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Abstract
Projection maintenance is one of the core data
structure tasks. Efficient data structures for pro-
jection maintenance have led to recent break-
throughs in many convex programming algo-
rithms. In this work, we further extend this
framework to the Kronecker product structure.
Given a constraint matrix A and a positive semi-
definite matrix W ∈ Rn×n with a sparse eigen-
basis, we consider the task of maintaining the
projection in the form of B⊤(BB⊤)−1B, where
B = A(W ⊗ I) or B = A(W 1/2 ⊗W 1/2). At
each iteration, the weight matrix W receives a
low rank change and we receive a new vector
h. The goal is to maintain the projection ma-
trix and answer the query B⊤(BB⊤)−1Bh with
good approximation guarantees. We design a fast
dynamic data structure for this task and it is ro-
bust against an adaptive adversary. Following the
beautiful and pioneering work of [Beimel, Ka-
plan, Mansour, Nissim, Saranurak and Stemmer,
STOC’22], we use tools from differential privacy
to reduce the randomness required by the data
structure and further improve the running time.

1. Introduction
Projection maintenance is one of the most important data
structure problems in recent years. Many convex optimiza-
tion algorithms that give the state-of-the-art running time
heavily rely on an efficient and robust projection mainte-
nance data structure (Cohen et al., 2019; Lee et al., 2019;
Jiang et al., 2020b;a; Huang et al., 2022b). Let B ∈ Rm×n,
consider the projection matrix P = B(B⊤B)−1B⊤. The
projection maintenance task aims for the design of a data
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structure with the following guarantees: it can preprocess
and compute an initial projection. At each iteration, B re-
ceives a low rank or sparse change, and the data structure
needs to update B to reflect these changes. It will then be
asked to approximately compute the matrix-vector product,
between the updated P and an online vector h. For exam-
ple, in linear programming, one sets B =

√
WA, where

A ∈ Rm×n is the constraint matrix and W is the diagonal
slack matrix. Each iteration, W receives relatively small
perturbations. Then, the data structure needs to output an
approximate vector to

√
WA(A⊤WA)−1A⊤

√
Wh, for an

online vector h ∈ Rn.

In this work, we consider a specific type of projection main-
tenance problem. Concretely, our matrix B = A(W ⊗ I)
or B = A(W 1/2 ⊗ W 1/2), where W ∈ Rn×n is a pos-
itive semidefinite matrix and A ∈ Rm×n2

is a matrix
whose i-th row is the vectorization of an n × n matrix.
We call the problem for maintaining such kind of matri-
ces, the Dynamic Kronecker Product Projection Mainte-
nance Problem. Maintaining the Kronecker product pro-
jection matrix has important implications for solving semi-
definite programs using interior point method (Jiang et al.,
2020a; Huang et al., 2022b;a; Gu & Song, 2022). Specifi-
cally, one has m constraint matrices A1, . . . , Am ∈ Rn×n,
and A is constructed by vectorization each of the Ai’s as
its rows. The matrix W is typically the complementary
slack of the program. In many cases, the constraint matri-
ces A1, . . . , Am are simultaneously diagonalizable, mean-
ing that there exists a matrix P such that P⊤AiP is di-
agonal. This leads to the matrix W also being simultane-
ously diagonalizable, which implies potential faster algo-
rithms for this kind of SDP (Jiang & Li, 2016). We study
this setting in a more abstract and general fashion: suppose
A1, . . . , Am are fixed. The sequence of update matrices
W (0),W (1), . . . ,W (T ) ∈ Rn×n share the same eigenba-
sis.

The data structure design problem can be decomposed into
2 parts: 1). How to update the projection matrix fast, and
2). How to answer the query efficiently. For the update
portion, we leverage the fact that the updates are relatively
small. Hence, by updating the inverse part of projection in
a lazy fashion, we can give a fast update algorithm.
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For the query portion, it is similar to the Online Matrix Vec-
tor Multiplication Problem (Henzinger et al., 2015; Larsen
& Williams, 2017; Chakraborty et al., 2018), with a chang-
ing matrix-to-multiply. To speed up this process, prior
works either use importance sampling to sparsify the vec-
tor h(t), or using sketching matrices to reduce the dimen-
sion. For the latter, the idea is to prepare multiple instances
of sketching matrices beforehand, and batch-multiplying
them with the initial projection matrix P (0). Let R ∈
Rn2×Tb denote the batched sketching matrices, where b is
the sketching dimension for each matrix, one prepares the
matrix PR. At each query phase, one only needs to use one
sketching matrix, R(t), and compute (P (R(t))⊤)R(t)h. By
computing this product from right to left, we effectively re-
duce the running time from O(n4) to O(n2b). One signifi-
cant drawback of this approach is that, if the number of iter-
ations T is large, then the preprocessing and update phase
become less efficient due to the sheer number of sketching
matrices.

We observe that the fundamental reason that applying one
uniform sketch for all iterations will fail is due to the depen-
dence between the current output and all previous inputs:
When using the projection maintenance data structure in
an iterative process, the new input query is typically formed
by a combination of the previous outputs. This means that
our data structure should be robust against an adaptive ad-
versary. Such an adversary can infer the randomness from
observing the output of the data structure and design new
input to the data structure. Prior works combat this issue
by using a uniformly-chosen sketching matrix that won’t
be used again.

To make our data structure both robust against an adaptive
adversary and reduce the number of sketches to use, we
adapt a differential privacy framework as in the fantastic
work (Beimel et al., 2022). Given a data structure against
an oblivious adversary that outputs a real number, the pio-
neering work (Beimel et al., 2022) proves that it is enough
to use Õ(

√
T ) data structures instead of T for adaptive ad-

versary, while the runtime is only blew up by a polylog-
arithmic factor. However, their result is not immediately
useful for our applications, since we need an approximate
vector with n2 numbers. A direct consequence of strong
composition gives rise to Õ(n

√
T ) data structures, which

is only useful for n <
√
T and less satisfactory for moder-

ate choice of T . To circumvent this issue, we instead ask
for a high-precision estimation to each entry of the vec-
tor. Using strong composition over all entries, we arrive at
a data structure that only uses Õ(

√
T ) sketching matrices,

and pays an extra Õ(k1.5) time per query, where k denotes
the total number of coordinates-to-be-estimated. While
one might want a tighter runtime by tightening the extra
Õ(k1.5) to Õ(k), we conjecture our analytical framework
is essentially tight due to the tightness of strong compo-

sition (Kairouz et al., 2015). If one wants to improve both
the number of sketches and extra query time, it might be in-
strumental to develop faster algorithms for harder problem,
such as efficient differentially private mean estimation.

An immediate consequence of our data structure is an
improvement over the (diagonal) projection maintenance
of (Cohen et al., 2019; Lee et al., 2019; Song & Yu, 2021).
In this model, the matrix B =

√
WA ∈ Rn×n where W ∈

Rn×n is a non-negative diagonal matrix. Prior works use T
independent sketching matrices with sketching dimension
being Õ(

√
n). Hence, the query time is Õ(n1.5), matches

the differential-privacy-incurred extra Õ(n1.5) factor. Our
preprocessing and update time is faster, since we only need
Õ(
√
T ) sketches instead of T .

We start with defining notations to simplify further discus-
sions.

Definition 1.1 (Time complexity for preprocessing, update
and query). Let B(0), B(1), . . . , B(T ) ∈ Rm×n be an on-
line sequence of matrices and h(1), . . . , h(T ) ∈ Rn be an
online sequence of vectors.

• We define Tprep(m,n, s, b) as the preprocessing time
of a dynamic data structure with input matrix B ∈
Rm×n, sketching dimension b and the number of
sketches s.

• We define Tupdate(m,n, s, b, ε) as the update time of
a dynamic data structure with update matrix B(t) ∈
Rm×n, sketching dimension b and the number of
sketches s. This operation should update the projec-
tion to be (1± ε) spectral approximation.

• We define Tquery(m,n, b, ε, δ) as the query time of
a dynamic data structure with query vector h ∈ Rn,
sketching dimension b and the number of sketches s.
This operation should output a vector h̃(t) ∈ Rn such
that for any i ∈ [n], |h̃(t)

i − (P (t)h(t))i| ≤ ε∥h(t)∥2
with probability at least 1− δ.

Theorem 1.2. Let B(0), B(1), . . . , B(T ) ∈ Rm×n be an
online sequence of matrices and h(1), . . . , h(T ) ∈ Rn be
an online sequence of vectors.

There exists a dynamic data structure for the projection
maintenance task, with

• Preprocessing time Tprep(m,n,
√
T , b).

• Update time Tupdate(m,n,
√
T , b, ε).

• Query time Tquery(m,n, b, ε, δ) + n1.5.

Moreover, the data structure is robust against an adaptive
adversary.
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For the sake of comparison, we note the data structure
in (Cohen et al., 2019; Lee et al., 2019; Song & Yu, 2021)
has preprocessing time Tprep(m,n, T , b), update time
Tupdate(m,n, T , b, ε) and query time Tquery(m,n, b, ε, δ).
In the linear program applications, they choose b =

√
n,

yielding a query time of Õ(n1.5), which matches our query
time.

Now, we turn to the harder problem of maintaining a Kro-
necker product projection matrix. While the update matri-
ces are positive semi-definite instead of diagonal, we note
that they still share the same eigenbasis. Essentially, the up-
dates are a sequence of diagonal eigenvalues, and we can
leverage techniques from prior works (Cohen et al., 2019;
Lee et al., 2019; Song & Yu, 2021) with lazy updates.

Our data structure also relies on using sketches to speed
up the query phase. We present an informal version of our
result below.

Theorem 1.3. Let A ∈ Rm×n2

and B = A(W ⊗ I) or
B = A(W 1/2 ⊗ W 1/2). Let R ∈ Rsb×n2

be a batch of
s sketching matrices, each with dimension b. Given a se-
quence of online matrices W (1), . . . ,W (T ) ∈ Rn×n where
W (t) = UΛ(t)U⊤ and online vectors h(1), . . . , h(T ) ∈
Rn2

. The data structure has the following operations:

• INIT: The data structure preprocesses and generates
an initial projection matrix in time

mnω +mω + Tmat(m,m, n2) + Tmat(n
2, n2, sb).

• UPDATE(W ): the data structure updates and main-
tains a projection P̃ such that

(1− ε) · P ⪯ P̃ ⪯ (1 + ε) · P,

where P is the projection matrix updated by W .
Moreover, if

n∑
i=1

(lnλi(W )− lnλi(W
old))2 ≤ C2,

the expected time per call of UPDATE(W ) is

C/ε2 · (max{nf(a,c)+ω−2.5 + nf(a,c)−a/2,

nf(a,c)+ω−4.5sb+ nf(a,c)−2−a/2sb}).

• QUERY(h): the data structure outputs P̃R⊤l Rl · h. If
nnz(U) = O(n1.5+a/2), then it takes time

n3+a + n2+b.

Here, a ∈ (0, 1) is a parameter that can be chosen and
f(a, c) ∈ [4, 5) is a function defined as in Def. B.14.

Combining with our differential privacy framework, it is
sufficient to set s = Õ(

√
T ) instead of T to handle adap-

tive adversary. The extra Õ(n3) cost for query is subsumed
by the original query cost Õ(n3+a). For the sake of discus-
sion, let us consider the parameter setting

m = n2, b = Õ(ε−2), ω = 2, f(a, c) = 4,

and C/ε2 = O(1). Then the running time simplifies to

• Preprocessing in mω + Tmat(m,m,
√
T ) time.

• Update in m0.75
√
T +m1−a/4

√
T time.

• Query in m1.5+a/2 time.

This again improves the standard approach that uses T
sketching matrices. We want to point out that while re-
ducing the number of sketches from T to Õ(

√
T ) does

not directly improve the running time for linear program-
ming and semidefinite programming (due to other opera-
tions subsuming the cost), our result provides an interesting
perspective on designing adaptive robust data structures.
Particularly, for optimization problems that require many
iterations to converge (e.g, the solver for sum-of-squares
optimization (Jiang et al., 2022)), our data structure pro-
vides substantial speedups.

Roadmap. In Section 2, we present our related work on
sketching, differential privacy and projection maintenance.
In Section 3, we provide the basic notations of this pa-
per, preliminaries on Kronecker product calculation, and
the formulation of the data structure design problem. In
Section 4, we provide an overview on techniques we used
in this paper. In Section 5, we provide the description of
our algorithm , running time analysis and proof of correct-
ness of Kronecker Product Maintenance Data Structure. In
Section 6, we present the definition of the set query prob-
lem, the set query estimation data structure and its analysis
of correctness and approximation guarantee.

2. Related Work
Sketching. Sketching is a fundamental tool and has many
applications in machine learning and beyond, such as
linear regression, low-rank approximation (Clarkson &
Woodruff, 2013; Nelson & Nguyên, 2013; Meng & Ma-
honey, 2013; Boutsidis & Woodruff, 2014; Razenshteyn
et al., 2016; Song et al., 2017; Andoni et al., 2018; Song
et al., 2019), distributed problems (Woodruff & Zhong,
2016; Boutsidis et al., 2016), reinforcement learning (Wang
et al., 2020), projected gradient descent (Xu et al., 2021),
tensor decomposition (Song et al., 2019), clustering (Esfan-
diari et al., 2021), signal interpolation (Song et al., 2022a),
distance oracles (Deng et al., 2022b), generative adversarial
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networks (Xiao et al., 2018), training neural networks (Lee
et al., 2020; Brand et al., 2021; Song et al., 2021a;b; Hu
et al., 2022), matrix completion (Gu et al., 2023), matrix
sensing (Deng et al., 2023b; Qin et al., 2023b), attention
scheme inspired regression (Li et al., 2023b; Deng et al.,
2023a; Li et al., 2023a; Gao et al., 2023c;a), sparsification
of attention matrix (Deng et al., 2023c), discrepancy min-
imization (Deng et al., 2022a), dynamic tensor regression
problem (Reddy et al., 2022), John Ellipsoid computation
(Song et al., 2022b), NLP tasks (Liang et al., 2020), total
least square regression (Diao et al., 2019).

Differential Privacy. First introduced in (Dwork et al.,
2006), differential privacy has been playing an important
role in providing theoretical privacy guarantees for enor-
mous algorithms (Dwork & Roth, 2014), for example, ro-
bust learning a mixture of Gaussians (Kamath et al., 2019),
hypothesis selection (Bun et al., 2021), hyperparameter se-
lection (Mohapatra et al., 2022), convex optimization (Ka-
math et al., 2022), first-order method (Subramani et al.,
2021) and mean estimation (Kamath et al., 2020; Hopkins
et al., 2022). Techniques from differential privacy are also
widely studied and applied in machine learning (Chaud-
huri & Monteleoni, 2008; Williams & McSherry, 2010; Ja-
yaraman & Evans, 2019; Triastcyn & Faltings, 2020), deep
neural networks (Abadi et al., 2016; Bagdasaryan et al.,
2019), computer vision (Zhu et al., 2020; Luo et al., 2021;
Torkzadehmahani et al., 2019), natural language process-
ing (Yue et al., 2021; Weggenmann & Kerschbaum, 2018),
large language models (Gao et al., 2023b; Yu et al., 2022),
label protection in split learning (Yang et al., 2022), multi-
ple data release (Wu et al., 2022), federated learning (Sun
et al., 2022) and peer review (Ding et al., 2022). Recent
works also show that robust statistical estimator implies
differential privacy (Hopkins et al., 2023).

Projection Maintenance Data Structure. The design of
efficient projection maintenance data structure is a core
step that lies in many optimization problems, such as linear
programming (Vaidya, 1989b; Cohen et al., 2019; Song,
2019; Lee et al., 2019; Brand, 2020; Song & Yu, 2021;
Jiang et al., 2021; Brand et al., 2020; Ye, 2020; Dong et al.,
2021; Gu & Song, 2022), cutting plane method (Vaidya,
1989a; Jiang et al., 2020b), integral minimization (Jiang
et al., 2023a), empirical risk minimization (Lee et al., 2019;
Qin et al., 2023a), semidefinite programming (Jiang et al.,
2020b;a; Huang et al., 2022b;a; Gu & Song, 2022), dy-
namic least-square regression (Jiang et al., 2023b), large
language models (Brand et al., 2023), and sum-of-squares
optimization (Jiang et al., 2022).

3. Preliminaries & Problem Formulation
In Section 3.1, we introduce the basic notations that we
will use in the remainder of the paper. In Section 3.2, we
describe the data structure design problem of our paper.

3.1. Notations and Basic Definitions.

For any integer n > 0, let [n] denote the set {1, 2, · · · , n}.
Let Pr[·] denote probability and E[·] denote expectation.
We use ∥x∥2 to denote the ℓ2 norm of a vector x. We
use N (µ, σ2) to denote the Gaussian distribution with
mean µ and variance σ2. We use Õ(f(n)) to denote
O(f(n) · poly log(f(n)). We use Tmat(m,n, k) to denote
the time for matrix multiplication for matrix with dimen-
sion m × n and matrix with dimension n × k. We denote
ω ≈ 2.38 as the current matrix multiplication exponent,
i.e., Tmat(n, n, n) = nω . We denote α ≈ 0.31 as the dual
exponent of matrix multiplication.

We use ∥A∥ and ∥A∥F to denote the spectral norm and the
Frobenius norm of matrix A, respectively. We use A⊤ to
denote the transpose of matrix A. We use Im to denote
the identity matrix of size m × m. For α being a vector
or matrix, we use ∥α∥0 to denote the number of nonzero
entries of α. Given a real square matrix A, we use λmax(A)
and λmin(A) to denote its largest and smallest eigenvalue,
respectively. Given a real matrix A, we use σmax(A) and
σmin(A) to denote its largest and smallest singular value,
respectively. We use A−1 to denote the matrix inverse for
matrix A. For a square matrix A, we use tr[A] to denote
the trace of A. We use b and nb interchangeably to denote
the sketching dimension, and b ∈ [0, 1] when the sketching
dimension is nb.

Given an n1 × d1 matrix A and an n2 × d2 matrix B, we
use ⊗ to denote their Kronecker product, i.e., A ⊗ B is a
matrix where its (i1 + (i2 − 1) · n1, j1 + (j2 − 1) · d1)-
th entry is Ai1,j1 · Bi2,j2 . We denote In ∈ Rn×n as the
n dimensional identity matrix. For matrix A ∈ Rn×n, we
denote (column vector) vec(A) as the vectorization of A.
We use ⟨·, ·⟩ to denote the inner product, when applied to
two vectors, this denotes the standard dot product between
two vectors, and when applied to two matrices, this means
⟨A,B⟩ = tr[A⊤B], i.e., the trace of A⊤B.

3.2. Problem Formulation

In this section, we introduce our new online Kronecker pro-
jection matrix vector multiplication problem. Before that,
we will review the standard online matrix vector multipli-
cation problem:

Definition 3.1 (Online Matrix Vector Multiplication
(OMV), (Henzinger et al., 2015; Larsen & Williams, 2017;
Chakraborty et al., 2018)). Given a fixed matrix A ∈
Rn×n. The goal is to design a dynamic data structure that
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maintains matrix A and supports fast matrix-vector multi-
plication for A · h for any query h with the following oper-
ations:

• INIT(A ∈ Rn×n): The data structure takes the matrix
A as input, and does some preprocessing.

• QUERY(h ∈ Rn): The data structure receives a vector
h ∈ Rn, and the goal is to approximate the matrix
vector product A · h.

It is known that if we are given a list of h (e.g. T = n
different vectors h(1), h(2), · · · , h(T )) at the same time, this
can be done in nω time. However, if we have to output the
answer before we see the next one, it’s unclear how to do it
in truly sub-quadratic time per query.

Motivated by linear programming, a number of works (Co-
hen et al., 2019; Lee et al., 2019; Song & Yu, 2021; Jiang
et al., 2021; Dong et al., 2021) have explicitly studied the
following problem:

Definition 3.2 (Online Projection Matrix Vector Multipli-
cation (OPMV), (Cohen et al., 2019)). Given a fixed matrix
A ∈ Rm×n and a diagonal matrix W ∈ Rm×m with non-
negative entries. The goal is to design a dynamic data struc-
ture that maintains P (W ) =

√
WA(A⊤WA)−1A⊤

√
W

and supports fast multiplication for P (W ) · h for any fu-
ture query h with the following operations:

• INIT(A ∈ Rm×n,W ∈ Rm×m): The data structure
takes the matrix A and the diagonal matrix W as input,
and performs necessary preprocessing.

• UPDATE(W new ∈ Rm×m): The data structure takes
diagonal matrix W new and updates W by W +W new.

• QUERY(h ∈ Rn): The data structure receives a vector
h ∈ Rn, and the goal is to approximate the matrix
vector product P (W ) · h.

In this work, inspired by semidefinite programming (Huang
et al., 2022b), we introduce the following novel data struc-
ture design problem:

Definition 3.3 (Online Kronecker Projection Ma-
trix Vector Multiplication(OKPMV)). Suppose
we have A1 ∈ Rn×n, . . . , Am ∈ Rn×n, and let
A =

[
vec(A1) vec(A2) · · · vec(Am)

]⊤ ∈ Rm×n2

.
Let W = UΛU⊤ ∈ Rn×n be positive semi-
definite. Define B = A(W ⊗ In) ∈ Rm×n2

or
B = A(W 1/2 ⊗W 1/2) ∈ Rm×n2

. The goal is to design
a dynamic data structure that maintains the projection
B⊤(BB⊤)−1B with the following procedures:

• INITIALIZE: The data structure preprocesses B and
forms B⊤(BB⊤)−1B.

• UPDATE: The data structure receives a matrix ∆ =
U Λ̃U⊤ ∈ Rn×n. The goal is to update the matrix B
to A((W+∆)⊗In) or A((W+∆)1/2⊗(W+∆)1/2)
and the corresponding projection.

• QUERY: The data structure receives a vector h ∈ Rn2

,
and the goal is to approximate the matrix B and forms
the matrix vector product B⊤(BB⊤)−1Bh quickly.

Remark 3.4. This problem can be viewed as a generaliza-
tion to the data structure problem posed in (Cohen et al.,
2019; Lee et al., 2019; Song & Yu, 2021). In their settings,
the matrix B is not in the Kronecker product form and W
is a full rank diagonal matrix.

4. Technical Overview
Our work consists of two relatively independent but robust
results, and our final result is a combination of them both.

The first result considers designing an efficient projection
maintenance data structure for Kronecker product in the
form of A(W ⊗I) or A(W 1/2⊗W 1/2). Our main machin-
ery consists of sketching and low rank update for amortiza-
tion. More concretely, we explicitly maintain the quantity
B⊤(BB⊤)−1BR⊤, where R is a batch of sketching matri-
ces.

By using fast rectangular matrix multiplication (Gall & Ur-
rutia, 2018), we only update the projection maintenance
when necessary and we update matrices related to the batch
of sketching matrices. To implement the query, we pick one
sketching matrix and compute their corresponding vectors
B⊤(BB⊤)−1BR⊤Rh. One of the main challenges in our
data structure is to implement this sophisticated step with
a Kronecker product-based projection matrix. We show
that as long as W = UΛU⊤ with only the diagonal ma-
trix Λ changing, we can leverage matrix Woodbury iden-
tity and still implement this step relatively fast. For query,
we note that a naive approach will be just multiplying the
n2 × n2 projection matrix with a vector, which will take
O(n4) time. To break this quadruple barrier, however, is
non-trivial. While using sketching seemingly speeds up
the matrix-vector product, this is not enough: since we
update the projection in a lazy fashion, during query we
are required to “complete” the low rank update. Since W
is positive semi-definite, the orthonormal eigenbasis might
be dense, causing a dense n2 × n2 multiplication with a
n2 vector. Hence, we require the eigenbasis U ∈ Rn×n

to be relatively sparse, i.e, nnz(U) = O(n1.5+a/2) for
a ∈ (0, 1). Equivalently, we can seek for a simultane-
ously diagonalization using a sparse matrix. In this work,
we keep this assumption, and leave removing it as a future
direction.

The second main result uses techniques from differential
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privacy to develop robust data structures against an adap-
tive adversary. The intuition of such data structure is to
protect the privacy of internal randomness (i.e., sketching
matrices) from the adversary.

In the inspiring prior work due to (Beimel et al., 2022), they
show a generic reduction algorithm that given a data struc-
ture that is robust against an oblivious adversary, outputs a
data structure that is robust against an adaptive adversary.
However, their mechanism has drawbacks — it requires the
data structure to output a real number. Naively adapting
their method to higher-dimensional output will lead to sig-
nificantly more data structures and much slower update and
query time. To better characterize the issue caused by high
dimensional output, we design a generic data structure for
the set query problem. In this problem, we are given a se-
quence of matrices P (0), P (1), . . . , P (T ) ∈ Rn×n and a
sequence of vectors h(1), . . . , h(T ) ∈ Rn. At each itera-
tion t ∈ [T ], we update P (t−1) to P (t) and we are given a
set of indices Qt ⊆ [n] with support size k ≤ n, and we
only need to approximate entries in set Qt. This model has
important applications in estimating the heavy-hitter coor-
dinates of a vector (Price, 2011; Jiang et al., 2020b). To
speed up the matrix-vector product, we use batched sketch-
ing matrices. Our method departs from the standard ap-
proach that uses T sketches for handling adaptive adver-
sary, by using only Õ(

√
T ) sketches. The key here is to

use strong composition (Dwork & Roth, 2014) over T it-
erations, hence showing Õ(

√
T ) data structures are suffi-

cient. For each coordinate, we use a differentially private
median procedure together with Chernoff bound. However,
note that we have to estimate k entries and we require them
to succeed simultaneously. To address this issue, we com-
pute a high-precision private median per entry, and again
use strong composition over k entries. This incurs an ex-
tra
√
k time for each entry, yielding an overall k1.5 cost in

addition to the standard query runtime. If one wants to esti-
mate all entries, this gives rise to an extra additive n1.5 time
per query. For most applications, this extra term is either
matched by (Cohen et al., 2019; Lee et al., 2019; Song &
Yu, 2021) or subsumed by query time, as in our Kronecker
product projection maintenance task.

5. Kronecker Product Projection
Maintenance Data Structure

In this section, we provide the main theorem for Kro-
necker product projection maintenance together with the
data structure.

Before proceeding, we introduce an amortization tool re-
garding matrix-matrix multiplication that helps us analyze
the running time of certain operations:

Definition 5.1 ((Cohen et al., 2019)). Given i ∈ [r], we

define the weight function as

gi =

{
n−a, if i < na;

i
ω−2
i−a −1n−

a(ω−2)
1−a , otherwise.

Consider multiplying a matrix of size n × r with a ma-
trix of size r × n. If r ≤ na, then multiplying these ma-
trices takes O(n2+o(1)) time, otherwise, it takes O(n2 +

r
ω−2
1−a n2− a(ω−2)

1−a ) time. Both of these quantities can be cap-
tured by O(rgr · n2+o(1)).

Theorem 5.2 (Kronecker Product Projection Maintenance.
Informal version of Theorem B.15). Given a collection
of matrices A1, · · · , Am ∈ Rn×n. We define Bi =
W 1/2AiW

1/2 ∈ Rn×n,∀i ∈ [m]1. We define A ∈ Rm×n2

to be the matrix where i-th row is the vectorization of
Ai ∈ Rn×n and B ∈ Rm×n2

to be the matrix where i-
th row is the vectorization of Bi ∈ Rn×n. Let b denote the
sketching dimension and let T denote the number of itera-
tions. Let R1, · · · , Rs ∈ Rb×n2

denote a list of sketching
matrices. Let R ∈ Rsb×n2

denote the batch sketching ma-
trices. Let εmp ∈ (0, 0.1) be a precision parameter. Let
a ∈ (0, 1). There is a dynamic data structure that given a
sequence of online matrices

W (1), · · · ,W (T ) ⊂ Rn×n; and h(1), · · · , h(T ) ∈ Rn2

approximately maintains the projection matrices

B⊤(BB⊤)−1B

for matrices W (k) = UΛ(k)U⊤ ∈ Rn×n where Λ(k) is
a diagonal matrix with non-negative entries and U is an
orthonormal eigenbasis.

The data structure has the following operations:

• INIT(εmp ∈ (0, 0.1)): This step takes

mnω +mω + Tmat(m,m, n2) + Tmat(n
2, n2, sb)

time in the worst case.

• UPDATE(W ): Output a matrix Ṽ ∈ Rn×n such that
for all i ∈ [n]

(1− εmp) · λi(Ṽ ) ≤ λi(W ) ≤ (1 + εmp) · λi(Ṽ )

where λi(W ) denote the i-th entry of the Λ matrix for
W . This operation takes O(nf(a,c)) time in the worst
case, where n1+c is the rank change in UPDATE and
f(a, c) is defined in Def. B.14.

1Our algorithm also works if Bi = AiW .
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• QUERY(h): Output B̃⊤(B̃B̃⊤)−1B̃R⊤l Rl · h for the
B̃ defined by positive definite matrix Ṽ ∈ Rn×n out-
putted by the last call to UPDATE. This operation
takes time

n3+a+o(1) + n2+b+o(1),

if nnz(U) = O(n3/2+a/2).

For simplicity, consider the regime m = n2. Then the ini-
tialization takes O(mω) + Tmat(m,m, sb) time, for sb <

m, this is O(mω). For update, it takes O(m
f(a,c)

2 ) time,
and the parameter c captures the auxiliary rank of the up-
date. Each time we perform a low rank update, we make
sure that the rank is at most r = n1+c, and the complex-
ity depends on c. In particular, if ω = 2, which is the
commonly-held belief, then f(a, c) = 4 for any c ∈ [0, 1].

In both cases, the amortized cost per iteration is o(m2). For
query, the cost is m1.5+a/2+o(1). This means that in addi-
tion to the initialization, the amortized cost per iteration of
our data structure is o(m2).

We give an amortized analysis for UPDATE as follows:

Lemma 5.3. Assume the notations are the same as those
stated in Theorem 5.2. Furthermore, if the initial vector
W (0) ∈ Rn×n and the (random) update sequence

W (1),W (2), · · · ,W (T ) ∈ Rn×n

satisfies

n∑
i=1

(E[lnλi(W
(k+1))]− ln(λi(W

(k))))2 ≤ C2
1

and

n∑
i=1

(Var[lnλi(W
(k+1))])2 ≤ C2

2

with the expectation and variance are conditioned on
λi(W

(k)) for all k = 0, 1, · · · , T − 1. Then, the amortized
expected time2 per call of UPDATE(W ) is

(C1/εmp + C2/ε
2
mp)

· (nf(c)+ω−5/2+o(1) + nf(c)−a/2+o(1)).

Let us set C1, C2 = 1/ log n and εmp = 0.01 for the sake
of discussion. Notice that under current best matrix mul-
tiplication exponent, by properly choosing a based on the
auxiliary rank c, we can make sure that f(a, c) − 5/2 ≤
ω−1/2 and f(a, c)−a/2 < 4, hence, if our algorithm has

2When the input is deterministic, the output and the running
time of UPDATE is also deterministic.

Algorithm 1 An informal version of our projection main-
tenance data structure

1: procedure INIT(A ∈ Rm×n2

, εmp ∈ (0, 0.1),W ∈
Rn×n)

2: Let W = UΛU⊤

3: Store G← A(U ⊗ U)
4: Store M ← G⊤(G(Λ⊗ Λ)G⊤)−1G
5: Prepare batched sketching R ← [R1, . . . , Rs] ∈

Rsb×n2

6: Store Q←M(Λ1/2 ⊗ Λ1/2)(U⊤ ⊗ U⊤)R⊤

7: Store P ← (Λ1/2 ⊗ Λ1/2)(U⊤ ⊗ U⊤)Q
8: end procedure
9:

10: procedure UPDATE(W new)
11: yi ← lnλnew

i − lnλi

12: Let r denotes the number such that |yi| ≥ εmp/2
13: if r < na then
14: λ̂← λ
15: Keep M,Q,P the same
16: else
17: λ̂, r ← SOFTTHRESHOLD(λ, λnew, r) ▷

Create a new vector that finds the correct number of
entries needs to be updated

18: Update M,Q,P using matrix Woodbury iden-
tity

19: end if

20: λ̃i ←

{
λ̂i if | lnλnew

i − ln λ̂i| ≤ εmp/2

λnew
i otherwise

21: return λ̃
22: end procedure
23:
24: procedure QUERY(hnew ∈ Rn2

)
25: Let P̃ be the projection whose λ being updated to

λ̃
26: Compute pg as P̃R⊤Rh using matrix Woodbury

identity
27: Compute pl as (I − P̃ )R⊤Rh
28: return pg, pl
29: end procedure

√
n iterations, this means that the overall running time is at

most

n2ω + nf(a,c)−a/2+0.5,

recall m = n2, in terms of m, it becomes

mω +m
f(a,c)−a/2

2 +1/4,

since f(a, c)− a/2 < 4, the second term is strictly smaller
than m2+1/4.

We give an overview of our data structure (Algorithm 1).
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As we have covered in Section 4, we maintain the matrix

B⊤(BB⊤)−1BR,

where R is a batch of s sketching matrices. When receiving
an update W new, we utilize the fact that W new has the form
UΛnewU⊤ where only the diagonal matrix Λ changes. We
then perform a lazy update on Λ, when its entries don’t
change too much, we defer the update. Otherwise, we com-
pute a threshold on how many entries need to be updated,
and update all maintained variables using matrix Woodbury
identity. Then, we use a fresh sketching matrix to make
sure that the randomness has not been leaked.

By using an amortization framework based on fast rect-
angular matrix multiplication (Gall & Urrutia, 2018), we
show that the amortized update time is faster than n4,
which is the size of the projection matrix. The query time
is also faster than directly multiplying a length n2 vector
with an n2 × n2 matrix.

6. Set Query Data Structure
In this section, we study an abstraction and generalization
of the online matrix-vector multiplication problem. Given
a projection matrix B⊤(BB⊤)−1B and a query vector h,
we only want to output a subset of entries of the vector
B⊤(BB⊤)−1Bh. A prominent example is we know some
entries of B⊤(BB⊤)−1Bh are above some threshold τ and
have already located their indices using sparse recovery
tools, then the goal is to output the estimations of values
of these entries.

To improve the runtime efficiency and space usage of
Monte Carlo data structures, randomness is typically ex-
ploited and made internal to the data structure. Examples
such as re-using sketching matrices and locality-sensitive
hashing (Indyk & Motwani, 1998). To utilize the efficiency
brought by internal randomness, these data structures as-
sume the query sequence is chosen oblivious to its pre-
determined randomness. This assumption, however, is not
sufficient when incorporating a data structure in an iterative
process, oftentimes the input query is chosen based on the
output from the data structure over prior iterations. Since
the query is no longer independent of the internal random-
ness of the data structure, the success probability guaran-
teed by the Monte Carlo data structure usually fails.

From an adversary model perspective, this means that the
adversary is adaptive, meaning that it can design input
query based on the randomness leaked from the data struc-
ture over prior interactions. If we desire to use our projec-
tion maintenance data structure (Alg. 1) for efficient query,
we need to initialize T different sketching matrices and for
each iteration, using a fresh new sketching. This is com-
monly adapted by prior works, such as (Lee et al., 2019;

Song & Yu, 2021; Qin et al., 2023a). However, the linear
dependence on T becomes troublesome for large number
of iterations.

How to reuse the randomness of the data structure while
preventing the randomness leakage to an adaptive adver-
sary? (Beimel et al., 2022) provides an elegant solution
based on differential privacy. Build upon and extend their
framework, we show that Õ(

√
T ) sketches suffice instead

of T sketches.

In Section 6.1, we present the definition of the set query
and estimation problem. In Section 6.2, we present our
main result for the set query problem.

6.1. Problem Definition

In this section, we present the definition and the goal of the
set query problem.

Definition 6.1 (Set Query). Let G ∈ Rn×n and h ∈ Rn.
Given a set Q ⊆ [n] and |Q| = k, the goal is to estimate
the norm of coordinates of Gh in set Q. Given a precision
parameter ε, for each j ∈ Q, we want to design a function
f such that

f(G, h)j ∈ (g⊤j h)
2 ± ε∥gj∥22∥h∥22

where gj denotes the j-th row of G.

6.2. Robust Set Query Data Structure

In this section, we design a robust set query data structure
against an adaptive adversary.

To give an overview, consider estimating only one coordi-
nate. We prepare Õ(

√
T ) sketching matrices and initialize

them in a batched fashion. During query stage, we sample
Õ(1) sketching matrices, and compute the inner product
between the corresponding row of the (sketched) projec-
tion matrix and the sketched vector. This gives us Õ(1) es-
timators, we then run a PRIVATEMEDIAN algorithm (The-
orem C.17) to obtain a real-valued output. This makes sure
that we do not reveal the randomness of the sketching ma-
trices we use. Using a standard composition result in dif-
ferential privacy (Theorem C.14), we reduce the required
number of sketches from T to Õ(

√
T ).

Lifting from a single coordinate estimation to k coordi-
nates, however, is highly nontrivial. A direct application
of strong composition over k coordinates will mandate
Õ(
√
kT ) sketches. If k < T , this approach still leads to

an improvement over T sketches, but its application sce-
nario is much more limited. We observe the fundamental
limitation of the aforementioned approach is that the per-
coordinate estimation is relatively low-accuracy, therefore,
to compensate for the error, we have to use more data struc-
tures. Our strategy is to instead estimate each coordinate to

8
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high-precision. This will incur extra estimation cost per
coordinate, but the blowup is moderate. Moreover, we en-
sure that Õ(

√
T ) sketches suffices, effectively generalize

the (Beimel et al., 2022) result to higher dimension.

Theorem 6.2 (Reduction to Adaptive Adversary: Set
Query. Informal version of Theorem D.2). Let δ, α > 0 be
parameters. Let f be a function that maps elements from
domain G×H to an element in Ud, where

U := [−U,− 1

U
] ∪ {0} ∪ [

1

U
,U ]

for U > 1. Suppose there is a dynamic algorithm A
against an oblivious adversary that, given an initial data
point x0 ∈ X and T updates, guarantees the following:

• The preprocessing time is Tprep.

• The per round update time is Tupdate.

• The per round query time is Tquery and given a set
Qt ⊆ [n] with cardinality k, with probability ≥ 9/10,
the algorithm outputs f(Gt, ht)j where j ∈ Qt, and
each f(Gt, ht)j satisfies the following guarantee:

f(gj , ht)j ≥ (g⊤j ht)
2 − γ∥gj∥22∥ht∥22

f(gj , ht)j ≤ (g⊤j ht)
2 + γ∥gj∥22∥ht∥22

where gj denotes the j-th row of matrix Gt.

Then, there exists a dynamic algorithm B against an adap-
tive adversary, guarantees the following:

• The preprocessing time is

Õ(
√
T log(

logU

αδ
)Tprep).

• The per round update time is

Õ(
√
T log(

logU

αδ
)Tupdate).

• The per round query time is

Õ(log(
logU

αδ
)Tquery + k3/2poly log(

logU

αδ
))

and, with probability 1− δ, for every j ∈ Qt, the an-
swer ut is an (α+γ+αγ)-approximation of (g⊤j ht)

2

for all t, i.e.

(ut)j ≥ (g⊤j ht)
2 − (α+ γ + αγ)∥gj∥22∥ht∥22

(ut)j ≤ (g⊤j ht)
2 + (α+ γ + αγ)∥gj∥22∥ht∥22

Remark 6.3. Note that if we pick k = n for projection
maintenance or k = n2 for Kronecker product projection
maintenance, then we recover the projection matrix-vector
multiplication problem.

In the projection maintenance task, we reduce the number
of sketches from T to Õ(

√
T ), implying a faster prepro-

cessing and update time compare to (Cohen et al., 2019;
Lee et al., 2019; Song & Yu, 2021). The query time re-
quires an extra Õ(n1.5) term, which matches Tquery in their
applications. In the case of Kronecker product projection
maintenance, we retain the same improvement on number
of sketches, and incurring an extra Õ(n3) factor in query.
It is subsumed by Tquery.

We also want to point out that our robust set query al-
gorithm is more sensitive than the standard matrix-vector
product task, since its running time depends on the num-
ber of coordinates that is needed by specific applications.
For problems that only require outputting a small number
of coordinates, it gives a tighter running time.

Beyond set query problem, our methodology for producing
a high-dimensional, robust output against an adaptive ad-
versary can well extend to other problems. In particular,
suppose a Monte Carlo data structure that against an obliv-
ious adversary outputs an n-dimensional vector. To output
an estimator against an adaptive adversary, we can compute
a high-precision private median over all vectors produced
by the Õ(

√
T ) data structures. Suppose we only require k

coordinates of the result, then the runtime blows up by a
factor of Õ(k1.5) while reducing the number of data struc-
tures from T to Õ(

√
T ).

Very recently, the work (Cherapanamjeri et al., 2023)
adapts the (Beimel et al., 2022) framework for a wide range
of applications, including the norm of matrix-vector prod-
uct, the value of linear regression, the distance estimates
and the optimal value of kernel density estimation. How-
ever, these results are just outputting a single value, rather
than a vector which is often times of particularly interest.
Our framework, on the other hand, supports outputting a
vector, which will hopeful lead to further developments to
these problems.
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Appendix
Roadmap. In Section A, we present the preliminaries of this paper. In Section B, we design a Kronecker product projec-
tion maintenance data structure that has fast update and query time. In Section C, we use differential privacy techniques to
design a robust norm estimation data structure. In Section D, we extend our DP mechanisms to develop a robust set query
data structure.

A. Preliminaries
Notations For any integer n > 0, let [n] denote the set {1, 2, · · · , n}. Let Pr[·] denote probability and E[·] denote
expectation. We use ∥x∥2 to denote the ℓ2 norm of a vector x. We use N (µ, σ2) to denote the Gaussian distribution
with mean µ and variance σ2. We use Õ(f(n)) to denote O(f(n) · poly log(f(n)). We denote ω ≈ 2.38 as the matrix
multiplication exponent. We denote α ≈ 0.31 as the dual exponent of matrix multiplication.

We use ∥A∥ and ∥A∥F to denote the spectral norm and the Frobenius norm of matrix A, respectively. We use A⊤ to denote
the transpose of matrix A. We use Im to denote the identity matrix of size m×m. For α being a vector or matrix, we use
∥α∥0 to denote the number of nonzero entries of α. Given a real square matrix A, we use λmax(A) and λmin(A) to denote
its largest and smallest eigenvalue, respectively. Given a real matrix A, we use σmax(A) and σmin(A) to denote its largest
and smallest singular value, respectively. We use A−1 to denote the matrix inverse for matrix A. For a square matrix A,
we use tr[A] to denote the trace of A. We use b and nb interchangeably to denote the sketching dimension, and b ∈ [0, 1]
when the sketching dimension is nb.

Given an n1 × d1 matrix A and an n2 × d2 matrix B, we use ⊗ to denote the Kronecker product, i.e., A ⊗ B is a
matrix where its (i1 + (i2 − 1) · n1, j1 + (j2 − 1) · d1)-th entry is Ai1,j1 · Bi2,j2 . For matrix A ∈ Rn×n, we denote
vec(A) as the vectorization of A. We use ⟨·, ·⟩ to denote the inner product, when applied to two vectors, this denotes the
standard dot product between two vectors, and when applied to two matrices, this means ⟨A,B⟩ =

∑
i,j Ai,jBi,j . Further,

⟨A,B⟩ = tr[A⊤B].

We denote the data/constraint matrix as A ∈ Rm×n2

, weight matrix as W ∈ Rn×n, and the resulting projection matrix as
B⊤(BB⊤)−1B, where B = A(W 1/2 ⊗W 1/2) ∈ Rm×n2

. Additionally, we denote matrix ∆ ∈ Rn×n as the update matrix
of projection maintenance, ∆ has rank k and has the same eigenbasis as matrix W . We denote A1, . . . , Am ∈ Rn×n as the
collection of data constraint matrices, A =

[
vec(A1) vec(A2) · · · vec(Am)

]⊤ ∈ Rm×n2

as the batched constraint
matrix, and B⊤(BB⊤)−1B as the projection matrix, where m is given. We denote h ∈ Rn2

as the vector that the data
structure receives to be projected.

We denote εmp ∈ [0, 0.1] as the tolerance parameter. We denote T as the number of iterations. We denote δ as
the failure probability, and α as the parameter for the dynamic algorithm against an adaptive adversary. We denote
Tprep, Tupdate, Tquery as the preprocessing time, update time, and query time for the dynamic algorithm against an obliv-
ious adversary. We denote U > 1 as the output parameter and U as the output range of the above dynamic algorithm,
where every coordinate of the output v satisfies v ∈ U = [−U,− 1

U ] ∪ {0} ∪ [ 1U , U ].

Probability tools We present the probability tools we will use in this paper, and all of them are exponentially decreasing
bounds. At first, we present the Chernoff bound, which bounds the probability that the sum of independent random Boolean
variables deviates from its true mean by a certain amount.

Lemma A.1 (Chernoff bound (Chernoff, 1952)). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi and Xi = 0 with
probability 1− pi, and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Next, we present the Hoeffding bound, which bounds the probability that the sum of independent random bounded variables
deviates from its true mean by a certain amount.

Lemma A.2 (Hoeffding bound (Hoeffding, 1963)). Let X1, · · · , Xn denote n independent bounded variables in [ai, bi].
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Let X =
∑n

i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Finally, we present the Bernstein inequality, which bounds the probability that the sum of independent random bounded
zero-mean variables deviates from its true mean.

Lemma A.3 (Bernstein inequality (Bernstein, 1924)). Let X1, · · · , Xn be independent zero-mean random variables. Sup-
pose that |Xi| ≤M almost surely, for all i. Then, for all positive t,

Pr

[
n∑

i=1

Xi > t

]
≤ exp

(
− t2/2∑n

j=1 E[X2
j ] +Mt/3

)
.

B. Kronecker Product Projection Maintenance Data Structure
This section is organized as follows: We introduce some basic calculation rules for Kronecker product in Section B.1.
We give the visualization of OMV, OPMV and OKPMV in Section B.2, Section B.3, and Section B.4, respectively. We
introduce the projection matrix and its properties in Section B.5. We present our data structure in Section B.6. We present
our main results for Kronecker projection maintenance in Section B.7.

B.1. Basic Linear Algebra for Kronecker Product

In this section, we state a number of useful facts for Kronecker product:

At first, we present the mixed product property regarding the interchangeability of the conventional matrix product and the
Kronecker product.

Fact B.1 (Mixed Product Property). Given conforming matrices A,B,C and D, we have

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D),

where · denotes matrix multiplication.

Next, we present the inversion property regarding the calculation on the inverse of Kronecker product of two conforming
matrices.

Fact B.2 (Inversion). Let A,B be full rank square matrices. Then we have

(A⊗B)−1 = A−1 ⊗B−1.

Next, we present a fact regarding the vectorization of conventional matrix product of two conforming matrices and their
Kronecker product with identity matrix.

Fact B.3. Let Im, Ik denote m ×m and k × k identity matrix, respectively, and A ∈ Rm×k, B ∈ Rk×m be conforming
matrices, then:

vec(AB) = (Im ⊗A)vec(B) = (B⊤ ⊗ Ik)vec(A)

We present a fact regarding the vectorization of conventional matrix product of three conforming matrices and their Kro-
necker product.

Fact B.4. Let A,B,C be conforming matrices, then:

vec(ABC) = (C⊤ ⊗A)vec(B)

We present a fact regarding the trace of the multiplication of two conforming matrices and their vectorization.

Fact B.5. Let A, B be conforming matrices, then:

tr[A⊤B] = vec(A)⊤vec(B) = vec(B)⊤vec(A)
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Finally, we present the cyclic property of trace calculation: The calculation of the trace of the conventional matrix product
is invariant under cyclic permutation.

Fact B.6 (Cyclic). Let A,B, V be conforming matrices, then:

tr[ABC] = tr[BCA] = tr[CAB].

B.2. Online Matrix Vector Multiplication

In this section, we present the visualization of online matrix vector multiplication.

…

Figure 1: Online matrix vector multiplication (Definition 3.1).

B.3. Online Projection Matrix Vector Multiplication

In this section, we present the visualization of online projection matrix vector multiplication.

…

Figure 2: Online projection matrix vector multiplication (Definition 3.2). Usually, we say
√
WA(A⊤WA)−1A⊤

√
W is a

projection matrix. We say (A⊤WA)−1A⊤
√
W is a projection matrix without left arm. We say A(A⊤WA)−1A⊤

√
W is

a projection matrix without left hand. Technically, we call
√
WA arm, and call

√
W hand.

B.4. Online Kronecker Projection Matrix Vector Multiplication

In this section, we present the visualizations of online Kronecker projection matrix vector multiplication.

Figure 3: Online Kronecker matrix vector multiplication (Definition 3.3), where Bi = AiW , and the projection matrix is
defined as B⊤(BB⊤)−1B = (W⊤ ⊗ I)A⊤(A(W 2 ⊗ I)A⊤)−1A(W ⊗ I).

B.5. Preliminaries

We present the definitions of the matrices we will be using across the sections.

Definition B.7. Given a collection of matrices A1, · · · , Am ∈ Rn×n, we define A ∈ Rm×n2

to be the batched matrix
whose i-th row is the vectorization of Ai, for each i ∈ [m]. Let W ∈ Rn×n be a positive semidefinite matrix. We define

17



Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance

Figure 4: Online Kronecker matrix vector multiplication (Definition 3.3), where Bi = W 1/2AiW
1/2, and the projection

matrix is defined as B⊤(BB⊤)−1B = (W 1/2 ⊗W 1/2)⊤A⊤(A(W ⊗W )A⊤)−1A(W 1/2 ⊗W 1/2).

B ∈ Rm×n2

to be a matrix where each row is the vectorization of Bi = AiW . The projection matrix corresponds to B is

B⊤(BB⊤)−1B ∈ Rn2×n2

.

Next, we present a fact regarding the batched matrix B ∈ Rm×n2

, matrix W ∈ Rn×n, and the batched matrix A, if
Bi = AiW .
Fact B.8. For Bi, Ai,W ∈ Rn×n, if Bi = AiW , then we have

• B = A(W ⊗ I) ∈ Rm×n2

.

• BB⊤ = A(W 2 ⊗ I)A⊤ ∈ Rm×m.

where the i-th row of B, and A is vec(Bi)
⊤, vec(Ai)

⊤, respectively.

Proof. We note that each row of B is in the form of vec(Bi)
⊤ = vec(AiW )⊤, hence,

vec(Bi) = vec(AiW )

= vec(IAiW )

= (W⊤ ⊗ I)vec(Ai).

where the last step follows from Fact B.3. Therefore, we have:

vec(Bi)
⊤ = vec(Ai)

⊤(W⊤ ⊗ I)⊤

= vec(Ai)
⊤(W ⊗ I).

Hence, we derive that:

B = A(W ⊗ I).

To verify BB⊤ = A(W 2 ⊗ I)A⊤, we first compute BB⊤ by the original definition, we have:

(BB⊤)i,j = vec(AiW )⊤vec(AjW )

= tr[WA⊤i AjW ]

= tr[AjW
2A⊤i ].

where the second step follows from Fact B.5, the third step follows from Fact B.6.

Then, we calculate the (i, j)-th coordinate of A(W 2 ⊗ I)A⊤, and we have:

(A(W ⊗ I)(W ⊗ I)A⊤)i,j = vec(Ai)
⊤(W ⊗ I)(W ⊗ I)vec(Aj)

= vec(I)⊤(I ⊗A⊤i )(W ⊗ I)(W ⊗ I)(I ⊗Aj)vec(I)

= vec(I)⊤(W ⊗A⊤i )(W ⊗Aj)vec(I)

= vec(AiW )⊤vec(AjW )

= tr[WA⊤i AjW ]

= tr[AjW
2A⊤i ].

= (BB⊤)i,j
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where the first step follows from the definition of A that vec(Ai)
⊤ is the i-th row of the matrix A, and vec(Aj) is the j-th

column of the matrix A⊤. The second step follows from Fact B.3. The third step follows from Fact B.1. The fourth step
follows from Fact B.3. The fifth step follows from Fact B.5. The sixth step follows from Fact B.6. The final step follows
by the definition of B.

Next, we present a fact regarding the batched matrix B ∈ Rm×n2

, matrix W ∈ Rn×n, and the batched matrix A ∈ Rm×n2

,
if Bi = W 1/2AiW

1/2.

Fact B.9. For positive semidefinite matrix W ∈ Rn×n, if Bi = W 1/2AiW
1/2, then we have:

• B = A(W 1/2 ⊗W 1/2) ∈ Rm×n2

• BB⊤ = A(W ⊗W )A⊤ ∈ Rm×m

Proof. Suppose Bi = W 1/2AiW
1/2 whose vectorization is vec(W 1/2AiW

1/2), by Fact B.4, we have that:

vec(W 1/2AiW
1/2) = (W 1/2 ⊗W 1/2)vec(Ai).

Transposing the right hand side gives us:

vec(Ai)
⊤(W 1/2 ⊗W 1/2),

therefore, we conclude that:

B = A(W 1/2 ⊗W 1/2).

Consequently, we have:

BB⊤ = A(W 1/2 ⊗W 1/2)(W 1/2 ⊗W 1/2)A⊤

= A(W ⊗W )A⊤.

where the last step follows from Fact B.1.

Next, we present a fact regarding the rank change of the matrix W 2 ⊗ I and the matrix W ⊗W when W experiences a
rank-k change.

Fact B.10. Suppose W ∈ Rn×n undergoes a rank-k change, i.e., W ←W +∆ where ∆ has rank-k, then

• The matrix W 2 ⊗ I undergoes a rank-3nk change.

• The matrix W ⊗W undergoes a rank-(2nk + k2) change.

Proof. For W 2 ⊗ I , it suffices to understand the rank change on W 2. Note that:

(W +∆)2 =W 2 +W∆+∆W +∆2,

since ∆ is rank-k, we know that W∆, ∆W and ∆2 all have rank at most k. Hence, if we let ∆̃ to denote W∆+∆W +∆2,
we have:

rank(∆̃) ≤ 3k.

Finally, note that:

(W +∆)2 ⊗ I = (W 2 + ∆̃)⊗ I

= W 2 ⊗ I + ∆̃⊗ I,

we have that the rank change of the matrix W 2 ⊗ I is the same as the rank of the matrix ∆̃⊗ I that is at most 3nk.
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We now analyze the rank change of W ⊗W . Consider

(W +∆)⊗ (W +∆) =W ⊗W +W ⊗∆+∆⊗W +∆⊗∆,

the components W ⊗∆ and ∆⊗W both have ranks nk, and ∆⊗∆ has rank k2. Hence, if we let ∆̃ to denote W ⊗∆+
∆⊗W +∆⊗∆, then rank(∆̃) ≤ 2nk + k2.

Next, we present a fact regarding the rank change of the matrix W 1/2, when W experiences a rank-k change ∆ that has
the same eigenbasis of W .
Lemma B.11. Suppose W ∈ Rn×n undergoes a rank-k change ∆ and W,∆ have the same eigenbasis, then the matrix
(W +∆)1/2 undergoes a rank-k change, i.e.,

(W +∆)1/2 =W 1/2 +∆,

where ∆ is rank k and shares the same eigenbasis as W .

Proof. By spectral theorem, we know that there exists U,Λ, and ∆̃ such that, W = UΛU⊤ and ∆ = U∆̃U⊤, while ∆̃
has only k nonzero entries. Hence, we notice that W + ∆ = U(Λ + Λ̃)U⊤ has only k entries being changed. Note that
(W +∆)1/2 = U(Λ + Λ̃)1/2U⊤, which means the diagonal only has k entries being changed. We can write it as:

(W +∆)1/2 = U(Λ + Λ̃)1/2U⊤

= UΛ1/2U⊤ + UDU⊤,

where D is a diagonal matrix with only k nonzeros. Hence, we can write it as W 1/2+∆ where ∆ is rank k, as desired.

Next, we present a fact regarding the rank change of A(W ⊗ I) and A(W 1/2 ⊗W 1/2), if the matrix W experiences a
rank-k change.
Fact B.12. Suppose W ∈ Rn×n undergoes a rank-k change, i.e., W ←W +∆ where ∆ has rank-k, then

• If B = A(W ⊗ I), then B undergoes a rank-nk change.

• If B = A(W 1/2 ⊗W 1/2), then B undergoes a rank-(2nk + k2) change.

Proof. We prove item by item.

• Suppose B = A(W ⊗ I), and we have W +∆, then

A((W +∆)⊗ I) = A(W ⊗ I) + A(∆⊗ I),

note that ∆⊗ I is of rank nk, so we conclude that B experiences a rank-nk change.

• Suppose B = A(W 1/2 ⊗W 1/2), then:

(W +∆)1/2 ⊗ (W +∆)1/2 = (W 1/2 +∆)⊗ (W 1/2 +∆)

= (W 1/2 ⊗W 1/2) +W 1/2 ⊗∆+∆⊗W 1/2 +∆⊗∆

where the first step is by Lemma B.11. Both W 1/2 ⊗∆ and ∆⊗W 1/2 have rank nk, and the last term has rank k2.
This completes the proof.

Remark B.13. The above results essentially show that if we give a low rank update to W ∈ Rn×n and we wish (W+∆)1/2

is also a low rank update to W 1/2, then the update ∆ must share the same eigenbasis as W .

We define a function which will be heavily used in Section B.7.
Definition B.14. Let θ and ω be two fixed parameters, which satisfy that Tmat(n

2, n, n2) = nθ and Tmat(n, n, n) = nω .
We define the function f(a, c) as

f(a, c) :=
c(θ − ω − 2) + a(2 + θ − cθ − ω + 2cω)− θ

a− 1
.
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B.6. Our Data Structure

In this section, we present our data structure for initialization (Algorithm 2), update (Algorithm 3) and query (Algorithm 4).

Algorithm 2 Initialization and members

1: data structure KROCKERPROJMAINTAIN ▷ Theorem B.15
2: members
3: W ∈ Rn×n

4: A ∈ Rm×n2

▷ Fixed data matrix
5: G ∈ Rm×n2

▷ Data matrix with eigenbasis
6: M ∈ Rn2×n2

▷ Inverse Hessian
7: λ, λ̃ ∈ Rn ▷ Eigenvalues and its approximation
8: Q ∈ Rn2×sb

9: P ∈ Rn2×sb

10: εmp ∈ (0, 0.1) ▷ Accuracy parameter
11: a ∈ [0, α] ▷ Cutoff threshold
12: end members
13:
14: procedure INIT(A ∈ Rm×n2

,W ∈ Rn×n) ▷ Lemma B.16
15: A← A
16: W ←W
17: Let W = UΛU⊤ ▷ Compute the spectral decomposition for W
18: G← A(U ⊗ U)

19: Generate R1,∗, . . . , Rs,∗ ∈ Rb×n2

to be sketching matrices
20: R← [R1,∗, . . . , Rs,∗] ∈ Rbs×n2

21: λ← λ
22: M ← G⊤(G(Λ⊗ Λ)G⊤)−1G
23: Q←M(Λ1/2 ⊗ Λ1/2)(U⊤ ⊗ U⊤)R⊤

24: P ← (U ⊗ U)(Λ1/2 ⊗ Λ1/2)Q
25: end procedure
26:
27: private:
28: procedure SOFTTHRESHOLD(λ ∈ Rn, λnew ∈ Rn, r ∈ N+)
29: yi ← lnλnew

i − lnλi

30: Let π : [n]→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|
31: while 1.5 · r < n and |yπ(⌈1.5·r⌉)| ≥ (1− 1/ log n)|yπ(r)| do
32: r ← min(⌈1.5 · r⌉, n)
33: end while

34: λ̂π(i) ←

{
λnew
π(i) i ∈ {1, 2, . . . , r}

λπ(i) i ∈ {r + 1, . . . , n}
35: return λ̂, r
36: end procedure
37: end data structure

B.7. Main Results

The goal of this section is to prove Theorem B.15 that, given a sequence of online matrices and queries, there exists a data
structure that approximately maintains the projection matrix and the requested matrix-vector product.

Theorem B.15 (Formal verison of Theorem 5.2). Given a collection of matrices A1, · · · , Am ∈ Rn×n. We define Bi =
W 1/2AiW

1/2 ∈ Rn×n,∀i ∈ [m]. We define A ∈ Rm×n2

to be the matrix whose i-th row is the vectorization of Ai ∈ Rn×n

and B ∈ Rm×n2

to be the matrix whose i-th row is the vectorization of Bi ∈ Rn×n. Let b denote the sketching dimension
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Algorithm 3 UPDATE part of our data structure.

1: data structure KROCKERPROJMAINTAIN
2: procedure UPDATE(W new) ▷ Lemma B.26
3: ▷ W new = Udiag(λnew)U⊤

4: yi ← lnλnew
i − lnλi

5: r ← the number of indices i such that |yi| ≥ εmp/2
6: if r < na then ▷ No update
7: λ̂← λ
8: V new ←W
9: Mnew ←M

10: Qnew ← Q
11: P new ← P
12: else
13: λ̂, r ← SOFTTHRESHOLD(λ, λnew)

14: C ← λ̂− λ ▷ Entries updated by λnew

15: ∆← Λ⊗ C + C ⊗ Λ + C ⊗ C ▷ ∆ ∈ Rn2×n2

is diagonal, has at most nr nonzero entries
16: S ← π([r]) be the first r indices in the permutation, S̃ ← {i, i+ n, . . . , i+ n(n− 1) : i ∈ S}
17: Let MS̃ ∈ Rn2×nr be the nr columns corresponding to S̃

18: Let MS̃,S̃ be the nr rows and columns corresponding to S̃
19: Let ∆S̃,S̃ be the nr entries of ∆
20: Mnew ←M −MS̃ · (∆

−1
S̃,S̃

+MS̃,S̃)
−1M⊤

S̃

21: Regenerate R
22: Γ← (Λ + C)1/2 ⊗ (Λ + C)1/2 − Λ1/2 ⊗ Λ1/2

23: Qnew ← Q+ (Mnew · Γ) · R⊤ + (Mnew −M) · (Λ1/2 ⊗ Λ1/2) · (U⊤ ⊗ U⊤) · R⊤
24: P new ← P + Γ⊤ ·Qnew + (U ⊗ U) · (Λ1/2 ⊗ Λ1/2) · (Qnew −Q)

25: V new ← Udiag(λ̂)U⊤

26: end if
27: λ← λ̂
28: Q← Qnew

29: P ← P new

30: M ←Mnew

31: W ← V new

32: λ̃i ←

{
λ̂i if | lnλnew

i − ln λ̂i| ≤ εmp/2

λnew
i otherwise

33: return Udiag(λ̃)U⊤

34: end procedure
35: end data structure

Algorithm 4 Query

1: procedure QUERY(hnew) ▷ Lemma B.26
2: Let S denote the set of indices such that |yi| ≥ εmp/2

3: C̃ ← λ̃− λ
4: ∆̃← Λ⊗ C̃ + C̃ ⊗ Λ + C̃ ⊗ C̃
5: S̃ ← {i, i+ n, . . . , i+ n(n− 1) : i ∈ S}
6: Γ̃← (Λ + C̃)1/2 ⊗ (Λ + C̃)1/2 − Λ1/2 ⊗ Λ1/2

7: pg ← (U ⊗ U) · (Λ̃1/2 ⊗ Λ̃1/2) · (M∗,S̃) · (∆̃
−1
S̃,S̃

+MS̃,S̃)
−1 · (QS̃,l +MS̃,∗ · Γ̃ · (U

⊤ ⊗ U⊤) ·R⊤∗,l) ·R∗,lhnew

8: pl ← (U ⊗ U) · (Λ̃1/2 ⊗ Λ̃1/2) · (Q∗,l +M · Γ̃ · (U⊤ ⊗ U⊤) ·R⊤∗,l)R∗,lhnew − pg
9: return pl

10: end procedure
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and let T denote the number of iterations. Let εmp ∈ (0, 0.1) and a ∈ (0, 1) be parameters. Let R1, · · · , Rs ∈ Rb×n2

denote a list of s sketching matrices, and let R ∈ Rsb×n2

denote the batched matrix of these matrices. Then, there is a
dynamic maintenance data structure (KRONECKERPROJMAINTAIN) that given a sequence of online matrices

W (1), · · · ,W (T ) ⊂ Rn×n; and h(1), · · · , h(T ) ∈ Rn2

that approximately maintains the projection matrices

B⊤(BB⊤)−1B

for positive semidefinite matrices W ∈ Rn×n through the following two operations:

• UPDATE(W ): Output a positive semidefinite matrix Ṽ ∈ Rn×n such that for all i ∈ [n]

(1− εmp) · λi(Ṽ ) ≤ λi(W ) ≤ (1 + εmp) · λi(Ṽ )

where λi(W ) denote the i-th eigenvalue of matrix W ∈ Rn×n.

• QUERY(h): Output B̃⊤(B̃B̃⊤)−1B̃R⊤l Rl · h for the B̃ defined by positive semidefinite matrix Ṽ ∈ Rn×n outputted
by the last call to UPDATE.

The data structure takes Tmat(mn, n, n)+Tmat(m,n2,m)+Tmat(m,n2, s · b)+Tmat(m,m, s · b)+mω time to initialize
and if nnz(U) = O(n1.5+a/2), where U is the fixed eigenbasis for W , then each call of QUERY takes time

n2+b+o(1) + n3+a+o(1).

Furthermore, if the initial matrix W (0) ∈ Rn×n and the (random) update sequence W (1),W (2), · · · ,W (T ) ∈ Rn×n

satisfies

n∑
i=1

(E[lnλi(W
(k+1))]− ln(λi(W

(k))))2 ≤ C2
1

and
n∑

i=1

(Var[lnλi(W
(k+1))])2 ≤ C2

2

with the expectation and variance is conditioned on λi(W
(k)) for all k = 0, 1, · · · , T − 1. Then, the amortized expected

time per call of UPDATE(W ) is

(C1/εmp + C2/ε
2
mp) ·max{T1, T2}.

Here, T1 = nω−2.5+f(a,c)+o(1) + nf(a,c)−a/2+o(1) and T2 = nω+f(a,c)−4.5+o(1)sb+ nf(a,c)−(4+a)/2+o(1)sb.

Proof. The correctness of update matrices and queries follows from Lemma B.26. The runtime of initialization follows
from Lemma B.16. The runtime of QUERY follows from Lemma B.17.

For the runtime of update, we note that by Lemma B.24, we pay O(n1+c+f(a,c)+o(1)gn1+c) = O(rgrn
f(a,logn r/n)) time.

Using a potential analysis similar to (Cohen et al., 2019), we have that

T∑
t=1

rtgrt = O(T · (C1/εmp + C2/ε
2
mp) · log

1.5 n · (nω−2.5 + n−a/2)),

this concludes the proof of the amortized running time of update.

Regarding the guarantees of eigenvalues, we can reuse a similar analysis of (Cohen et al., 2019), Section 5.4 and 5.5.
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Next, we present the runtime analysis of the initialization of our data structure.

Lemma B.16 (Initialization Time). Let s denote the number of sketches. Let b denote the size of each sketch. The INIT
takes time

mnω +mω + Tmat(m,m, n2) + Tmat(n
2, n2, sb).

Suppose m = n2, then the time becomes

mω + Tmat(m,m, sb).

Proof. The initialization contains the following computations:

• Compute the spectral decomposition for W ∈ Rn×n, takes O(nω) time.

• Compute matrix G = A(U ⊗ U). We note that A can be viewed as m different n × n matrices, and we can use
the identity vec(Ai)(U ⊗ U) = vec(U⊤AiU), hence, it takes O(mnω) time to compute G. Note that the naive
computation of G takes Tmat(m,n2, n2) time which is about mn2(ω−1) time, and it’s worse than the time by using
the Kronecker product identity.

• Compute M = G⊤(G(Λ⊗ Λ)G⊤)−1G. We split this computation into several parts:

– Compute G(Λ⊗ Λ). Since Λ is diagonal, this takes O(mn2) time.
– Computing G(Λ⊗ Λ)G⊤ takes Tmat(m,n2,m) time.
– Computing the inverse (G(Λ⊗ Λ)G⊤)−1 takes O(mω) time.
– Finally, computing M takes Tmat(n

2,m,m) time.

Hence, computing M takes Tmat(m,n2,m) +mω time.

• Computing Q takes two steps: Appling sketching R⊤ takes Tmat(n
2, n2, sb) time, and computing the product between

M and (Λ1/2U⊤ ⊗ Λ1/2U⊤)R⊤ takes Tmat(n
2, n2, sb) time.

• Computing P takes Tmat(n
2, n2, sb) time.

Thus, the total running time is

mnω +mω + Tmat(m,m, n2) + Tmat(n
2, n2, sb).

Specifically, for m = n2, the time becomes mω + Tmat(m,m, sb).

Next, we present the runtime analysis of the QUERY of our data structure.

Lemma B.17 (Query Time). Let b denote the size of sketch, then QUERY takes time

O(n3+a + n2+b).

Proof. First, observe that ∥C̃∥0 ≤ na, therefore, |S̃| ≤ n1+a.

We compute time for each term as follows:

• Computing ∆̃ takes O(n1+a) time.

• Compute Γ̃. Note that this is a diagonal matrix with at most n2a nonzero entries, so it takes O(n2a) time to compute.

• Computing pg , involving the following steps:

– Computing R∗,lh, takes O(n2+b) time.
– Computing R⊤∗,l(R∗,lh) takes O(n2+b) time.
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– Compute (U⊤ ⊗ U⊤)R⊤∗,l(R∗,lh) takes O(n3+a) time since nnz(U) = O(n1.5+a/2) therefore nnz(U ⊗ U) =

nnz(U)2 = O(n3+a).

– Computing Γ̃ · (U⊤⊗U⊤) ·R⊤∗,l(R∗,lh) takes O(n2a) time since Γ̃ has O(n2a) nonzero entries on the diagonal.

– Computing MS̃,∗ · Γ̃ · (U
⊤ ⊗ U⊤) ·R⊤∗,l(R∗,lh) takes O(n3+a) time.

– Similarly, computing QS̃,lR∗,lh
new takes O(n2+b + n1+a+b) time.

– Computing the inverse (∆̃S̃,S̃ +MS̃,S̃)
−1 takes O(n(1+a)ω) time.

– Computing (∆̃S̃,S̃ +MS̃,S̃)
−1MS̃,∗ · Γ̃ ·R

⊤
∗,l(R∗,lh) takes O(n2+2a) time.

– Computing M∗,S̃(∆̃S̃,S̃ +MS̃,S̃)
−1MS̃,∗ · Γ̃ · (U

⊤ ⊗ U⊤) ·R⊤∗,l(R∗,lh) takes O(n3+a) time.

– Computing (Λ̃1/2 ⊗ Λ̃1/2)M∗,S̃(∆̃S̃,S̃ +MS̃,S̃)
−1MS̃,∗ · Γ̃ · R

⊤
∗,l(R∗,lh), since Λ is a diagonal matrix, it takes

O(n2) time to form this matrix, and multiplying it with a vector of length n2 takes O(n2) time.

– Computing (U ⊗U)(Λ̃1/2⊗ Λ̃1/2)M∗,S̃(∆̃S̃,S̃ +MS̃,S̃)
−1MS̃,∗ · Γ̃ ·R

⊤
∗,l(R∗,lh) takes O(n3+a) by the sparsity

of U .

• Compute pl. Note that the product R⊤∗,lR∗,lh
new takes O(n2+b) time, (U⊤ ⊗U⊤)R⊤∗,lR∗,lh

new takes O(n3+a) time,
and Γ̃(U⊤ ⊗U⊤)(R⊤∗,lR∗,lh

new) takes O(n2a) time due to the sparsity of Γ̃ and the resulting vector contains at most
O(n2a) nonzero entries. Therefore, computing M(Γ̃(U⊤ ⊗ U⊤)R⊤∗,lR∗,lh

new) takes O(n2+2a) time.

Similarly, computing Q∗,lR∗,lh
new takes O(n2+b) time.

Finally, computing the product between an n2 × n2 diagonal matrix and a length n2 vector takes O(n2) time, and
multiplying the vector with (U ⊗ U) takes O(n3+a) time.

Overall, it takes

O(n3+a + n2+b)

time to realize this step.

To adapt an amortized analysis for UPDATE, we introduce several definitions.

Definition B.18. Given i ∈ [r], we define the weight function as

gi =

{
n−a if i < na

i
ω−2
1−a−1n−

a(ω−2)
1−a otherwise

This is a well-known weight function used in (Cohen et al., 2019; Lee et al., 2019) and many subsequent works that use
rank-aware amortization for matrix multiplication.

Definition B.19. Let θ ∈ [4, 5] be the value such that

Tmat(n
2, n, n2) = nθ.

Note that when ω = 2, we have that θ = 4.

Lemma B.20. Let c ∈ [0, 1), then we have

Tmat(n
2, n1+c, n2) = nc(2ω−θ)+θ

Recall Definition B.14, we define the function f(a, c) as follows:

f(a, c) :=
c(θ − ω − 2) + a(2 + θ − cθ − ω + 2cω)− θ

a− 1
.

We will use this function f to simplify our amortization.
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Corollary B.21. We have that

Tmat(n
2, n1+c, n2) = ncgnc · nf(a,c)

Proof. By basic algebraic manipulation, we have

c(2ω − θ) + θ =
(c− a)(ω − 2)

1− a
+

c(θ − ω − 2) + a(2 + θ − cθ − ω + 2cω)− θ

a− 1

=
(c− a)(ω − 2)

1− a
+ f(a, c),

where the second step is by definition of f(a, c).

Lemma B.22 (Property of f(a, c)). If ω = 2 and θ = 4, then

f(a, c) = 4,

for any a ∈ (0, 1) and c ∈ (0, 1).

Proof. Suppose ω = 2 and θ = 4, We can simplify f(a, c) as

f(a, c) =
4 + a(4c− 4 + 2− 4c− 2)

1− a

=
4− 4a

1− a

= 4

Remark B.23. Our proof shows that when ω = 2 and therefore θ = 4 which is the common belief of the time complexity
of matrix multiplication, the term f(a, c) is always 4. As we will show below, the amortized running time of update is

O(rgrn
4),

using a result proved in (Cohen et al., 2019), this means the amortized running time is

Õ(nω+1.5 + n4−a/2).

This means the amortized time of update is subquadruple, which leads to an improvement over a special class of SDP.

Lemma B.24 (Update Time). The procedure UPDATE takes time O(rgr · nf(a,c)).

Proof. We note that if the number of indices i with |yi| ≥ εmp/2 is at most na, then we simply update some variables in
the data structure.

In the other case, we perform the following operations. Let r = n1+c, then

• Forming ∆ in O(n2+c) time.

• Adding two nr × nr matrices takes O(n4+2c) time.

• Inverting an nr × nr matrix takes O(n(2+c)ω) time.

• Computing matrix multiplication of n2 × nr matrix with nr × n2 matrix takes time O(rgr · nf(a,c)).

To compute Qnew, note that (U⊤ ⊗ U⊤)R⊤ can be pre-computed and stored, yielding a matrix of size n2 × sb.

• Computing (Λ1/2 ⊗ Λ1/2) · (U⊤ ⊗ U⊤) · R⊤ takes O(sbn2) time since Λ is diagonal.
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• Computing (Mnew −M) · (Λ1/2 ⊗ Λ1/2) · (U⊤ ⊗ U⊤) · R⊤ can be viewed as a product of four matrices:

n2 × nr → nr × nr → nr × n2 → n2 × sb,

the time is thus dominated by Tmat(n
2, nr,max{n2, sb}).

• Computing (Mnew · Γ) · R⊤. Note that Γ is a diagonal matrix with only nr nonzero entries, therefore Mnew · Γ can
be viewed as selecting and scaling nr columns of Mnew, which gives a matrix of size n2 × nr. Multiplying with R⊤

then takes Tmat(n
2, nr, sb) time.

Therefore, the total running time is O(rgr · nf(a,c)) if sb ≤ n2. Otherwise, the running time is Tmat(n
2, nr, sb), which is

O(rgr · nf(a,c)−2sb).

Next, we present the Matrix Woodbury Identity regarding the calculation of the inverse of the matrix (A+ UCV )−1.

Lemma B.25 (Matrix Woodbury Identity). Let A ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k and V ∈ Rk×n and both A and C are
non-singular. Then we have

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Next, we present the proof of the correctness of our UPDATE and QUERY procedure in our data structure.

Lemma B.26 (The correctness of Update and Query). By line 30 of UPDATE(W new) (Algorithm 3), the variables satisfy

Mnew = (U⊤ ⊗ U⊤)A⊤(A(W new ⊗W new)A⊤)−1A(U ⊗ U)

Qnew = Mnew((Λnew)1/2U⊤ ⊗ (Λnew)1/2U⊤)R⊤

P new = (U(Λnew)1/2 ⊗ U(Λnew)1/2)Mnew((Λnew)1/2U⊤ ⊗ (Λnew)1/2U⊤)R⊤

Additionally, the output of QUERY(hnew) satisfies

pnewl = P̃ ·R⊤∗,lR∗,l · hnew

where P̃ = B̃⊤(B̃B̃)−1B̃ and B̃ is defined based on Ṽ which is outputted by UPDATE(W ).

Remark B.27. We generalize the Lemma E.3 in (Song & Yu, 2021) from the diagonal W case to the positive semidefinite
W case.

Proof. Correctness for M . The correctness follows from Lemma B.28.

Correctness for Q.

We have

Qnew

= Q+ (Mnew · Γ) · R⊤ + (Mnew −M) · (Λ1/2U⊤ ⊗ Λ1/2U⊤) · R⊤

=M(Λ1/2U⊤ ⊗ Λ1/2U⊤)R⊤ +Mnew((Λ + C)1/2U⊤ ⊗ (Λ + C)U⊤)R⊤ −Mnew(Λ1/2U⊤ ⊗ Λ1/2U⊤)R⊤

+ (Mnew −M) · (Λ1/2U⊤ ⊗ Λ1/2U⊤) · R⊤

=M(Λ1/2U⊤ ⊗ Λ1/2U⊤)R⊤ +Mnew((Λ + C)1/2U⊤ ⊗ (Λ + C)1/2U⊤)R⊤ −M(Λ1/2U⊤ ⊗ Λ1/2U⊤)R⊤

=Mnew((Λ + C)1/2U⊤ ⊗ (Λ + C)1/2U⊤)R⊤

where the first step follows from line 24 in Algorithm 3, the second step follows from definition of Q, the third step follows
from re-organizing terms, and the last step follows from cancelling the first term and the last term.
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Correctness for P .

P new = P + Γ⊤ ·Qnew + (UΛ1/2 ⊗ UΛ1/2) · (Qnew −Q)

= (UΛ1/2 ⊗ UΛ1/2)Q+ (U(Λ + C)1/2 ⊗ U(Λ + C)1/2) ·Qnew − (UΛ1/2 ⊗ UΛ1/2)Qnew

+ (UΛ1/2 ⊗ UΛ1/2) · (Qnew −Q)

= (U(Λ + C)1/2)Qnew

where the first step follows from line 23 in Algorithm 3, the second step follows from definition of P , and the last step
follows from merging the terms.

Correctness of QUERY.

We first unravel pnewg :

(U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(QS̃,l +MS̃,∗Γ̃(U

⊤ ⊗ U⊤)R⊤∗,l)

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(MS̃,∗(Λ

1/2 ⊗ Λ1/2)(U⊤ ⊗ U⊤)R⊤∗,l +MS̃,∗Γ̃(U
⊤ ⊗ U⊤)R⊤∗,l)

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(MS̃,∗)(Λ̃

1/2 ⊗ Λ̃1/2)(U⊤ ⊗ U⊤)R⊤∗,l.

Hence,

pnewg

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(QS̃,l +MS̃,∗Γ̃(U

⊤ ⊗ U⊤)R⊤∗,l)R∗,lh
new

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(MS̃,∗)(Λ̃

1/2 ⊗ Λ̃1/2)(U⊤ ⊗ U⊤)R⊤∗,lR∗,lh
new.

To see pnewl , it suffices to show the following:

(U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(Q∗,l +M Γ̃(U⊤ ⊗ U⊤)R⊤∗,l)

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M(Λ1/2 ⊗ Λ1/2)(U⊤ ⊗ U⊤)R⊤∗,l +M Γ̃(U⊤ ⊗ U⊤)R⊤∗,l)

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)M(Λ̃1/2 ⊗ Λ̃1/2)(U⊤ ⊗ U⊤)R⊤∗,l.

To stitch everything together, we notice that

M − (M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(MS̃,∗)

= G⊤(G(Λ⊗ Λ)G⊤)−1G− G⊤(G(Λ⊗ Λ)G⊤)−1G∗,S̃(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1GS̃,∗G

⊤(G(Λ⊗ Λ)G⊤)−1G

= G⊤(G(Λ⊗ Λ)G⊤)−1G− G⊤(G(Λ⊗ Λ)G⊤)−1G∗,S̃(∆̃
−1
S̃,S̃

+ G⊤
S̃,∗(G(Λ⊗ Λ)G⊤)−1G∗,S̃)

−1G⊤
S̃,∗(G(Λ⊗ Λ)G⊤)−1G

= G⊤((G(Λ⊗ Λ)G⊤)−1 − (G(Λ⊗ Λ)G⊤)−1G∗,S̃(∆̃
−1
S̃,S̃

+ G⊤
S̃,∗(G(Λ⊗ Λ)G⊤)−1G∗,S̃)

−1G⊤
S̃,∗(G(Λ⊗ Λ)G⊤)−1)G

= G⊤(G(Λ̃⊗ Λ̃)G⊤)−1G.

Therefore,

pnewl

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)M(Λ̃1/2 ⊗ Λ̃1/2)(U⊤ ⊗ U⊤)R⊤∗,lR∗,lh
new − pnewg

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M − (M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(MS̃,∗))(Λ̃

1/2 ⊗ Λ̃1/2)(U⊤ ⊗ U⊤)R⊤∗,lR∗,lh
new

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)(M − (M∗,S̃)(∆̃
−1
S̃,S̃

+MS̃,S̃)
−1(MS̃,∗))(Λ̃

1/2 ⊗ Λ̃1/2)(U⊤ ⊗ U⊤)R⊤∗,lR∗,lh
new

= (U ⊗ U)(Λ̃1/2 ⊗ Λ̃1/2)G⊤(G(Λ̃⊗ Λ̃)G⊤)−1G(Λ̃1/2 ⊗ Λ̃1/2)(U⊤ ⊗ U⊤)R⊤∗,lR∗,lh
new

= P̃R⊤∗,lR∗,lh
new

as desired.
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The following corollary uses the assumption that all W we received share the same eigenspace, and presents the formula
of matrix Mnew as a function of G and Λnew.

Lemma B.28. Let G = A(U ⊗ U). Suppose that W = UΛU⊤ and we receive W new = W + UCU⊤ where C ∈ Rn×n

but only has k nonzero entries.

Then we have

G⊤(G(Λnew ⊗ Λnew)G⊤)−1G = Mnew.

Proof. We prove via matrix Woodbury identity:

G⊤(G(Λnew ⊗ Λnew)G⊤)−1G

= G⊤(G((Λ + C)⊗ (Λ + C))G⊤)−1G

= G⊤(G((Λ⊗ Λ) +∆)G⊤)−1G

= G⊤(G(Λ⊗ Λ)G⊤)−1G

− G⊤((G(Λ⊗ Λ)G⊤)−1G∗,S̃(∆
−1 + G⊤∗,S̃(G(Λ⊗ Λ)G⊤)−1G∗,S̃)

−1G⊤∗,S̃(G(Λ⊗ Λ)G⊤)−1)G

= M −M∗,S̃(∆
−1 +MS̃,S̃)

−1M⊤∗,S̃

= Mnew.

where the first step follows from the definition of Λnew = Λ+ C, the second step follows from the linearity of Kronecker
product calculation and the definition of ∆ := C ⊗ Λ + Λ ⊗ C + C ⊗ C, the third step follows from matrix Woodbury
identity, the fourth step follows from plugging in the definitions, and the final step follows from the definition of Mnew in
the algorithm.

C. Differential Privacy
This section is organized as follows: We present the preliminaries on coordinate-wise embedding in Section C.1. We
present the preliminaries on differential privacy in Section C.2. We present the formal results on the data structure with
norm guarantee in Section C.3.

C.1. Coordinate-wise Embedding

C.1.1. DEFINITION AND RESULTS

First, we state the definition of coordinate-wise embedding:

Definition C.1 (Coordinate-wise embedding (Song & Yu, 2021)). We say a random matrix R ∈ Rb×n from a family Π
satisfies (α, β, δ)-coordinatewise embedding(CE) property if for any two fixed vector g, h ∈ Rn, we have the following:

1. ER∼Π[g
⊤R⊤Rh] = g⊤h.

2. ER∼Π[(g
⊤R⊤Rh)2] ≤ (g⊤h)2 + α

b ∥g∥
2
2∥h∥22.

3. PrR∼Π[|g⊤R⊤Rh− g⊤h| ≥ β√
b
∥g∥2∥h∥2] ≤ δ.

In (Song & Yu, 2021), they had proved that for certain choices of α, β, δ, the coordinate-wise embedding properties are
existing. Additionally, we give the (α, β, δ)-guarantee for some commonly used sketching matrices in Section C.1.2.

Next, we present the data structure whose output satisfied coordinate-wise embedding property.

Lemma C.2 (Simple coordinate-wise embedding data structure). There exists a randomized data structure such that, for
any oblivious sequence {g0, . . . , gT−1} ∈ (Rn)T and {h0, . . . , hT−1} ∈ (Rn)T and parameters α, β, δ, with probability
at least 1 − Tδ, we have for any t ∈ {0, . . . , T − 1}, each pair of vectors (gt, ht), satisfies (α, β, δ)-coordinatewise
embedding property (Def. C.1).

Proof. The algorithm is simply picking an (α, β, δ)-coordinate-wise embedding matrix R and apply it to gt and ht.

29



Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance

Note that (α, β, δ)-CE gives three guarantees: expectation, variance and high probability. For our applications, we focus
on the high probability part and parameters β, when coupled with the sketching dimension b, gives us the approximation
factor γ.

At first, we present the approximation factor γ of given vectors g and h.

Lemma C.3. Let R ∈ Rb×n satisfies (α, β, δ)-coordinate-wise embedding property, then given vectors g, h ∈ Rn, then
we have, with probability at least 1− δ,

|⟨Rg,Rh⟩| = |⟨g, h⟩| ± γ∥g∥2∥h∥2,
⟨Rg,Rh⟩2 = ⟨g, h⟩2 ± γ∥g∥22∥h∥22.

where γ = β√
b
.

Proof. By property 3 of coordinate-wise embedding (Def. C.1), we have that, with probability 1− δ,

|⟨Rg,Rh⟩ − ⟨g, h⟩| ≤ β√
b
∥g∥2∥h∥2.

Note that for any two real numbers a and b, we have

||a| − |b|| ≤ |a− b|,

therefore,

||⟨Rg,Rh⟩| − |⟨g, h⟩|| ≤ |⟨Rg,Rh⟩ − ⟨g, h⟩|

≤ β√
b
∥g∥2∥h∥2.

Suppose |⟨Rg,Rh⟩| ≥ |⟨g, h⟩|, then we have:

|⟨Rg,Rh⟩| ≤ |⟨g, h⟩|+ β√
b
∥g∥2∥h∥2.

Square both sides of the inequality yields:

⟨Rg,Rh⟩2 ≤ ⟨g, h⟩2 + β2

b
∥g∥22∥h∥22 +

2β√
b
|⟨g, h⟩|∥g∥2∥h∥2

≤ ⟨g, h⟩2 + 3β√
b
∥g∥22∥h∥22.

where the last step follows from Cauchy-Schwartz inequality that |⟨g, h⟩| ≤ ∥g∥2∥h∥2 and the property that β/b ∈ (0, 1).

Suppose |⟨Rg,Rh⟩| ≤ |⟨g, h⟩|, then we have:

|⟨Rg,Rh⟩| ≥ |⟨g, h⟩| − β√
b
∥g∥2∥h∥2.

Again, we square both sides:
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⟨Rg,Rh⟩2 ≥ ⟨g, h⟩2 + β2

b
∥g∥22∥h∥22 −

2β√
b
|⟨g, h⟩|∥g∥2∥h∥2

≥ ⟨g, h⟩2 + β2

b
∥g∥22∥h∥22 −

2β√
b
∥g∥22∥h∥22

≥ ⟨g, h⟩2 − β√
b
∥g∥22∥h∥22

≥ ⟨g, h⟩2 − 3β√
b
∥g∥22∥h∥22,

where the second step follows from Cauchy-Schwartz property that |⟨g, h⟩| ≤ ∥g∥2∥h∥2, and the third step follows from
the property that β/b ∈ (0, 1).

Then, by choosing β = β/3, we get desired result.

Then, we present the approximation factor γ of given matrix G and vector h.

Corollary C.4. Let R ∈ Rb×n satisfies (α, β, δ)-coordinate-wise embedding property, then given matrix G ∈ Rn×n and
h ∈ Rn, then we have, with probability at least 1− δ,

∥GR⊤Rh∥22 = ∥Gh∥22 ±
β√
b
∥G∥2F ∥h∥22.

Proof. We apply Lemma C.3 to each row i of G. Use gi to denote i-th row of G, we have that:

⟨gi, h⟩2 −
β√
b
∥gi∥22∥h∥22 ≤ ⟨Rgi, Rh⟩2 ≤ ⟨gi, h⟩2 +

β√
b
∥gi∥22∥h∥22,

Observe that we have the following properties:

n∑
i=1

⟨gi, h⟩2 = ∥Gh∥22,

n∑
i=1

∥gi∥22∥h∥22 = ∥G∥2F ∥h∥22,

n∑
i=1

⟨Rgi, Rh⟩2 = ∥GR⊤Rh∥22.

Then, summing over all i ∈ [n] concludes the proof.

Remark C.5. The above two results show that, given that the data structure satisfies (α, β, δ)-coordinate-wise embedding
property, the same data structure has a γ = β√

b
-approximation guarantee.

C.1.2. GUARANTEE ON SEVERAL WELL-KNOWN SKETCHING MATRICES

In this section, we present the definitions of several commonly used sketching matrices, and their parameters α, β, δ when
acting as the matrices for coordinate-wise embedding.

We give definitions of the sketching matrices below, starting with the definition of random Gaussian matrix.

Definition C.6 (Random Gaussian Matrix, folklore). Let R ∈ Rb×n denote a random Gaussian matrix such that all entries
are i.i.d. sampled from N (0, 1/b).

Next, we present the definition of subsampled randomized Hadamard/Fourier transform(SRHT) matrix, which can be
applied efficiently via fast Fourier transform (FFT).
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sketching matrix α β

Random Gaussian (Definition C.6) O(1) O(log1.5(n/δ))

SRHT (Definition C.7) O(1) O(log1.5(n/δ))

AMS (Definition C.8) O(1) O(log1.5(n/δ))

Count-Sketch (Definition C.9) O(1) O(
√
b log(1/δ)) or O(1/

√
δ)

Sparse Embedding (Definition C.11) O(1) O(
√
b/s log1.5(n/δ))

Table 1: Summary for different sketching matrices. (Table 1 in (Song & Yu, 2021))

Definition C.7 (Subsampled Randomized Hadamard/Fourier Transform(SRHT) Matrix (Lu et al., 2013)). We use R ∈
Rb×n to denote a subsampled randomized Hadamard transform matrix3. Then R has the form

R =

√
n

b
· SHD,

where S ∈ Rb×n is a random matrix whose rows are b uniform samples (without replacement) from the standard basis of
Rn, H ∈ Rn×n is a normalized Walsh-Hadamard matrix and D ∈ Rn×n is a diagonal matrix whose diagonal elements are
i.i.d. {−1,+1} random variables.

Next, let us present the definition of AMS sketch matrix which is generated by 4-wise hash functions.

Definition C.8 (AMS Sketch Matrix (Alon et al., 1999)). Suppose that g1, g2, · · · , gb be b random hash functions picking
from a 4-wise independent hash family

G =
{
g : [n]→ {− 1√

b
,+

1√
b
}
}
.

Then R ∈ Rb×n is a AMS sketch matrix if we set Ri,j = gi(j).

Next, we present the definition of count sketch matrix, which is also generated by hash functions.

Definition C.9 (Count-Sketch Matrix (Charikar et al., 2002)). Suppose that h : [n]→ [b] is a random 2-wise independent
hash function

Assume that σ : [n]→ {−1,+1} is a random 4-wise independent hash function.

Then we say R ∈ Rb×n is a count-sketch matrix if the matrix satisfy that Rh(i),i = σ(i) for all i ∈ [n] and zero everywhere
else.

Next, we present one definition of sparse embedding matrix.

Definition C.10 (Sparse Embedding Matrix I (Nelson & Nguyên, 2013)). Let R ∈ Rb×n be a sparse embedding matrix
with parameter s if each column of R has exactly s non-zero elements being ±1/

√
s uniformly at random. Note that those

locations are picked uniformly at random without replacement (and independent across columns) 4.

Finally, we present another equivalent definition of sparse embedding matrix.

Definition C.11 (Sparse Embedding Matrix II (Nelson & Nguyên, 2013)). Suppose that h : [n]× [s]→ [b/s] is a random
2-wise independent hash function.

Assume that σ : [n]× [s]→ {−1, 1} be 4-wise independent.

We use R ∈ Rb×n to represent a sparse embedding matrix II with parameter s if we set R(j−1)b/s+h(i,j),i = σ(i, j)/
√
s

for all (i, j) ∈ [n]× [s] and zero everywhere else.
3In this case, we require logn to be an integer.
4The signs need only be O(log d)-wise independent. Each column can be specified by a O(log d)-wise independent permutation.

The seeds specifying the permutations in different columns need only be O(log d)-wise independent.
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C.2. Differential Privacy Background

In this section, we first present the definition of privacy (Dwork, 2006). Then we also present the simple composition
theorem from (Dwork & Roth, 2014), the standard advanced composition theorem from (Dwork et al., 2010), and ampli-
fication via sampling theorem from (Bun et al., 2015). After that, we present the generalization guarantee on (ε, δ)-DP
algorithms (Dwork et al., 2015), and the private median algorithm.

Here, we present the definition of (ε, δ)-differential privacy. The intuition of this definition is that any particular row of the
dataset cannot have large impact on the output of the algorithm.

Definition C.12 (Differential Privacy). We say a randomized algorithm A is (ε, δ)-differentially private if for any two
databases S and S′ that differ only on one row and any subset of outputs T , the following

Pr[A(S) ∈ T ] ≤ eε · Pr[A(S′) ∈ T ] + δ,

holds. Note that, here the probability is over the randomness of A.

Next, we present the simple composition theorem, where the combination of differentially-private output has a privacy
guarantee as the sum of their privacy guarantee.

Theorem C.13 (Simple Composition (Corollary 3.15 of (Dwork & Roth, 2014))). Let ε1, . . . , εk ∈ (0, 1], if each Ai is
εi-differentially private, then their combination, defined to be A[k] = Ak ◦ . . . ◦ A1 is

∑k
s=1 εs-differentially private.

The above composition theorem gives a linear growth on the privacy guarantee. Next, the following advanced composition
tool (Theorem C.14) demonstrates that the privacy parameter ε0 need not grow linearly in k. However it only requires
roughly

√
k.

Theorem C.14 (Advanced Composition, see (Dwork et al., 2010)). Given three parameters ε ∈ (0, 1], δ0 ∈ (0, 1] and
δ ∈ [0, 1]. IfA1, · · · ,Ak are each (ε, δ)-DP algorithms, then the k-fold adaptive compositionAk◦· · ·◦A1 is (ε0, δ0+kδ)-
DP where

ε0 =
√
2k ln(1/δ0) · ε+ 2kε2

Next, we present the amplification theorem, where we can boost the privacy guarantee by subsampling a subset of the
database of the original DP algorithm as the input.

Theorem C.15 (Amplification via sampling (Lemma 4.12 of (Bun et al., 2015)5)). Suppose that ε ∈ (0, 1] is an accuracy
parameter. Let A denote an ε-DP algorithm. Let S denote a dataset with |S|.

Suppose that A′ is the algorithm that,

• constructs a database T ⊂ S by sub-sampling with repetition k ≤ n/2 rows from S,

• returns A(T ).

Finally, we have

A′ is (
6k

n
ε)-DP.

Next, we present the generalization theorem (see (Dwork et al., 2015), (Bassily et al., 2016)) which gives the accuracy
guarantee of our DP algorithm on adaptive inputs.

Theorem C.16 (Generalization of Differential Privacy (DP)). Given two accuracy parameters ε ∈ (0, 1/3) and δ ∈
(0, ε/4). Suppose that the parameter t satisfy that t ≥ ε−2 log(2ε/δ).

We D to represent a distribution on a domain X . Suppose S ∼ Dt is a database containing t elements sampled indepen-
dently from D. Let A be an algorithm that, given any database S of size t, outputs a predicate h : X → {0, 1}.

5(Bun et al., 2015) gives a more general bound, and uses (ε, δ)-DP.
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If A is (ε, δ)-DP, then the empirical average of h on sample S, i.e.,

h(S) =
1

|S|
∑
x∈S

h(x),

and h’s expectation is taken over underlying distribution D, i.e.,

h(D) = E
x∼D

[h(x)]

are within 10ε with probability at least 1− δ/ε:

Pr
S∼Dt,h←A(S)

[∣∣h(S)− h(D)
∣∣ ≥ 10ε

]
≤ δ/ε.

Finally, we present the private median algorithm which has a differentially private output that is close to the median of the
database.

Theorem C.17 (Private Median). Given two accuracy parameter ε ∈ (0, 1) and β ∈ (0, 1). We use X to represent a finite
domain with total order. Let Γ = O(ε−1 log(|X|/β)).

Then there is an (ε, 0)-DP algorithm PRIVATEMEDIANε,β that, given a database S ∈ X∗ in

O(|S| · ε−1 log3(|X|/β) · poly log |S|)

time outputs an element x ∈ X (possibly x /∈ S) such that, with probability 1− β, there are

• ≥ |S|/2− Γ elements in S that are ≥ x,

• ≥ |S|/2− Γ elements in S that are ≤ x. 6

C.3. Data Structure with Norm Guarantee

In this section, we present the definition of γ-approximation and the guarantee of the norm estimation algorithm against an
adaptive adversary.

Definition C.18. Given matrix G ∈ Rn×n and h ∈ Rn, we define function f : Rn×n × Rn → R as

f(G, h) = ∥GR⊤Rh∥22,

where R ∈ Rb×n satisfies (α, β, δ)-coordinate-wise embedding property (Def. C.1). We say f(G, h) is a γ-approximation
of ∥Gh∥22 if

∥Gh∥22 − γ∥G∥2F ∥h∥22 ≤ f(G, h) ≤ ∥Gh∥22 + γ∥G∥2F ∥h∥22.

The goal of this section is to prove the norm estimation guarantee(Theorem C.19) that, when given an approximation
algorithm against an oblivious adversary, we can adapt it to an approximation algorithm against an adaptive adversary with
slightly worse approximation guarantee.

Theorem C.19 (Reduction to Adaptive Adversary: Norm Estimation.). Given two parameters δ > 0, α > 0. Suppose
U := [−U,− 1

U ] ∪ {0} ∪ [ 1U , U ] for U > 1. We define function f such that maps elements from domain G × H to an
element in U .

Assume there is a dynamic algorithm A against an oblivious adversary that, given an initial data point x0 ∈ X and T
updates, the following conditions are holding:

• The preprocessing time is Tprep.

6The runtime dependency on domain size can be improved by other papers, if we have relatively small domain, we can use this
theorem.
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• The update time per round is Tupdate.

• The query time is Tquery and, with probability ≥ 9/10, the answer f(Gt, ht) is a γ-approximation of ∥Gtht∥22 for
every t, i.e.,

∥Gtht∥22 − γ∥Gt∥2F ∥ht∥22 ≤ f(Gt, ht) ≤ ∥Gtht∥22 + γ∥Gt∥2F ∥ht∥22

Then, there is a dynamic algorithm B against an adaptive adversary, with probability at least 1−δ, obtains an (α+γ+αγ)-
approximation of ∥Gtht∥22, guarantees the following:

• The preprocessing time is Õ(
√
T log( logU

αδ )Tprep).

• The update time per round is Õ(
√
T log( logU

αδ )Tupdate).

• The per round query time is Õ(log( logU
αδ )Tquery) and, with probability≥ 9/10, the answer ut is an (α+γ+αγ)-norm

approximation of ∥Gtht∥22 for every t, i.e.

∥Gtht∥22 − (α+ γ + αγ)∥Gt∥2F ∥ht∥22 ≤ ut ≤ ∥Gtht∥22 + (α+ γ + αγ)∥Gt∥2F ∥ht∥22
where ∥G∥F denote the Frobenius norm of matrix G.

Moreover, B undergoes T updates in Õ(
√
T log( logU

αδ ) · (tp + Tupdate) + T log( logU
αδ ) · Tquery) total update time, and

hence B has an amortized running time of Õ((Tprep + Tupdate) log( logU
αδ )/

√
T + log( logU

αδ )Tquery). The Õ, hides
poly log(T ) factors.

Proof. Algorithm B. We first describe the algorithm B.

• Suppose L = Õ(
√
T log( logU

αδ )). Let us initialize L copies ofA. Let us call themA(1), · · · ,A(L). Suppose the initial
data point x0.

• For time step t = 1, . . . , T :

– We update each copy of A by (Gt, ht).
– We independently uniformly sample q = Õ(log( logU

αδ )) indices and we denote this index set as St.

– For every l ∈ St, we query A(l) and let f̂ (l)
t denote its output for current update. For these nonzero output, we

round them to the nearest power of (1 + α), and denote it by f̃
(l)
t . To be specific, f̃ (l)

t satisfies the following:

f̃
(l)
t =

f̂
(l)
t

|f̂ (l)
t |

(1 + α)⌈log(1+α) |f̂
(l)
t |⌉

– Finally, we aggregate the rounded output f̃ (l)
t by PRIVATEMEDIAN in Lemma C.17, and then output the differ-

entially private norm estimate ut.

where we use Õ to hide the poly log T factor.

Next, let us present the formal algorithm of the above statement:

C.3.1. PROOF OVERVIEW

In this section, we present the choice of our parameters, the informal and formal presentation of the proposed algorithm,
and the intuition behind our implementation of differential privacy.

Parameters Here, we choose the parameters of the algorithm as follows:

εpm =
1

4
, δ0 = δ/(4T ), q = Õ(log(

logU

αδ0
)) and L = Õ(

√
T log(

logU

αδ0
)). (1)
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Algorithm 5 Our Norm Estimation Algorithm.

1: procedure REDUCTIONALGORITHM(T,U, α, δ) ▷ Theorem C.19
2: δ0 ← δ/2T

3: L← Õ(
√
T log( logU

αδ0
))

4: for l ∈ [L] do
5: Initialize A(l) with the initial data point x0

6: end for
7: for t = 1→ T do
8: for l ∈ [L] do
9: A(l).UPDATE(Gt, ht).

10: end for
11: q ← Õ(log( logU

αδ0
))

12: We independently uniformly sample q indices as the index set St ⊂ [L].
13: for l ∈ St do
14: f̂

(l)
t ← A(l).QUERY()

15: end for
16: for l ∈ St do
17: f̃

(l)
t ←

f̂
(l)
t

|f̂(l)
t |

(1 + α)⌈log(1+α) |f̂
(l)
t |⌉

18: end for
19: ut ← PRIVATEMEDIAN(f̃

(l)
t )

20: end for
21: end procedure

Accuracy Guarantee In the following sections, we argue that B maintains an accurate approximation of ∥Gh∥22 against
an adaptive adversary. At first, we prove that the transcript T between the Adversary and the algorithm B is differentially
private with respect to the databaseR, whereR is a matrix generated by the randomness of B. Then, we prove that for all
t, the aggregated output ut is indeed an (α+ γ + αγ)-approximation of ∥Gh∥22 with probability 1− δ by Chernoff bound
(Lemma A.1).

Privacy Guarantee Let r1, . . . , rL ∈ {0, 1}∗ denote the random strings used by copies of the oblivious algorithm A as
7 A1, . . . ,AL during the T updates. We further denote R = {r1, . . . , rL}, and we view every rl as a row of the database
R. In the following paragraphs, we will show that the transcript between the Adversary and the above algorithm B is
differentially private with respect toR.

To proceed, for each step t, fixing the random strings R, we define ut(R)8 as the output of algorithm B, and Tt(R) =
((Gt, ht), ut(R)) as the transcript between the Adversary and algorithm B at time step t. Furthermore, we denote
T (R) = {x0, T1(R), . . . , TT (R)} as the transcript. We view Tt and T as algorithms that return the transcripts given a
databaseR. In this light, we prove in Section C.3.2 that the transcript T is differentially private with respect toR.

Runtime Analysis Here, we present the calculation of the total runtime of our algorithm.

Lemma C.20 (Runtime). The total runtime of B is at most

Õ(
√
T log(

logU

αδ
)Tprep + T 3/2 log(

logU

αδ
)Tupdate + T log(

logU

αδ
)Tquery),

where Õ hides the poly log factor of T .

Proof. We can calculate the update time in the following:

• Preprocess L copies of A: L · Tprep.

7In our application, the random string is used to generate the random sketching matrices.
8f̂t(R) is still a random variable due to private median step.
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• Handle T updates: LT · Tupdate.

• For each step t,

– Query q many copies of A cost: q · Tquery
– By binary search, rounding every output f̂t to the nearest power of (1 + α) takes

O(q · log logU

α
)

time.
– By Lemma C.17, computing PRIVATEMEDIAN with privacy guarantee εpm takes

Õ(q · poly log( logU
αδ0

))

time.

Therefore, we conclude that the total update time of B is at most

Õ(
√
T log(

logU

αδ
)Tprep + T 3/2 log(

logU

αδ
)Tupdate + T log(

logU

αδ
)Tquery).

We can upper bound the ttotal as follows:

ttotal = L · Tprep + LT · Tupdate + T (q · Tquery + tpm +O(q log
logU

α
))

= O(Tprep ·
√
T log(

T logU

αδ
) ·
√
log

T

δ
) +O(T · Tupdate ·

√
T log(

T logU

αδ
) ·
√
log

T

δ
)

+O(T log(
T logU

αδ
)Tquery + T · 1

εpm
log3(|Xpm|/β) · poly log |Xpm|)

= Õ(
√
T log(

logU

αδ
)Tprep + T 3/2 log(

logU

αδ
)Tupdate + T log(

logU

αδ
)Tquery)

where the first step follows from plugging in the running time of query Tprep, update Tupdate and private median tpm, the
second step follows from the choice of q from Eq.(1), and the last step follows from hiding the log factors into Õ(·).

C.3.2. PRIVACY GUARANTEE

We start by presenting the privacy guarantee for the transcript Tt.
Lemma C.21. For every time step t, Tt is ( 6qL · εpm, 0)-DP with respect toR.

Proof. For a given step t, the only way that the transcript Tt(R) = (Gt, ht, ut(R)) could leak information about R is by
revealing the output ut(R). In this light, we analyze the differential privacy guarantee of the algorithm B by analyzing the
privacy of the output ut(R).

If we run PRIVATEMEDIAN with ε = εpm and β = δ0 on all copies of A, then from Theorem C.17, we get that the output
ut(R) would be (εpm, 0)-DP.

Instead, we run PRIVATEMEDIAN with ε = εpm and β = δ0 on the subsampled q copies of A as in Line 19 of the
Algorithm 5. Then, from amplification theorem (Theorem C.15), by this subsampling, we can boost the privacy guarantee
by 6q

L , and hence ut(R) is ( 6qL · εpm, 0)-DP with respect toR.

Next, we present the privacy guarantee for the composition of the transcripts as T .

Corollary C.22. T is ( 1
200 ,

δ0
400 )-DP with respect to R.
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Proof. Since our initialization of sketching matrices does not depend on the transcript T , x0 does not affect the privacy
guarantee here. By Lemma C.21, each Tt is 3q

2L -DP with respect toR.

Moreover, we can view T as a T -fold adaptive composition as follows:

TT ◦ TT−1 ◦ · · · ◦ T2 ◦ T1.

In this light, we apply the advanced composition theorem (Theorem C.14) with ε1 = 3q
2L , δ2 = δ0/400, δ1 = 0, k = T ,

we have that T is (ε1, δ1k + δ2)-DP, where:

ε1 =
√
2k ln(1/δ2) · εpm + 2kε2pm

=
√

2T ln(400/δ0) · εpm + 2T
9q2

4L2
ε2pm

≤ 1

400
+

1

400
=

1

200

for L = 600 · q
√

4T ln(400/δ0).

Next, we prove that algorithm B has accuracy guarantee against an adaptive adversary. Let x[t] = (x0, x1, . . . , xt) denote
the input sequence up to time t, where xt = (Gt, ht). LetA(r, x[t]) denote the output of the algorithmA on input sequence
x[t], given the random string r. Then, let 1[x[t], r] denote the indicator whetherA(r, x[t]) is an (γ+α+αγ)-approximation
of ∥Gtht∥22, i.e:

1[x[t], r] = 1{the event Et,r holds}

where event Et,r is defined as

∥Gtht∥22 − (α+ γ + αγ)∥Gt∥2F ∥ht∥22 ≤ f(Gt, ht) ≤ ∥Gtht∥22 + (α+ γ + αγ)∥Gt∥2F ∥ht∥22

Now, we show that most instances of the copies of oblivious algorithm A maintains the (γ + α + αγ)-approximation of
∥Gtht∥22.

C.3.3. ACCURACY GUARANTEE

In this section, we present the accuracy guarantee of our algorithm B.

Lemma C.23 (Accuracy of Algorithm A). With probability 9/10, the output ũt of the algorithm A for every time step t is
an (α+ γ + γα)-approximation of ∥Gtht∥22, i.e., E[1[x[t], r]] = 9/10.

Proof. We know that the oblivious algorithmAwill output an γ-norm approximation of Gh with probability 9/10 as f̂ . For
these f̂ , we proved that by rounding them up to the nearest power of (1+α), the resulting ũ remains to be an (γ+α+αγ)-
approximation of ∥Gh∥22. Hence, with probability 9/10, the following two inequalities hold true simultaneously:

∥Gtht∥22 − γ∥Gt∥2F ∥ht∥22 ≤ f̂t ≤ ũt

where this step directly follows from the approximation guarantee of oblivious algorithm A.

ũt ≤ (1 + α)f̂t

≤ (1 + α)(∥Gtht∥22 + γ∥Gt∥2F ∥ht∥22)
≤ ∥Gtht∥22 + α∥Gtht∥22 + (1 + α)γ∥Gt∥2F ∥ht∥22
≤ ∥Gtht∥22 + (α+ γ + αγ)∥Gt∥2F ∥ht∥22

where the first step follows from plugging in the approximation guarantee of oblivious algorithm A and our proposed
rounding-up procedure, the second step follows from equation expansion, and the last step follows from applying Cauchy-
Schwarz inequality that ∥Gtht∥2 ≤ ∥Gt∥F ∥ht∥2.
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Since every copies of A will output an ũ satisfies the above approximation result with probability 9/10, we have that
E[1[x[t], r]] = 9/10.

Then, we present the accuracy guarantee of all L copies of A at every time step t.

Lemma C.24 (Accuracy of all copies ofA). For every time step t,
∑L

l=1 1[x[t], r
(l)] ≥ 4

5L with probability at least 1−δ0.

Proof. We view each r as an i.i.d draw from a distribution D, and we present the generalization guarantee on the database
R. From Lemma C.23, we know that E[1[x[t], r]] = 9/10. By Corollary C.22, algorithm B is (ε3, δ3)-DP with ε3 = 1

200

and δ3 = δ0
400 . Moreover, we can check that L = Õ(

√
T log( logU

αδ0
)) ≥ ε−23 log(2ε3/δ3)

Then, by applying generalization theorem (Theorem C.16) with t = L, we have that:

Pr
R∼DL,1[x[t],·]←B(R)

[
1

|R|

L∑
l=1

1[x[t], r
(l)]− E

r∼D
[1[x[t], r]] ≥ 10 · ε3

]
≤ δ3/ε3

and

Pr
R∼DL,1[x[t],·]←T (R)

[
1

L

L∑
l=1

1[x[t], r
(l)]− E

r∼D
[1[x[t], r]] ≥

1

20

]
≤ δ0

2

where the second step follows from plugging in the value of parameters ε3 and δ3. Then, it immediately follows that with
probability at least 1− δ0/2,

1

L

L∑
l=1

1[x[t], r
(l)] ≥ 9/10− 1/20 = 0.85.

Thus, we complete the proof.

Then, we prove that after the aggregation, PRIVATEMEDIAN outputs an (α + γ + αγ)-approximation of ∥Gtht∥22 as ut

with probability at least 1− δ0/2. Moreover, this statement holds true for all t simultaneously with probability 1− δ.

Corollary C.25 (Accuracy of the final output). With probability 1 − δ, the following guarantee holds for all t ∈ [T ]
simultaneously:

∥Gtht∥22 − (α+ γ + αγ)∥Gt∥2F ∥ht∥22 ≤ ut ≤ ∥Gtht∥22 + (α+ γ + αγ)∥Gt∥2F ∥ht∥22

Proof. Consider a fixed step t, we know that B independently samples q indices as set St and queries those copies of A
with those indices. For ease of notation, we let 1[l] = 1[x[t], r

(l)] denote the indicator that whether A(l) is accurate at time
t.

Since A(l) are i.i.d sampled, the 1[l] is also i.i.d distributed. Then, from Lemma C.24, we know that with probability
1− δ0, E[

∑
l=∈[L] 1[l] ≥ 0.85L], which implies with probability 1− δ0, E[1[l] ≥ 0.85].

Then, for l ∈ St, with probability 1 − δ0, E[
∑

l∈St
1[l] ≥ 0.85q]. Moreover, from Lemma C.17, we know that with

probability 1− δ0, there are 49% fraction of outputs that are at least ut as well as bigger than ut in set St.

Then, by Hoeffding’s bound (Lemma A.2), we have the following:

Pr
[
|
∑
l∈St

1[l]− E[
L∑

l=1

1[l]| ≥ 0.05q
]
≤ 2 exp(− 1

400
q)

Therefore, with probability 1 − 2β, ut is an (α + γ + αγ)-approximation of ∥Gtht∥2. Hence, with probability at most
exp(−Θ(q)) ≤ δ0, PRIVATEMEDIANεpm,δ0 returns ut without an (α+ γ + αγ)- approximation guarantee.

Furthermore, by union bound, we have that with probability 1−2Tδ0 = 1−δ, for all t, ut is an (α+γ+αγ)-approximation
of ∥Gtht∥22.
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D. Robust Set Query Data Structure
This section is organized as follows: We present the definition of set query problem in Section D.1. We present our main
results and the algorithm on the set query problem in Section D.2. We present the privacy guarantee for the transcript
between the adversary and the algorithm of the t-th round in Section D.3, and for those of all rounds in Section D.4. We
present the accuracy guarantee for the output of each copy of oblivious algorithm A in Section D.5, and for all copies in
Section D.6. We present the accuracy guarantee of those outputs that aggregated by private median in Section D.7.

D.1. Definition

At first, we present the definition of the set query problem and the associate ε-approximation guarantee.

Definition D.1 (Set Query). Let G ∈ Rn×n and h ∈ Rn. Given a set Q ⊆ [n] and |Q| = k, the goal is to estimate the
coordinates of Gh in set Q. Given a precision parameter ε, for each j ∈ Q, we want to design a function f that is an
ε-approximation of (g⊤j h)

2, i.e.,

(g⊤j h)
2 − ε∥gj∥22∥h∥22 ≤ f(G, h)j ≤ (g⊤j h)

2 + ε∥gj∥22∥h∥22

where gj denotes the j-th row of G.

In the remainder of this section, we denote k as the number of elements defined in the set query problem, and we denote q
as the number of copies of algorithm A that we use.

D.2. Main Results

The goal of this section is to prove the following norm estimation guarantee (Theorem D.2) that, when given an approxi-
mation algorithm against an oblivious adversary for the set query problem, we can adapt it to an approximation algorithm
against an adaptive adversary for the same problem with slightly worse approximation guarantee.

Theorem D.2 (Reduction to Adaptive Adversary: Set query Estimation. Formal version of Theorem 6.2). We define
U := [−U,− 1

U ] ∪ {0} ∪ [ 1U , U ] for U > 1. Given two parameters δ, α > 0. We define function f to be a function that
maps elements from domain G×H to an element in Ud.

Suppose there is a dynamic algorithm A against an oblivious adversary that, given an initial data point x0 ∈ X and T
updates, the following conditions are holding:

• The preprocessing time is Tprep.

• The update time per round is Tupdate.

• The query time is Tquery and given a set Qt ⊂ [n] with cardinality k, with probability ≥ 9/10, the algorithm outputs
f(Gt, ht)j where j ∈ Qt, and each f(Gt, ht)j satisfies the following guarantee:

(g⊤j h)
2 − γ∥gj∥22∥ht∥22 ≤ f(Gt, ht)j ≤ (g⊤j h)

2 + γ∥gj∥22∥ht∥22

where gj denotes the j-th row of matrix Gt.

Then, there exists a dynamic algorithm B against an adaptive adversary, with probability at least 1 − δ, obtains an
(α+ γ + αγ)-approximation of (g⊤j h)

2 for every j ∈ Q, the following conditions are holding:

• The preprocessing time is Õ(
√
T log( logU

αδ )Tprep).

• The update time per round is Õ(
√
T log( logU

αδ )Tupdate).

• The per round query time is Õ(log( logU
αδ )Tquery + k3/2poly log( logU

αδ )) and, with probability 1− δ, for every j ∈ Q,
the answer (ut)j is an (α+ γ + αγ)-approximation of (g⊤j h)

2 for every t, i.e.

(g⊤j ht)
2 − (γ + α+ γα)∥gj∥22∥ht∥22 ≤ (ut)j ≤ (g⊤j ht)

2 + (γ + α+ γα)∥gj∥22∥ht∥22.
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Algorithm 6 Our Norm Estimation Algorithm for Set Query Problem

1: procedure REDUCTIONALGORITHM(T,U, α, δ) ▷ Theorem 6.2
2: L← Õ(

√
T log( logU

αδ )) ▷ The total number of copies
3: q ← Õ(log( logU

αδ )) ▷ The number of copies being used in each iteration
4: for l ∈ [L] do
5: Initialize A(l) with the initial data point x0

6: end for
7: for t = 1→ T do
8: We receive a query set Qt ⊂ [n]
9: for l = 1→ L do

10: A(l).UPDATE(Gt, ht).
11: end for
12: We independently uniformly sample q indices and denote this index set as St ⊂ [L].
13: for l ∈ St do
14: f̂

(l)
t ← A(l).QUERY()

15: end for
16: for l ∈ St do
17: for j ∈ Qt do
18: (f̃

(l)
t )j ← (f̂

(l)
t )j

|(f̂(l)
t )j |

(1 + α)⌈log(1+α) |(f̂
(l)
t )j |⌉

19: end for
20: end for
21: for j ∈ Qt do
22: (ut)j ← PRIVATEMEDIAN({(f̃ (l)

t )j}l∈St
).

23: end for
24: end for
25: end procedure

At first, we provide the algorithm B for set query problem as follows:

Proof. Algorithm B. We first describe the algorithm B.

• Let L = Õ(
√
T log( logU

αδ )). We initialize L copies ofA. We call themA(1), · · · ,A(L). Suppose the initial data point
is x0.

• For time step t = 1, . . . , T :

– We update each copy of A by (Gt, ht).
– We independently uniformly sample q = Õ(log( logU

αδ )) indices as set St.

– For l ∈ St, we query A(l) and let f̂ (l)
t denote its output for current update. For these nonzero outputs, we round

every entry j ∈ Qt of them to the nearest power of (1 + α), and denote it by f̃
(l)
t , i.e., for every l ∈ St:

(f̃
(l)
t )j =

(f̂
(l)
t )j

|(f̂ (l)
t )j |

(1 + α)⌈log(1+α)(|(f̂
(l)
t )j |)⌉

– Finally, for every j ∈ Qt, we aggregate the rounded output by PRIVATEMEDIAN (Lemma C.17) with input
{(f̃ (l)

t )j}l∈St , and then output the differentially private norm estimate (ut)j .

where Õ hides the poly log T factor.

Parameters Here, we choose the parameters of the algorithm as follows:

εpm =
1

4
√
k log(400T/β)

, β = δ/(4T ), L = Õ(
√
T log(

logU

αδ
)), q = Õ(log(

logU

αδ
)). (2)
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Update time

• Preprocess L copies of A: L · Tprep.

• Handle T updates: LT · Tupdate.

• For each step t ∈ [T ],

– Query q many copies of A cost: q · Tquery
– By binary search, rounding up every output f̂t to the nearest power of (1 + α) takes O(kq · log logU

α ) time.

– By Lemma C.17, computing PRIVATEMEDIAN for q entries with εpm = 1
4k takes tpm = Õ(kq · poly log( logU

αβ ))
time.

Therefore, we conclude that the total update time of algorithm B is at most ttotal, and we can upper bound ttotal as follows:

ttotal

= L · Tprep + LT · Tupdate + T (Tquery + ktpm + Õ(k log
logU

α
))

= O(Tprep ·
√
T log(

T logU

αδ
) ·
√
log

T

δ
) +O(T · Tupdate ·

√
T log(

T logU

αδ
) ·
√
log

T

δ
)

+ O(T log(
T logU

αδ
)Tquery + kT · 1

εpm
log3(|Xpm|/β) · poly log |Xpm|)

= Õ(
√
T log(

logU

αδ
)Tprep + T

3
2 log(

logU

αδ
)Tupdate + T log(

logU

αδ
)Tquery + k

3
2Tpoly log(

logU

αδ
))

where the first step follows from plugging in the running time of query Tprep, update Tupdate and private median tpm with
privacy guarantee εpm = 1

4
√

k log(400T/β)
, the second step follows from the choice of L from Eq. (2), and the last step

follows from hiding the log factors into Õ(·).

Privacy Guarantee In the following sections, we argue that Bmaintains an accurate approximation of (g⊤j h)
2 for j ∈ Qt

against an adaptive adversary. At first, we prove that the transcript T between the Adversary and the algorithm B is
differentially private with respect to the database R, where R is a matrix generated by the randomness of B. Then, we
prove that for every j ∈ Qt, the j-th coordinate of aggregated output u is indeed an (α+γ+αγ)-approximation of ∥gjh∥22
with probability 1− δ by Chernoff–Hoeffding inequality.

Let r1, . . . , rL ∈ {0, 1}∗ denote the random strings used by the oblivious algorithms9 A1, . . . ,AL during the T updates.
We further denote R = {r1, . . . , rL}, and we view every rl as a row of the database R. In the following paragraphs, we
will show that the transcript between the Adversary and the above algorithm B is differentially private with respect to
R.

To proceed, for each time step t, fixing the random strings R, we define ut(R)10 as the output of algorithm B, and
Tt(R) = ((Gt, ht), ut(R)) as the transcript between the Adversary and algorithm B at time step t. Furthermore, we
denote

T (R) = {x0, T1(R), . . . , TT (R)}

as the transcript. We view Tt and T as algorithms that return the transcripts given a database R. In this light, we prove in
the following that they are differentially private with respect toR.

9In our application, the random string is used to generate the random sketching matrices.
10ut(R) is still a random variable due to private median step.
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D.3. Privacy Guarantee for t-th Transcript

At first, we present the privacy guarantee for transcript Tt at time t.

Lemma D.3 (Privacy guarantee for Tt). For every time step t, Tt is ( 3q
2L ,

β
800T )-DP with respect toR.

Proof. For a given step t, the only way that a transcript Tt(R) = (Gt, ht, ut(R)) could possibly leak information about
database R is by revealing ut(R). By Theorem C.17, we have that PRIVATEMEDIANεpm,β gives an (εpm, 0)-DP output
(ut)j on j ∈ Qt. Then, from amplification theorem (Theorem C.15), the subsampling in our algorithm B boosts the privacy
parameter by 6q

L , and hence every queried coordinate of ut(R) is ( 6qL · εpm, 0)-DP with respect toR.

Now, applying advanced composition theorem (Theorem C.14) to the k coordinates of ut(R) with δ0 = β/(800T ) gives
us a ( 3q

2L ,
β

800T )-DP guarantee of Tt, for every t. The reason is as follows:

ε0 =
√

2k log(800T/β) · εpm ·
6q

L
+ 2k · ε2pm · (

6q

L
)2

≤ 1

2

6q

L
+ 2k

36q2

L2

1

16k log(400T/β)

≤ 3

4

6q

L

=
3q

2L

where the first step follows from plugging in ε = 6q
L εpm and δ0 = β

400T , the second step follows from calculation, the third
step follows from 6q

L < 1, and the last step follows from calculation.

D.4. Privacy Guarantee for All Transcripts

Next, we present the privacy guarantee of the whole transcript T .

Corollary D.4 (Privacy guarantee for T ). T is ( 1
200 ,

β
400 )-DP with respect toR.

Proof. We can view T as an adaptive composition as:

TT ◦ TT−1 ◦ · · · ◦ T2 ◦ T1.

Since our initialization of sketching matrices does not depend on the transcript T , x0 does not affect the privacy guarantee
here. By Lemma D.3, each Tt is ( 3q

2L ,
β

800T )-DP with respect to R. Then, we apply the advanced composition theorem
(Theorem C.14) with δ1 = β/800, we have that T is (ε1, δ0T + δ1)-DP, where:

ε1 =
√

2T log(1/δ1) ·
3q

2L
+ 2T

9q2

4L2

=
√

2T log(800/β) · 3

400 · 12
√
4T log(400/β)

+ 2T · 9

4 · 4002 · 36 · 4T log(400/β)

≤ 1

400
+

1

400

=
1

200

where the first step follows from the advanced composition theorem, the second step follows from plugging in the value of
δ1 and L = 400 · 6q

√
4T ln(400/β), the third and the final step follows from calculation. Moreover, the δ guarantee of T

is:

δ0T + δ1 =
β

800T
· T +

β

800

=
β

400
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where the first step follows from plugging in the value of δ0 and δ1, and the final step follows from calculation.

Hence, our algorithm is ( 1
200 ,

β
400 )-DP.

D.5. Accuracy of A on the t-th Output

Next, we prove that algorithm B has accuracy guarantee against an adaptive adversary. Let x[t] = (x0, x1, . . . , xt) denote
the input sequence up to time t, where xt = (Gt, ht). Let A(r, x[t]) and ũt denote the output of the algorithm A on input
sequence x[t], given the random string r. Then, let 1[x[t], r] denote the indicator whether for every j ∈ Qt, A(r, x[t])j is
an (γ + α+ αγ)-norm approximation of (Gt)

⊤
j ht, i.e:

1[x[t], r] = 1{∀j ∈ Qt, the event Ej,t,r holds}

where Ej,t,r denotes the following event

(g⊤j ht)
2 − (α+ γ + αγ)∥gj∥22∥ht∥22 ≤ A(r, x[t])j ≤ (g⊤j ht)

2 + (α+ γ + αγ)∥gj∥22∥ht∥22.

Now, we show that most instances of the oblivious algorithm A are (γ + α+ αγ)-approximation of (g⊤j ht)
2.

Lemma D.5 (Accuracy of ũt). For every time step t, with probability 9/10, the output (ũt)j of the algorithm A, is an
(α+ γ + αγ)-approximation of (g⊤j ht)

2 simultaneously for every j ∈ Q.

Proof. We know that the oblivious algorithm A will output an γ-approximation of (g⊤j ht)
2 with probability 9/10 as f̂j ,

for every j ∈ Q. For these f̂j , we proved that by rounding them to the nearest power of (1 + α), they still remains to
be an (γ + α + αγ)-approximation of ∥gjht∥22. Hence, with probability 9/10, the following two statements hold true
simultaneously:

∥gjht∥22 − γ∥gj∥22∥ht∥22 ≤ f̂j ≤ (ũt)j

where this step follows from our rounding up procedure.

(ũt)j ≤ (1 + α) · ∥f̂j∥22 ≤ (1 + α)(∥gjht∥22 + γ∥gj∥22∥ht∥22)
= ∥gjht∥22 + α∥gjht∥22 + γ(1 + α)∥gj∥22∥ht∥22
≤ ∥gjht∥22 + (α+ γ + αγ)∥gj∥22∥ht∥22

where the first step follows from the rounding up procedure and the guarantee of f̂j , the second step follows from equation
expansion, and the last step follows from Cauchy-Schwarz.

Since every copy ofA will have an output that satisfies the above approximation result with probability 9/10, we have that
E[1[x[t], r]] = 9/10.

D.6. Accuracy of All Copies of B

In this section, we give the guarantee on the accuracy of all copies that the algorithm B maintains.

Lemma D.6 (Accuracy on all L copies of Algorithm A). For every time step t,
∑L

l=1 1[x[t], r
(l)] ≥ 4

5L with probability
at least 1− β.

Proof. We view each r as an i.i.d draw from a distribution D. By generalization theorem (Theorem C.16), we have that:

Pr
R∼DL,1[x[t]]←T (R)

[ 1
L

L∑
l=1

1[x[t], r
(l)]− E

r∼D
[1[x[t], r]] ≥

1

20

]
≤ β/2
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By plugging in ε = 1
200 , and δ = β

400 , we have that with probability at least 1− β/2,

1

L

L∑
l=1

1[x[t], r
(l)] ≥ 9/10− 1/20 = 0.85.

D.7. Accuracy Guarantee of Private Median

In this section, we prove that after the aggregation, for all j ∈ Qt, PRIVATEMEDIAN outputs an (α+γ+αγ)-approximation
of ∥gjh∥22 with probability at least 1−β by generalization theorem (Lemma C.16). Moreover, this statement holds true for
all t simultaneously with probability 1− δ.

Corollary D.7 (Accuracy guarantee of private median). For all step t, with probability 1−δ, for every j ∈ Q, the following
statement holds true:

(g⊤j ht)
2 − (1− γ − α− γα)∥gj∥22∥ht∥22 ≤ (ut)j ≤ (g⊤j ht)

2 + (1 + γ + α+ αγ)∥gj∥22∥ht∥22

Proof. Consider a fixed step t, we know that B independently samples q indices as set St and queries A(l) for l ∈ St. For
ease of notation, we let 1[l] = 1[x[t], r

(l)] denote the whether Al is accurate at time t.

From Lemma D.6, we know that with probability 1−δ, E[
∑

l∈St
1[l] ≥ 0.85q]. Then, by Hoeffding’s bound (Lemma A.2),

we have the following:

Pr
[
|
∑
l∈St

1[l]− E[
∑
l∈St

1[l]]| ≥ 0.05q
]
≤ 2 exp(−q/400)

Hence, with probability at most exp(−Θ(q)) ≤ β, PRIVATEMEDIANεpm,β returns ut that there exist a j ∈ Qt that (ut)j
doesn’t have an (α+ γ + αγ)-approximation guarantee.

From Lemma C.17, we know that with probability 1 − β, there are 49% fraction of outputs of A(l) for l ∈ St whose j-th
coordinate is at least (ut)j as well as bigger than (ut)j . Therefore, with probability 1 − 2β, (ut)j is an (α + γ + αγ)-
approximation of ((Gt)

⊤
j ht)

2 simultaneously for all j ∈ Q.

Furthermore, by union bound, we have that with probability 1 − 2Tβ = 1 − δ, for every j ∈ Q, every (ut)j is an
(α+ γ + αγ)-approximation of ((Gt)

⊤
j ht)

2.
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