree

0.
08

0.
15

0.
25

0.
4

0.
57

ho
m

op
hi

ly

1.7e-03 3.8e-03 3.5e-03 2.7e-03 1.3e-02

1.1e-03 3.2e-03 8.5e-03 7.1e-03 9.5e-03

1.3e-03 1.2e-03 6.0e-03 7.5e-03 8.1e-03

1.0e-03 3.9e-03 4.5e-03 4.1e-03 8.7e-03

8.6e-04 1.5e-03 2.6e-03 2.6e-03 2.9e-03

10 3

10 2

10 1

100

(c) Influence difference of RGE

1 2 3 4 5
degree

0.
08

0.
15

0.
25

0.
4

0.
57

ho
m

op
hi

ly

0.88 1.75 1.41 0.85 1.38

0.50 0.94 0.93 2.27 1.56

-0.09 0.75 1.30 1.01 1.18

0.35 0.56 1.11 0.20 0.96

0.21 0.51 0.60 0.09 -0.07

3

2

1

0

1

2

3

(d) Performance gain of RGE

Figure 2. The group influence estimation error and performance gain over the properties of synthetic graphs such as degree and homophily.
In (a) and (c), each cell indicates the difference between group influence and the sum of individual influence. As the color is darker,
the difference is larger. The difference for EGE (single iteration) is much larger than RGE (single iteration). In (b) and (d), each cell
represents performance gain (%) compared to the test accuracy of the corresponding original model. As the color is close to dark red, the
method shows better performance than the original model. In contrast, as the color is close to dark blue, the method is inferior to the
original model. Although EGE (single iteration) deteriorates performance, RGE (single iteration) improves performance.

graph after removing each subset Ei ∈ B from the original
graph and evaluate the validation set. Finally, they select the
best set Ê among B according to the accuracy of the vali-
dation set. This method is, however, intractable for graphs
with many edges since it requires retraining for every set
in B accumulating each opponent edge. Furthermore, the
edge set identified by this approach might be significantly
far from the most opponent set in that the range of subsets
is limited to B and B is curated without consideration of
group effects.

3. Repulsive Edge Group Elimination
In this section, to identify opponent edge sets effectively and
efficiently, we design and scrutinize a practical algorithm
by considering multiple edges’ group effects. In Section 3.1,
we observe that there are significant differences between the
group influence and the sum of individual influences, and
neighboring opponent edges primarily cause these differ-
ences. Based on this observation, in Section 3.2, we propose
a method of preferentially removing distant edges that may
have less interference in groups.

3.1. Problem: Group Influence Estimation Error

As mentioned in Section 2, our goal is to identify the most
opponent edge set E∗:

E∗ = argmin
E′⊂E

I(E′).

Since there are exponentially many possible edge subsets
from E, it is computationally intractable to find the opti-
mal edge subset by enumerating all possible cases. Thus,
it is necessary to develop efficient approaches to solve this
problem practically.

A simple strategy is to collect all opponent edges, a process

we call Exhaustive edge Group Elimination (EGE):

E∗ ≈ Ê =
{
e ∈ E | I (e) < 0

}
.

By using this method, we can find the optimal edge set if
the following additivity condition for individual influences
holds:

I ({e, e′}) = I (e) + I (e′) (10)

for all different edges e, e′ ∈ E. Under this additivity as-
sumption, the sum of individual edge influences is equal to
the group influence of all edges.

However, in reality, this condition is unlikely to hold due to
the fact that edge influence would be significantly changed
after adjacent edges are removed. Thus, the set found by
EGE may have less negative influence than the sum of indi-
vidual influences. We hypothesize that there are significant
gaps between group influence and the sum of individual
edge influences (group influence estimation error), and these
differences mainly stem from neighboring edges rather than
distant edges.

Experimental setup To validate our hypothesis, we conduct
extensive experiments on synthetic graphs. We generate
various graphs by changing (node) degree and homophily
of graphs, through GraphWorld (Palowitch et al., 2022).
We assign 20/230/250 nodes per class for train/valid/test
nodes, respectively, then train 2-hop SGCs on these graphs.
We note that homophily indicates how frequently nodes
connect to nodes belonging to the same class. We then
find opponent edges and compute the group influences and
the sum of individual influences of edge pairs. For each
edge pair, we compare the group influence and the sum
of individual influences. This experiment is conducted for
two categories of edge pairs such as neighboring edges and
distant edges. The detailed experimental setting is provided
in Appendix F.1.

4

RGE: A Repulsive Graph Rectification for Node Classification via Influence

Performance degradation in EGE We first examine the
performance of EGE before verifying our hypothesis. In
Figure 2(b), performance gains over the original SGC are
indicated by colors on the heatmap. When a cell’s color is
close to dark red, the method performs better than the origi-
nal SGC on the corresponding graph. In contrast, the blue
color signifies a drop in performance. We observe that there
are significant performance drops on most of the synthetic
graphs. To identify the cause of the performance degrada-
tion, we also inspect the gap between group influence and
the sum of the individual influences for edges found by EGE.
In Figure 2(a), the color of each cell on the graph indicates
the difference between group influence and the sum of in-
dividual influences where we use the darker color as the
gap increases. As a result of the experiment, there are sub-
stantial gaps on all graphs. This result implies that the edge
set found by EGE might be far from the optimal set due to
group influence estimation errors, so EGE deteriorates the
performance on the graphs as already shown in Figure 2(b).

Group influence estimation error We now validate our
hypothesis. We first divide edge pairs into two groups: neigh-
boring edges and distant edges. Then, we investigate the
group influence estimation errors for each group. In Fig-
ure 1(b)-1(c), we show the sum of individual influences
as an x-axis, and group influence as a y-axis on the graph.
In Figure 1(b), we can observe significant group influence
estimation errors for neighboring edge pairs. Surprisingly,
there are some cases where group influence is positive even
when all individual edges are negative. This indicates that
removing neighboring opponent edges at once may degrade
performance. In contrast, for distant edge pairs, most pairs
are well aligned and lie on y = x in Figure 1(c). Based
on these results, we conclude that group influence estima-
tion error is larger in neighboring edge pairs than in distant
edge pairs. We note that consistent results are obtained for
other synthetic and real-world graphs, which are deferred to
Appendix G.

A key observation in the previous experiment is that influ-
ence additivity holds for distant edges. Indeed, we can prove
it as follows.

Proposition 3.1 (Influence additivity for distant edges). Let
edges e, e′ ∈ E be distant edges and, for them, assume
that the removal of edge e does not change the gradient of
unaffected train node v:

∇θℓ
(
ŷv

(
G

(
{e, e′}

)
, θ∗

)
, yv

)
= ∇θℓ

(
ŷv

(
G(e′), θ∗

)
, yv

)
(11)

for e ̸= e′, v ∈ VTr, and v /∈ VTr (e). Then, influence
additivity in (10) holds.

We refer to Appendix B for the proof. Note that the assump-
tion (11) is prevalent for many GNNs, such as GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018), Graph-
SAGE (Hamilton et al., 2017), and SGC (Wu et al., 2019).

Algorithm 1 Repulsive edge Group Elimination (RGE)

1: Input: Graph G = (V,E), set of train nodes VTr, model
parameters θ, loss function LTr for train set, patience ρ

2: Initialize: Model parameter θ ∈ Rd.
3: E′← E
4: # Multi-step edge elimination
5: for k = 0, 1, 2, · · · do
6: # Retrain θ on the rectified graph
7: G′← (V,E′)
8: θ′← argminθ LTr(G

′, θ)
9:

10: # Sort edges according to the influence I(e)
11: E′

sorted ← sort E′ as ascending order based on I
12: nnegative ←

∣∣∣{et ∈ E′
sorted | I (et) < 0

}∣∣∣
13:
14: # Repulsive selection rule
15: e1← the first edge in E′

sorted

16: Ê← {e1}
17: Ecache ← {e1}
18: c← 0
19: for i = 2, · · · , nnegative do
20: ei← the i-th edge in E′

sorted
21:
22: # Patience mechanism
23: if (VTr (ei) ∩ VTr (Ecache) ̸= ∅) ∧ (c ≤ ρ) then
24: c← c+ 1
25: else
26: Ê← Ê ∪ {ei}
27: c← 0
28: Ecache ← Ecache ∪ {ei}
29: end if
30: Keep the cache size |Ecache| constant
31: end for
32:
33: if

(
|Ê| = 1

)
∧
(
I (e1) ≥ 0

)
then

34: break
35: end if
36: E′← E′ \ Ê
37: end for
38: Output: θ′

For example, for a given train node v and L-hop GCN, the
presence of edge e connecting to (L+ 2)-hop node from v
does not change the node representation of v, so it does not
alter the gradient for v. Empirically, Figure 1(c) provides
evidence of our proposition.

3.2. Proposed Method

We now propose a new approach, Repulsive edge Group
Elimination (RGE), to find an opponent edge set while min-
imizing the risk of erroneous group influence estimation.
The key concept is that RGE preferentially selects distant
opponent edges over neighboring opponent edges (Repul-
sive selection rule). To improve performance further, RGE
removes chosen edges and retrains GNNs repeatedly to
eliminate remaining opponent edges (multi-step edge elim-
ination). Consequently, RGE would reduce the chance of

5

RGE: A Repulsive Graph Rectification for Node Classification via Influence

1 2 3 4 5
degree

0.
08

0.
15

0.
25

0.
4

0.
57

ho
m

op
hi

ly

0.89 -1.15 -4.08 -1.93 -1.76

0.56 0.54 -0.92 -1.36 -1.79

0.87 1.19 -0.41 -1.37 -2.18

0.21 -0.08 -0.18 -0.27 -2.90

0.33 0.70 0.06 0.17 -0.13

3

2

1

0

1

2

3

(a) EGE (multiple iterations)

1 2 3 4 5
degree

0.
08

0.
15

0.
25

0.
4

0.
57

ho
m

op
hi

ly

0.88 1.75 1.41 0.85 1.38

0.50 0.94 0.93 2.27 1.56

-0.09 0.75 1.30 1.01 1.18

0.35 0.56 1.11 0.20 0.96

0.21 0.51 0.60 0.09 -0.07

3

2

1

0

1

2

3

(b) RGE (single iteration)

1 2 3 4 5
degree

0.
08

0.
15

0.
25

0.
4

0.
57

ho
m

op
hi

ly

0.96 2.15 1.64 1.90 0.99

1.03 1.36 0.66 1.39 1.81

0.86 1.27 1.88 1.16 0.37

0.38 1.08 1.74 0.58 1.05

0.42 0.82 0.74 0.20 -0.08

3

2

1

0

1

2

3

(c) RGE (multiple iterations)

Figure 3. The performance gain over the properties of synthetic graphs such as degree and homophily. The values of cells in heatmaps
represent performance gain (%) compared to the test accuracy of SGC on the corresponding graph. As the color is similar to dark red, the
method shows better performance than the original model. Utilizing only multi-step edge elimination still suffers performance degradation,
but RGE for a single iteration improves performance.

finding a sub-optimal opponent edge set due to group effects.
To further boost efficiency, we introduce a patience mech-
anism to allow RGE to choose a few neighboring edges if
they satisfy some criterion (Patience mechanism). Each ma-
jor component is described in detail below and the overall
algorithm is summarized in Algorithm 1.

Repulsive selection rule We here describe how to discover
an opponent edge set Ê. The main process is to investigate
whether a candidate edge shares affected train nodes with
already selected edges. If it does, we do not select this
candidate since our influence estimation in this regime is
not faithful, and removing this edge might not be actually
beneficial due to the group effect with already selected edges.
Specifically, RGE first sorts edges in ascending order by
edge influence (we use Esorted to indicate a sorted edge
set). We add the most opponent edge e1 ∈ Esorted to Ê
(edge set to be removed). Then, from the second opponent
edge to the least opponent edge, we inspect whether the
i-th opponent edge ei ∈ Esorted shares affected train nodes
with already chosen edges: VTr(ei) ∩ VTr(Ê) ̸= ∅. If ei
does, we do not take it and move to the next candidate edge.
Otherwise, we add ei to Ê. However, it turns out that, if
all previously selected edges are used in this process, edge
removal tends to be too conservative in the case of graphs
with many connections. Hence, we maintain and utilize only
the most recently selected edges (we use Ecache to indicate
this set) when we inspect each candidate edge. We keep
|Ecache| ≤ |VTr|/2 for all experiments.

Multi-step edge elimination Since we do not select neigh-
bor opponent edges at once, there are still residuals, so we
suggest repeating RGE multiple times. In other words, we
reiterate removing the edge set determined by RGE and
retraining models until there are no more negative influ-
ence edges. Through repetitions, we would further eliminate
noisy connections and improve generalization performance.

Patience mechanism We also introduce a patience mecha-
nism to select more edges at each stage since the number of
selected edges might be too small compared to the number
of whole edges on graphs with many connections. The core
idea of this mechanism is to allow RGE to even select a
neighboring edge if we fail consecutively in the process of
testing the affected train nodes. Specifically, we initialize
the counting number c as zero. If VTr(ei) ∩ VTr(Ecache) ̸= ∅
and c is less or equal to the pre-defined patience ρ, then
we increase c as 1. Otherwise, we choose ei and reset c to
zero. To avoid selecting too many neighboring edges on
graphs with a high degree, we devise the following rule,
which empirically works well: ρ = log2(d) + 3. This rule
logarithmically increases the patience scale with the average
degree of the graph, d. We note that a log scale is adopted
since a linear scale severely reduces the number of selected
edges. For all experiments, we adopt this patience scale.

Similarly to our repulsive selection rule, Hermsdorff & Gun-
derson (2019) suggests a rule that avoids selecting directly
adjacent edges at each iteration to reduce the size of graphs.
However, the objectives of edge selection are different in
that our goal is to identify and eliminate opponent edges.
Furthermore, in Appendix D, we observe that using this rule
for edge group elimination exhibits inferior performance in
graphs with a high degree since these graphs already show
high estimation errors as depicted in Figure 2(c). The estima-
tion errors resulting from considering only directly adjacent
edges become more critical to identify the opponent edge
set in high-degree graphs.

4. Experiment
4.1. Experimental Setting

Datasets We demonstrate the effectiveness of RGE on var-
ious benchmark datasets, including citation networks (Sen
et al., 2008), commercial graphs (Shchur et al., 2018), We-

6

RGE: A Repulsive Graph Rectification for Node Classification via Influence

Table 1. The performance on homophilous graphs under SGC (Wu et al., 2019) in node classification. Bold and underline denote the
first-highest model and the second-highest model, respectively. RGE shows superior performance on most graphs. We repeat experiments
10 times and report the average accuracy and standard error. † indicates that we report the best accuracy in Luo et al. (2021).

Method (Acc.) Cora CiteSeer PubMed Photo Computers

SGC (Wu et al., 2019) 81.00 ±0.00 71.90 ±0.00 78.90 ±0.00 90.22 ±0.26 86.65 ±0.33

ReNode (Chen et al., 2021) 80.82 ±0.01 71.30 ±0.00 80.00 ±0.00 90.34 ±0.23 86.55 ±0.24

TAM (Song et al., 2022) 81.20 ±0.00 71.40 ±0.00 79.40 ±0.00 89.41 ±0.31 85.81 ±0.29

DropEdge (Rong et al., 2020) 80.80 ±0.07 71.60 ±0.11 76.88 ±0.14 90.19 ±0.23 86.62 ±0.33

NeuralSparse (Zheng et al., 2020)† 83.4 ±1.5 72.4 ±2.6 78.8 ±1.8 - -
PTDNet (Luo et al., 2021)† 84.4 ±2.3 73.7 ±3.1 79.8 ±2.4 - -
Chen et al. (2022a) 83.40 ±0.01 74.10 ±0.00 82.29 ±0.01 90.62 ±0.21 87.67 ±0.21

RGE 84.50 ±0.14 73.75 ±0.13 82.80 ±0.09 91.64 ±0.18 88.85 ±0.18

Table 2. The accuracy comparison on heterophilous graphs under SGC (Wu et al., 2019) in node classification. Bold and underline indicate
the first-highest model and the second-highest model, respectively. RGE exhibits higher accuracy than baselines on most graphs. Since
graphs in WebKB are small and experiments on these graphs have high variance, we reiterate experiments 100 times for WebKB, 10 times
for Actor, and Squirrel. We provide the average accuracy and standard error.

Method (Acc.) Cornell Wisconsin Texas Actor Squirrel

SGC (Wu et al., 2019) 54.32 ±0.72 64.90 ±0.66 63.24 ±0.65 31.21 ±0.24 40.54 ±0.48

ReNode (Chen et al., 2021) 53.24 ±0.66 62.75 ±0.55 62.70 ±0.60 31.18 ±0.35 40.93 ±0.53

TAM (Song et al., 2022) 51.89 ±0.57 66.47 ±0.61 45.68 ±0.61 31.14 ±0.26 36.58 ±0.56

DropEdge (Rong et al., 2020) 49.43 ±0.60 67.08 ±0.41 62.84 ±0.61 31.01 ±0.37 40.38 ±0.49

Chen et al. (2022a) 52.43 ±0.79 67.25 ±0.44 62.97 ±0.51 31.32 ±0.39 39.55 ±0.55

RGE 56.32 ±0.38 68.84 ±0.32 63.24 ±0.63 31.64 ±0.39 39.59 ±0.38

bKB4, Actor network (Pei et al., 2020), and Wikipedia
networks (Rozemberczki et al., 2021). These graphs are
categorized by degree and homophily. Cora, CiteSeer, and
PubMed (Sen et al., 2008) are homophilous networks with a
low degree. AmazonPhoto, and AmazonComputers (Shchur
et al., 2018) are homophilous graphs with a high node de-
gree. In contrast, Cornell, Wisconsin, and Texas are het-
erophilous graphs with a few connections. Actor (Pei et al.,
2020) and Squirrel (Rozemberczki et al., 2021) belong to
heterophilous graphs possessing many edges compared to
previous heterophilus graphs. We use the splits in Yang et al.
(2016) for citation networks, and in Pei et al. (2020) for
WebKB, Actor, and Wikipedia networks. For AmazonPhoto
and AmazonComputers, we adopt ten random splits. The
detailed setup is provided in Appendix F.

Baselines Competitive methods to alleviate the bias in-
duced by noisy structures on graphs, such as ReNode (Chen
et al., 2021), TAM (Song et al., 2022), DropEdge (Rong
et al., 2020), NeuralSparse (Zheng et al., 2020), PTD-
Net (Luo et al., 2021), and Chen et al. (2022a), are compared
to RGE. ReNode and TAM adjust the learning signals of the
train nodes under noisy local topologies by modifying the

4http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-11/www/wwkb/

sample weights or margins in the loss function. DropEdge
randomly removes edges to prevent models from overfitting
structures. NeuralSparse and PTDNet learn to drop edges
by introducing additional networks which determine which
edges would not be used while training GNNs. Chen et al.
(2022a) removes opponent edges based on the edge influ-
ence function after training GNNs and retrains models on
rectified graphs. We use the officially released codes for
ReNode5, and TAM6.

4.2. Results

Group influence estimation error We experiment with
single iteration RGE on various synthetic graphs to prove
that the edge set produced by RGE has a small difference
between the sum of individual influence and group influ-
ence. In fact, we observe that the group-effect gap of RGE
is much smaller than EGE in Figure 2(c). It indicates that
this group-effect gap can be effectively reduced by avoiding
selecting all of an opponent’s neighboring edges at once.
Furthermore, single iteration RGE significantly improves
performance while EGE degrades it in Figure 2(d). The re-
sults show that RGE can discover more harmful edge sets

5https://github.com/victorchen96/ReNode
6https://github.com/Jaeyun-Song/TAM

7

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
https://github.com/victorchen96/ReNode
https://github.com/Jaeyun-Song/TAM

RGE: A Repulsive Graph Rectification for Node Classification via Influence

Table 3. The performance on homophilous graphs under GCN and GAT in node classification. Bold and underline denote the best and
second-best models, respectively. RGE shows superior performance on most graphs. We repeat experiments ten times and report the
average accuracy and standard error. † indicates that we report the accuracy in Luo et al. (2021).

Method (Acc.) GCN GAT
Cora CiteSeer PubMed Cora CiteSeer PubMed

Cross Entropy 82.74 ±0.13 71.82 ±0.07 79.25 ±0.09 82.79 ±0.13 71.64 ±0.17 78.62 ±0.14

ReNode (Chen et al., 2021) 82.74 ±0.10 72.65 ±0.12 80.14 ±0.10 83.21 ±0.12 72.44 ±0.07 79.47 ±0.16

TAM (Song et al., 2022) 82.31 ±0.09 73.10 ±0.16 80.09 ±0.06 82.51 ±0.16 72.72 ±0.20 79.26 ±0.14

DropEdge (Rong et al., 2020) 81.81 ±0.19 72.39 ±0.14 78.51 ±0.12 82.97 ±0.12 71.81 ±0.24 78.20 ±0.14

NeuralSparse (Zheng et al., 2020)† 82.1 ±1.8 71.5 ±1.7 78.8 ±1.8 83.4 ±1.5 72.4 ±2.6 78.0 ±1.7

PTDNet (Luo et al., 2021)† 82.8 ±2.6 72.7 ±1.8 79.8 ±2.4 84.4 ±2.3 73.7 ±3.1 79.3 ±1.5

Chen et al. (2022a) 84.55 ±0.05 73.58 ±0.13 82.20 ±0.05 83.72 ±0.13 73.28 ±0.14 81.19 ±0.10

RGE 85.30 ±0.15 73.70 ±0.18 83.26 ±0.10 84.70 ±0.18 73.46 ±0.23 82.50 ±0.13

than EGE by avoiding the selection of neighboring edge
sets, which can cause a large group influence estimation
error. In fact, among 25 synthetic graphs, Spearman’s cor-
relation between the difference in influence estimation and
the performance gap among EGE and RGE is 0.93. This
indicates that performance drops are highly correlated with
group influence estimation errors.

Main results We validate RGE compared to baselines on
10 real-world networks. We observe that influence-based
graph rectification such as Chen et al. (2022a) and ours show
superior performance compared to learning-based rectifi-
cation including NeuralSparse and PTDNet. Based on this
result, we infer that these methods utilizing the influence
function effectively discover noisy connectivities near train
nodes. We also observe that RGE outperforms Chen et al.
(2022a) on most homophilous graphs except for CiteSeer.
Furthermore, RGE improves performance on heterophilous,
albeit Chen et al. (2022a) fails. This indicates that the edge
set found by RGE is more harmful than Chen et al. (2022a).
For Squirrel, due to huge group influence errors, RGE ex-
hibits a slight decline. Specifically, we observe that group
influence estimation errors grow larger as the degree of a
graph increases and homophily decreases, as shown in Fig-
ure 2(c), indicating that the edge set found by RGE might
not consist of genuinely harmful edges. Thus, as the iterative
process of RGE progresses, these errors intensify, leading
to a performance drop in Squirrel.

To further demonstrate the effectiveness of RGE, we
compare performance under other architectures, including
GCN (Kipf & Welling, 2017) and GAT (Veličković et al.,
2018) in Table 3. Specifically, for Chen et al. (2022a) and
RGE, we first obtain the opponent edge set under SGC and
train GCN and GAT on graphs where the identified edges
are removed. We observe that RGE also performs better
than baselines under GCN and GAT. These results imply
that the opponent sets found under SGC also harm GCN

and GAT, leading to performance improvement.

RGE iteration counts We investigate how many itera-
tions are required for RGE to reach the stopping condition
where there are no more opponent edges. In Appendix C,
RGE takes 20-40 iterations in sparse graphs, while over 100
are needed in dense graphs. Nevertheless, for graphs with a
high degree, only 5-10 iterations are sufficient to improve
performance significantly.

Ablation study We provide the ablation study on the re-
pulsive selection rule and multi-step edge elimination. In
Figure 3, heatmaps show performance gains over the origi-
nal SGC, with colors indicating the gains. We observe that,
for EGE, there is a performance drop on graphs with a high
degree in Figure 2(b). In graphs with many edges, EGE
exhibits inferior performance in that edges connecting to the
same train node are likely to be removed. In contrast, apply-
ing RGE only for a single iteration improves performance
across all graphs in Figure 3(b) and further improvements
can be expected when RGE is applied to multiple steps in
Figure 3(c) in that RGE outperforms RGE (single iteration)
on 20 of 25 graphs. Our method is, therefore, able to identify
edge sets with a more negative influence than EGE, based
on the results of this study.

The performance drop in EGE (single iterations) is also
alleviated by only using multi-step edge elimination in Fig-
ure 3(a). Nevertheless, multi-step edge elimination still per-
forms less well on heterophilous graphs with a high degree
than the original SGC. Due to the possibility that multi-step
edge elimination can also eliminate neighboring opponent
edges, which is more likely if there are many opponent
edges, multi-step edge elimination suffers from performance
degradation. As a result, the repulsive selection rule is the
core component for improving performance.

We examine the patience mechanism on various datasets
in Appendix E. We observe that the patience mechanism

8

RGE: A Repulsive Graph Rectification for Node Classification via Influence

effectively reduces the number of iterations without com-
promising performance.

5. Related Works
Noisy structure handling Several works adjust the learn-
ing signals of train nodes to reduce the detrimental effects
of noisy structures on graphs. ReNode (Chen et al., 2021)
identifies train nodes suffering from influence conflicts and
reduces the loss weight of these samples. TAM (Song et al.,
2022) adjusts margins for train nodes that deviate from the
overall connectivity pattern. TopoImb (Zhao et al., 2022)
discovers topology groups and mitigates the bias toward ma-
jor topology groups with the additional learning objective.
In BA-GNN (Chen et al., 2022b), structural environments
are determined and GNNs are trained to learn node represen-
tations that are invariant to these environments. As a result,
BA-GNN resolves the bias to only several structural envi-
ronments. Nevertheless, these approaches cannot directly
determine which connections should be removed.

To obtain unbiased representations of nodes, several works
remove edges directly. DropEdge(Rong et al., 2020) stochas-
tically removes edges at each epoch to alleviate overfitting,
but it cannot identify noisy edges. NeuralSparse (Zheng
et al., 2020) introduces sparsification networks to learn
and determine which edges should be removed and train
the target GNNs on rectified graphs by sparsification net-
works. PTDNet (Luo et al., 2021) learns dropping probabili-
ties through parametrized networks to avoid high variance
and biased gradients and constrains the adjacent matrix of
graphs to have a low rank to produce more realistic sparsi-
fied graphs. Despite the fact that these methods show im-
provement, they cannot estimate the counterfactual effect of
edges, so it is likely that removing edges can be beneficial.

Chen et al. (2022a) devises edge influence function to es-
timate the counterfactual effect of a single graph element
such as node and edge on the validation set and eliminates
opponent edges based on this function. However, Chen et al.
(2022a) does not consider the group effect when removing
edges, so the edge group found by this method may not
be significant. Several studies (Bajaj et al., 2021; Abrate
& Bonchi, 2021) have attempted to predict counterfactual
effects on graphs, but their methods are mainly designed for
GNN interpretability.

Influence function Measuring the influences of training
samples for predictions of models dates back to Cook’s dis-
tance (Cook, 1977) for linear regression problems. Recently,
Koh & Liang (2017) extended this concept to the deep learn-
ing models by introducing IFs. IF can be applied to various
tasks for understanding and improving the pre-trained neu-
ral networks (NNs): detecting proponents (helpful samples)
and opponents (obstructive samples) of given training data

(Pruthi et al., 2020), finding noisy labeled samples in train-
ing dataset (Koh & Liang, 2017) and removing (Wang et al.,
2018) or relabeling (Kong et al., 2021) these samples, trac-
ing the origins of word embeddings (Brunet et al., 2019),
and dataset pruning (or dataset summarization) task (Haru-
tyunyan et al., 2021; Borsos et al., 2020).

Recent studies on IF have focused on improving the compu-
tational complexity of IF. IF contains inverse Hessian-vector
product (IHVP) of training loss for parameters. Since in-
verting the Hessian matrix has O(p3) time complexity and
O(p2) space complexity, Koh & Liang (2017) used LiSSA
(Agarwal et al., 2016), which requires multiple Hessian-
vector products (HVP), an algorithm to approximate IHVP.
Nevertheless, approximating IHVP with LiSSA is still com-
putationally intractable to large-scale models and datasets.
To mitigate this issue, Pruthi et al. (2020) proposed Random
Projection (RP) methods to avoid pair-wise gradient inner
product and Schioppa et al. (2022) proposed Arnoldi iter-
ation (Arnoldi, 1951) to extract the curvature information
of Hessian directly. These methods will be helpful when
applying RGE to more complex GNNs (Veličković et al.,
2018; Chen et al., 2020).

6. Conclusion
To discover opponent edge sets, we devised and investigated
practical approaches. We observed that there are substantial
group effects among edges and these effects concentrate
on neighboring opponent edges. Based on this observation,
we proposed a new approach to choose preferentially dis-
tant edges over neighboring edges and reiterate removing
them and retraining GNNs until there are no more opponent
edges. We showed that our method outperforms baselines
on various synthetic graphs and benchmark datasets.

Limitations When there is a non-trivial long-term interac-
tion, our method requires more iterations. Thus, acquiring
the final edge set might not be feasible.

Acknowledgements
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grants (No.2019-0-00075, Artificial Intelligence Gradu-
ate School Program (KAIST), No.2021-0-02068, Artifi-
cial Intelligence Innovation Hub, No.2022-0-00984, De-
velopment of Artificial Intelligence Technology for Per-
sonalized Plug-and-Play Explanation and Verification of
Explanation, No.2022-0-00713, Meta-learning applicable
to real-world problems), and National Research Foundation
of Korea (NRF) grants (No.2018R1A5A1059921, No.RS-
2023-00209060, A Study on Optimization and Network
Interpretation Method for Large-Scale Machine Learning)
funded by the Korea government (MSIT).

9

RGE: A Repulsive Graph Rectification for Node Classification via Influence

References
Abrate, C. and Bonchi, F. Counterfactual graphs for explain-

able classification of brain networks. In KDD ’21: The
27th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, Singapore, August 14-18,
2021, pp. 2495–2504. ACM, 2021.

Agarwal, N., Bullins, B., and Hazan, E. Second-order
stochastic optimization in linear time. stat, 1050:15,
2016.

Arnoldi, W. E. The principle of minimized iterations in the
solution of the matrix eigenvalue problem. Quarterly of
applied mathematics, 9(1):17–29, 1951.

Bajaj, M., Chu, L., Xue, Z. Y., Pei, J., Wang, L., Lam, P. C.,
and Zhang, Y. Robust counterfactual explanations on
graph neural networks. In Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 5644–5655, 2021.

Borsos, Z., Mutny, M., and Krause, A. Coresets via bilevel
optimization for continual learning and streaming. In
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020.

Brunet, M.-E., Alkalay-Houlihan, C., Anderson, A., and
Zemel, R. Understanding the origins of bias in word
embeddings. In International conference on machine
learning, pp. 803–811. PMLR, 2019.

Chen, D., Lin, Y., Zhao, G., Ren, X., Li, P., Zhou, J., and Sun,
X. Topology-imbalance learning for semi-supervised
node classification. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 29885–29897, 2021.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In International
conference on machine learning, pp. 1725–1735. PMLR,
2020.

Chen, Z., Li, P., Liu, H., and Hong, P. Characterizing the
influence of graph elements. CoRR, abs/2210.07441,
2022a. doi: 10.48550/arXiv.2210.07441. URL https:
//doi.org/10.48550/arXiv.2210.07441.

Chen, Z., Xiao, T., and Kuang, K. BA-GNN: on learning
bias-aware graph neural network. In 38th IEEE Inter-
national Conference on Data Engineering, ICDE 2022,
Kuala Lumpur, Malaysia, May 9-12, 2022, pp. 3012–3024.
IEEE, 2022b.

Cook, R. D. Detection of influential observation in linear
regression. Technometrics, 19(1):15–18, 1977.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, pp. 1024–1034,
2017.

Harutyunyan, H., Achille, A., Paolini, G., Majumder, O.,
Ravichandran, A., Bhotika, R., and Soatto, S. Estimating
informativeness of samples with smooth unique informa-
tion. arXiv preprint arXiv:2101.06640, 2021.

Hermsdorff, G. B. and Gunderson, L. M. A unifying frame-
work for spectrum-preserving graph sparsification and
coarsening. In Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, Decem-
ber 8-14, 2019, Vancouver, BC, Canada, pp. 7734–7745,
2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894. PMLR, 2017.

Kong, S., Shen, Y., and Huang, L. Resolving training bi-
ases via influence-based data relabeling. In International
Conference on Learning Representations, 2021.

Luo, D., Cheng, W., Yu, W., Zong, B., Ni, J., Chen, H.,
and Zhang, X. Learning to drop: Robust graph neural
network via topological denoising. In WSDM ’21, The
Fourteenth ACM International Conference on Web Search
and Data Mining, Virtual Event, Israel, March 8-12, 2021,
pp. 779–787. ACM, 2021.

Mohammadrezaei, M., Shiri, M. E., and Rahmani, A. M.
Identifying fake accounts on social networks based on
graph analysis and classification algorithms. Secur. Com-
mun. Networks, 2018:5923156:1–5923156:8, 2018.

Palowitch, J., Tsitsulin, A., Mayer, B., and Perozzi, B.
Graphworld: Fake graphs bring real insights for gnns.
In KDD ’22: The 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Washington, DC,
USA, August 14 - 18, 2022, pp. 3691–3701. ACM, 2022.

10

https://doi.org/10.48550/arXiv.2210.07441
https://doi.org/10.48550/arXiv.2210.07441

RGE: A Repulsive Graph Rectification for Node Classification via Influence

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=S1e2agrFvS.

Perozzi, B., Schueppert, M., Saalweachter, J., and Thakur,
M. When recommendation goes wrong: Anomalous link
discovery in recommendation networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pp. 569–578. ACM, 2016.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent.
Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node
classification. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=Hkx1qkrKPr.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale
attributed node embedding. J. Complex Networks, 9(2),
2021.

Schioppa, A., Zablotskaia, P., Vilar, D., and Sokolov, A.
Scaling up influence functions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 8179–8186, 2022.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Mag., 29(3):93–106, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. CoRR,
abs/1811.05868, 2018. URL http://arxiv.org/
abs/1811.05868.

Song, J., Park, J., and Yang, E. TAM: topology-aware mar-
gin loss for class-imbalanced node classification. In Inter-
national Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162
of Proceedings of Machine Learning Research, pp. 20369–
20383. PMLR, 2022.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958, 2014.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Wang, T., Huan, J., and Li, B. Data dropout: Optimizing
training data for convolutional neural networks. In 2018
IEEE 30th international conference on tools with artifi-
cial intelligence (ICTAI), pp. 39–46. IEEE, 2018.

Wu, F., Jr., A. H. S., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Q. Simplifying graph convolutional networks.
In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 6861–6871. PMLR, 2019.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting
semi-supervised learning with graph embeddings. In
Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pp. 40–48. JMLR.org, 2016.

Zhao, T., Luo, D., Zhang, X., and Wang, S. Topoimb:
Toward topology-level imbalance in learning from
graphs. In The First Learning on Graphs Conference,
2022. URL https://openreview.net/forum?
id=nR3rZ4ODtQ.

Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W.,
Chen, H., and Wang, W. Robust graph representation
learning via neural sparsification. In Proceedings of
the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp.
11458–11468. PMLR, 2020.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. In Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

11

https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=nR3rZ4ODtQ
https://openreview.net/forum?id=nR3rZ4ODtQ

RGE: A Repulsive Graph Rectification for Node Classification via Influence

A. Notations

Table 4. Notations used in the main paper

G = (V,E) ≜ graph G with node set V and edge set E
G(E′) = (V,E \ E′) ≜ modification of graph G by elimination of E′ ⊂ E

A,D ∈ R|V |×|V | ≜ adjacency matrix and degree matrix of renormalized graph
S ∈ R|V |×|V | ≜ renormalized graph Laplacian

Ã, D̃ ∈ R|V |×|V | ≜ adjacency matrix and degree matrix of G
Nk(v) ⊂ V ≜ k-hop neighborhood of v.

xv ∈ RM , yv ∈ RC ≜ node representation and label of node v ∈ V

VTr, VVal, VTest ⊂ V ≜ train, valid, test nodes for node classification

zl−1
v ≜ hidden representation of l-th layer of GNN
Θl ≜ trainable parameters of l-th layer of GNN

θ ∈ RP ≜ trainable parameters of GNN in a single vector
ŷv (or ŷv(G, θ)) ≜ prediction of GNN for node v given graph G and parameter θ

LTr(G, θ), LVal(G, θ), LTest(G, θ) ≜ train, valid, and test loss given G and θ
θ∗ ∈ RP ≜ pre-trained parameter given full graph G

VTr (E
′) ⊂ V ≜ affected train node set of edge set E′ ⊂ E

ITrue ≜ ground truth influence function obtained by retraining
I ≜ approximated influence function with Hessian

g = ∇θLTr(G, θ
∗) ≜ gradient w.r.t. parameters given train dataset and θ∗

g′ = ∇θLTr
(
G(E′), θ∗

)
≜ train gradient for modified graph G(E′)

g̃ = ∇θLVal(G, θ
∗) ≜ gradient w.r.t. parameters given validation dataset and θ∗

H := ∇2
θLTr(G, θ

∗) ≜ Hessian w.r.t. parameters given train dataset and θ∗

12

RGE: A Repulsive Graph Rectification for Node Classification via Influence

B. Proof of Influence Additivity for Distant Edges
To clarify the dependence on E′, we define g′(E′) = ∇θLTr(G(E

′), θ∗). From the definition of distant edges in (5), the
intersection of train nodes affected by each edge is empty: VTr ({e}) ∩ VTr ({e′}) = ∅. Based on the assumption in (11) and
the fact that e, e′ are distant edges,∑

v∈VTr({e})

∇θℓ(ŷv (G ({e, e′}) , θ∗) , yv) =
∑

v∈VTr({e})

∇θℓ(ŷv (G ({e}) , θ∗) , yv)

∑
v∈VTr({e′})

∇θℓ(ŷv (G ({e, e′}) , θ∗) , yv) =
∑

v∈VTr({e′})

∇θℓ(ŷv (G ({e′}) , θ∗) , yv).

From the definition, we can calculate gradients for the train loss as:

(g − g′({e})) =
∑

v∈VTr({e})

(∇θℓ(ŷv (G, θ
∗), yv)−∇θℓ(ŷv (G ({e}) , θ∗) , yv)) /|VTr|

(g − g′({e′})) =
∑

v∈VTr({e′})

(∇θℓ(ŷv (G, θ
∗), yv)−∇θℓ(ŷv (G ({e′}) , θ∗) , yv)) /|VTr|.

Then, we can induce the below equations:

(g − g′({e, e′})) =
∑

v∈VTr({e,e′})

(∇θℓ(ŷv (G, θ
∗), yv)−∇θℓ(ŷv (G ({e, e′}) , θ∗) , yv)) /|VTr|

=
∑

v∈VTr({e})

(∇θℓ(ŷv (G, θ
∗), yv)−∇θℓ(ŷv (G ({e, e′}) , θ∗) , yv)) /|VTr|

+
∑

v∈VTr({e′})

(∇θℓ(ŷv (G, θ
∗), yv)−∇θℓ(ŷv (G ({e, e′}) , θ∗) , yv)) /|VTr|,

=
∑

v∈VTr({e})

(∇θℓ(ŷv (G, θ
∗), yv)−∇θℓ(ŷv (G ({e}) , θ∗) , yv)) /|VTr|

+
∑

v∈VTr({e′})

(∇θℓ(ŷv (G, θ
∗), yv)−∇θℓ(ŷv (G ({e′}) , θ∗) , yv)) /|VTr|

= (g − g′({e})) + (g − g′({e′})) .

From the above equation, we can derive influence additivity for distant edge pairs.

I ({e, e′}) = g̃⊤H−1 (g − g′({e, e′}))
= g̃⊤H−1 (g − g′({e}) + g − g′({e′}))
= g̃⊤H−1 (g − g′({e})) + g̃⊤H−1 (g − g′({e′}))
= I ({e}) + I ({e′})

13

RGE: A Repulsive Graph Rectification for Node Classification via Influence

C. The Number of RGE Iterations
We examine the iteration counts of RGE across various datasets in Table 5 and 6. We observe that sparsely connected graphs
(including Cora, CiteSeer, PubMed, Cornell, Wisconsin, and Texas) take 20-40 iterations to achieve the stopping criteria
where no more opponent edges are present. For graphs with high degrees (such as AmazonPhoto, AmazonComputers, Actor,
and Squirrel), more than 100 iterations are required to reach the same stopping condition. However, we observe that, in
graphs with high degrees, 5-10 iterations are sufficient to reach comparable performance to RGE in the stopping condition
(Nstop), as depicted in Table 7.

Table 5. The iteration counts (Niter) of RGE. We repeat experiments 10 times and report the average accuracy and standard error.

Dataset Cora CiteSeer PubMed Photo Computers

Niter 36.70 ±0.95 29.20 ±0.72 37.30 ±0.88 133.20 ±2.62 132.60 ±2.65

Table 6. The iteration counts (Niter) of RGE. We repeat experiments 10 times and report the average accuracy and standard error.

Dataset Cornell Wisconsin Texas Actor Squirrel

Niter 21.00 ±0.30 22.24 ±0.21 19.60 ±0.45 58.50 ±1.0 194.90 ±6.59

Table 7. The accuracy across iteration counts (Niter) of RGE. Bold indicates the best model in accuracy. Nstop presents RGE reaching the
stopping criteria. We repeat experiments 10 times and report the average accuracy and standard error.

Niter Photo Computers Actor Squirrel

1 90.39 ±0.22 87.31 ±0.23 31.25 ±0.36 40.76 ±0.47

5 90.82 ±0.20 88.16 ±0.20 31.37 ±0.33 41.24 ±0.44

10 91.20 ±0.21 88.67 ±0.22 31.74 ±0.39 40.93 ±0.49

Nstop 91.64 ±0.18 88.85 ±0.18 31.64 ±0.39 39.59 ±0.18

14

RGE: A Repulsive Graph Rectification for Node Classification via Influence

D. Comparison with Simple Selection Rule.
To demonstrate the effectiveness of RGE compared to the 1-hop rule of Hermsdorff & Gunderson (2019), we compare
the accuracy and the number of iteration counts across various datasets. In Table 8, ours exhibits higher accuracy in all
graphs. For iteration counts, the 1-hop rule necessitates fewer iterations in graphs with a low degree such as CiteSeer and
PubMed. In contrast, the 1-hop rule requires a higher number of iterations in graphs with a high degree, including Photo and
Actor. Since group influence estimation errors become larger in graphs with high-degree graphs, as shown in Figure 2(c), the
additional errors from considering only directly adjacent edges are significant in these graphs, resulting in an increased
iteration count.

Table 8. The accuracy and iteration counts (Niter) of the 1-hop rule (Hermsdorff & Gunderson, 2019) and RGE. Bold indicates the best
model in accuracy and the number of iterations. We repeat experiments 10 times and report the average accuracy and standard error.

Method CiteSeer PubMed Photo Actor
Acc.(↑) Niter(↓) Acc.(↑) Niter(↓) Acc.(↑) Niter(↓) Acc.(↑) Niter(↓)

1-hop 72.36 ±0.05 15.50 ±0.05 82.56 ±0.11 30.20 ±0.37 91.17 ±0.21 384.50 ±84.10 31.47 ±0.48 97.90 ±32.62

RGE 73.75 ±0.13 29.20 ±0.72 82.80 ±0.09 37.30 ±0.88 91.64 ±0.18 133.20 ±2.62 31.64 ±0.39 58.50 ±1.00

E. Ablation Study for Patience Mechanism
We now investigate the effectiveness of the patience mechanism. We find that the patience mechanism significantly decreases
the number of iterations across various datasets without sacrificing performance. Thus, this result indicates that the patience
mechanism effectively enhances the efficiency of RGE.

Table 9. The performance and iteration counts (Niter). Bold indicates the best model in accuracy and the number of iterations. We repeat
experiments 10 times and report the average accuracy and standard error.

Method CiteSeer PubMed Cornell Wisconsin
Acc.(↑) Niter(↓) Acc.(↑) Niter(↓) Acc.(↑) Niter(↓) Acc.(↑) Niter(↓)

RGE 73.75 ±0.13 29.20 ±0.72 82.80 ±0.09 37.30 ±0.88 56.32 ±0.38 21.00 ±0.30 68.84 ±0.32 22.24 ±0.21

w/o patience 73.90 ±0.00 75.60 ±0.15 82.64 ±0.03 187.80 ±0.13 57.30 ±0.59 53.60 ±0.65 68.65 ±0.25 55.01 ±1.75

15

RGE: A Repulsive Graph Rectification for Node Classification via Influence

F. Experimental Setting
F.1. Synthetic Graphs

To validate our approach on more diverse graphs, we generate diverse graphs from the perspective of degree and ho-
mophily, which is one of the important graph properties affecting performance in node classification. We utilize the recent
graph synthesis approach (Palowitch et al., 2022) and each synthetic graph has degree among {1, 2, 3, 4, 5} and edge
homophily (Zhu et al., 2020) among {0.08, 0.14, 0.25, 0.40, 0.57} with 4 types of node class (25 graphs in total). The
numbers of train/valid/test nodes per class are 20/230/250 (2000 nodes in total). We validate methods on 10 random splits
under SGC (Wu et al., 2019) for each graph. We note that the values of homophily are the results of the synthesis when we
set the parameter regulating homophily (p to q ratio) as {0.25, 0.5, 1, 2, 4}.

F.2. Evaluation Details

Our model is evaluated under SGC (Wu et al., 2019), GCN (Kipf & Welling, 2017), and GAT (Veličković et al., 2018). We
train 2-hop SGC (Wu et al., 2019) for 200 epochs, while the 2-layer GCN and GAT are trained for 2000 epochs. We employ
Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.2 for SGC except for CiteSeer (Sen et al., 2008) (0.5) and
0.01 for GCN and GAT. We choose the weight decay among 100 values ranging from 0.9 to 10−10 in the log scale according
to the validation accuracy for SGC. For GCN and GAT, we select the weight decay from {10−3, 10−4, 10−5, 10−6, 10−7}
due to higher computational costs compared to SGC. We utilize dropout (Srivastava et al., 2014) of 0.5 in each layer
of GCN and GAT. We adopt the hidden dimensions of 32 and 64 for GCN and GAT, respectively, and use eight heads
for GAT. We note that we pre-process edges by removing self-loops and one-directional edges. For AmazonPhoto and
AmazonComputers (Shchur et al., 2018), we use 10 random splits as the numbers of train/valid/test nodes per class are
20/60/200 to keep the class-balanced for each split.

F.3. Baselines

For ReNode (Chen et al., 2021), we search the best hyperparameter according to the validation accuracy among the space
suggested in the paper. In specific, α ∈ {0.05, 0.1, 0.15, 0.2}, wmin ∈ {0.25, 0.5, 0.75}, and wmax ∈ {1.25, 1.5, 1.75}. In
TAM (Song et al., 2022), we find the best hyperparmeter among α ∈ {0.5, 1.5, 2.5}, β ∈ {0.25, 0.5}, ϕ ∈ {0.8, 1.2}. For
DropEdge (Rong et al., 2020), we investigate the best hyperparameter in p ∈ {0.1, 0.2, . . . , 0.9} and stochastically drop two
direction edges simultaneously at each epoch as Chen et al. (2022a) and RGE do.

G. Additional Results
We provide the graphs between group influence and the sum of individual influence on real-world graphs in Figure 4
and synthetic graphs in Figure 5. As mentioned in Section 3.1, we observe that there are significant gaps for neighboring
opponent edges, but edge pairs lie on y = x for distant opponent edges.

16

RGE: A Repulsive Graph Rectification for Node Classification via Influence

0.04 0.03 0.02 0.01 0.00
Individual Edge Infl. Sum

0.04

0.03

0.02

0.01

0.00

Ed
ge

 G
ro

up
 In

fl.

(a) Neighboring edges in Cornell

0.035 0.030 0.025 0.020 0.015 0.010 0.0050.000 0.005
Individual Edge Infl. Sum

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

0.005

Ed
ge

 G
ro

up
 In

fl.

(b) Distant edges in Cornell

0.004 0.003 0.002 0.001 0.000 0.001
Individual Edge Infl. Sum

0.004

0.003

0.002

0.001

0.000

0.001

Ed
ge

 G
ro

up
 In

fl.

(c) Neighboring edges in Texas

0.00350.00300.00250.00200.00150.00100.00050.0000
Individual Edge Infl. Sum

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Ed
ge

 G
ro

up
 In

fl.

(d) Distant edges in Texas

0.005 0.004 0.003 0.002 0.001 0.000 0.001
Individual Edge Infl. Sum

0.005

0.004

0.003

0.002

0.001

0.000

0.001

Ed
ge

 G
ro

up
 In

fl.

(e) Neighboring edges in Wisconsin

0.007 0.006 0.005 0.004 0.003 0.002 0.0010.000 0.001
Individual Edge Infl. Sum

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.001

Ed
ge

 G
ro

up
 In

fl.

(f) Distant edges in Wisconsin

0.0020 0.0015 0.0010 0.0005 0.0000
Individual Edge Infl. Sum

0.0020

0.0015

0.0010

0.0005

0.0000

Ed
ge

 G
ro

up
 In

fl.

(g) Neighboring edges in Actor

0.00060.00050.00040.00030.00020.00010.0000
Individual Edge Infl. Sum

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

Ed
ge

 G
ro

up
 In

fl.

(h) Distant edges in Actor

0.010 0.008 0.006 0.004 0.002 0.000
Individual Edge Infl. Sum

0.010

0.008

0.006

0.004

0.002

0.000

Ed
ge

 G
ro

up
 In

fl.

(i) Neighboring edges in squirrel

0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.000
Individual Edge Infl. Sum

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

Ed
ge

 G
ro

up
 In

fl.

(j) Distant edges in squirrel

0.012 0.010 0.008 0.006 0.004 0.002 0.000
Individual Edge Infl. Sum

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Ed
ge

 G
ro

up
 In

fl.

(k) Neighboring edges in Cora

0.006 0.005 0.004 0.003 0.002 0.001 0.000
Individual Edge Infl. Sum

0.006

0.005

0.004

0.003

0.002

0.001

0.000

Ed
ge

 G
ro

up
 In

fl.

(l) Distant edges in Cora

0.00350.00300.00250.00200.00150.00100.00050.00000.0005
Individual Edge Infl. Sum

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

Ed
ge

 G
ro

up
 In

fl.

(m) Neighboring edges in CiteSeer

0.003 0.002 0.001 0.000
Individual Edge Infl. Sum

0.003

0.002

0.001

0.000

Ed
ge

 G
ro

up
 In

fl.

(n) Distant edges in CiteSeer

0.00350.00300.00250.00200.00150.00100.00050.00000.0005
Individual Edge Infl. Sum

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

Ed
ge

 G
ro

up
 In

fl.

(o) Neighboring edges in PubMed

0.0030 0.0025 0.0020 0.0015 0.0010 0.00050.0000
Individual Edge Infl. Sum

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Ed
ge

 G
ro

up
 In

fl.

(p) Distant edges in PubMed

0.0008 0.0006 0.0004 0.0002 0.0000
Individual Edge Infl. Sum

0.0008

0.0006

0.0004

0.0002

0.0000

Ed
ge

 G
ro

up
 In

fl.

(q) Neighboring edges in Photo

0.0006 0.0005 0.0004 0.0003 0.0002 0.00010.0000 0.0001
Individual Edge Infl. Sum

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

0.0001

Ed
ge

 G
ro

up
 In

fl.

(r) Distant edges in Photo

0.0010 0.0008 0.0006 0.0004 0.00020.0000 0.0002
Individual Edge Infl. Sum

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

0.0002

Ed
ge

 G
ro

up
 In

fl.

(s) Neighboring edges in Computers

0.012 0.010 0.008 0.006 0.004 0.002 0.000
Individual Edge Infl. Sum

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Ed
ge

 G
ro

up
 In

fl.

(t) Distant edges in Computers

Figure 4. The group influences plotted with the sum of individual edge influences in 10 real-world graphs. The first and third columns
indicate gaps for neighboring opponent edges. The second and fourth columns represent differences for distant opponent edges.

17

RGE: A Repulsive Graph Rectification for Node Classification via Influence

0.003 0.002 0.001 0.000 0.001
Individual Edge Infl. Sum

0.003

0.002

0.001

0.000

0.001

Ed
ge

 G
ro

up
 In

fl.

(a) Graph(d = 1, h = 0.08)

0.0025 0.0020 0.0015 0.0010 0.0005 0.0000
Individual Edge Infl. Sum

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Ed
ge

 G
ro

up
 In

fl.

(b) Graph(d = 1, h = 0.08)

0.004 0.003 0.002 0.001 0.000
Individual Edge Infl. Sum

0.004

0.003

0.002

0.001

0.000

Ed
ge

 G
ro

up
 In

fl.

(c) Graph(d = 1, h = 0.40)

0.00350.00300.00250.00200.00150.00100.00050.0000
Individual Edge Infl. Sum

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Ed
ge

 G
ro

up
 In

fl.

(d) Graph(d = 1, h = 0.40)

0.006 0.005 0.004 0.003 0.002 0.0010.000 0.001 0.002
Individual Edge Infl. Sum

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

Ed
ge

 G
ro

up
 In

fl.

(e) Graph(d = 2, h = 0.08)

0.005 0.004 0.003 0.002 0.001 0.000
Individual Edge Infl. Sum

0.005

0.004

0.003

0.002

0.001

0.000

Ed
ge

 G
ro

up
 In

fl.

(f) Graph(d = 2, h = 0.08)

0.005 0.004 0.003 0.002 0.001 0.000 0.001 0.002
Individual Edge Infl. Sum

0.005

0.004

0.003

0.002

0.001

0.000

0.001

0.002

Ed
ge

 G
ro

up
 In

fl.

(g) Graph(d = 2, h = 0.40)

0.00350.00300.00250.00200.00150.00100.00050.00000.0005
Individual Edge Infl. Sum

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

Ed
ge

 G
ro

up
 In

fl.

(h) Graph(d = 2, h = 0.40)

0.003 0.002 0.001 0.000 0.001 0.002
Individual Edge Infl. Sum

0.003

0.002

0.001

0.000

0.001

0.002

Ed
ge

 G
ro

up
 In

fl.

(i) Graph(d = 3, h = 0.08)

0.0030 0.0025 0.0020 0.0015 0.0010 0.00050.0000 0.0005
Individual Edge Infl. Sum

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

Ed
ge

 G
ro

up
 In

fl.

(j) Graph(d = 3, h = 0.08)

0.005 0.004 0.003 0.002 0.001 0.000
Individual Edge Infl. Sum

0.005

0.004

0.003

0.002

0.001

0.000

Ed
ge

 G
ro

up
 In

fl.

(k) Graph(d = 3, h = 0.40)

0.00350.00300.00250.00200.00150.00100.00050.00000.0005
Individual Edge Infl. Sum

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

Ed
ge

 G
ro

up
 In

fl.

(l) Graph(d = 3, h = 0.40)

0.003 0.002 0.001 0.000 0.001 0.002 0.003
Individual Edge Infl. Sum

0.003

0.002

0.001

0.000

0.001

0.002

0.003

Ed
ge

 G
ro

up
 In

fl.

(m) Graph(d = 4, h = 0.08)

0.0015 0.0010 0.0005 0.0000
Individual Edge Infl. Sum

0.0015

0.0010

0.0005

0.0000

Ed
ge

 G
ro

up
 In

fl.

(n) Graph(d = 4, h = 0.08)

0.00200.00150.00100.00050.00000.00050.00100.0015
Individual Edge Infl. Sum

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Ed
ge

 G
ro

up
 In

fl.

(o) Graph(d = 4, h = 0.40)

0.001500.001250.001000.000750.000500.000250.000000.00025
Individual Edge Infl. Sum

0.00150

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

Ed
ge

 G
ro

up
 In

fl.

(p) Graph(d = 4, h = 0.40)

0.00300.00250.00200.00150.00100.00050.00000.0005
Individual Edge Infl. Sum

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

Ed
ge

 G
ro

up
 In

fl.

(q) Graph(d = 5, h = 0.08)

0.0025 0.0020 0.0015 0.0010 0.0005 0.0000
Individual Edge Infl. Sum

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Ed
ge

 G
ro

up
 In

fl.

(r) Graph(d = 5, h = 0.08)

0.00300.00250.00200.00150.00100.00050.00000.0005
Individual Edge Infl. Sum

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

Ed
ge

 G
ro

up
 In

fl.

(s) Graph(d = 5, h = 0.40)

0.006 0.005 0.004 0.003 0.002 0.001 0.000 0.001
Individual Edge Infl. Sum

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.001

Ed
ge

 G
ro

up
 In

fl.

(t) Graph(d = 5, h = 0.40)

Figure 5. The group influences plotted with the sum of individual edge influences in 10 synthetic graphs. The first and third columns
indicate gaps for neighboring opponent edges. The second and fourth columns represent differences for distant opponent edges. We note
that d is degree and h is edge homophily (Zhu et al., 2020) of a graph.

18

