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Abstract
Designing protein sequences with desired biolog-
ical function is crucial in biology and chemistry.
Recent machine learning methods use a surrogate
sequence-function model to replace the expensive
wet-lab validation. How can we efficiently gener-
ate diverse and novel protein sequences with high
fitness? In this paper, we propose IsEM-Pro, an
approach to generate protein sequences towards a
given fitness criterion. At its core, IsEM-Pro is a
latent generative model, augmented by combina-
torial structure features from a separately learned
Markov random fields (MRFs). We develop an
Monte Carlo Expectation-Maximization method
(MCEM) to learn the model. During inference,
sampling from its latent space enhances diversity
while its MRFs features guide the exploration in
high fitness regions. Experiments on eight protein
sequence design tasks show that our IsEM-Pro
outperforms the previous best methods by at least
55% on average fitness score and generates more
diverse and novel protein sequences.

1. Introduction
Protein engineering aims to discover protein variants with
desired biological function, such as fluorescence intensity
(Biswas et al., 2021), enzyme activity (Fox et al., 2007),
and therapeutic efficacy (Lagassé et al., 2017). Protein se-
quences embody their function through spontaneous folding
of amino-acid sequences into three dimensional structures
(Go, 1983; Chothia, 1984; Starr & Thornton, 2017). The
mapping from protein sequence to functional property forms
a protein fitness landscape that characterizes the protein
functional levels, such as the capability to catalyze reaction
or bind a specific ligand (Romero & Arnold, 2009; Ren
et al., 2022). Traditional approaches to design a specific pro-
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(a) Fujiyama landscape. (b) Badlands landscape.

Figure 1. Protein Fitness Landscape (distribution of any specific
functional property for proteins). Protein may exhibit single-
peaked fitness landscape (Fujiyama landscape (a)) or multi-peaked
landscape (Badlands landscape (b)) (Kauffman & Weinberger,
1989). In Fujiyama landscape, any method could perform well.
However, for the rougher Badlands landscape, previous methods
get trapped in a worse local optima while our proposed IsEM-Pro
can climb much closer to the global optima through the iterative
sampling in the latent space.

tein with desired fitness objective involve obtaining protein
variants by random mutagenesis (Labrou, 2010) or recombi-
nation in laboratory experiments (Ma et al., 2003). These
variants are screened and selected in wet-lab experiments
(Arnold, 1998) as illustrated in Figure 2.

However, these approaches requires iterative cycles of ran-
dom mutagenesis and wet-lab validation, which are both
money-consuming and time-intensive. Recent machine
learning methods attempt to build a surrogate model of
protein fitness landscape to accelerate expensive wet-lab
screening (Luo et al., 2021; Meier et al., 2021). How can we
efficiently discover satisfactory proteins over the exponen-
tially large discrete space? Ideal protein molecules should
be novel, diverse and exhibit high fitness. On one hand,
designing novel and diverse protein sequences can uncover
new functions and also lead to functional diversification
(Singh et al., 2016). On the other hand, in addition to the
evolutionary pressure for a protein to conserve specific po-
sitions of its sequence for function, the diversification of
protein sequences can avoid undesired inter-domain associ-
ation such as misfolding (Wright et al., 2005).

In this paper, we propose an Importance sampling based
Expectation-Maximization (EM) method to efficiently de-
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Figure 2. Workflow of traditional protein sequence design. We aim to accelerate this process by directly generating desirable sequences.

sign novel, diverse and desirable Protein sequences (IsEM-
Pro). Specifically, we introduce a latent variable in the
generative model to capture the inter-dependencies in pro-
tein sequences. Sampling in latent space leads to more
diverse candidates and can escape from locally optimal fit-
ness regions. Instead of using standard variational inference
models such as variational auto-encoder (VAE) (Kingma &
Welling, 2013), we leverage importance sampling inside the
EM algorithm to learn the latent generative model. As illus-
trated in Figure 1, our approach can navigate through multi-
ple local optimum, and yield better overall performance. We
further incorporate combinatorial structure of amino acids in
protein sequences using Markov random fields (MRFs). It
guides the model towards higher fitness landscape, leading
to faster uphill path to desired proteins.

We carry out extensive experiments on eight protein se-
quence design tasks and compare the proposed method with
previous strong baselines. The contribution of this paper are
listed as follows:

• We propose a structure-enhanced latent generative
model for protein sequence design.

• We develop an efficient method to learn the proposed
generative model, based on importance sampling inside
the EM algorithm.

• Experiments on eight protein datasets with different
objectives demonstrate that our IsEM-Pro generates
protein sequences with at least 55% higher average
fitness score and higher diversity and novelty than pre-
vious best methods. Further analyse show that the pro-
tein sequences designed by our model can fold stably,
giving empirical evidence that our proposed IsEM-Pro
has the ability to generate real proteins.

2. Background
In this section, we review protein sequence design and basic
variational inference.

2.1. Protein Sequence Design upon Wild-Type

The protein sequence design problem is to search for a se-
quence with desired property in the sequence space VL,

where V denotes the vocabulary of amino acids and L de-
notes the desired sequence length. The target is to find a
protein sequence with highest fitness given by a protein fit-
ness function f : VL → R, which can be measured through
wet-lab experiments. Wild-type refers to protein occurring
in nature. Evolutionary search based methods are widely
used (Bloom & Arnold, 2009; Arnold, 2018; Angermueller
et al., 2019; Ren et al., 2022). They use wild-type sequence
as starting point during iterative search. In this paper, we do
not focus on the modification upon the wild-type sequence,
but aim to efficiently generate novel and diverse sequences
with improved protein functional properties.

2.2. Monte Carlo Expectation-Maximization

A latent generative model assumes data x (e.g. a protein
sequence) is generated from a latent variable z. A clas-
sic algorithm to learn a latent generative model is Monte
Carlo expectation-maximization (MCEM). The optimiza-
tion procedure for maximizing the log marginal likelihood
is to alternate between expectation step (E-step) and maxi-
mization step (M-step) (Neal & Hinton, 1998; Jordan et al.,
1999). EM directly targets the log marginal likelihood of an
observation x by involving a variational distribution qϕ(z):

log pθ(x) = Eqϕ(z)[log pθ(x, z)− log qϕ(z)]

+DKL(qϕ(z)||pθ(z|x))
(1)

where pθ(z|x) is the true posterior distribution and
pθ(x, z) = pθ(x|z)pθ(z) is the joint distribution, composed
of the conditional likelihood pθ(x|z) and the prior pθ(z). In
MCEM, E-step samples a set of z from qϕ(z) to estimate the
expectation 1 using Monte Carlo method, and then M-step
fits the model parameters θ by maximizing the Monte Carlo
estimation (Levine & Casella, 2001). It can be proved that
this process will never decease the log marginal likelihood
(Dieng & Paisley, 2019). We will develop our method based
on this MCEM framework.

3. Proposed Method: IsEM-Pro
In this section, we describe our method in detail. We will
first present the probabilistic model and its learning algo-
rithm. To make the learning more efficient, we describe how
to uncover and use the potential constraints conveyed in the
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protein sequences.

3.1. Problem Formulation

Our goal is to search over a space of discrete protein se-
quences VL – V consists of 20 amino acids and L is the
sequence length – for sequence x ∈ VL that maximizes a
given fitness function f : VL → R. Let the fitness value
y = f(x), given a predefined threshold λ, we define a
conditional likelihood function:

P (S|x) =
{
1, f(x) ≥ λ,

0, otherwise
(2)

where S represents the event that the fitness of x is ideal
(y ≥ λ). Using Pd(x) to denote the protein distribution in
nature, we assume we have access to a set of observations of
x drawn from it. We also assume a class of generative mod-
els Pθ(x) that can be trained with these samples and can ap-
proximate Pd well. Since the search space is exponentially
large (O(20L)), random search would be time-intensive. We
formulate the protein design problem as generating satisfac-
tory sequences from the posterior distribution Pθ(x|S):

Pθ(x|S) =
Pθ(x)P (S|x)

Pθ(S)
(3)

where Pθ(S) =
∫
x
Pθ(x)P (S|x)dx is a normalization con-

stant which does not rely on x. Protein sequences generated
from Pθ(x|S) are not only more likely to be real proteins,
but also have higher functional scores (i.e., fitness). The
higher the λ is, the higher fitness the discovered protein
sequences have.

3.2. Probabilistic Model

Directly generating satisfactory sequences from the poste-
rior distribution Pθ(x|S) is highly efficient compared with
randomly search over the exponentially discrete space. How-
ever, realizing this idea is difficult as computing Pθ(S) =∫
x
P (S|x)Pθ(x)dx needs an integration over all possible x,

which is intractable. Instead, we propose to learn a proposal
distribution Qϕ(x) with learnable parameter ϕ to approxi-
mate Pθ(x|S). In order to find the optimal ϕ of the proposal
distribution, we choose to minimize the KL divergence be-
tween the posterior distribution Pθ(x|S) and the proposal
distribution Qϕ(x):

ϕ∗ = argmax
ϕ

−DKL(Pθ(x|S)||Qϕ(x))

= argmax
ϕ

EPθ(x|S) logQϕ(x) +H(Pθ)
(4)

where H(Pθ) = −EPθ(x|S) logPθ(x|S) is the entropy of
Pθ(x|S) and can be dropped because it does not matter ϕ.

Diversity is a key consideration in our protein design proce-
dure, which not only satisfies the diverse nature of species,
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Figure 3. Overall architecture of the proposed IsEM-Pro. The
upper half illustrates the Markov random fields which learns the
combinatorial structure of amino acids in protein sequences. The
bottom half shows the combinatorial structure feature augmented
probabilistic model.

but also can reduce undesired inter-domain misfolding
(Wright et al., 2005). In order to promote the diversity of the
designed protein sequences, we introduce a latent variable
z into our model to capture the high-order dependencies
among amino acids in protein sequences. Thus our final
goal is to maximize the log marginal likelihood logQϕ(x)
of sequence x from the posterior distribution Pθ(x|S) inte-
grating over z:

L = EPθ(x|S) logQϕ(x)

= EPθ(x|S){ERω(z)[logQϕ(x, z)− logRω(z)]

+DKL(Rω(z)||Qϕ(z|x)}
= EPθ(x|S)F(Rω(z), ϕ)

(5)

where the second equality is the EM objective defined in
Equation 1 with approximate posterior distribution Rω(z).
ω is jointly learned with ϕ by maximizing the above expec-
tation.

For the joint distribution Qϕ(x, z) = P (z)Qϕ(x|z), we
use standard normal distribution for P (z) and Transformer
decoder (Vaswani et al., 2017) for Qϕ(x|z), which is aug-
mented by the combinatorial structure features introduced
in subsection 3.4. The overall architecture is illustrated in
Figure 3.

3.3. Importance Weighted EM

To maximize the objective defined in Equation 5, we plan
to learn our proposal distribution Qϕ through importance
sampling based EM, of which the sampling procedure and
iterative optimization process can lead to a better estimate
(Figure 1 (b)), resulting in novel and diverse proteins with
higher fitness.
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Since we can not directly sample from Pθ(x|S) due to
the intractable integration factor Pθ(S), we propose to ap-
proximate the expectation using importance sampling with
proposal distribution Qϕ(x) (Neal, 2001; Dieng & Pais-
ley, 2019). Because S is only conditioned on x, we have
Pθ(x, z|S) = Pθ(x,z)P (S|x)

Pθ(S) . We assume the latent vari-
able z in Pθ(x, z) and Qϕ(x, z) are defined on the same
latent space Z and have the same prior P (z). Then the final
objective in Equation 5 can be reformulated as:

L = EQϕ(x)
Pθ(x|S)
Qϕ(x)

F(Rω(z), ϕ)

= EQϕ(x,z)
Pθ(x, z|S)
Qϕ(x, z)

F(Rω(z), ϕ)

=
1

CEQϕ(x,z)
Pθ(x|z)
Qϕ(x|z)

P (S|x)F(Rω(z), ϕ)

(6)

The first equality is due to the importance sampling, the
second equality holds because F(Rω(z), ϕ) is an integra-
tion over z and does not rely on z. In the third equality,
C = Pθ(S) is a constant which does not rely on ϕ and ω,
and will be dropped in the following learning process.

We use importance sampling based EM to approximate the
above objective (Hastings, 1970; Levine & Casella, 2001)
with joint samples (xn, zn) ∼ Qϕ(x, z). Specifically, at
iteration t, the optimization process can be reformulated as :
E-step:

Lt =

∑N
n=1 w(xn, zn)F(Rω(zn), ϕ)∑N

n=1 w(xn, zn)
(7)

M-step:
ϕ(t+1) = argmax

ϕ
Lt (8)

where w(xn, zn) =
Pθ(xn|zn)

Q
ϕ(t) (xn|zn)P (S|xn) is the unnormal-

ized importance weight, and N is the sample size.

Through the combined sampling procedure and iterative op-
timization process, we can obtain a good proposal distribu-
tion Qϕ, from which we can generate satisfactory sequences
with small time cost.

3.4. Guiding Model Climbing through Combinatorial
Structure

As shown in previous work, the combinatorial structure of
amino acids in protein sequences can be learned from a
generative graphical model Markov random fields (MRFs)
fitted on the sequences from the same family (Hopf et al.,
2017; Luo et al., 2021). These structure constraints are the
results of the evolutionary process under natural selection
and may reveal clues on which amino-acid combinations
are more favorable than others. Thus we incorporate these
features into our model to guide it towards higher fitness
landscape to faster find desired protein sequences.

Given a protein sequence x = (x1, x2, .., xL) with L amino
acids, the generative model generates it with likelihood
PL(x) = exp(E(x))

Z where Z =
∫
x
exp(E(x))dx is a nor-

malization constant and E(x) is the corresponding energy
function, which is defined as the sum of all pairwise con-
straints and single-site constraints as follows:

E(x) =

L∑
i=1

εi(xi) +

L∑
i=1

L∑
j=1,j ̸=i

εij(xi, xj) (9)

where εi(xi) denotes the single-site constraint of xi at po-
sition i and εij(xi, xj) denotes the pairwise constraint of
xi and xj at position i, j. The above graphical model is
illustrated in the upper half of Figure 3.

We train the model following CCMpred (Seemayer et al.,
2014) using a pseudo-likelihood P̂L(x) (provided in Ap-
pendix E) combined with Ridge regularization to make the
learning of PL(x) easier. But different from them, we addi-
tionally add a lasso regularizer to the training objective to
make the graph sparse, of which the regularization coeffi-
cients are set to the same values as the ridge regularizer:

L =
∑
x

log P̂L(x)− L(ε)−R(ε)

L(ε) = λsingle

L∑
i=1

||εi||11 + λpair

∑
i,j=1,i ̸=j

||εij ||11

R(ε) = λsingle

L∑
i=1

||εi||22 + λpair

∑
i,j=1,i ̸=j

||εij ||22

(10)

where εi = [εi(a1), εi(a2), ..., εi(a20)] is the vector of the
single-site constraints of the 20 amino acids at position
i, and εij = [εij(a1, a2), εij(a1, a3), ..., εij(aL, aL−1)] is
the vector of all possible pairwise constraints at position i, j.
Following (Kamisetty et al., 2013), we set λsingle = 1 and
λpair = 0.2 ∗ (L− 1).

After training the MRFs, we can encode a protein sequence x
with the learned constraints. Specifically, we first encode the
i-th amino acid by concatenating its corresponding single-
site constraint as well as the possible pairwise ones:

εi(xi) = [εi(xi), εi1(xi, a1·), ..., εiL(xi, aL·)]

εij(xi, aj·) = [εij(xi, a1), εij(xi, a2), ..., εij(xi, a20)]

(11)

where εij(xi, aj·) gathers the 20 amino acids for any po-
sition j ̸= i. Then we map εi(xi) to the amino-acid em-
bedding space with trainable parameter Wε, and add the
mapped vector to the original amino-acid embedding e(xi)
to get the final feature vector as our model input:

ê(xi) = e(xi) +Wε ∗ εi(xi)

H0 = z̃, Hi = ê(xi−1) for 1 ≤ i < L
(12)
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which means for the autoregressive Transformer decoder,
the first token input is set the sampled latent vector z̃ and the
input for other position is set to the combinatorial structure
augmented feature vector of last token.

At iteration t in MCEM, the learning process for the com-
binatorial structure enhanced latent generative model be-
comes:
E-step:

Lt =

∑N
n=1 w(xn, zn)F(Rω(zn), ϕ; ε)∑N

n=1 w(xn, zn)
(13)

M-step:

ϕ(t+1) = argmax
ϕ

Lt (14)

ε is fixed during latent generative model learning and we
omit it in the following parts to make description simple.
The overall learning algorithm is given in Appendix B.2.

4. Experiments
In this section, we conduct extensive experiments to vali-
date the effectiveness of our proposed IsEM-Pro on protein
sequence design task.

4.1. Implementation Details

Our model is built based on Transformer (Vaswani et al.,
2017) with 6-layer encoder initialized by ESM-2 (Lin et al.,
2022)1 and 2-layer decoder with random initialization, of
which the encoder parameters are fixed during training pro-
cess. Thus the MRFs features are only incorporated in
decoder. The model hidden size and feed-forward hidden
size are set to 320 and 1280 respectively as ESM-2. We use
the [CLS] representation from the last layer of encoder to
calculate the mean and variance vectors of the latent vari-
able through single-layer mapping. Then the sampled latent
vector is used as the first token input of decoder. The latent
vector size is correspondingly set to 320. We first train a
VAE model as Pθ for 30 epochs and ϕ(0) is initialized by θ.
The number of iterative process in the importance sampling
based VEM is set to 10. The protein combinatorial structure
constraints ε are learned on the training sequences for each
dataset instead of real multiple sequence alignments (MSAs)
to keep a fair comparison.

The mini-batch size and learning rate are set to 4, 096 tokens
and 1e-5 respectively. The model is trained with 1 NVIDIA
RTX A6000 GPU card. We apply Adam algorithm (Kingma
& Ba, 2014) as the optimizer with a linear warm-up over
the first 4, 000 steps and linear decay for later steps. We
randomly split each dataset into training/validation sets with
the ratio of 9:1. We run all the experiments for five times

1https://dl.fbaipublicfiles.com/fairesm/models/esm2 t6 8M UR50D.pt

and report the average scores. More experimental settings
are given in Appendix B.1.

In inference, we design protein sequences by taking the
wild-type as encoder input and the latent vector is sampled
from prior distribution P (z). The sequences are decoded
using sampling strategy with top-5. The candidate number
is set to K=128 following the setting of Jain et al. (2022)
on the GFP dataset. The code is available at https://
github.com/JocelynSong/IsEM-Pro.git.

4.2. Datasets

Following Ren et al. (2022), we evaluate our method on the
following eight protein engineering benchmarks:
(1) Green Fluorescent Protein (avGFP): The goal is to
design sequences with higher log-fluorescence intensity val-
ues. We collect data following Sarkisyan et al. (2016). (2)
Adeno-Associated Viruses (AAV): The target is to generate
amino-acid segment (position 561− 588) for higher gene
therapeutic efficiency. We collect data following Bryant
et al. (2021). (3) TEM-1 β-Lactamase (TEM): The goal is
to design high thermodynamic-stable sequences. We merge
the data from Firnberg et al. (2014). (4) Ubiquitination Fac-
tor Ube4b (E4B): The objective is to design sequences with
higher enzyme activity. We gather data following Starita
et al. (2013). (5) Aliphatic Amide Hydrolase (AMIE):
The goal is to produce amidase sequences with higher en-
zyme activity. We merge data following Wrenbeck et al.
(2017). (6) Levoglucosan Kinase (LGK): The target is to
optimize LGK protein sequences with improved enzyme
activity. We collect data following Klesmith et al. (2015).
(7) Poly(A)-binding Protein (Pab1): The goal is to design
sequences with higher binding fitness to multiple adenosine
monophosphates. We gather data following Melamed et al.
(2013). (8) SUMO E2 Conjugase (UBE2I): We aim to
find human SUMO E2 conjugase with higher growth rescue
rate. Data are obtained following Weile et al. (2017). The
detailed data statistics, including protein sequence length,
data size and data source are provided in Appendix A.

4.3. Baseline Models

We compare our method against the following representa-
tive baselines: (1) CMA-ES (Hansen & Ostermeier, 2001)
is a famous evolutionary search algorithm. (2) FBGAN pro-
posed by Gupta & Zou (2019) is a novel feedback-loop ar-
chitecture with generative model GAN. (3) DbAS (Brookes
& Listgarten, 2018) is a probabilistic modeling framework
and uses adaptive sampling algorithm. (4) CbAS (Brookes
et al., 2019) improves on DbAS by conditioning on the de-
sired properties. (5) PEX proposed by Ren et al. (2022) is
a model-guided sequence design algorithm using proximal
exploration. (6) GFlowNet-AL (Jain et al., 2022) applies
GFlowNet to design biological sequences. We use the im-
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Models avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

CMA-ES 4.492 −3.417 0.375 −0.768 −8.224 −0.077 0.164 2.461 −0.624
FBGAN 1.251 −4.227 0.006 0.369 −2.410 −1.206 0.029 0.208 −0.747
DbAS 3.548 4.327 0.003 −1.286 −2.658 −1.148 1.524 3.088 0.924
CbAS 3.550 4.336 0.106 −1.000 −1.306 −0.362 1.842 3.263 1.303
PEX 3.764 3.265 0.121 5.019 −0.474 0.007 1.153 1.995 1.856
GFlowNet-AL 5.062 1.205 1.552 3.155 0.059 0.027 2.168 3.576 2.101
ESM-Search 2.610 −5.099 0.148 −1.860 −2.351 −0.029 1.406 3.244 −0.241
IsEM-Pro 6.185 4.813 1.850 5.737 0.062 0.035 2.923 4.536 3.267
– w/o ESM 1.214 −4.313 0.005 −1.352 −6.376 −0.225 0.072 1.843 −1.141
– w/o ISEM 4.708 1.130 0.708 0.046 −2.335 −0.077 1.913 0.475 1.342
– w/o MRFs 4.376 1.008 0.952 0.045 −1.771 −0.012 1.652 2.418 1.083
– w/o LV 4.274 2.251 0.078 −1.612 −2.266 −0.931 0.041 −0.262 0.196

Table 1. Maximum fitness scores (MFS) of all methods on eight datasets. Higher values indicate better functional properties in the dataset.
Our proposed IsEM-Pro achieves the highest fitness scores on all datasets.

Models avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

CMA-ES 225.12 23.50 261.60 86.81 283.90 317.08 61.16 140.92 175.01
FBGAN 0.64 8.31 0.46 3.87 33.87 17.35 3.07 3.00 8.82
DbAS 3.04 3.00 3.67 5.94 1.32 2.30 4.05 11.80 4.33
CbAS 1.31 3.01 7.03 7.09 6.01 6.15 9.86 22.73 8.23
PEX 6.83 4.35 10.26 5.22 7.56 13.24 5.33 10.32 7.88
GFlowNet-AL 224.78 25.57 266.43 43.62 219.84 212.25 37.13 49.79 134.92
ESM-Search 3.79 3.58 11.56 3.82 3.83 3.78 5.71 6.59 5.33
IsEM-Pro 218.62 22.92 202.09 91.35 293.30 405.99 68.27 122.66 178.15
– w/o ESM 204.21 13.87 194.78 7.90 276.88 362.98 3.30 119.87 147.96
– w/o ISEM 122.15 22.91 70.12 86.17 145.74 169.17 60.22 13.05 153.09
– w/o MRFs 217.35 17.02 225.88 84.64 268.07 381.66 66.26 143.29 175.52
– w/o LV 22.70 5.26 10.12 5.24 8.65 20.28 0.67 2.98 9.48

Table 2. Diversity scores of all models on eight datasets. Higher values indicate more diverse protein sequences. Our IsEM-Pro achieves
the highest average diversity scores over the eight protein datasets.

Models avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Average

CMA-ES 221.55 22.73 269.25 93.78 256.07 415.63 59.35 128.10 183.30
FBGAN 0.05 2.76 0.08 0.63 57.87 39.36 0.75 0.80 12.43
DbAS 1.01 3.01 1.47 1.09 1.12 1.63 1.64 2.05 1.66
CbAS 4.02 3.03 2.06 1.90 1.33 1.09 2.71 2.95 1.92
PEX 3.59 1.88 8.57 4.08 4.50 10.53 3.63 10.24 5.87
GFlowNet-AL 221.95 22.83 266.99 86.78 316.79 412.58 61.33 143.28 191.56
ESM-Search 1.50 1.83 7.32 1.21 0.92 0.91 5.46 6.14 3.16
IsEM-Pro 226.31 23.81 270.27 96.57 332.23 420.93 70.09 153.27 199.18
– w/o ESM 198.08 9.25 176.20 3.79 264.36 340.62 1.49 110.53 138.04
– w/o ISEM 195.85 16.36 244.05 85.81 306.22 382.12 53.01 99.51 180.40
– w/o MRFs 207.59 9.53 221.49 90.81 244.14 327.14 58.44 129.75 161.11
– w/o LV 16.67 0.89 4.39 0.48 3.98 9.64 0.21 1.76 4.75

Table 3. Novelty scores of all models on eight datasets. Higher values indicate more novel protein sequences. Our IsEM-Pro achieves the
highest novelty scores on all the datasets.

plementations of CMA-ES, DbAS and CbAS provided in
Trabucco et al. (2022) and for other baselines, we apply their
released codes. To better analyze the influence of different
components in our model, we also conduct ablation tests
as follows: (1) IsEM-Pro-w/o-ESM removes ESM-2 as
encoder initialization. (2) IsEM-Pro-w/o-ISEM removes

iterative optimization process. (3) IsEM-Pro-w/o-MRFs
removes MRFs features and iterative optimization process.
(4) IsEM-Pro-w/o-LV removes latent variable, MRFs fea-
tures and iterative optimization process. (5) ESM-Search
samples sequences from the softmax distribution obtained
by finetuning ESM-2 on the protein datasets and taking the
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Figure 4. Approximate KL divergence on eight protein datasets. It shows the variance of KL divergence is very small over different
sample size for all datasets, giving empirical evidence that when we sample from the ultimate Qϕ(x), it has minor difference compared
with sampling from the posterior distribution Pθ(x|S).

wild-type as input.

4.4. Evaluation Metrics

We use three automatic metrics to evaluate the performance
of the designed sequences: (1) MFS: Maximum fitness
score. The oracle model adopted to evaluate MFS is de-
scribed in Appendix B.1; (2) Diversity proposed by Jain
et al. (2022) is used to evaluate how different the designed
candidates are from each other; (3) Novelty proposed by
Jain et al. (2022) is used to evaluate how different the pro-
posed candidates are from the sequences in training data.

4.5. Main Results

Table 1, 2 and 3 respectively report the maximum fitness
scores, diversity scores and novelty scores of all models.

IsEM-Pro achieves the highest fitness scores on all pro-
tein families and outperforms the previous best method
GFlowNet-AL by 55% on average (Table 1). The reasons
are two-folds. On one hand, the importance sampling based
VEM can help our model to navigate to a better region in-
stead of getting trapped in a worse local optima. On the
other hand, the combinatorial structure features help to rec-
ognize the preferred mutation patterns which have higher
success rate under the nature selection pressure, potentially
leading to sequences with higher fitness scores.

IsEM-Pro achieves the highest average diversity score
over the eight tasks (Table 2). Our model gains the highest
diversity on 4 out of 8 tasks while GFlowNet-AL gains 2o
and CMA-ES gains 1. It indicates that though involving
combinatorial structure constraints can give the guidance for
preferred protein patterns, it might also limit the sequence
design to these patterns to some extent. The involved latent
variable can capture complex inter-dependencies among
amino acids, which benefits for more diverse protein design.

IsEM-Pro can design more novel protein sequences on
all datasets (Table 3). Our model achieves higher novelty

scores on all datasets due to the reason that more new sam-
ples are involved during the importance sampling based
iterative optimization process, which is beneficial for more
novel protein design.

4.6. Ablation Study

Bottom halves of Table 1, 2 and 3 report the results of abla-
tion tests. IsEM-Pro-w/o-MRFs improves the average diver-
sity and novelty scores by as much as 33x compared with
IsEM-Pro-w/o-LV, which demonstrates that introducing a
latent variable can significantly help to generate diverse
proteins. IsEM-Pro-w/o-MRFs achieves higher maximum
fitness scores than IsEM-Pro-w/o-ESM on all datasets, val-
idating that adopting a pretrained protein language model
as the encoder helps to design more satisfactory protein
sequences. However, directly finetuning ESM-2 to sam-
ple candidates (ESM-Search) drops 1.3 points on average
fitness score compared with taking ESM-2 as an encoder
(IsEM-Pro-w/o-MRFs), demonstrating that ESM-2 is not
suitable for direct sequence design. Incorporating combi-
natorial structure features can further improve the fitness
of the designed proteins (IsEM-Pro-w/o-ISEM V.S. IsEM-
Pro-w/o-MRFs), based on which learning the proposal dis-
tribution by importance sampling based VEM can better
promote more desirable, diverse and novel protein genera-
tion. We also provide the model performance with a fully-
connected decoder (non-autoregressive decoder) instead of
the current autoregressive one in Appendix F.2. It shows
the non-autoregressive decoder can not generate good can-
didates for protein with longer sequences such as LGK (439
amino acids).

5. Analysis
In this section, we will make rigorous analyse to demon-
strate the effectiveness of our method from different aspects.
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(a) 3-D visualization of sequence with highest fitness. (b) Superposition of 5 fluorescent proteins in top-5 templates.

Figure 5. 3-D visualization of a designed sequence of green fluorescent protein, validating that our model is highly likely to design a real
fluorescent protein.

Methods MFS Diversity Novelty

Latent-Add 4.102 218.26 209.85
Latent-Memory 4.040 219.00 211.38
IsEM-Pro 6.185 218.62 226.31

Table 4. Results of different schemes of introducing a latent vari-
able with a pretrained encoder evaluated on avGFP dataset. It
shows that our method, which takes the latent representation as the
first token input of decoder, achieves a higher fitness and novelty
scores though with a mild decrease on diversity.

5.1. Approximate KL Divergence

To validate how close the proposal distribution Qϕ(x) is
to the posterior distribution Pθ(x|S), we calculate the KL
divergence through Monte Carlo approximation. Here we
calculate the KL divergence between Qϕ(x) and Pθ(x|S)
as we have proven in Lemma C.1 (provided in Appendix
C.2) that the sampling difference between these two distri-
butions can be bounded under this divergence. We leverage
an unbiased and low-variance estimator (proof shown in
Appendix C.1) to approximate KL divergence as follows:

DKL(Qϕ(x)||Pθ(x|S)) = EQϕ(x)[r(x)− 1− log r(x)] (15)

where r(x) = Pθ(x|S)
Qϕ(x)

. The approximate KL divergence on
eight protein datasets over 1k-10k samples are illustrated in
Figure 4. From the figure, we can see that the variance of
KL divergence is very small over different sample size for
all datasets. Besides, the KL divergence finally arrives at
a small value, such as 0.018 for E4B and 0.033 for avGFP.
It gives empirical evidence that when we sample from the
ultimate Qϕ(x), it has minor difference compared with sam-
pling from the posterior distribution Pθ(x|S).

5.2. Effect of VAE Implementation Method

Next, we study the effect of different implementation
schemes of involving a latent variable with a pretrained
encoder. Some works have tried adding the latent represen-
tation to the original embedding layer (Latent-Add) or using
it as an additional memory (Latent-Memory) when adopting
a pretrained language model as encoder (Li et al., 2020).
We also implement our model with these two schemes, and

evaluate the model performance on avGFP dataset. Table
4 shows that our method, which takes the latent represen-
tation as the first token input of decoder, achieves a higher
fitness and novelty scores though with a mild decrease on
diversity. We also provide the conditional VAE (CVAE)
performance in Appendix F.1, which shows decreased per-
formance. It demonstrates that iterative sampling inside the
EM algorithm with explicit fitness constraints can lead to
better proteins.

5.3. Case Study

To gain an insight on how well the designed proteins are, we
analyze the generated avGFP sequence with highest fitness
in detail using Phyre2 tool (Kelley et al., 2015). Figure 5
(a) illustrates the generated variant can fold stably. Accord-
ing to the software, the most similar protein is Cytochrome
b562 integral fusion with enhanced green fluorescent pro-
tein (EGFP) (Edwards et al., 2008). There are 227 residues
( 96% of the candidate sequence) have been modeled with
100.0% confidence by using this protein as template. Details
are given in Appendix D. Figure 5(b) visualizes the superpo-
sition of the top-5 most similar templates to our sequence in
the protein data bank, which are all fluorescent proteins and
show highly consistent structure in most regions, validating
that our model can design a real fluorescent protein.

6. Related Work
Machine Learning for Protein Fitness Landscape Predic-
tion. Machine learning has been increasingly used for mod-
eling protein fitness landscape, which is crucial for protein
engineering. Some work leverage co-evolution information
from multiple sequence alignments to predict fitness scores
(Kamisetty et al., 2013; Luo et al., 2021). Melamed et al.
(2013) propose to construct a deep latent generative model
to capture higher-order mutations. Meier et al. (2021) pro-
pose to use pretrained protein language models to enable
zero-shot prediction. The learned protein landscape models
can be used to replace the expensive wet-lab validation to
screen enormous designed sequences (Rao et al., 2019; Ren
et al., 2022).

Methods for Protein Sequence Design. Protein sequence

8



Importance Weighted Expectation-Maximization for Protein Sequence Design

design has been studied with a wide variety of methods, in-
cluding traditional directed evolution (Arnold, 1998; Dalby,
2011; Packer & Liu, 2015; Arnold, 2018) and machine learn-
ing methods. The mainly used machine learning algorithms
include reinforcement learning (Angermueller et al., 2019;
Jain et al., 2022), Bayesian optimization (Belanger et al.,
2019; Moss et al., 2020; Terayama et al., 2021), search us-
ing deep generative models (Brookes & Listgarten, 2018;
Brookes et al., 2019; Madani et al., 2020; Kumar & Levine,
2020; Das et al., 2021; Hoffman et al., 2022; Melnyk et al.,
2021; Ren et al., 2022) adaptive evolution methods (Hansen,
2006; Swersky et al., 2020; Sinai et al., 2020) as well as
likelihood-free inference (Zhang et al., 2021).

Different from the existing work, we propose importance
sampling based VEM to learn a latent generative model
which is enhanced by combinatorial structure features of
protein space. The whole framework can not only help
the generative model to climb to a better region in either
Fujiyama landscape or Badlands landscape (Kauffman &
Weinberger, 1989), but also significantly promote design
diversity and novelty.

7. Discussion
In this section, we discuss some architecture choice and
limitation of this paper.

We opt for MCEM over the standard VAE to learn the latent
generative model due to our belief that the standard VAE
has certain limitations. The major limitation of the standard
VAE is that it maximizes the likelihood of observed data, say
protein sequence, but higher likelihood does not necessarily
associate with higher fitness of a protein. Our IsEM-Pro
tackles this by explicitly modelling fitness constraints and
amino acid correlation in a protein sequence. As shown in
Table 1, 2 and 3, the fitness scores of standard VAE (IsEM-
Pro-w/o-MRFs) decrease a lot compared with our IsEM-Pro
and the diversity and novelty scores also slightly decrease.
Besides, as Dieng & Paisley (2019) analyzed, VAE amor-
tizes the cost of inference by using a recognition network
to parameterize the variational family, which introduces an
amortization gap and leads to approximate posteriors of re-
duced expressivity due to the problem known as posterior
collapse. Instead, EM directly maximizes the log marginal
likelihood of the data and each iteration in EM is guaranteed
to increase the log marginal likelihood from the previous
iteration (Dieng & Paisley, 2019). Therefore, using EM in
the context of deep generative models could lead to better
performance. Additionally, standard VAE attempts to per-
form variational inference through a direct, discriminative
mapping from data observations to approximate posterior
parameters. Though generative models can adapt to ac-
commodate sub-optimal approximate posteriors, it’s likely
limited to direct inference mapping, leading to being trapped

in a worse local optima (Marino et al., 2018). Instead, EM
guarantees that the log marginal likelihood of the data keeps
increasing in each iteration, helping our model climb much
closer to the global optima.

One limitation of this work is, although our model has
demonstrated promising results, the designed protein se-
quences have not undergone wet-lab testing and there might
be some uncertainty correlated with the oracle model. The
results reported in our paper are averaged over five runs,
which can accommodate some variance on this metric. Fur-
thermore, all fitness data used in our paper are obtained from
wet-lab experiments, ensuring that the fitness values of the
training datasets are realistic. To reduce the cost of wet-lab
validation and select good protein candidates, we evaluate
the designed sequences using the oracle model trained on
real protein sequences following (Ren et al., 2022; Jain et al.,
2022; Rao et al., 2019), which may associate with some un-
certainties. While there is currently no perfect automatic
metric available, we believe that new methods should be
encouraged in the field of computational biology. With time,
we are confident that the field will continue to develop and
mature.

8. Conclusion
This paper proposes IsEM-Pro, a latent generative model
for protein sequence design, which incorporates additional
combinatorial structure features learned by MRFs. We use
importance weighted EM to learn the model, which can not
only enhance design diversity and novelty, but also lead to
protein sequences with higher fitness. Experimental results
on eight protein sequence design tasks show that our method
outperforms several strong baselines on all metrics.
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A. Data Statistics
We provide the detailed data statistics in the following table, including protein sequence length, data size and data source.
We have checked and cleaned the data and make sure the data do not contain personally identifiable information or offensive
content.

Protein Length Size Data Source

avGFP 237 49, 855 https://figshare.com/articles/dataset/Local fitness landscape of the green fluorescent protein
AAV 28 296, 914 https://github.com/churchlab/Deep diversification AAV
TEM 286 17, 238 https://github.com/facebookresearch/esm/tree/main/examples/data
E4B 102 91, 033 https://figshare.com/articles/dataset
AMIE 341 6, 631 https://figshare.com/articles/dataset/Normalized fitness values for AmiE selections/3505901/2
LGK 439 8, 069 https://figshare.com/articles/dataset
Pab1 75 36, 522 https://figshare.com/articles/dataset
UBE2I 159 5, 355 http://dalai.mshri.on.ca/ jweile/projects/dmsData/

Table 5. Detailed statistics of the eight protein datasets.

B. More Implementation Details
B.1. Additional Experimental Settings

We apply the annealing schedule for the KL term during Pθ(x) training process following β-VAE (Higgins et al., 2016) to
prevent posterior collapse. Specifically, the KL term coefficient starts from 0 and is gradually increased to 1.0 as training
goes on. At each iteration in importance sampling based EM learning process, the number of samples from current Qϕ(x, z)
is set to 10% of the training data size.

Following (Ren et al., 2022), We construct the oracle model f(x) by adopting the features produced by ESM-1b (Rives
et al., 2021) with dimension 1280 and finetuning an Attention1D decoder to predict the fitness values. Since Brookes et al.
(2019) state that the results are insensitive when λ is set in the range [50, 100]-th percentile of the fitness scores in the
training set, we set λ to 50-th percentile of the fitness values in the training data to accommodate more diversity.

B.2. Importance Weighted EM Learning Algorithm

Algorithm 1 Importance Sampling based Expectation-Maximization Training
Input: ε: separately learned combinatorial structure features through MRFs

Pθ(x; ε): VAE model trained on the protein sequences incorporating ε
T: number of iteration for importance sampling based EM learning
N: number of samples at each iteration during EM learning

Output: Final proposal model Qϕ(T )(x; ε)
1: set Qϕ(0)(x|z; ε) = Pθ(x|z; ε), Qϕ(0)(z|x; ε) = Pθ(z|x; ε)
2: for t=0 to T-1 do
3: sample N pairs of (x(t), z(t)) ∼ Qϕ(t)(x, z; ε)

4: for minibatch in {(x(t), z(t))}Ni=1 do
5: Calculate expectation using Monte Carlo approximation defined in Equation 13 in E-step
6: Maximize the Monte Carlo approximation to update ϕ(t+1) in Equation 14 in M-step
7: end for
8: end for
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C. Approximate KL Divergence
C.1. Proof of the Unbiased and Low-Variance Estimator

Letting r(x) = Pθ(x|S)
Qϕ(x)

, we have:

EQϕ(x)[(r(x)− 1)− log r(x)] = EQϕ(x)[log
Qϕ(x)

Pθ(x|S)
] = DKL(Qϕ(x)||Pθ(x|S)) (16)

Therefore, this estimator for KL divergence is unbiased.

Assuming f(x) = (x − 1)− log x, since f(x) is a convex function and it achieves the minimum value when x = 1, we
have:

(x− 1)− log x ≥ f(1) = 0 (17)

Thus, (r(x) − 1) − log r(x) is always larger than or equals to 0. Instead, in the original KL divergence, log Qϕ(x)
Pθ(x|S) =

− log r(x) would be negative for half of the samples. Therefore, EQϕ(x)[(r(x)−1)− log r(x)] has lower variance compared
to the original one.

C.2. Theoretical Understanding

We can prove that under acceptable KL divergence, the samples from the proposal distribution Qϕ(x) can be bound within a
reasonable sampling error with samples from the posterior distribution Pθ(x|S).

Lemma C.1. If the KL divergence between two distributions P and Q is less than a small positive value δ, then the sampling
probability difference between P and Q will be bounded by

√
2δ for each sample x.

Proof. Let δ(P,Q) be the total variation distance between P and Q, due to the Pinsker’s inequality (Csiszár & Körner,
2011), we have:

1

2

∑
x

|P (x)−Q(x)| = δ(P,Q) ≤
√

1

2
DKL(P ||Q) <

√
1

2
δ (18)

The first equality holds when the measurable space is discrete as is the case in this paper. The second inequality is tight if
and only if P = Q, and then there is no difference between sampling from P and Q.

From the above analysis, we can get: ∑
x

|P (x)−Q(x)| <
√
2δ (19)

When δ approaches 0, the sampling difference between P (x) and Q(x) would be very minor.

D. Case Study
Figure 6 illustrates the complete sequence and secondary structure analyse of our designed protein of avGFP compared with
Cytochrome b562 integral fusion with enhanced green fluorescent protein (EGFP). From the figure, we can see that there
are much overlap between our designed protein sequence and the chain B of Cytochrome b562 integral fusion with EGFP.
It gives empirical evidence that the green fluorescent protein generated by our model is highly likely to be a real protein
compared with the proteins we already know. But whether the designed sequences can accelerate wet-lab experiments still
need more exploration as we can not 100% trust it.
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Figure 6. Complete sequence and secondary structure comparison between the designed sequence of avGFP and chain B of Cytochrome
b562 integral fusion with with enhanced green fluorescent protein. Green and blue parts respectively represent the Alpha helix and Beta
strand.

E. Pseudo-Likelihood for Combinatorial Structure Learning
We train the Markov random fields using a pseudo-likelihood as CCMpred (Seemayer et al., 2014) additionally combined
with the Lasso regularization and Ridge regularization. The pseudo-likelihood is given in the following Equation:

P̂L(x) = logΠL
i=1P (xi|x1, x2, ..., xi−1, xi+1, ..., xL, ε)

=

L∑
i=1

log
exp(εi(xi) +

∑L
j=1,j ̸=i εij(xi, xj))∑

c∈V exp(εi(c) +
∑L

j=1,j ̸=i εij(c, xj))

=
L∑

i=1

{εi(xi) +

L∑
j=1,j ̸=i

εij(xi, xj)− logZi}

Zi =
∑
c∈V

exp(εi(c) +

L∑
j=1,j ̸=i

εij(c, xj))

(20)

where V denotes the vocabulary of 20 amino acids.
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F. Additional Experiments
F.1. Conditional VAE

We provide the results of conditional VAE (CVAE) in Table 6. We implement the CVAE which is built by adding the
fitness condition on deepsequence (Riesselman et al., 2018). The table shows CVAE exhibits decreased performance. It
demonstrates that iterative sampling inside EM algorithm with explicit fitness constraints can lead to better proteins.

Dataset avGFP AAV TEM E4B AMIE LGK Pab1 Average

CVAE 3.570 4.128 0.083 −0.819 −1.564 −0.796 1.638 3.492 1.217
IsEM-Pro 6.185 4.813 1.850 5.737 0.062 0.035 2.923 4.536 3.267

Table 6. Fitness of conditional VAE compared with our IsEM-Pro.

F.2. Non-Autoregressive Decoder

We provide the performance of a fully-connected decoder implemented by applying a non-autoregressive decoder compared
with our IsEM-Pro in Table 7. It shows the non-autoregressive decoder can not generate good candidates for protein with
longer sequences such as LGK (439 amino acids).

Dataset avGFP AAV TEM E4B AMIE LGK Pab1 Average

Non-autoregressive Decoder 1.312 3.137 1.015 3.096 −3.297 −3.125 1.548 2.694 0.797
IsEM-Pro 6.185 4.813 1.850 5.737 0.062 0.035 2.923 4.536 3.267

Table 7. Fitness of applying a fully-connected decoder (Non-autoregressive decoder) compared with our IsEM-Pro.
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