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Abstract
We consider guiding denoising diffusion models
with general differentiable loss functions in a plug-
and-play fashion, enabling controllable genera-
tion without additional training. This paradigm,
termed Loss-Guided Diffusion (LGD), can easily
be integrated into all diffusion models and lever-
age various efficient samplers. Despite the bene-
fits, the resulting guidance term is, unfortunately,
an intractable integral and needs to be approxi-
mated. Existing methods compute the guidance
term based on a point estimate. However, we
show that such approaches have significant errors
over the scale of the approximations. To address
this issue, we propose a Monte Carlo method that
uses multiple samples from a suitable distribution
to reduce bias. Our method is effective in vari-
ous synthetic and real-world settings, including
image super-resolution, text or label-conditional
image generation, and controllable motion syn-
thesis. Notably, we show how our method can be
applied to control a pretrained motion diffusion
model to follow certain paths and avoid obstacles
that are proven challenging to prior methods.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021c) are widely used as foundation
models (Bommasani et al., 2021) for generative modeling.
They have been successfully applied to various domains,
such as images (Rombach et al., 2022; Saharia et al., 2022;
Balaji et al., 2022), 3D objects (Poole et al., 2022; Lin
et al., 2022; Shue et al., 2022; Bautista et al., 2022), natural
language (Li et al., 2022; Lovelace et al., 2022), audio (Kong
et al., 2020), time series (Tashiro et al., 2021; Biloš et al.,
2022), proteins (Wu et al., 2022; Qiao et al., 2022), and
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molecules (Xu et al., 2022b). In many domains (such as text-
to-image generation), diffusion models can scale to large
sets of paired data (on the order of billions, e.g., Schuhmann
et al. (2022)) and effectively perform conditional generation
with techniques such as classifier(-free) guidance (Dhariwal
& Nichol, 2021; Ho & Salimans, 2022).

To reduce the amount of training, one could also use un-
conditional diffusion models to perform certain conditional
tasks, such as super-resolution with reconstruction guid-
ance (Ho et al., 2022; Chung et al., 2022). While there
are various plug-and-play (Venkatakrishnan et al., 2013)
approaches that do not require additional training over noisy
paired data, they are often limited to certain loss functions,
such as the linear least squares loss (Anonymous, 2022).

In this paper, we consider the more general case where we
only need the loss function to be differentiable. Our goal
is to guide diffusion models with such loss functions in a
plug-and-play fashion; we term this paradigm Loss-Guided
Diffusion (LGD). This sampling-based approach can lever-
age efficient diffusion model sampling algorithms (Song
et al., 2021a; Liu et al., 2022; Zhang & Chen, 2022; Lu
et al., 2022). Unfortunately, the guidance term in LGD
involves an expectation over an intractable probability dis-
tribution. Its success depends on whether we can efficiently
approximate the term.

Existing methods, such as Diffusion Posterior Sampling
(DPS, Chung et al. (2022)), approximate the expectation
by replacing the ideal yet intractable distribution with a
delta distribution centered at the denoising output from the
diffusion model (Sec. 4.1). However, we show in a simple
example that such approaches can significantly miscalculate
the scale of the guidance term, which can be too large at
high noise levels and too small at low noise levels (Sec. 4.2).
This approximation bias can be attributed to the fact that the
delta distribution is too far from the ideal one.

To this end, we propose LGD-MC, a Monte Carlo integra-
tion approach to reduce approximation errors. First, we
replace the delta distribution with a smoother distribution.
In Proposition 4.1, we explain why this could reduce bias in
the asymptotic case. Then, we approximate the expectation
by aggregating losses evaluated at multiple Monte Carlo
samples (Sec. 4.3). Since most of the computing is spent on
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Figure 1. The idea behind Loss-Guided Diffusion (LGD), a paradigm for plug-and-play controllable generation using diffusion models.
Given a diffusion model serving as a prior (shown in the first row), we perform controllable generation, where the conditions are specified
via a loss function independent of the diffusion model (shown in the second row). In addition, we wish to obtain loss guidance terms that
allow us to leverage existing developments on accelerated diffusion sampling methods (Song et al., 2021a; Zhang & Chen, 2022; Lu et al.,
2022), unlike in Graikos et al. (2022), which finds point estimates via stochastic optimization.

Baseline LGD-DPS LGD-MC (n = 100)

Figure 2. Samples for prompt (v) “walking” for obstacle avoidance in controllable motion synthesis (Sec. 6.3). The red poses indicate
collision between the avatar and the ball obstacle while green ones indicate collision-free motions. LGD-MC (ours) can help synthesize
collision-free motion trajectories, even when underlying motion diffusion models are trained in an obstacle-free environment.

backpropagating through the diffusion model, the additional
samples introduce little computational overhead, and we
can easily use hundreds of samples if the loss function is
easy to evaluate.

We empirically demonstrate that LGD-MC is significantly
more accurate than LGD with the point estimate and pro-
duce much better samples. We further show the effective-
ness of LGD-MC over various real-world problems, such as
image super-resolution, conditional image generation, and
controllable motion synthesis. Notably, LGD-MC produces
location-specific motions that follow a certain path or avoid
obstacles, using a generic text-to-motion diffusion model
within 100 timesteps.

In summary, our contributions are as follows.

• We study the problem of Loss-Guided Diffusion (LGD),
which is a plug-and-play paradigm for efficient condi-
tional generation using diffusion models.

• We illustrate the limitations of the existing solution that
is based on point estimates using a concrete example.

• We propose a solution based on Monte-Carlo estimates
and demonstrate its effectiveness on multiple domains.

2. Background
2.1. Diffusion Models

For a data distribution p0(x0) where x0 ∈ X , a family of
distributions pt(xt) can be defined by injecting i.i.d. Gaus-
sian noise to data samples, such that xt = x0 + σtϵ with
ϵ ∼ N (0, I) and σt monotonically increasing with respect
to time t ∈ [0, T ]. The score function ∇xt

log pt(xt) (i.e.,
gradient of log-probability) can be learned via a denoising
score matching objective (Vincent, 2011):

Lt(θ) = Ex0,xt
[∥Dθ(xt, t) − x0∥2

2], (1)

where Dθ : X × [0, T ] → X is a time-conditioned neural
network that tries to denoise the noisy sample xt. Assuming
an infinite capacity of Dθ, the predictions of the optimal
model are related to the score function via Tweedie’s for-
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mula (Efron, 2011):

x̂t := Dθ(xt, t) = xt + σ2
t ∇xt

log pt(xt), (2)

which represents the minimum mean squared error (MMSE)
estimator of x0 given xt and σt.

Score-based diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) represent a class of models that solve a
stochastic differential equation (Song et al., 2021c) using
the neural network Dθ; see App. A.1 for more details.

Recently, there is a plethora of sampling methods devel-
oped for diffusion models, such as ones based on first-order
ODE/SDE solvers (Song et al., 2021a), higher-order ODE
solvers (Zhang & Chen, 2022; Karras et al., 2022; Lu et al.,
2022; Dockhorn et al., 2022), or knowledge distillation mod-
els (Salimans & Ho, 2022; Meng et al., 2022; Xiao et al.,
2022; Zheng et al., 2022). In this paper, we directly apply
fast first-order ODE / SDE solvers, such as DDIM.

2.2. Guidance Methods for Conditional Generation

In many cases, we may wish to draw samples x0 subject to
certain conditions y. For diffusion models, the conditional
score at time t can be obtained via Bayes’ rule:

∇xt
log pt(xt|y) = ∇xt

log pt(xt) + ∇xt
log pt(y|xt).

Classifier guidance (Dhariwal & Nichol, 2021) obtains the
second term by training on paired (x0, y) data. Diffusion
Posterior Sampling (DPS, (Chung et al., 2022)) does not
rely on paired training data and instead assumes that the
conditional distribution on noiseless data, i.e., a normalized
probability distribution p(y|x0), is given. DPS approxi-
mates pt(y|xt) as follows:

∇xt log pt(y|xt) ≈ DPS(xt, y) := ∇xt log p(y|x̂t), (3)

where x̂t is the MMSE estimator defined in Eq. 2. Essen-
tially, DPS uses a point estimate from the diffusion model x̂t

to replace x0; if p(y|x0) is differentiable w.r.t. the condition
x0, so is the DPS approximation w.r.t. xt. Reconstruction
guidance (Ho et al., 2022) is a special case of DPS where
p(y|x0) is Gaussian. While DPS is effective on various
non-linear inverse problems, its hyperparameters are tuned
for every task and specific to 1000 timesteps, and they do
not generalize well to other tasks or fewer timesteps (Chung
et al. (2022), Appendix C and D).

3. Loss-Guided Diffusion
In this paper, we develop plug-and-play sampling methods
for diffusion models. Compared to existing methods, we
make weaker assumptions over the conditional probability
distribution p(y|x0). This allows us to consider a wider
range of problems for controllable generations.

For example, suppose that we have a motion diffusion
model (Tevet et al., 2022) that is able to synthesize ran-
dom text-conditioned human motions. In some cases, we
also wish to specify certain target locations and some ob-
stacles to avoid, which can be encoded in a general loss
function. Here, a plug-and-play approach is more suitable
for these types of flexible conditional generation tasks.

Target. We consider the plug-and-play conditional gener-
ation setting where we have a pre-trained diffusion model
Dθ and a differentiable loss function ℓy : X → R with
possible dependence on some conditions y. Our goal is to
sample from the following distribution:

p
(ℓ)
0 (x0|y) = p0(x0) exp(−ℓy(x0))/Z, (4)

where Z =
∫

x0
p0(x0) exp(−ℓy(x0))dx0 is a normaliz-

ing constant1. This can be treated as a posterior distribu-
tion, where the prior term is p0(x0) and the likelihood term
is proportional to exp(−ℓy(x0)). In the motion example,
p

(ℓ)
0 (x0|y) will not only draw samples that are reasonable

motion sequences but also ones that are close to the desired
path (as specified by the loss function).

Problem definition. To better leverage existing efficient
samplers for diffusion models, we wish to derive guidance
terms for different noise levels t ∈ (0, T ] given the loss
function ℓy(x0), which is defined only for clean data x0.
Let us define xt ∼ p

(ℓ)
t (xt|y) via the following process:

xt = x0 + σtϵ, x0 ∼ p
(ℓ)
0 (x0|y), ϵ ∼ N (0, I). (5)

To draw samples from Eq. 4 using a diffusion model, the
desired guidance term (which we call the “loss guidance
term”) for time t would simply be

∇xt log p
(ℓ)
t (y|xt) = ∇xt log

(
p

(ℓ)
t (xt|y)/p

(ℓ)
t (xt)

)
. (6)

This term is tremendously useful for sampling from the
desired conditional distribution p

(ℓ)
0 (x0|y), yet it is not im-

mediately available to us. This motivates us to define the
following estimation problem.

Definition 3.1 (The problem of Loss-Guided Diffusion.).
Given a diffusion model Dθ and a loss function ℓy(x0) de-
fined only for noiseless data x0, estimate the loss guidance
term ∇xt

log p
(ℓ)
t (y|xt) (Eq. 6), for all t ∈ (0, T ]. Ideally,

this should be done with a single query over Dθ.

With an estimated loss guidance term, we can perform condi-
tional sampling with loss functions using existing diffusion
model samplers. Of course, the quality of the estimation
will affect the quality of the samples.

1We assume Z exists; if not, we can add x2
0 to the loss function

to make the resulting distribution sub-Gaussian.
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Forward processEnergy from loss

Figure 3. The graphical model over x0, xt, y is a Markov chain.

Challenges of LGD. Unfortunately, LGD is difficult since
p

(ℓ)
t (y|xt) is intractable in the most general case (Anony-

mous, 2022). To see why this is the case, we consider the
graphical model for the variables x0, xt, and y in Fig. 3.
Conditioned on x0, y and xt are independent, so:

p
(ℓ)
t (y|xt) =

∫
x0

p(x0|xt)p(ℓ)
0 (y|x0)dx0, (7)

where the term p(x0|xt) requires multiple iterations to ap-
proximate accurately with a diffusion model (for sampling
or evaluating the likelihood of a single sample). The integral
in Eq. 7 would thus be intractable if our goal is to use only
one diffusion model evaluation for the guidance term, and
thus one has to introduce further approximations.

4. Practical Algorithms
In this section, we discuss practical approximate algorithms
for the LGD problem. In Sec. 4.1 and 4.2, we adapt an
existing efficient method to LGD and discuss its limitations.
In Sec. 4.3, we introduce a novel solution to address the
limitation while keeping the efficiency.

4.1. Existing Approximations with DPS

First, we show that while DPS (Chung et al., 2022)
assumes a normalized conditional probability p(y|x0) in
DPS (i.e., Gaussian and Poisson distributions), the same
approximations can be used for unnormalized conditional
probabilities exp(−ℓy(x0)) as well. Since the normalizing
constant Z does not depend on xt, we have the following:

DPS(xt, y) := ∇xt log exp(−ℓy(x̂t))
Z

= −∇xtℓy(x̂t), (8)

which is the gradient w.r.t. the loss evaluated at the MMSE
estimate x̂t (Eq. 2).

4.2. DPS Miscalculates the Scale of Loss Guidance

Despite the simplicity of DPS, it can be a poor approxima-
tion to the loss guidance term needed for LGD, as we illus-
trate in the following example. In Fig. 4 (top left), we con-
sider p(x0) to be a mixture of two Gaussian distributions on
one dimension, where we use y to denote the mixture com-
ponent (y ∈ {0, 1}), such that p(x0|y = 0) = N (−1, 0.22)
and p(x0|y = 1) = N (1, 0.22). Both mixture components
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p(x0)

2 1 0 1 2
0.0

0.5

1.0
exp( 0(x0))/Z

50 0 50
0.495

0.500

0.505

p( )
t (y = 0|xt) with t = 80

2 1 0 1 2
0.0

0.5

1.0
p( )

t (y = 0|xt) with t = 1

50 0 50

0.004

0.002

0.000
LGD estimates with t = 80

Ground truth
LGD-DPS
LGD-MC (n=20)

2.00 1.75 1.50 1.25 1.00 0.75 0.50

0.4

0.2

0.0
LGD estimates with t = 1

Ground truth
LGD-DPS
LGD-MC (n=20)

Figure 4. (Top) Left: the probability density function (PDF) of
p0(x0), a mixture of Gaussian. Right: the exponential of the
negative loss. (Mid) The probability of y = 0 given xt with σt

being 1 or 80, respectively. (Bottom) For the LGD problem, the
ground truth score, the score estimated by DPS, and the score
estimated by Monte Carlo, with σt being 1 or 80, respectively. The
Monte Carlo estimates become more accurate as n increases, c.f.,
Fig. 8 in App. A.4.

.

have equal weights, so p(y = 0) = p(y = 1) = 0.5.
Since pt(xt) are also mixtures of Gaussians, it becomes
tractable to compute the value of loss guidance term, i.e.,
∇xt log p

(ℓ)
t (y|xt) for any value t ∈ [0, T ]; examples for

σt = 1 and σt = 80 are shown in Fig. 4.

From Fig. 4 (bottom), we see that approximations made with
DPS (red) are quite different from the true guidance terms
(blue). DPS approximations are too large when σt is large,
but too small when σt is small. We explain this phenomenon
as follows. Since the two Gaussian mixtures in p0(x0) are
quite distinct, there is a clear decision boundary at around
x0 = 0; the gradient of log p(ℓ)(y = 0|x0) is large when
x0 ≈ 0 and become close to zero if x0 is far from the
decision boundary. In DPS, one only uses the gradient of
log p(ℓ)(y = 0|x̂t) where x̂t is the MMSE estimate (Eq. 2);
the MMSE estimate is almost zero when σt is large, and far
from zero if σt is small. Thus, DPS approximations to the
loss guidance term in Eq. 7 are expected to be large when
σt is large, and small when σt is small.

We further note that Chung et al. (2022) address this issue
via a heuristic that divides the DPS estimates by the negative
log-likelihood (NLL) of pℓ(y|x0) times a constant (Chung
et al. (2022), Appendix D.1). The NLL is large when σt is
large (as the MMSE prediction is less accurate) and small
when σt is small. Thus, this heuristic aligns with our find-
ings about the relationship between the true loss guidance
and DPS estimates.
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4.3. Improving the Estimation with Monte Carlo

One could also interpret DPS as computing the score of
the integral in Eq. 7 but with p(x0|xt) replaced by a delta
distribution around x̂t. As the approximation error can
largely be attributed to this point estimate, we consider an
alternative Monte-Carlo approach that uses multiple sam-
ples to estimate the loss guidance term. Specifically, our
approximation with n samples is as follows:

MCn(xt, y) = ∇xt
log
(

1
n

n∑
i=1

exp(−ℓy(x(i)))
)

, (9)

where x(i) ∼ q(x0|xt) are i.i.d. samples from an approx-
imate inference distribution q(x0|xt). Ideally, we want
q(x0|xt) to be as close to p(x0|xt) as possible. In prac-
tice, to save compute, we consider q(x0|xt) = N (x̂t, r2

t I),
which is a Gaussian with mean being the MMSE estimate
x̂t and covariance depending on a hyperparameter rt. While
this is by no means a highly accurate estimate, it is a viable
option given that we can only afford a single evaluation of
the diffusion model.

Motivations for our choice. We can motivate our choice
of q(x0|xt) via a variational perspective, where we can try
to maximize the likelihood of x0 under the model q(x0|xt):

max
q

Ep(x0|xt)[log q(x0|xt))]. (10)

If we set q(x0|xt) = N (µ(xt), r2
t I) as a Gaussian with a

fixed covariance, Eq. 10 is equivalent to:

min
µ

Ep(x0,xt)[∥µ(xt) − x0∥2
2], (11)

where the argmin for µ would satisfy µ(xt) = x̂t.

We illustrate the effectiveness of our Monte-Carlo approach
(denoted as LGD-MC) using the earlier mixture of Gaussian
example; we consider rt = σt/

√
1 + σ2

t , similar to (Ho
et al., 2022; Anonymous, 2022). In Fig. 4 (bottom), we see
that while the LGD-MC estimates (green) are not perfect
due to the inaccurate q(x0|xt), they are still much closer to
the ground truth (blue) than DPS estimates (red) in terms
of magnitude and the general trend. In Fig. 8 of App. A.4,
we show that the LGD-MC approximation indeed becomes
more accurate as n increases.

Computational efficiency of LGD-MC. While it may
seem that taking multiple samples would significantly slow
down the algorithm, it is not the case if the evaluation
and differentiation of the loss function ℓy(x0) is relatively
cheap. To demonstrate this point, we show the computa-
tional graphs for the estimations used in DPS and MC in
Fig. 5. In DPS, the gradient calculation is straightforward
which backpropagates from the output node to the MMSE

Diffusion Model

MMSE 
estimate

Diffusion Model

MMSE 
estimate

Samples

LogMeanExpNeg

LGD-DPS

LGD-MC (n=3)

Figure 5. The computational graph for obtaining the DPS (top) and
the MC (bottom) estimates, respectively. For MC, LogMeanExp-
Neg denotes the log-mean-exp-negative operation in Eq. 9. Note
that the diffusion model is only called once in LGD-MC.

estimate and then to the input node xt. In LGD-MC, the
backprogagation is largely similar, except that we now have
multiple samples contributing to the output node. Neverthe-
less, we only need to backpropagate through the diffusion
model once, which is often much more expensive to com-
pute than the loss functions. In App. A.5, we show concrete
empirical results to support our claims.

Bias correction. Since we may use a large number of
samples, we are more concerned about bias, i.e., the approx-
imation error with our proposed q(x0|xt) with infinitely
many samples. In the following statement, we show that
it is beneficial to have the proposed q(x0|xt) closer to the
(desired yet intractable) p(x0|xt).

Proposition 4.1. Assume that p
(ℓ)
0 (y|x0) is bounded for all

x0 and y, and given t ∈ (0, T ], p(x0|xt) and q(x0|xt) are
supported on X . Then ∀xt ∈ X , there exists a constant c
such that:∣∣∣Ep(x0|xt)[p

(ℓ)
0 (y|x0)] − Eq(x0|xt)[p

(ℓ)
0 (y|x0)]

∣∣∣ (12)

≤ c · TV(p(x0|xt), q(x0|xt)), (13)

where TV(p, q) is the total variation between p and q.

We present a proof in App. A.3. Compared to the q(x0|xt)
chosen by DPS, which is essentially a delta distribution,
our choice would have a smaller total variation distance.
Thus, our approximation could also have a lower bias, as
suggested in Figs. 4 and 8.

5. Related Works
Inverse problem solvers with diffusion models. Diffu-
sion models have been widely used to solve inverse prob-
lems in a plug-and-play manner, and are applied to natural

5



Loss-Guided Diffusion Models for Plug-and-Play Controllable Generation

images (Kawar et al., 2021; Choi et al., 2021; Kawar et al.,
2022a), medical images (Jalal et al., 2021; Chung & Ye,
2022; Song et al., 2021b), speech (Sawata et al., 2022),
audio (Saito et al., 2022), and astronomy (Karchev et al.,
2022). However, they are mainly focused on linear inverse
problems with least-squares loss, and thus not directly appli-
cable to nonlinear inverse tasks with generic loss functions
as in LGD. DDRM (Kawar et al., 2022b) is also applied to
certain non-differentiable but semi-linear inverse problems
(e.g., JPEG restoration), but it needs a suitable “pseudoin-
verse” operator.

Therefore, DPS (Chung et al., 2022; Ho et al., 2022) is cur-
rently one of the most viable solutions for solving the LGD
problem for general loss functions. Our LGD-MC approach
further improves upon DPS by considering multiple Monte-
Carlo samples to estimate the expectation in Eq. 7, resulting
in a more accurate approximation.

Comparing with existing paradigms. We compare LGD
with classifier guidance (CG, Dhariwal & Nichol (2021))
and diffusion models as plug-and-play priors (D-PnP,
Graikos et al. (2022)) in Tab. 5, App. A.2.

• Plug-and-play CG requires paired data (x0, y) to be
available during training, whereas for D-PnP and LGD
the condition y only needs to be known at test time.

• Solution The stochastic optimization in D-PnP con-
verges at a local minimum and provides a point esti-
mate, whereas CG and LGD are sampling algorithms
based on the reverse diffusion process.

• Efficiency D-PnP may take many iterations (e.g.,
DreamFusion (Poole et al., 2022) uses 15,000 itera-
tions for each result) whereas CG and LGD are much
faster since they can inherit the developments of ac-
celerated diffusion model sampling (e.g., 10 to 1000
iterations), such as DDIM (Song et al., 2021a).

• Domain CG and LGD are restricted to the domain of
the diffusion models, whereas D-PnP can be used on
other domains (such as 3D from 2D diffusion models).

Therefore, we believe that LGD is a promising paradigm
for conditional generation as it is more efficient than D-PnP
and more flexible than CG.

6. Experiments
We evaluate LGD-MC on various synthetic and real-world
experiments, such as a one-dimensional mixture of Gaussian
(Sec. 6.1), image super-resolution (Sec. 6.2), controllable
motion synthesis (Sec. 6.3). We also compare LGD-MC
against CG and D-PnP on the same conditional image gen-
eration task (Sec. 6.4), where LGD-MC achieves superior

Table 1. Image super-resolution experiments from 64×64 to 256×
256, where the images are downsampled by a bicubic filter. The
top two rows are inverse problem solvers not applicable to our
general case. (⋆) Degraded performance for DPS at 100 steps is
documented in Figure 11, page 20 of Chung et al. (2022).

Method FID ↓ ResNet50 Accuracy ↑ # Steps
DDRM 21.3 63.2% 100
ΠGDM 3.6 72.1% 100
DPS⋆ 74.11 25.84% 100
LGD-MC (n = 1) 5.42 71.98% 100
LGD-MC (n = 10) 5.32 72.07% 100
LGD-MC (n = 100) 5.21 72.03% 100

results compared with D-PnP. We include additional experi-
mental details in App. B.

6.1. Mixture of Gaussian

Here, we use the mixture of Gaussian example in Sec. 4.2,
where our goal is to sample from one of the Gaussians
using the diffusion model for the mixture of two Gaussians
and the logistic loss function. Three types of guidance
terms are considered: Oracle, which uses the ground truth
score ∇xt

log p
(ℓ)
t (y|xt); LGD-DPS, which uses the DPS

algorithm in Eq. 8 to guide the sampling; and LGD-MC,
which uses the Monte Carlo approach in Eq. 9.

With the same underlying DDIM sampler, LGD-MC has
much better histograms and KL divergence than LGD-DPS,
as shown in Fig. 6. This suggests that our LGD-MC approx-
imation is more accurate.

6.2. Image Super-resolution

Here, we evaluate LGD-MC over bicubic super-resolution,
a linear inverse problem. The linear least squares loss is
defined as ℓy(x0) = λ∥y − Hx0∥2

2 where H is bicubic
downsampling convolution and λ is a hyperparameter. In
this case, we do not have to resort to sampling-based meth-
ods as closed-form solutions to the integral in Eq. 7 exist
(i.e., ΠGDM, Anonymous (2022)). Nevertheless, we may
use super-resolution as a sanity check to gauge the effec-
tiveness of LGD-MC in practice. We show the results of
several plug-and-play methods using diffusion models in
Tab. 1, where the number of timesteps is 100. While the
performance of LGD-MC is slightly worse than the state-of-
the-art ΠGDM (which uses stronger assumptions) in terms
of FID, it is comparable in terms of classifier accuracy and
is significantly better than DDRM (Kawar et al., 2022a) and
DPS (Chung et al., 2022).
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Figure 6. Histogram of samples from the three methods using the oracle, DPS, and LGD-MC, respectively, on the example in Fig. 4. Our
LGD-MC obtains a 10× smaller KL value compared to LGD-DPS.

Table 2. Results on controllable motion synthesis for path following.

Prompts (abbr.) (i) “backwards” (ii) “balance beam” (iii) “jogging” (iv) “object above head”
Metrics (↓) Objective Embedding Objective Embedding Objective Embedding Objective Embedding

Baseline 11.583 6.405 1.024 3.756 5.831 5.017 7.080 3.397
LGD-DPS 2.168 5.891 0.388 3.784 3.521 5.090 2.954 3.545
LGD-MC (n = 10) 2.150 5.887 0.395 3.778 3.505 5.093 2.857 3.515
LGD-MC (n = 100) 2.126 5.886 0.402 3.797 3.458 5.100 2.800 3.531

Table 3. Results on obstacle avoidance.

Prompts (abbr.) (v) “walking” (vi) “backwards”
Metrics (↓) Obj. Emb. Obj. Emb.

Baseline 43.736 2.759 42.933 6.519
LGD-DPS 7.040 4.405 5.307 6.240
LGD-MC (n = 10) 3.902 3.187 3.921 6.339
LGD-MC (n = 100) 3.666 3.100 4.160 6.633

(i) “backwards” (iii) “jogging”

B
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Figure 7. Random samples for prompt (i) “backwards”, (iii) “jog-
ging” for the path following case. The red arrows indicate the
target location from starting position. Thanks to loss guidance, our
method can better control the synthesized motions. More results
are in Fig. 9, App. B.3.

6.3. Controllable Motion Synthesis for Human Motion
Diffusion Models

Next, we consider a controllable motion synthesis task for
text-conditioned human motion diffusion models (Tevet
et al., 2022), where losses can be used to provide more
fine-grained control to certain behaviors of the generated
avatars, such as root motion (i.e., the sequence of locations
of the avatar). For a generated motion sequence x0 and its
root motion (denoted as root(x0)), we consider two types
of losses. The first (path following) encourages the avatar
to follow a particular path y:

ℓ(1)
y (x0) = ∥y − root(x0)∥2

2, (14)

whereas the second (obstacle avoidance) encourages the
avatar to reach a target destination yt while avoiding an
obstacle yobs that blocks the most direct path:

ℓ(2)
y (x0) = ∥yt − target(root(x0))∥2

2

+ collision(root(x0) − yobs), (15)

where target(·) evaluates the final destination of x0 and
collision(·) is a sigmoid-like function that assigns near-zero
values if x0 does not become close or collide with yobs and
very large values otherwise. We include additional details
about the loss function in App. B.3.2.

Our objective is to generate motions that are not only based
on text but also follow the desired conditions (i.e., low loss
values). To this end, we evaluate performance based on two
metrics: Objective, which is the value of the desired loss
function ℓy, divided by the number of frames; and Embed-
ding, which measures the Euclidean distance between the
embeddings of the generated motions and the provided text
prompt (Guo et al., 2022). We show the validity of the Em-
bedding metric in App. B.3.1. The desired motions should
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have low loss values in the Objective metric and reasonable
loss values in the Embedding metric. Four methods are
evaluated: Baseline, which is the motion diffusion model
that performs text-to-motion without considering the loss
function; LGD-DPS based on Eq. 8; and LGD-MC based
on Eq. 9 (with n = 10 and n = 100).

Path following. For loss ℓ
(1)
y , we synthesize motions

based on four text prompts that specify root movements
as well as diverse poses of the avatar: (i) “the person is
walking backwards”, (ii) “a person walking around in a bal-
ance beam”, (iii) “the person is jogging”, and (iv) “a person
walks while holding an object above their head”, where
the desired path is a straight line in three different specific
directions.

We list the results on these four cases in Tab. 2, where
each result is the average of 3 different directions and 10
random runs for each direction. We show some examples
in Fig. 7. All the methods have similar embedding losses,
which means that the synthesized motions are following
the text prompts. The baseline method has a very high
objective loss since the baseline motion diffusion model
does not control the root motions. LGD-DPS has much
lower objective loss values but is still bested by LGD-MC in
3 out of 4 cases. Similarly, LGD-MC performs better with a
larger n in most scenarios.

Obstacle avoidance. For loss ℓ
(2)
y , we design the target yt

such that the shortest path would collide with the obstacle
yobs, and thus the avatar has to go around it to reach the
target (see Fig. 10 in App. B.3.2 for an illustration). The
collision loss is close to a step function, and its gradients
have very small magnitudes for most values; this makes
it difficult for DPS since it is based on the MMSE point
estimate. However, this issue can be alleviated by our Monte
Carlo approach since samples that avoid the obstacle will
be weighted higher during backpropagation, thus making
it easier for the updates to find solutions that avoid the
obstacle.

Tab. 3 shows the quantitative results of this experiment,
where we consider two prompts: (v) “a person walks”, and
(vi) “a person walking backwards slowly”. Here, we observe
an even more significant improvement over the Objective
metric, indicating that LGD-MC is better at avoiding the
obstacles than DPS (qualitative results in Fig. 2).

6.4. Sampling Conditional Images from Unconditional
Diffusion Models

Finally, we perform a direct comparison with different con-
ditional generation paradigms, such as classifier guidance
(CG) and diffusion as plug-and-play priors (D-PnP). We
employ losses that evaluate the alignment between the

Table 4. Results on generating label-conditioned images with un-
conditional models.

Method FID (↓) Loss (↓)

Baseline 37.28 281.84
CG 44.64 25.47
D-PnP 317.21 221.75
LGD-DPS 48.24 31.95
LGD-MC (n = 1) 39.87 33.73
LGD-MC (n = 5) 38.65 32.80

generated samples and specific conditions, such as the
out-of-shelf CLIP loss for text-conditioned samples and
classifiers for label-conditioned samples. Here, we gener-
ate text-conditioned and label-conditioned samples from
unconditional 256 × 256 ImageNet diffusion models (see
Fig. 1 for some examples). To quantitatively evaluate LGD
and other algorithms, we generate 10, 000 samples and mea-
sure sample quality with FID (Heusel et al., 2017) and the
alignment loss.

Tab. 4 indicates that the LGD method offers improved con-
trollability in sampling, albeit with a slight decrease in sam-
ple fidelity compared to the baseline unconditional sampling
algorithm. On the other hand, the classifier guidance (CG)
and LGD-DPS methods achieve lower classification loss
at the expense of FID score. Interestingly, we find CG
prioritizes control over fidelity on unconditional models,
even though it has been shown to improve image quality for
conditional models (Dhariwal & Nichol, 2021). Notably,
our findings show that the LGD-MC method maintains a
better FID score than other methods, while also achieving
improved alignment, as compared to CG and LGD-DPS.
The results also reveal that the D-PnP method struggles to
generate high-quality samples when applied to the ImageNet
dataset2 and suggests that LGD would be a more reasonable
paradigm for plug-and-play controllable generation.

7. Conclusions
In this paper, we study Loss-Guided Diffusion (LGD), a
paradigm for guided conditional generation with diffusion
models in a plug-and-play fashion. The resulting guidance
term involves an intractable expectation that has to be ap-
proximated by losses evaluated on samples. We show that
LGD-MC, a Monte Carlo approach using multiple samples,
has better approximation capabilities than DPS, an approach
that only uses one sample. This improvement in approxima-
tion also translates into improved empirical performance in
various applications.

2Similar observations have been made in the community
regarding D-PnP and ImageNet, see https://github.com/
AlexGraikos/diffusion_priors/issues/1.
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Limitations We note that while our current LGD-MC ap-
proach achieves reasonable empirical results, the Gaussian
assumption made on q(x0|xt) is still very inaccurate, which
may limit the accuracy of the approximation and the down-
stream empirical performance. It would be interesting to
investigate better principles for selecting q(x0|xt), as well
as methods such as annealed importance sampling with re-
duced variance. Our method also performs worse when the
desired conditions cannot be covered by the prior distribu-
tion p0(x0), which is an issue shared with all plug-and-play
generative modeling approaches. These are all interesting
avenues for future work.
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A. Additional method details
A.1. Preliminaries on Diffusion Models

The family of distributions pt(xt), t ∈ [0, T ] are tied via the following stochastic differential equations (SDE) (Grenander &
Miller, 1994; Karras et al., 2022; Zhang et al., 2022):

dx = − σ̇tσt∇x log pt(x)dt︸ ︷︷ ︸
Probabilistic ODE

− βtσ
2
t ∇x log pt(x)dt +

√
2βtσtdωt︸ ︷︷ ︸

Langevin process

, (16)

where ∇x log pt(x) is the score function, ωt is the standard Wiener process, and βt is a hyperparameter that controls the
stochasticity of the process. Different forms of SDEs in the literature, such as variance preserving and variance exploding
ones, can be described with certain choices of σt and βt, up to a time-dependent scaling factor over x.

A.2. Comparing Different Paradigms for Conditional Generation

Table 5. Comparison of existing paradigms, such as Classifier(-free) Guidance (CG), Diffusion models as plug-and-play priors (D-PnP),
and the proposed Loss-Guided Diffusion (LGD). See Sec. 5 for detailed explanations.

Paradigm Plug-and-Play Solution Speed Domain Examples

CG No Samples Fast Restricted Dhariwal & Nichol (2021); Ho & Salimans (2022)
D-PnP Yes Point estimate Slow Unrestricted Graikos et al. (2022); Xu et al. (2022a)
LGD Yes Samples Fast Restricted Ho et al. (2022); Chung et al. (2022)

A.3. Proof of Proposition 4.1

Proposition A.1. Assume that p
(ℓ)
0 (y|x0) is bounded for all x0 and y, and given t ∈ (0, T ], p(x0|xt) and q(x0|xt) are

supported on X . Then ∀xt ∈ X , there exists a constant c such that:∣∣∣Ep(x0|xt)[p
(ℓ)
0 (y|x0)] − Eq(x0|xt)[p

(ℓ)
0 (y|x0)]

∣∣∣ (12)

≤ c · TV(p(x0|xt), q(x0|xt)), (13)

where TV(p, q) is the total variation between p and q.

Proof. Let M = maxx0 p
(ℓ)
0 (y|x0). Then,∣∣∣Ep(x0|xt)[p

(ℓ)
0 (y|x0)] − Eq(x0|xt)[p

(ℓ)
0 (y|x0)]

∣∣∣ =
∣∣∣∣∫ (p(x0|xt) − q(x0|xt)

)
p

(ℓ)
0 (y|x0)dx0

∣∣∣∣ (17)

≤
∣∣∣∣max

x0
p

(ℓ)
0 (y|x0)

∣∣∣∣ (∫ ∣∣∣∣p(x0|xt)
q(x0|xt)

− 1
∣∣∣∣ q(x0|xt)dx0

)
= 2M × TV(p(x0|xt), q(x0|xt)), (18)

so we can use the constant 2M to complete the proof.

A.4. Ablation on the Number of Monte Carlo Samples

In Fig. 8, we show the estimation results of LGD-MC when n ∈ {1, 5, 10, 20}. The results show that better estimation is
achieved when n is increased.

A.5. Computational Efficiency

To support our claims in Sec. 4.3 on compute and memory, we evaluate the memory consumption and average time to
perform one iteration over image super-resolution on the same NVIDIA RTX 3090 GPU. Results in Tab. 6 suggest that the
computational resources needed for LGD-MC grow very slowly as n grows.
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Figure 8. For the LGD problem in Sec. 4.2, the ground truth score, the score estimated by DPS and the score estimated by Monte Carlo,
with σt being 1 (right) or 80 (left), respectively. From top to bottom: n = 1, 5, 10, 20. We note that LGD-MC performs as bad as DPS
when n = 1, and its performance becomes better as n increases.

B. Additional Experimental Details
B.1. Mixture of Gaussian

For all three cases, we draw 100 samples using the same DDIM algorithm with 20 timesteps (Song et al., 2021a), and
plot the histogram of the samples in Fig. 6. Additionally, we compute the mean µ and standard deviation σ from these
samples, and measure the KL divergence between the ground truth p(x0|y = 0) = N (−1, 0.22) and the Gaussian produced
from generated statistics N (µ, σ2). The results in Fig. 6 show that while samples from LGD-MC are not perfect, they are
still much closer to that of LGD-DPS. Thus, we believe the LGD-MC guidance terms are generally more accurate than
LGD-DPS.

B.2. Image Super-resolution

We follow the approach in Anonymous (2022), where we use the DDIM sampler (Song et al., 2021a) with η = 1.0 (i.e., the
DDPM sampler) for 100 steps over the 50k ImageNet validation set. The unconditional model is used. Specifically, we use
the following loss function:

ℓy(x0) =
∥y − Hx0∥2

2
2s2

t

, (19)
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Table 6. Computational resources spent with different n on the image super-resolution task.

Resources Peak memory Wall-clock time / iter

LGD-DPS 16.51 GB 0.380 s
LGD-MC (n = 1) 16.51 GB 0.387 s
LGD-MC (n = 10) 16.53 GB 0.390 s
LGD-MC (n = 100) 16.67 GB 0.410 s

where st = 0.25. To prevent large gradient values towards the end of the sampling process, we multiply the LGD
approximations by s2

t . FID and ResNet-50 classifier accuracy are used as metrics.
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(i) “backwards” (ii) “balance beam” (iii) “jogging” (iv) “object above head”

Figure 9. Random samples for (i) “backwards”, (ii) “balance beam”, (iii) “jogging” and (iv) “object above head” for the path following
case. The Baseline method fails to produce satisfactory trajectories due to a lack of training data and path-following capabilities. LGD,
which utilizes loss guidance, is able to generate more controlled motion trajectories with a small additional computational overhead.

B.3. Controllable Motion Synthesis

We save the videos of the motion synthesis experiments in lgd motion video.pptx.

For all experiments, we use the same motion diffusion model (Tevet et al., 2022) and the 100-step DDIM sampler, with
rt = σt/

√
1 + σ2

t . We compute the root motion from the samples of the motion diffusion model, where the (x, y, z)
location of each joint can be computed. The reported Objective loss is the actual loss ℓy(x0) divided by the number of
frames. For path following, we consider three different directions for each prompt, and each direction has 10 random seeds,
the metrics are then averaged together over the 30 synthesized motions. For obstacle avoidance, we consider two directions
for each prompt. We show additional path-following results in Fig. 9.

B.3.1. VALIDITY OF THE EMBEDDING METRIC

In Tab. 7, we show the confusion matrix between different text embeddings and motion embeddings from the conditioned
text in the path-following experiment. The results show that the embeddings from the text-generated motion are indeed
closer to the corresponding text embedding than others. This suggests that the embedding metric is a valid indicator of how
close the generated motion follows the text prompt.
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Table 7. Confusion matrix between the text embeddings and motion embeddings from the conditioned text.

Text
Motion

(i) (ii) (iii) (iv)

(i) 3.37 9.69 9.87 3.94
(ii) 8.79 5.50 11.24 8.67
(iii) 9.83 9.51 4.35 10.13
(iv) 4.85 10.89 10.26 2.19

Obstacle

Starting location

Target location

Figure 10. High-level illustration of the obstacle avoidance task. It is easier to walk in a straight line to reach the target location, but this
would incur higher penalties since it crosses the obstacle. To reduce the loss, the avatar should walk around the obstacle.

B.3.2. OBSTACLE AVOIDANCE

Fig. 10 shows an illustration of the obstacle avoidance task being considered.

For the collision loss, we use the following function:

collision(root(x0) − yobs) =
∑

i

sigmoid(−(∥root(x(i)
0 ) − yobs∥

2
2 − 1.0) × 50) × 100, (20)

which sums over all the individual timesteps i. The loss is close to zero if the distance of the root location is at least 1.0 from
yobs; otherwise, it will be close to 100. This incurs a heavy penalty for violating the collision constraints.

B.4. Conditional Image Generation

In this experiment, we use the pre-trained unconditioned 256×256 ImageNet diffusion model 3 from OpenAI guided
diffusion models (Dhariwal & Nichol, 2021). For the qualitative text-to-image experiment, we employ the matching score
of OpenAI VIT-Large CLIP (Radford et al., 2021) to guide conditional generation. We adopt data augmentation tricks
suggested in Crowson et al. (2022) to achieve better visual quality. For the quantitative result in Tab. 4, we adopt the
pre-trained classifier from OpenAI guided diffusion models (Dhariwal & Nichol, 2021); some images are shown in Fig. 12.
We note the classifier is originally trained to classify noised images in an amortized manner, which can directly be used in
the classifier-guidance (CG) setting. For D-PnP and LGD, we use the same classifier model but with t = 10−3. We note that
better-trained, more robust classifiers can be also used and are believed to improve D-PnP and LGD performance (Santurkar
et al., 2019; Grathwohl et al., 2019). For D-PnP, we use the official codebase4 with our ImageNet diffusion model. The
unsatisfying sample quality of D-PnP (see Fig. 11) is not a new finding and how to improve it in complex datasets such as
ImageNet remains an open problem 5. It is likely that this is due to the complexity of the data distribution of ImageNet,
and that D-PnP may perform better in simpler scenarios, such as generating MNIST digits or faces conditioned on specific
styles (Graikos et al., 2022). Regarding sampling for Baseline and LGD, we adopt the stochastic Heun method (Karras et al.,
2022) with 71 NFE.

3https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt
4https://github.com/AlexGraikos/diffusion_priors/blob/main/ffhq/infer_with_attributes.ipynb
5https://github.com/AlexGraikos/diffusion_priors/issues/1
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Figure 11. Samples from D-PnP on unconditional 256×256 diffusion models. D-PnP fails to generate realistic images.

Baseline Classifier Guidance (CG) LGD-DPS LGD-MC (n=5)

Figure 12. Generated ImageNet samples from various methods for ‘tench, Tinca tinca’, ‘jeep, landrover’.
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