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Abstract
Given a matrix A ∈ Rn×d and a vector b ∈ Rn,
we consider the regression problem with ℓ∞ guar-
antees: finding a vector x′ ∈ Rd such that

∥x′ − x∗∥∞ ≤ ϵ√
d
· ∥Ax∗ − b∥2 · ∥A†∥,

where x∗ = argminx∈Rd ∥Ax− b∥2. One popu-
lar approach for solving such ℓ2 regression prob-
lem is via sketching: picking a structured ran-
dom matrix S ∈ Rm×n with m ≪ n and SA
can be quickly computed, solve the “sketched”
regression problem argminx∈Rd ∥SAx − Sb∥2.
In this paper, we show that in order to obtain
such ℓ∞ guarantee for ℓ2 regression, one has to
use sketching matrices that are dense. To the
best of our knowledge, this is the first user case
in which dense sketching matrices are necessary.
On the algorithmic side, we prove that there ex-
ists a distribution of dense sketching matrices
with m = ϵ−2d log3(n/δ) such that solving the
sketched regression problem gives the ℓ∞ guaran-
tee, with probability at least 1− δ. Moreover, the
matrix SA can be computed in time O(nd log n).
Our row count is nearly-optimal up to logarith-
mic factors, and significantly improves the result
in (Price et al., 2017), in which a super-linear
in d rows, m = Ω(ϵ−2d1+γ) for γ ∈ (0, 1) is
required. Moreover, we develop a novel analyti-
cal framework for ℓ∞ guarantee regression that
utilizes the Oblivious Coordinate-wise Embed-
ding (OCE) property introduced in (Song & Yu,
2021). Our analysis is much simpler and more
general than that of (Price et al., 2017). Leverag-
ing this framework, we extend the ℓ∞ guarantee
regression result to dense sketching matrices for
computing the fast tensor product of vectors.
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1. Introduction
Linear regression, or ℓ2 least-square problem is ubiquitous
in numerical linear algebra, scientific computing and ma-
chine learning. Given a tall skinny matrix A ∈ Rn×d and a
label vector b ∈ Rn, the goal is to (approximately) compute
an optimal solution x′ that minimizes the ℓ2 loss ∥Ax− b∥2.
For the regime where n ≫ d, sketching is a popular ap-
proach to obtain an approximate solution quickly (Clarkson
& Woodruff, 2013; Nelson & Nguyên, 2013; Meng & Ma-
honey, 2013; Cherapanamjeri et al., 2023): the idea is to
pick a random matrix S ∈ Rm×n from carefully-designed
distributions, so that 1). S can be efficiently applied to A
and 2). the row count m ≪ n. Given these two guarantees,
one can then solve the “sketched” regression problem:

arg min
x∈Rd

∥SAx− Sb∥2,

and obtain a vector x′ such that ∥Ax′−b∥2 = (1±ϵ) ·OPT,
where OPT denotes the optimal ℓ2 discrepancy between
vectors in column space of A and b. Recent advances in
sketching (Cherapanamjeri et al., 2023) show that one can
design matrix S with m = O(ϵ−2d log2(n/δ)) and the
sketched regression can be solved in time

O(nnz(A) + dω + ϵ−2d2 poly log(n, d, 1/ϵ, 1/δ))

where nnz(A) denotes the number of nonzero entries of A
and δ is the error probability.

Unfortunately, modern machine learning emphasizes more
and more on large, complex, and nonlinear models such
as deep neural networks, thus linear regression becomes
less appealing as a model. However, it is still a very im-
portant subroutine in many deep learning and optimization
frameworks, especially second-order method for training
neural networks (Cai et al., 2019; Brand et al., 2021; Song
et al., 2021b) or convex optimization (Lee & Sidford, 2014;
Cohen et al., 2019; Lee et al., 2019; Brand, 2020; Song &
Yu, 2021; Jiang et al., 2021; Gu & Song, 2022). In these ap-
plications, one typically seeks forward error guarantee (Sar-
los, 2006), i.e., how close is the approximate solution x′

to the optimal solution x∗. A prominent example is New-
ton’s method: given the (possibly implicit) Hessian matrix
H ∈ Rd×d and the gradient g ∈ Rd, one wants to com-
pute H−1g. A common approach is to solve the regression
argminx∈Rd ∥Hx−g∥2, in which one wants ∥x−H−1g∥2
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or even ∥x−H−1g∥∞ to be small. When the matrix S sat-
isfies the so-called Oblivious Subspace Embedding (OSE)
property (Sarlos, 2006), one can show that the approximate
solution x′ is close to x∗ in the ℓ2 sense:

∥x′ − x∗∥2 ≤ O(ϵ) · ∥Ax∗ − b∥2 · ∥A†∥. (1)

Unfortunately, ℓ2-closeness cannot characterize how good
x′ approximates x∗, as x∗ can have a good spread of ℓ2
mass over all coordinates while x′ concentrates its mass
over a few coordinates. Formally speaking, let a ∈ Rd be a
fixed vector, then one can measure how far ⟨a, x′⟩ deviates
from ⟨a, x∗⟩ via Eq. (1):

|⟨a, x∗⟩ − ⟨a, x′⟩|
= |⟨a, x′ − x∗⟩|
≤ ∥a∥2∥x′ − x∗∥2
≤ O(ϵ) · ∥a∥2 · ∥Ax∗ − b∥2 · ∥A†∥.

This bound is clearly too loose, as one would expect the
deviation on a random direction is only 1√

d
factor of the ℓ2

discrepancy. (Price et al., 2017) shows that this intuition is
indeed true when S is picked as the subsampled randomized
Hadamard transform (SRHT) (Lu et al., 2013): 1

|⟨a, x∗⟩ − ⟨a, x′⟩|

≲
ϵ√
d
∥a∥2∥Ax∗ − b∥2∥A†∥. (2)

However, their analysis is not tight as they require a row

count m = Ω(ϵ−2d1+γ) for γ = Θ(
√

log logn
log d ). Such a

row count is super-linear in d as long as n ≤ exp(d) and
therefore is worse than the required row count for S to be a
subspace embedding, in which only m = ϵ−2d log2 n rows
are required for constant success probability. In contrast, for
random Gaussian matrices, the ℓ∞ guarantee only requires
nearly linear in d rows. In addition to their sub-optimal row
count, the (Price et al., 2017) analysis is also complicated:
let U ∈ Rn×d be an orthonormal basis of A, (Price et al.,
2017) has to analyze the higher moment of matrix Id −
U⊤S⊤SU . This makes their analysis particularly hard to
generalize to other dense sketching matrices beyond SRHT.

In this work, we present a novel framework for analyzing the
ℓ∞ guarantee induced by SRHT and more generally, a large
class of dense sketching matrices. Our analysis is arguably
much simpler than (Price et al., 2017), and it exposes the
fundamental structure of sketching matrices that provides
ℓ∞ guarantee: if any two columns of the sketching matrix
have a small inner product with high probability, then ℓ∞
guarantee can be preserved. We then prove that the small

1We will later refer the following property as ℓ∞ guarantee.

pairwise column inner product is also closely related to
the Oblivious Coordinate-wise Embedding (OCE) property
introduced in (Song & Yu, 2021). More concretely, for
any two fixed vectors g, h ∈ Rn, we say the sketching
matrix is (β, δ, n)-OCE if |⟨Sg, Sh⟩ − ⟨g, h⟩| ≤ β√

m
·

∥g∥2∥h∥2 holds with probability at least 1−δ. This property
has previously been leveraged for approximating matrix-
vector product between a dynamically-changing projection
matrix and an online sequence of vectors for the fast linear
program and empirical risk minimization algorithms (Lee
et al., 2019; Jiang et al., 2021; Song & Yu, 2021; Qin et al.,
2023) and related data structures (Song et al., 2023) as these
algorithms need ℓ∞ bound on the matrix-vector product.
One common theme shared by those applications and ℓ∞
guarantee is to use dense sketching matrices, such as random
Gaussian, the Alon-Matias-Szegedy sketch (AMS, (Alon
et al., 1996)) or SRHT. This is in drastic contrast with the
trending direction for using sparse matrices such as Count
Sketch (Charikar et al., 2002; Clarkson & Woodruff, 2013)
and OSNAP (Nelson & Nguyên, 2013; Cohen, 2016), as
they can be applied in (nearly) input sparsity time.

In recent years, sketches that can be applied to the tensor
product of matrices/vectors have gained popularity (Avron
et al., 2014; Song et al., 2016; Diao et al., 2018; Song et al.,
2019; Diao et al., 2019; Ahle et al., 2020; Woodruff &
Zandieh, 2020; Song et al., 2021a; Woodruff & Zandieh,
2022; Song et al., 2022b;a; Reddy et al., 2022) as they can
speed up optimization tasks and large-scale kernel learn-
ing. We show that dense sketches for degree-2 tensors also
provide ℓ∞ guarantee.

Theorem 1.1 (Nearly-optimal bound for dense sketching
matrices). Suppose n ≤ exp(d) and matrix A ∈ Rn×d and
vector b ∈ Rn are given. Let S ∈ Rm×n be a subsampled
randomized Hadamard transform matrix SRHT with

m = O(ϵ−2d log3(n/δ))

rows.

For any fixed vector a ∈ Rd,

|⟨a, x∗⟩ − ⟨a, x′⟩| ≲ ϵ√
d
· ∥a∥2 · ∥Ax∗ − b∥2 · ∥A†∥

with probability 1− δ, where

• x′ = argminx∈Rd ∥SAx− Sb∥2,

• x∗ = argminx∈Rd ∥Ax− b∥2.

Remark 1.2. The row count m = ϵ−2d log3 n is nearly-
optimal up to logarithmic factors, as the row count for S
being an OSE is m = ϵ−2d log2 n for constant success
probability. In comparison, (Price et al., 2017) requires

m = ϵ−2d1+γ rows for γ = Θ(
√

log logn
log d ) which is only
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nearly-linear in d if n > exp(d). In most applications, we
concern about n = poly(d), meaning that their row count
is worse than ours in almost all meaningful scenarios.

The row count and guarantee obtained in Theorem 1.1 ex-
tend beyond SRHT; in fact, for a range of dense sketching
matrices including random Gaussian, AMS sketch (Alon
et al., 1996), SRHT and subsampled randomized Circulant
Transform (see Definition 2.11) (SRCT)2. This is because
our argument is a structural condition that can be satisfied
by various dense sketches.

Our result can also be generalized to degree-2 Kronecker
product regression, see Theorem B.1.

Roadmap. In Section 2, we introduce the notations that
we use and explain the key definitions and properties to
support the framework for ℓ∞ guarantee regression. In
Section 3, we introduce our framework by presenting a
sufficient condition for a sketching matrix to give a good
ℓ∞ guarantee. In Section 4, we provide a proof for our
main theorem by putting everything together. Finally, in
Section 5, we summarize the main findings of this paper and
through comparing with previous work. In Section A, we
introduce the fundamental definitions and properties that we
will use in Appendix. In Section B, we analyze and develop
the ℓ∞ guarantee of Kronecker product regressions. In
Section C, we introduce the Strong JL Moment Property and
prove that both Circulant Transform and Tensor Circulant
Transform satisfy this. In Section D, we focus on studying
AMS, random Gaussian, and SRHT and show that the inner
product is bounded on any pair of different columns of AMS,
random Gaussian, and SRHT–dense sketching matrices.

2. Preliminary
For a positive integer, we define [n] := {1, 2, · · · , n}.

For a vector x ∈ Rn, we define ∥x∥2 := (
∑n

i=1 x
2
i )

1/2 and
∥x∥∞ := maxi∈[n] |xi|.

For a matrix A, we define ∥A∥ := supx ∥Ax∥2/∥x∥2 to be
the spectral norm of A.

We use ∥A∥F :=
∑

i,j A
2
i,j to be the Frobenius norm of A.

In general, we have the following property for spectral norm,
∥AB∥ ≤ ∥A∥ · ∥B∥.

We use A† to denote the Moore-Penrose pseudoinverse of
m × n matrix A which if A = UΣV ⊤ is its SVD (where
U ∈ Rm×n, Σ ∈ Rn×n and V ∈ Rn×n for m ≥ n), is
given by A† = V Σ−1U⊤.

We use E[·] to denote the expectation, and Pr[·] to denote

2The Toeplitz and circulant type of Johnson-Lindenstrauss
transform has also been studied (Freksen & Larsen, 2020).

the probability.

For a distribution D and a random variable x, we use x ∼ D
to denote that we draw a random variable from the distribu-
tion D.

We use N (µ, σ2) to denote a Gaussian distribution with
mean µ and variance σ2.

We say a random variable x is Rademacher random variables
if Pr[x = 1] = 1/2 and Pr[x = −1] = 1/2. We also call it
a sign random variable.

In addition to O(·) notation, for two functions f, g, we use
the shorthand f ≲ g (resp. ≳) to indicate that f ≤ Cg (resp.
≥) for an absolute constant C. We use f ≂ g to mean cf ≤
g ≤ Cf for constants c > 0 and C > 0. For two matrices
A ∈ Rn1×d1 , B ∈ Rn2×d2 , we use A ⊗ B ∈ Rn1n2×d1d2

to denote the Kronecker product, i.e., the (i1, i2)-th row and
(j1, j2)-th column of A×B is Ai1,j1Bi2,j2 . For two vectors
x ∈ Rm, y ∈ Rn, we use x⊗ y ∈ Rmn to denote the tensor
product of vectors, in which x⊗ y = vec(xy⊤).

2.1. Oblivious Subspace Embedding and
Coordinate-wise Embedding

Definition 2.1 (Oblivious subspace embedding (Sarlos,
2006)). We define (ϵ, δ, d, n)-Oolivious subspace embed-
ding (OSE) as follows: Suppose Π is a distribution on m×n
matrices S, where m is a function of n, d, ϵ, and δ. Suppose
that with probability at least 1− δ, for any fixed n× d or-
thonormal basis U , a matrix S drawn from the distribution
Π has the property that the singular values of SU lie in the
range [1− ϵ, 1 + ϵ].

The oblivious coordinate-wise embedding (OCE) is implic-
itly used in (Lee et al., 2019; Jiang et al., 2021) and formally
introduced in (Song & Yu, 2021).

Definition 2.2 ((α, β, δ)–coordinate wise embedding (Song
& Yu, 2021)). We say a random matrix S ∈ Rm×n satisfy-
ing (α, β, δ)–coordinate wise embedding if

1. E
S∼Π

[g⊤S⊤Sh] = g⊤h,

2. E
S∼Π

[(g⊤S⊤Sh)2] ≤ (g⊤h)2 +
α

m
∥g∥22∥h∥22,

3. Pr
S∼Π

[|g⊤S⊤Sh− g⊤h| ≥ β√
m
∥g∥2∥h∥2] ≤ δ.

In this paper, we mainly use the property 3 of Definition 2.2.
For convenient, we redefine OCE as follows:

Definition 2.3 (OCE). Let β ≥ 1 and δ ∈ (0, 0.1). We say
a randomized matrix S ∈ Rm×n satisfy (β, δ, n)-OCE, if

Pr
S∼Π

[|g⊤S⊤Sh− g⊤h| ≥ β√
m
∥g∥2∥h∥2] ≤ δ

and the distribution Π is oblivious to any fixed vectors g, h.
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2.2. Sketching Matrices

In this paper, we concern a list of dense sketching matrices.

Definition 2.4 (Random Gaussian matrix, folklore). We say
S ∈ Rm×n is a random Gaussian matrix if all entries are
sampled from N (0, 1/m) independently.

Definition 2.5 (AMS sketch matrix, (Alon et al., 1996)).
Let h1, h2, · · · , hm be m random hash functions picking
from a 4–wise independent hash family H = {h : [n] →
{− 1

m ,+ 1
m}}. Then S ∈ Rm×n is an AMS sketch matrix if

we set Si,j = hi(j).

The following sketching matrices can utilize fast Fourier
Transform (FFT) for efficient application to matrices.

Definition 2.6 (Subsampled randomized Hadamard trans-
form (SRHT) (Lu et al., 2013; Song et al., 2021a)). The
SRHT matrix S ∈ Rm×n is defined as S := 1√

m
PHD,

where each row of matrix P ∈ {0, 1}m×n contains exactly
one 1 at a random position, H is the n×n Hadamard matrix,
and D is a n× n diagonal matrix with each diagonal entry
being a value in {−1,+1} with equal probability.

Remark 2.7. Using the fast Fourier transform (FFT), S can
be applied to a vector in time O(n log n).

Definition 2.8 (Tensor subsampled randomized Hadamard
transform (TensorSRHT) (Ahle et al., 2020; Song et al.,
2021a)). The TensorSRHT S : Rn×Rn → Rm is defined
as

S :=
1√
m
P · (HD1 ⊗HD2),

where each row of P ∈ {0, 1}m×n2

contains only one 1
at a random coordinate and one can view P as a sampling
matrix. H is a n×n Hadamard matrix, and D1, D2 are two
n×n independent diagonal matrices with diagonals that are
each independently set to be a Rademacher random variable
(uniform in {−1, 1}).

Remark 2.9. By leveraging the FFT algorithm in the sketch
space, S(x⊗ y) can be computed in time

O(n log n+m).

To store and generate a Hadamard matrix is expensive, we
consider a cheaper and space-efficient way to generate an
FFT matrix via circulant transform.

Definition 2.10 (Circulant matrix). A circulant matrix is
an n× n matrix, where n ∈ N, whose row vectors consist
of the same element, and compared to the preceding row
vector, each row vector is rotated one element to the right.

Definition 2.11 (Subsampled randomized circulant trans-
form (SRCT)). Let x ∈ Rn be a random vector, whose
elements are i.i.d. Rademacher random variables.

Also, let P ∈ Rm×n be a random matrix in which each row
contains a 1 at a uniformly distributed coordinate and zeros
elsewhere.

Let G ∈ Rn×n be a circulant matrix (see Definition 2.10)
generated by x and D ∈ Rn×n be a diagonal matrix whose
diagonal elements are i.i.d. Rademacher random variables.

Then, the subsampled randomized circulant transform is
defined as follows: S := 1√

m
PGD.

Definition 2.12 (Tensor subsampled randomized circulant
transform (TensorSRCT)). Let x ∈ Rn be a random vector,
whose elements are i.i.d. Rademacher random variables.

Also, let P ∈ Rm×n2

be a random matrix in which each
row contains a 1 at a uniformly distributed coordinate and
zeros elsewhere.

Let G ∈ Rn×n be a circulant matrix (see Definition 2.10)
generated by x.

Let D1 ∈ Rn×n and D2 ∈ Rn×n be two independent diago-
nal matrices whose diagonal elements are i.i.d. Rademacher
random variables.

Then, the tensor circulant transform T : Rn ×Rn → Rm is
defined as follows: T := P · (GD1 ⊗GD2).

Remark 2.13. Similar to SRHT, we can utilize the fast
Fourier transform with circulant matrix. SRCT can be
applied to a vector of length n in O(n log n) time, and
TensorSRCT can be applied to x ⊗ y in O(n log n +m)
time.

2.3. OSE Property of Dense Sketches

An important condition for sketch-and-solve regressions is
OSE. We focus particularly on SRHT, SRCT, and their
tensor variants.
Lemma 2.14 ((Ahle et al., 2020; Song et al., 2021a) , see
for example, Lemma 2.11 in (Song et al., 2021a)). Let S be
an SRHT matrix defined in Definition 2.6. If

m = O(ϵ−2d log2(nd/δ)),

then S is an (ϵ, δ, d, n)-OSE.
Lemma 2.15 ((Ahle et al., 2020; Song et al., 2021a) , see
for example, Lemma 2.12 in (Song et al., 2021a)). Let S be
a TensorSRHT matrix defined in Definition 2.8. If

m = O(ϵ−2d log3(nd/ϵδ)),

then S is an (ϵ, δ, d, n2)-OSE for degree-2 tensors.

SRCT requires more row count than SRHT due to the Gram
G⊤G is only In in expectation.
Lemma 2.16 (Informal version of Corollary C.7). Let S be
an SRCT matrix defined in Definition 2.11. If

m = O(ϵ−2d2 log2(nd/δ)),
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then S is an (ϵ, δ, d, n)-OSE.
Lemma 2.17 (Informal version of Corollary C.8). Let S be
an TensorSRCT matrix defined in Definition 2.12. If

m = O(ϵ−2d2 log3(nd/δ)),

then S is an (ϵ, δ, d, n2)-OSE.

2.4. Probability Tools

Lemma 2.18 (Khintchine’s inequality (Khintchine, 1923)).
Let σ1, · · · , σn be i.i.d. Rademacher random variables and
z1, · · · , zn be real numbers. Then, there exists constants
C,C ′ > 0 such that

Pr[|
n∑

i=1

ziσi| ≥ Ct∥z∥2] ≤ exp(−C ′t2).

Lemma 2.19 (Hoeffding bound, (Hoeffding, 1963)). Let
Z1, · · · , Zn be independent, zero-mean random variables
with Zi ∈ [αi, βi]. Then,

Pr[|
n∑

i=1

Zi| > t] ≤ 2 exp(− t2

2
∑n

i=1(βi − αi)2
).

Lemma 2.20 (Lemma 1 on page 1325 of Laurent and Mas-
sart (Laurent & Massart, 2000)). Let X ∼ X 2

k be a chi-
squared distributed random variable with k degrees of free-
dom. Each one has zero means and σ2 variance. Then,

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp (−t)

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp (−t)

Lemma 2.21 (Hanson-Wright inequality (Hanson & Wright,
1971)). Let x ∈ Rn denote a random vector with indepen-
dent entries xi with E[xi] = 0 and |xi| ≤ K. Let A be an
n× n matrix. Then, for every t ≥ 0,

Pr[|x⊤Ax− E[x⊤Ax]| > t]

≤ 2 · exp (−cmin{t2/(K4∥A∥2F ), t/(K2∥A∥)})

Lemma 2.22 (Matrix Chernoff bound, Theorem 2.2
in (Tropp, 2011)). Let X be a finite set of positive-
semidefinite matrices with dimension d × d. Suppose
that maxX∈X λmax(X) ≤ B. Sample {X1, · · · , Xn} uni-
formly at random from X without replacement. We define
µmin and µmax as follows: µmin := n · λmin(E[X1]) and
µmax := n · λmax(E[X1]). Then,

Pr[λmin(

n∑
i=1

Xi) ≤ (1− δ)µmin]

≤ d · exp (−δ2µmin/B)

for δ ∈ [0, 1),

Pr[λmax(

n∑
i=1

Xi) ≤ (1 + δ)µmax]

≤ d · exp (−δ2µmax/(4B))

for δ ≥ 0.

3. ℓ∞ Guarantee via OCE

In this section, we present a sufficient condition for a sketch-
ing matrix to give good ℓ∞ guarantee: given a pair of fixed
vectors g, h such that g⊤h = 0, if the sketching matrix
approximately preserves the inner product with high proba-
bility, then it gives good ℓ∞ guarantee for regression.

Lemma 3.1 (Core lemma). Let A ∈ Rn×d be a fixed matrix.
Let U ∈ Rn×d denote the orthonormal basis of A. Let S ∈
Rm×n be a sketching matrix that satisfies two properties

• S is an (0.1, δ, d, n)-OSE (with δ ∈ (0, 0.1), Defini-
tion 2.1)

• S is an (β, δ, n)-OCE (with β ≥ 1 and δ ∈ (0, 0.1),
Definition 2.3)

For any fixed vectors a ∈ Rd and b ∈ Rn with U⊤b = 0,
we have

|a⊤(SA)†Sb| ≲ β√
m

· ∥a∥2 · ∥b∥2 · ∥Σ−1∥

holds with probability at least 1− δ.

Proof. With probability 1, the matrix SA ∈ Rm×d has
linearly independent columns.

Therefore, (SA)† ∈ Rd×m is

(SA)†

= (A⊤S⊤SA)−1A⊤S⊤

= (V ΣU⊤S⊤SUΣV ⊤)−1V ΣU⊤S⊤

= (V ⊤)−1Σ−1(U⊤S⊤SU)−1Σ−1V −1V ΣU⊤S⊤

= V Σ−1(U⊤S⊤SU)−1U⊤S⊤,

where the first step follows from SA ∈ Rm×d has full rank,
the second step follows from SVD on A ∈ Rn×d, the third
step follows from (AB)−1 = B−1A−1, and the last step
follows from the fact that V is orthogonal based on the
property of SVD.

For convenience, we define x as follows:

x := a⊤V Σ−1(U⊤S⊤SU)−1U⊤S⊤Sb.

In the next few paragraphs, we will explain how to upper
bound |x| with high probability.

Since S is a (0.1, δ, d, n)-OSE (Definition 2.1), we know

Pr[∥I − U⊤S⊤SU∥ ≤ 0.1] ≥ 1− δ.

5



A Nearly-Optimal Bound for Fast Regression with ℓ∞ Guarantee

We condition on this event. It follows that

∥V Σ−1(U⊤S⊤SU)−1U⊤∥
= ∥Σ−1(U⊤S⊤SU)−1U⊤∥
≤ ∥Σ−1∥∥(U⊤S⊤SU)−1∥∥U⊤∥

≤ ∥Σ−1∥ · 1

1− 0.1
· 1

= O(∥Σ−1∥),

where the first step follows from that V is a rotation, the
second step follows from sub-multiplicativity, and the third
step follows from ∥I − U⊤S⊤SU∥ ≤ 0.1 and that U is a
rotation.

Hence, we have

Pr[∥a⊤V Σ−1(U⊤S⊤SU)−1U⊤∥2
= O(∥Σ−1∥ · ∥a∥2)]
≥ 1− δ. (3)

Let us define a vector u ∈ Rn

u := U(U⊤S⊤SU)−1Σ−1V ⊤a,

By the definition of OCE (Definition 2.3), we have that

Pr[|u⊤S⊤Sb− u⊤b| ≤ β√
m

· ∥u∥2∥b∥2]

≥ 1− δ,

where U⊤b = 0 gives us u⊤b = 0 and u⊤S⊤Sb = x.

Thus, the above bound translates to

Pr[|x| ≤ C · β√
m

· ∥Σ−1∥∥a∥2∥b∥2]

≥ 1− δ (4)

as desired.

Remark 3.2. We note that the above argument relies on ap-
plying the sketching in a Johnson-Lindenstrauss fashion, so
that we can save a factor of 1√

m
in the ℓ∞ bound. An alterna-

tive approach is to adapt a Johnson-Lindenstrauss transform
that is deterministic (Dadush et al., 2018). We also observe
the guarantee is essentially tight up to polylogarithmic fac-
tors due to the tightness of Johnson-Lindenstrauss (Alon &
Klartag, 2017; Larsen & Nelson, 2017).

We are now ready to prove the ℓ∞ guarantee given the inner
product bound of Lemma 3.1.

Theorem 3.3. Suppose A ∈ Rn×d has full column rank and
b ∈ Rn. Let S ∈ Rm×n be a sketching matrix satisfying

conditions in Lemma 3.1. For any fixed vector a ∈ Rd, we
have

|⟨a, x∗⟩ − ⟨a, x′⟩|

≲
ϵ√
d
· ∥a∥2 · ∥Ax∗ − b∥2 · ∥A†∥,

holds with probability at least 1− δ, where

• x∗ = argminx∈Rd ∥Ax− b∥2,

• x′ = argminx∈Rd ∥SAx− Sb∥2.

Proof. Since A has full column rank, we have that x∗ =
A†b. Similarly, SA has full column rank with probability
1, therefore x′ = (SA)†Sb and (SA)†SA = I . Thus, we
have

|⟨a, x∗⟩ − ⟨a, x′⟩|
= |⟨a, x∗ − (SA)†Sb⟩|
= |⟨a, (SA)†S(Ax∗ − b)⟩|
= |⟨a, (SA)†S(AA†b− b)|
= |⟨((SA)†S)⊤a, (I − UU⊤)b⟩| (5)

where U ∈ Rn×d is an orthonormal basis for A. It is well-
known that I − UU⊤ = U⊥U

⊤
⊥ where U⊥ ∈ Rn×(n−d)

is the orthonormal basis for the orthogonal component of
span(A). To maximize the above expression, we shall let
b ∈ span(U⊥) or equivalently, U⊤b = 0. Thus, bounding
Eq. (5) is equivalent to consider

|a⊤(SA)†Sb| ≲ β√
m

· ∥a∥2 · ∥b∥2 · ∥A†∥,

the inequality holds with probability at least 1 − 2δ by
Lemma 3.1. Finally, note that since U⊤b = 0, we have that
Ax∗ = 0 and we have proved

|⟨a, x∗⟩ − ⟨a, x′⟩|

≲
ϵ√
d
· ∥a∥2 · ∥Ax∗ − b∥2 · ∥A†∥.

Thus, we complete the proof.

Note that we only require the OSE with ϵ = O(1) and the ϵ
dependence follows from the row count of OCE.

3.1. High Probability Bound for OCE

In this section, we provide a unified framework for proving
the high probability bound of OCE. Our analysis utilizes
the three dense sketching matrices that can all be designed
as first picking a set of fresh random signs, then picking the
sketching matrix according to the distribution.

We state the key assumptions on dense sketching matrices
that are sufficient for OCE property.
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Assumption 3.4. Let S ∈ Rm×n be a dense sketching
matrix satisfying the following two assumptions:

• Pairwise inner product bound:

Pr[max
i̸=j

|⟨S∗,i, S∗,j⟩| ≤
√

log(n/δ)√
m

] ≥ 1− δ.

• Column norm bound:

Pr[|∥S∗,i∥22 − 1| ≤
√
log(n/δ)√

m
] ≥ 1− δ,

for all i ∈ [n].

Lemma 3.5. Let S ∈ Rm×n be a dense sketching matrix
meets Assumption 3.4. Let h ∈ Rn and g ∈ Rn be two fixed
vectors. Then, the following properties hold:

|(g⊤S⊤Sh)− (g⊤h)| ≤ log1.5(n/δ)√
m

∥g∥2∥h∥2

holds with probability at least 1− δ.

Proof. We can rewrite (g⊤S⊤Sh)− (g⊤h) as follows:

(g⊤S⊤Sh)− (g⊤h)

=

n∑
i=1

n∑
j∈[n]\i

gihj⟨S∗,i, S∗,j⟩+
n∑

i=1

gihi(∥S∗,i∥22 − 1)

=

n∑
i=1

n∑
j∈[n]\i

gihj⟨σiS∗,i, σjS∗,j⟩︸ ︷︷ ︸
off-diag

+

n∑
i=1

gihi(∥S∗,i∥22 − 1)︸ ︷︷ ︸
diag

,

where the first step follows from the fact that σi’s are inde-
pendent Rademacher random variables and S∗,i = σiS∗,i,
∀i ∈ [n], the second step follows from separating diagonal
and off-diagonal terms.

We will focus on bounding the quantity off-diag, as
diag can be handled in a rather simple fashion.

We define matrix A ∈ Rn×n and B ∈ Rn×n as follows:

Ai,j := gihj · ⟨S∗,i, S∗,j⟩, ∀i ∈ [n], j ∈ [n]

Bi,j := gihj ·max
i′ ̸=j′

|⟨S∗,i′ , S∗,j′⟩|, ∀i ∈ [n], j ∈ [n].

We define A◦ ∈ Rn×n to be the matrix A ∈ Rn×n with
removing diagonal entries.

By applying Hanson-Wright inequality (Lemma 2.21), we
have

Pr[|σ⊤A◦σ| > τ ]

≤ 2 · exp (−c ·min{τ2/∥A◦∥2F , τ/∥A◦∥})

We can upper bound ∥A◦∥ and ∥A◦∥F .

∥A◦∥
≤ ∥A◦∥F
≤ ∥A∥F
≤ ∥B∥F
≤ ∥g∥2 · ∥h∥2 ·max

i̸=j
|⟨S∗,i, S∗,j⟩|,

where the first step follows from ∥ · ∥ ≤ ∥ · ∥F , the second
step follows from the definition of A◦, the third step follows
from the definition of A and B, and the fourth step follows
from B is rank 1 as B = maxi ̸=j |⟨S∗,i, S∗,j⟩| · gh⊤.

It remains to obtain a bound on maxi̸=j |⟨S∗,i, S∗,j⟩|. Note
that for any column i, j,

|⟨S∗,i, S∗,j⟩|
= |⟨σiS∗,i, σjS∗,j⟩|
= |⟨S∗,i, S∗,j⟩|,

where the first step follows from the fact that random signs
do not change the magnitude of the inner product and the
second step follows from the definition of S∗,i and S∗,j .

Since S meets Assumption 3.4, we have that with probabil-
ity at least 1− δ,

max
i ̸=j

|⟨S∗,i, S∗,j⟩| ≤
√

log(n/δ)√
m

.

Conditioning on the above event holds, we have that

Pr[|off-diag| > τ ]

≤ 2 · exp(−c · τ

∥g∥2 · ∥h∥2 ·
√

log(n/δ)√
m

),

choosing

τ = ∥g∥2 · ∥h∥2 · log1.5(n/δ)/
√
m,

we can show that

Pr[|off-diag| ≥ ∥g∥2 · ∥h∥2
log1.5(n/δ)√

m
] ≤ Θ(δ).

To bound the term diag, note that due to Assumption 3.4,
we have with probability at least 1− δ,

|∥S∗,i∥22 − 1| ≤
√
log(n/δ)√

m
.

7



A Nearly-Optimal Bound for Fast Regression with ℓ∞ Guarantee

Conditioning on this event, we have

|diag|
≤ max

i∈[n]
|∥S∗,i∥22 − 1| · |g⊤h|

≤
√
log(n/δ)√

m
· ∥g∥2 · ∥h∥2,

where the last step is by Cauchy-Schwartz. Note that |diag|
is subsumed by |off-diag|.

Union bounding over all events, we have that

Pr[|g⊤S⊤Sh− g⊤h| ≥ log1.5(n/δ)√
m

· ∥g∥2 · ∥h∥2]

≤ Θ(δ).

This completes the proof.

3.2. Inner Product Bound for SRHT and SRCT

We will show that SRHT and SRCT satisfy Assumption 3.4.
Before proving the pairwise inner product bound, we state
a general property to characterize these sketching matrices.
This key property will be used in the later proof.

Definition 3.6 (Sign structure). For any sketching matrix,
we say it has “Sign structure” if the following properties
hold

• Sk,i ∈ {± 1√
m
}, for all k ∈ [m], i ∈ [n].

• Sk,i and Sk,j are independent for any i ̸= j.

• E[Sk,i] = 0 for all k ∈ [m] and i ∈ [n].

Lemma 3.7. Both SRHT and SRCT satisfy Definition 3.6.

Proof. It follows from the definitions of two sketching ma-
trices directly.

Lemma 3.8 (SRHT and SRCT). Let S ∈ Rm×n be any
sketching matrices that satisfy the Definition 3.6. Then, we
have

Pr[max
i ̸=j

|⟨S∗,i, S∗,j⟩| ≥
√

log(n/δ)√
m

] ≤ Θ(δ).

Proof. Fix a pair of indices i ̸= j and we define X ∈ Rm×2

as follows:

X :=
[
S∗,i S∗,j

]
The Gram matrix is

X⊤X =

m∑
k=1

Gk,

where

Gk

=
[
Sk,i Sk,j

]⊤ [
Sk,i Sk,j

]
=

[
Sk,i

Sk,j

] [
Sk,i Sk,j

]
=

[
S2
k,i Sk,iSk,j

Sk,iSk,j S2
k,j

]
=

[
1
m Sk,iSk,j

Sk,iSk,j
1
m

]
.

where the first step follows from the definition of Gk, the
second step follows from rewriting

[
Sk,i Sk,j

]⊤
, the third

step follows from the definition of matrix multiplication, and
the last step follows from S2

k,i = 1/m and S2
k,j = 1/m.

Note that Gk has eigenvalues 0 and 2
m , i.e.,

λ1(Gk) = 2/m, λ2(Gk) = 0.

Since Sk,i and Sk,j are independent Rademacher random
variables, we have

E[Sk,iSk,j ]

= E[Sk,i] · E[Sk,j ]

= 0.

Thus, we know

E[Gk] =

[
1/m 0
0 1/m

]
. (6)

Consequently, we have

E[X⊤X]

= E[
m∑

k=1

Gk]

=m · E[Gk]

=m ·
[
1/m 0
0 1/m

]
=

[
1 0
0 1

]
,

where the first step follows from the definition of X⊤X , the
second step follows from the fact that E[ca] = cE[a] for a
constant c, the third step follows from Eq. (6), and the last
step follows from simple algebra.

Let λi(X
⊤X) be the i-th eigenvalue of X⊤X ∈ R2×2. By

matrix Chernoff bound (Lemma 2.22 with B = 2/m), for
any t > 0, we have

Pr[∀i ∈ [2], |λi(X
⊤X)− 1| ≥ t]
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≤ 4 exp(−t2m/2).

This means with probability at least 1 − 4 exp(−t2m/2),
the eigenvalues of X⊤X are between [1 − t, 1 + t] and
consequently, the eigenvalues of X⊤X − I2 are between
[−t, t].

Let us choose

t = O(

√
log(n/δ)√

m
),

we have

Pr[∥X⊤X − I2∥ ≥ C ·
√

log(n/δ)√
m

] ≤ δ

n2
.

The proof can be wrapped up by noting that

X⊤X − I2 =

[
0 ⟨S∗,i, S∗,j⟩

⟨S∗,i, S∗,j⟩ 0

]
,

the spectral norm of this matrix is |⟨S∗,i, S∗,j⟩| and union
bound over all n2 pairs of columns, we have

Pr[max
i̸=j

|⟨S∗,i, S∗,j | ≥ C ·
√
log(n/δ)√

m
] ≤ δ.

This completes the proof.

3.3. Column Norm Bound for SRHT and SRCT

In this section, we prove the column norm bound for SRHT
and SRCT. In particular, their columns are unit vectors. In
Appendix D, we prove for random Gaussian matrix, the
squared column norm is χ2

m random vriable that concen-
trates around 1 with high probability.

Lemma 3.9 (SRHT and SRCT). Let S ∈ Rm×n be an
SRHT matrix or SRCT matrix.

Then, for any i ∈ [n], we have

∥S∗,i∥22 = 1.

Proof. The proof directly follows from the definition.

For SRHT, recall S = PHD, the column norm of H is√
n, and D is a random sign that does not change the norm.

The matrix P subsamples m rows and rescale each entry by√
1
m . The (squared) column norm is then 1.

For SRCT, the column norm of G is
√
n as well. Thus, by

the same argument, SRCT has unit column vectors.

4. Put Things Together
Now, we’re ready to present the proof for Theorem 1.1.

Proof of Theorem 1.1. Using Lemma 2.14 (it shows SRHT
gives OSE), we know if

m ≥ d log2(n/δ),

it gives (O(1), δ, n, d)-OSE.

Using Lemma 3.8 (it shows SRHT gives OCE), we know

β = O(log1.5(n/δ)).

Using Lemma 3.1 (it shows OSE + OCE implies our result),
we need to choose

m ≥ ϵ−2dβ2 ≥ ϵ−2d log3(n/δ).

Combining the above relations together, we have

m ≥ d log2(n/δ) + ϵ−2d log3(n/δ)

≥ ϵ−2d log3(n/δ).

This completes the proof.

5. Conclusion
In this paper, we study the sketching-based regression
algorithm with an ℓ∞ guarantee. We show that SRHT
with m = ϵ−2d log3(n/δ) rows provides the desired ℓ∞
guarantee solution, improving upon the ϵ−2d1+γ rows for

γ =
√

log logn
log d of (Price et al., 2017). This is nearly-optimal

up to logarithmic factors. Our proof adapts the oblivious
coordinate-wise embedding property introduced in (Song &
Yu, 2021) in a novel way. We also greatly extends the reach
of ℓ∞ guarantee to degree-2 Kronecker product regression
via TensorSRHT matrix.

In addition, we introduce the SRCT and TensorSRCT
matrices. These matrices can be applied in a fashion similar
to SRHT, and they have similar OCE behaviors as SRHT.

Our result provides an elegant way to integrate fast,
sketching-based regression solver for optimization process,
in particular second-order methods. The regression prob-
lem per iteration can be solved in time nearly-linear in the
input size, and the ℓ∞ guarantee comes in handy when an-
alyzing convergence with approximate step. It also gives
improved generalization bound on approximate regression
via SRHT (Price et al., 2017).
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Appendix
Roadmap. In Section A, we introduce the fundamental definitions and properties that we will use in Appendix. In
Section B, we analyze and develop the ℓ∞ guarantee of Kronecker product regressions. In Section C, we introduce the
Strong JL Moment Property and prove that both Circulant Transform and Tensor Circulant Transform satisfy this. In
Section D, we focus on studying AMS, random Gaussian, and SRHT and show that the inner product is bounded on any pair
of different columns of AMS, random Gaussian, and SRHT–dense sketching matrices.

A. Tools for Matrices and Probability
For matrix A1 ∈ Rn1×d1 and A2 ∈ Rn2×d2 , we use A1 ⊗ A2 ∈ Rn1n2×d1d2 to denote the matrix that (i1 − 1) · (n2) +
i2, (j1 − 1)d2 + j2 -th entry is (A1)i1,j1 · (A2)i2,j2 .
Lemma A.1 (Markov’s inequality). If X is a non-negative random variable and a > 0. Then we have

Pr[X ≥ a] ≤ E[X]/a.

Definition A.2 (Sub-exponential distribution ((Foss et al., 2011))). We say X ∈ SubExp(σ2, α) with parameters σ > 0,
α > 0 if:

E[eλX ] ≤ exp (λ2σ2/2),∀|λ| < 1/α.

Lemma A.3 (Tail bound for sub-exponential distribution ((Foss et al., 2011))). Let X ∈ SubExp(σ2, α) and E[X] = µ.
Then,

Pr[|X − µ| ≥ t] ≤ exp (−0.5min{t2/σ2, t/α}).

Claim A.4. For every matrix A ∈ Rn1×n2 , B ∈ Rn2×n3 , C ∈ Rd1×d2 , D ∈ Rd2×d3

(A ·B)⊗ (C ·D) = (A⊗ C) · (B ⊗D).

B. Kronecker Product Regression with ℓ∞ Guarantee
In this section, we study the ℓ∞ guarantee of Kronecker product regressions. Given two matrices A1, A2 ∈ Rn×d and a
label vector b ∈ Rn2

, the goal is to solve the regression argminx∈Rd2 ∥(A1 ⊗ A2)x − b∥22. This problem can be easily
generalized to product of q matrices and fast, input-sparsity time algorithms have been studied in a line of works (Li et al.,
2017; Diao et al., 2018; Song et al., 2019; Diao et al., 2019; Fahrbach et al., 2022; Reddy et al., 2022).

B.1. Main result

Theorem B.1 (Tensor version of Theorem 1.1). Suppose n ≤ exp(d) and matrix A ∈ Rn2×d2

and vector b ∈ Rn2

are
given, where A = A1 ⊗A2 for matrices A1, A2 ∈ Rn×d and b = b1 ⊗ b2 for vectors b1, b2 ∈ Rn. Let S ∈ Rm×n2

be a

• tensor subsampled randomized Hadamard transform matrix (TensorSRHT) with m = Θ(ϵ−2d2 log3(n/δ)) rows or

• tensor subsampled randomized circulant transform matrix (TensorSRCT) with m = Θ(ϵ−2d4 log3(n/δ)) rows.

For

x′ = arg min
x∈Rd2

∥SAx− Sb∥2

and

x∗ = arg min
x∈Rd2

∥Ax− b∥2,

and any fixed a ∈ Rd2

,

|⟨a, x∗⟩ − ⟨a, x′⟩| ≤ ϵ

d
· ∥a∥2 · ∥Ax∗ − b∥2 · ∥A†∥

with probability 1− 1/ poly(d).

12
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Proof. Recall that we require (O(1), δ, d, n)-OSE and β = O(log1.5(n/δ))-OCE for it to give ℓ∞ guarantee.

For OCE, it follows from Lemma B.3.

For TensorSRHT’s OSE, it follows from Lemma 2.15 and for TensorSRCT, it follows from Corollary C.8.

Remark B.2. The slightly different guarantee follows from the small dimension becomes d2 instead of d. Let us discuss
the utility of using these sketching matrices for solving the regression. As discussed in Def. 2.8 and 2.12, each column
of A1 ⊗ A2 can be computed in O(n log n + m) time instead of n2, thus the total running time of applying S to A is
O(nd2 log n+ poly(d)). Similarly, Sb can be applied in time O(n log n+ poly(d)). The regression can then be solved in
Õ(nd2+poly(d)) time. Prior works mainly focus on input-sparsity sketches (Diao et al., 2018), importance sampling (Diao
et al., 2019), iterative method (Fahrbach et al., 2022) or more complicated sketches that scale well to q products and in
dynamic setting (Reddy et al., 2022). To the best of our knowledge, this is the first ℓ∞ guarantee for Kronecker product
regression (with two matrices).

B.2. Oblivious Coordinate-wise Embedding for TensorSRHT and TensorSRCT

Lemma B.3 (TensorSRHT and TensorSRCT, Tensor version of Lemma 3.8). Let S ∈ Rm×n be TensorSRHT or
TensorSRCT. Then, S is an OCE with parameter β = log1.5(n/δ).

Proof. To prove this result, we show that TensorSRHT and TensorSRCT satisfy Definition 3.6.

For TensorSRHT, recall S = 1√
m
P (HD1 ×HD2), since H is Hadamard matrix and D1, D2 are just diagonal matrices

with random signs. Thus, all entries of HD1 ×HD2 are also in {±1}. As P is a row sampling matrix and we rescale
each entry by 1√

m
. Thus, each entry of S is in {± 1√

m
}. For entries at the same row but two different columns i, j, if i

is generated from two columns disjoint from j, then it’s clear then are independent. Otherwise, suppose i is generated
from columns a, b and j is generated from columns a, c with b ̸= c. Then it is again independent, as the sign is completely
determined by signs of b and c. Finally, we need to verify E[Sk,i] = 0, this is trivially true since product of two random
signs is still a random sign. For TensorSRCT, the argument is exactly the same.

Now that both of these matrices satisfy Definition 3.6, we can use Lemma 3.8 to give a bound on pairwise inner product.
The column norm bound is automatically satisfied by definition. Thus, we can invoke Lemma 3.5 to wrap up the proof.

C. SRCT and TensorSRCT: OSE via Strong JL Moment Property
In this section, we prove that both SRCT and TensorSRCT are OSE’s. We prove this property via the strong JL moment
property (Ahle et al., 2020). This gives a worse row count compared to that of SRHT and TensorSRHT. We believe that
these two family of distributions should have similar row count for an OSE and leave it as a major open problem to close
the gap between these two distributions.

C.1. Notations

To make the notation less heavy, we will use ∥X∥Lt for the t-th moment of a random variable X . This is formally defined
below.
Definition C.1 (t-th moment). For every integer t ≥ 1 and any random variable X ∈ R, we write

∥X∥Lt =
(
E
[
|X|t

])1/t
Note that

∥X + Y ∥Lt ≤ ∥X∥Lt + ∥Y ∥Lt

for any random variables X , Y by the Minkowski inequality.

C.2. Strong JL Moment Property

We show that both SRCT (see Definition 2.11) and TensorSRCT (see Definition 2.12) satisfy the so-called strong JL
moment property. Strong JL moment property is one of the core properties that can show the sketching matrix has subspace

13
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embedding property (Sarlos, 2006).

Definition C.2 (Strong JL moment property (Ahle et al., 2020)). For every ϵ, δ ∈ [0, 1], we say a distribution over random
matrices S ∈ Rm×n has the Strong (ϵ, δ)-JL Moment Property when

∥∥Sx∥22 − 1∥Lt ≤ ϵ
√
t/log(1/δ)

and

E
[
∥Sx∥22

]
= 1

for all x ∈ Rn, ∥x∥2 = 1 and every integer t ≤ log(1/δ).

Given a distribution with strong JL moment property, it is well-known that such distribution provides OSE.

Lemma C.3 (Lemma 11 of (Ahle et al., 2020)). Let S ∈ Rm×n be a random matrix with (ϵ/d, δ)-strong JL moment
property (Def. C.2). Then, S is also an (ϵ, δ, d, n)-OSE (Def. 2.1).

To prove that SRCT (see Definition 2.11) and TensorSRCT (see Definition 2.12) satisfy the strong JL moment property,
we will do this by proving that a more general class of matrices satisfies the strong JL moment property.

More precisely, let k ∈ Z>0 be a positive integer and

(D(i))i∈[k] ∈
∏
i∈[k]

Rni×ni

be independent matrices, each with diagonal entries given by independent Rademacher variables.

Let n =
∏

i∈[k] ni and P ∈ {0, 1}m×n be a random sampling matrix in which each row contains exactly one uniformly
distributed nonzero element which has value one.

Then, we prove that the matrix

S =
1√
m
PG · (D1 ⊗ · · · ⊗Dk)

satisfies the strong JL moment property, where G is n× n circulant matrix (see Definition 2.10) generated by a random
vector whose elements are Rademacher variables.

If k = 1, then S is just a SRCT (see Definition 2.11). If k = 2, then M is a TensorSRCT (see Definition 2.12).

In order to prove this result we need a couple of lemmas. The first lemma can be seen as a version of Khintchine’s Inequality
(see Lemma 2.18) for higher order chaos.

Lemma C.4 (Lemma 19 in (Ahle et al., 2020)). Let t ≥ 1 and k ∈ Z>0. Let (σ(i))i∈[k] ∈
∏

i∈[k] Rni be independent
vectors each satisfying the Khintchine’s inequality (see Lemma 2.18):

∥⟨σ(i), x⟩∥Lt ≤ Ct∥x∥2

for t ≥ 1 and any vector x ∈ Rdi .

Let (ai1,...,ik)i1∈[nj ],...,ik∈[nk] be a tensor in Rn1×···×nk . Then,∥∥∥∥∥∥
∑

i1∈[n1],...,ik∈[nk]

(
∏
j∈[k]

σ
(j)
ij

)ai1,...,ik

∥∥∥∥∥∥
Lt

≤ Ck
t (

∑
i1∈[n1],...,ik∈[nk]

a2i1,...,ik)
1
2 ,

for t ≥ 1.

Viewing a ∈ Rn1×···×nk as a vector, then

∥⟨σ(1) ⊗ · · · ⊗ σ(k), a⟩∥Lt ≤ Ck
t ∥a∥2,

for t ≥ 1.
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Proof. The proof will be by induction on k.

Base case: For k = 1, the result is by the assumption that the vectors satisfy Khintchine’s inequality.

Inductive case: Assume that the result is true for every value up to k − 1.

Let

Bi1,...,ik−1
=

∑
ik∈[dk]

σ
(k)
ik

ai1,...,ik . (7)

We then pull it out of the left hand term in the theorem:

∥
∑

i1∈[n1],...,ik∈[nk]

(
∏
j∈[k]

σ
(j)
ij

)ai1,...,ik∥Lt = ∥
∑

i1∈[n1],...,ik−1∈[nk−1]

(
∏

j∈[k−1]

σ
(j)
ij

)Bi1,...,ik−1
∥Lt

≤ Ck−1
t ∥(

∑
i1∈[d1],...,ik−1∈[nk−1]

B2
i1,...,ik−1

)
1
2 ∥Lt

= Ck−1
t ∥

∑
i1∈[n1],...,ik−1∈[nk−1]

B2
i1,...,ik−1

∥
1
2

Lt/2

≤ Ck−1
t (

∑
i1∈[n1],...,ik−1∈[nk−1]

∥B2
i1,...,ik−1

∥Lt/2)
1
2

= Ck−1
t (

∑
i1∈[n1],...,ik−1∈[nk−1]

∥Bi1,...,ik−1
∥2Lt)

1
2 ,

where the first step follows from Eq. (7), the second step follows from the inductive hypothesis, the third step follows from
the definition of ∥ · ∥, the fourth step follows from the triangle inequality, the fifth step follows from the definition of ∥ · ∥.

It remains to bound

∥Bi1,...,ik−1
∥2Lt ≤ C2

t

∑
ik∈[nk]

a2i1,...,ik

by Khintchine’s inequality, which finishes the induction step and hence the proof.

The next lemma we will be using is a type of Rosenthal inequality based on first principles. It mixes large and small moments
of random variables in an intricate way. For completeness, we include a proof here.

Lemma C.5 (Properties of random variables with t-moment, Lemma 20 in (Ahle et al., 2020)). There exists a universal
constant L, such that, for t ≥ 1 if X1, . . . , Xk are independent non-negative random variables with t-moment, then

∥
∑
i∈[k]

(Xi − E[Xi])∥Lt ≤ L ·
(√

t · ∥max
i∈[k]

Xi∥1/2Lt · (
∑
i∈[k]

E[Xi])
1/2 + t · ∥max

i∈[k]
Xi∥Lt

)
.

Proof. Throughout these calculations L1, L2 and L3 will be universal constants.

∥
∑
i∈[k]

(Xi − E[Xi])∥Lt ≤ L1∥
∑
i∈[k]

σiXi∥Lt

≤ L2

√
t · ∥

∑
i∈[k]

X2
i ∥

1/2

Lt/2

≤ L2

√
t · ∥max

i∈[k]
Xi ·

∑
i∈[k]

Xi∥1/2Lt/2

≤ L2

√
t · ∥max

i∈[k]
Xi∥1/2Lt · ∥

∑
i∈[k]

Xi∥1/2Lt

≤ L2

√
t · ∥max

i∈[k]
Xi∥1/2Lt ·

(
(
∑
i∈[k]

E[Xi])
1/2 + L2∥

∑
i∈[k]

(Xi − E[Xi])∥1/2Lt

)
(8)
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where the first step follows from symmetrization of Xi, the second step follows from Khintchine’s inequality (see
Lemma 2.18), the third step follows from Non-negativity of Xi, the fourth step follows from Cauchy-Schwartz inequality,
and the last step follows from the triangle inequality.

Now, let A,B,C be defined as follows:

C := ∥
∑
i∈[k]

(Xi − E[Xi])∥1/2Lt ,

B := L2(
∑
i∈[k]

E[Xi])
1/2,

and

A :=
√
t∥max

i∈[k]
Xi∥1/2Lt .

Then, by rewriting Eq. (8), we have

C2 ≤ A(B + C).

This implies C is smaller than the largest of the roots of the quadratic.

Solving this quadratic inequality gives

C2 ≤ L3(AB +A2),

which completes the proof.

C.3. SRCT and TensorSRCT Satisfying Strong JL Moment Property

We can now prove that SRCT (see Definition 2.11) and TensorSRCT (see Definition 2.12) have the strong JL moment
property.

Theorem C.6. There exists a universal constant L, such that, the following holds.

Let k ∈ Z>0. Let (D(i))i∈[k] ∈
∏

i∈[k] Rni×ni be independent diagonal matrices with independent Rademacher variables.

We define n :=
∏

i∈[k] ni, D := D1⊗D2⊗· · ·⊗Dk ∈ Rn×n and G := G1⊗ . . .⊗Gk ∈ Rn×n, where each Gi ∈ Rni×ni

is a circulant matrix generated by an independent Rademacher random vector. Let P ∈ Rm×n be a row sampling matrix
that has exactly one nonzero per row. Let S := PGD.

Let x ∈ Rn be any vector with ∥x∥2 = 1 and t ≥ 1.

Then, ∥∥∥∥ 1

m
∥PGDx∥22 − 1

∥∥∥∥
Lt

≤ L(

√
trk

m
+

trk

m
),

where r = max{t, logm}.

There exists a universal constant C0 > 1, such that, by setting

m = Ω(ϵ−2 log(1/δ) · (C0 log(1/(ϵδ)))
k),

we get that 1√
m
PGD has (ϵ, δ)-strong JL moment property.

Proof. Throughout the proof C1, C2 and C3 will denote universal constants.

For every i ∈ [m], we let Pi be the random variable that says which coordinates the i-th row of P samples.
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We define the random variable

Zi := Mix = GPiDx.

We note that since the variables (Pi)i∈[m] are independent, so the variables (Zi)i∈[m] are conditionally independent given
D, that is, if we fix D, then (Zi)i∈[m] are independent.

Then, we could get the following inequality:

∥ 1

m

∑
i∈[m]

Z2
i − 1∥Lt

= ∥(E[( 1
m

∑
i∈[m]

Z2
i − 1)

∣∣ D])1/t∥Lt

≤ C1∥
√
t

m
· (E[(max

i∈[m]
Z2
i )

∣∣ D])1/(2t) · (
∑
i∈[m]

E[Z2
i

∣∣ D])1/2 +
t

m
· (E[(max

i∈[m]
Z2
i )

t
∣∣ D])1/t∥Lt

≤ C1

√
t

m
· ∥(E[(max

i∈[m]
Z2
i )

∣∣ D])1/(2t) · (
∑
i∈[m]

E[Z2
i

∣∣ D])1/2∥Lt + C1
t

m
· ∥max

i∈[m]
Z2
i ∥Lt

≤ C1

√
t

m
· ∥max

i∈[m]
Z2
i ∥

1/2
Lt · ∥

∑
i∈[m]

E[Z2
i

∣∣ D]∥1/2Lt + C1
t

m
· ∥max

i∈[m]
Z2
i ∥Lt

where the first step follows from Definition C.1, the second step follows from Lemma C.5, the third step follows from
triangle inequality, and the last step follows from Cauchy-Schwartz inequality.

Note that each row of G is generated by taking the tensor product of independent Rademacher random vectors, we thus can
view the row vector itself as a length n Rademacher random vector. Thus,

E[Z2
i |D] =

∑
σ∈{−1,+1}n

pσ · (⟨x, σ⟩)2

=
(x1 + x2 + · · ·+ xn)

2

2n
+

(x1 + x2 + · · · − xn)
2

2n
+ · · ·+ (−x1 − x2 − · · · − xn)

2

2n

= x2
1 + x2

2 + · · ·+ x2
n

= ∥x∥22, (9)

where the first step follows from the definition of the expected value, E[Z2
i |D], the second step follows from expanding all

the 2n possibilities, the third step follows from simple algebra, and the last step follows from the definition of ∥ · ∥22.

We could get that ∑
i∈[m]

E[Z2
i

∣∣ D] =
∑
i∈[m]

∥x∥22

= m,

where the first step follows from Eq. (9) and the second step follows from ∥x∥22 = 1.

To bound ∥maxi∈[m] Z
2
i ∥Lt , we could show

∥Z2
i ∥Lr = ∥GP iDx∥2L2r

= ∥Dx∥2L2r

≤ rk∥x∥22.

where the first step follows from the definition of Zi, the second step follows from each row of G is independent Rademacher
vector, therefore E[G⊤G] = I , and the last step follows from Lemma C.4.
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We then bound the maximum using a sufficiently high-order sum:

∥max
i∈[m]

Z2
i ∥Lt ≤ ∥max

i∈[m]
Z2
i ∥Lr

≤ (
∑
i∈[m]

∥Z2
i ∥rLr )1/r

≤m1/rrk∥x∥22 ≤ erk,

where the first step follows from Definition C.1, the second step follows from Z2
i is non-negative, and the last step follows

from r ≥ logm.

This gives us that

∥ 1

m

∑
i∈[m]

Z2
i − ∥x∥22∥Lt ≤ C2

√
trk

m
+ C2

trk

m
(10)

which finishes the first part of the proof.

We want to choose m as follows

m = 16C2
2ϵ

−2 · log(1/δ) · (C3 log(1/(δϵ)))
k.

According to the above choice of m, we know following condition for r is holding

r ≤ C3 log(1/(δϵ)).

Hence,

m ≥ 16C2
2ϵ

−2 · log(1/δ) · rk.

For all 1 ≤ t ≤ log(1/δ), we then get that

∥∥PGDx∥22 − 1∥Lt ≤ C2

√
trk

m
+ C2

trk

m

≤ C2(
trk

16C2
2ϵ

−2 log(1/δ)rk
)1/2 + C2

trk

16C2
2ϵ

−2 log(1/δ)rk

≤ 0.5ϵ
√
t/ log(1/δ) + 0.5ϵ2t/ log(1/δ)

≤ ϵ
√
t/log(1/δ).

where the first step follows from Eq. (10), and the second step follows from choice of m, the third step follows from simple
algebra, and the last step follows from ϵ2 ≤ ϵ and t/ log(1/δ)

√
t/ log(1/δ) (since t/ log(1/δ) ∈ (0, 1)) .

This finishes the proof.

As two corollaries, we have SRCT and TensorSRCT are OSE’s with d2 rows, instead of d rows.

Corollary C.7 (SRCT is an OSE). Let S ∈ Rm×n be an SRCT matrix with m = Θ(ϵ−2d2 log2(n/ϵδ)), then S is an
(ϵ, δ, d, n)-OSE.

Proof. The proof follows from combining Lemma C.3 and Theorem C.6 with k = 1.

Corollary C.8 (TensorSRCT is an OSE). Let S ∈ Rm×n be a TensorSRCT matrix with m = Θ(ϵ−2d2 log3(n/ϵδ)),
then S is an (ϵ, δ, d, n2)-OSE.

Proof. The proof follows from combining Lemma C.3 and Theorem C.6 with k = 2.
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D. Gaussian and AMS
In this section, we prove that both random Gaussian matrices and AMS matrices satisfy OCE with good parameter β.
Combining with the fact that they are OSE’s, one can derive ℓ∞ guarantee for them.

D.1. OSE Property of Random Gaussian and AMS

The OSE property for these two distributions are folklore. For a proof for them, see, e.g., (Woodruff, 2014).
Lemma D.1. Let S be a random Gaussian matrix defined in Def. 2.4. If m = Θ(ϵ−2(d + log(d/δ))), then S is an
(ϵ, δ, d, n)-OSE.
Lemma D.2. Let S be an AMS matrix defined in Def. 2.5. If m = Θ(ϵ−2d log2(n/δ)), then S is an (ϵ, δ, d, n)-OSE.

D.2. OCE Property of Random Gaussian and AMS

In this section, we prove the OCE property of random Gaussian and AMS. We start with the pairwise inner product bound
for these two distributions. For column norm bound, AMS has unit columns and we will prove for random Gaussian.
Lemma D.3 (Gaussian pairwise inner product bound, Lemma B.18 in (Song & Yu, 2021)). Let S ∈ Rm×n be a random
Gaussian matrix (Definition 2.4).

Then, we have:

Pr[max
i ̸=j

|⟨S∗,i, S∗,j⟩| ≥ C ·
√
log (n/δ)√

m
] ≤ Θ(δ).

Proof. Note for i ̸= j, S∗,i, S∗,j ∼ N (0, 1
mIm) are two independent Gaussian vectors. Let zk = Sk,iSk,j and z =

⟨S∗,i, S∗,j⟩.

Then, we have for any |λ| ≤ m/2,

E[eλzk ] =
1√

1− λ2/m2
≤ exp (λ2/m2),

where the first step follows from zk = 1
4 (Sk,i + Sk,j)

2 + 1
4 (Sk,i − Sk,j)

2 = m
2 (Q1 − Q2) where Q1, Q2 ∼ χ2

1, and
E[eλQ] = 1√

1−2λ
for any Q ∼ χ2

1.

This implies zk ∈ SubExp(2/m2, 2/m) is a sub-exponential random variable. Here SubExp is the shorthand of sub-
exponential random variable.

Thus, we have

z =
m∑

k=1

zk ∈ SubExp(2/m, 2/m),

by sub-exponential concentration Lemma A.3, we have

Pr[|z| ≥ t] ≤ 2 exp (−mt2/4)

for 0 < t < 1. Picking t =
√
log (n2/δ)/m, we have

Pr[|⟨S∗,i, S∗,j⟩| ≥ C ·
√

log (n/δ)√
m

] ≤ δ/n2.

Taking the union bound over all (i, j) ∈ [n]× [n] and i ̸= j, we complete the proof.

Lemma D.4 (AMS pairwise inner product bound). Let S ∈ Rm×n be an AMS matrix (Definition 2.5. Let {σi}i∈[n] be
independent Rademacher random variables and S ∈ Rm×n with S∗,i = σiS∗,i, ∀i ∈ [n].

Then, we have:

Pr[max
i ̸=j

|⟨S∗,i, S∗,j⟩| ≥
√
log (n/δ)√

m
] ≤ Θ(δ)
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Proof. Note for any fixed i ̸= j, S∗,i and S∗,j are independent. By Hoeffding inequality (Lemma 2.19), we have

Pr[|⟨S∗,i, S∗,j⟩| ≥ t]

≤ 2 exp (− 2t2∑m
i=1(

1
m − (− 1

m ))2
)

≤ 2e−t2m/2,

where the second step follows from simple algebra (m · 1/m2 = 1/m).

Choosing t =
√
2 log (2n2/δ)/

√
m, we have

Pr[|⟨S∗,i, S∗,j⟩| ≥
√

2 log (2n2/δ)/
√
m] ≤ δ

n2
,

union bound over all n2 pairs of columns gives the desired result.

Lemma D.5 (Gaussian column norm bound). Let S ∈ Rm×n be a random Gaussian matrix.

Then, for any i ∈ [n], we have

Pr[|∥S∗,i∥22 − 1| ≥
√
log(n/δ)√

m
] ≤ Θ(δ).

Proof. For any column S∗,i, note that ∥S∗,i∥22 ∼ χ2
m, each one with zero mean and variance 1

m .

By Lemma 2.20, we have

Pr[|∥S∗,i∥22 − 1| ≥ 2

√
t√
m
] ≤ 2 exp(−t).

Setting t = log(n/δ), we have

Pr[|∥S∗,i∥22 − 1| ≥ C ·
√

log(n/δ)√
m

] ≤ δ/n,

the proof is concluded by union bounding over all n columns.

We conclude random Gaussian and AMS are OCE’s.

Lemma D.6 (Gaussian OCE). Let S ∈ Rm×n be a random Gaussian matrix, then S is a (log1.5(n/δ), δ, n)-OCE.

Proof. By Lemma D.3 and Lemma D.5, we know both pairwise inner product bound and column norm bound hold and
thus, by Lemma 3.5, S satisfies the desired OCE property.

Lemma D.7 (AMS OCE). Let S ∈ Rm×n be an AMS matrix, then S is a (log1.5(n/δ), δ, n)-OCE.

Proof. The proof is similar to Lemma D.6. The column norm bound follows from definition.
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