
Adversarial Learning of Distributional Reinforcement Learning

Yang Sui 1 Yukun Huang 1 Hongtu Zhu 2 Fan Zhou 1

Abstract
Reinforcement learning (RL) has made significant
advancements in artificial intelligence. However,
its real-world applications are limited due to dif-
ferences between simulated environments and the
actual world. Consequently, it is crucial to sys-
tematically analyze how each component of the
RL system can affect the final model performance.
In this study, we propose an adversarial learning
framework for distributional reinforcement learn-
ing, which adopts the concept of influence mea-
sure from the statistics community. This frame-
work enables us to detect performance loss caused
by either the internal policy structure or the ex-
ternal state observation. The proposed influence
measure is based on information geometry and
has desirable properties of invariance. We demon-
strate that the influence measure is useful for three
diagnostic tasks: identifying fragile states in tra-
jectories, determining the instability of the policy
architecture, and pinpointing anomalously sensi-
tive policy parameters.

1. Introduction
Reinforcement learning (RL) has achieved great success
in various artificial intelligence areas, such as video games
(Lample & Chaplot, 2017; Li, 2017), large-scale strategy
games (Silver et al., 2016; 2017), robot manipulation (Kober
et al., 2013; Nguyen & La, 2019), and behavioral learning
in social scenarios (Baker et al., 2019). Despite the advan-
tages of RL in the virtual world, applying RL to real-world
problems is challenging. First, offline RL methods usu-
ally lack a clear and understandable process for generating
various design choices, from model architecture to algo-
rithmic hyperparameters (Kumar et al., 2021). In addition,
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key features of potentially realistic applications such as par-
tial observability, different action spaces, non-stationarity,
and stochasticity make the practical applicability of offline
RL algorithms difficult to assess (Gulcehre et al., 2020).
Moreover, offline RL methods may often suffer from some
reproducibility problems (Fujimoto et al., 2019; Peng et al.,
2019). These issues create a gap between the offline data
used to train the policy and the online environment where
the policy will be applied, limiting the efficiency of RL in
solving real-world problems. Efforts have been made to
adapt the offline policy to the online environment through
model, value learning, or importance sampling, see (Precup,
2000; Thomas et al., 2015; Jiang & Li, 2016; Kumar et al.,
2021; Gulcehre et al., 2020), but the gap remains, and its
detection in practice is not yet solved.

In industry, policies are trained offline or in simulators and
then applied to the real world (He & Shin, 2019; Liang et al.,
2021; Qin et al., 2020; Tang et al., 2021). Although offline
simulators and online environments may appear to be almost
the same, these offline-trained policies can perform poorly
in the real world and the resulting decision trajectories can
be quite different. For example, the order-dispatching pol-
icy of ride-sharing companies is usually trained using an
offline simulator which is then applied to the real world
afterwards (Xu et al., 2018; Tang et al., 2019; Zhou et al.,
2021a;b). As the online environment keeps changing over
time, there always exists a gap between the simulated and
the real platforms which makes the trained policy perform
poorly in practice. In particular, the same policy can make
an undesirable decision when encountering a similar but
slightly different state which has never been seen during
the offline training. In addition, subtle changes in a specific
parameter of the policy network can also lead to abnormal
results. To further illustrate this issue, we carry out some
empirical studies using the Atari 2600 platform. As Figure
1(a) shows, a small perturbation imposed on some certain
state can significantly change the trajectory afterwards in
the Breakout environment. Similarly, there is a huge gap be-
tween the re-generated trajectory and the original trajectory
after applying a perturbation to some parameters in the pol-
icy network, see Figure 1(b). This suggests that for the en-
tire RL system, small variations of many local components
can lead to the performance difference between the online
and offline situations. Unfortunately, there is currently no
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Figure 1. Comparison of trajectories before and after a small perturbation, (a) the resulting trajectory by slightly perturbing state 461, (b)
the resulting trajectory by slightly perturbing some particular parameter in the policy network.

way to quantify the effects of the system variations on the
model performance. Therefore, the main goal of this paper
is to systematically develop a simple but general adversarial
learning framework for RL that can be used to detect small
perturbations of each component in the whole RL system
and measure their effects on the model performance.

In this paper, we propose a general framework for adversar-
ial learning that quantitatively measures the vulnerability of
each component in a RL system, such as the parameters of
the policy network and state observations, to small perturba-
tions. This framework serves as a detection tool to pinpoint
the specific parts of the RL system that are negatively im-
pacting performance when small variations are imposed.
Some of the key tasks that this framework can assist with
include: detecting fragile states in trajectories generated by
trained policies, determining the unstable parts of the pol-
icy network, and identifying anomalously sensitive model
parameters. By focusing on these particularly vulnerable
states, we can create adversarial examples or enhance the
policy with data augmentation to improve the robustness of
RL algorithms. Additionally, this framework can provide
guidance for modifying the network architecture.

Specifically, we construct a perturbation manifold for any
possible perturbation together with the associated geometric
quantities, and then compute the influence measure of the
perturbation on a given objective function of interest on this
perturbation manifold. Our influence measure quantifies the
degree of local influence of the perturbation to the objective
function, and thus reflects the adversarial strength of each
RL component to a subtle perturbation. Notably, our influ-
ence measure stands out from common influence measures,
such as the change of the objective function after being per-
turbed, by possessing an intrinsic property that is entirely
free of the constraints imposed by the perturbation. The
whole framework we describe in this work is in the context
of distributional reinforcement learning (DRL) but every-
thing can be easily extended to other RL methods including

the value-based and policy-based algorithms. We conduct
numerous empirical studies to demonstrate the validity of
our method. The most sensitive parts of the entire system
detected by our method can be evaluated by comparing the
trajectories with and without the small perturbation. The
main contributions of this work are summarized as follows.

• To the best of our knowledge, this is the first systematic
analysis of the reasons why a trained policy may fail
when applied to a new but similar environment.

• We construct a framework for adversarial learning in
order to evaluate the sensitivity of each component of
the RL system, taking into account the impact of small
perturbations on the overall system.

• We demonstrate that the proposed method is an ef-
ficient tool for detecting DRL systems, both from a
theoretical and an empirical perspective.

2. Background
In the classical RL setting, an agent interacts with an envi-
ronment via a standard Markov decision process (MDP), a
five-tuple (S,A, R, P, γ), where S and A are the state and
action spaces, R : S ×A× S → R is the reward function,
P : S × A × S → [0, 1] is the environment transition dy-
namics from state s to next state s′ after taking action a,
and γ ∈ (0, 1) is the discount factor.

From expectation to distribution. A stationary policy
π(·|s) maps state s to a distribution over the action space
A. Given a policy π, the discounted sum of future rewards
Zπ(s,a) =

∑∞
t=0 γ

tR(st,at) is a random variable along
the agent’s trajectory of interactions with the environment,
where s0 = s, a0 = a, st+1 ∼ P (·|st,at), and at ∼
π(·|st). Classic value-based RL methods usually focus on
the state-value function Qπ(s,a) = E[Zπ(s,a)], which
is the expectation of Zπ(s,a). By contrast, DRL directly
estimates the whole return distribution.
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Distributional Bellman Operator. In expectation-based
RL, the Q-function is updated via the Bellman operator

T πQ(s,a) = E[R(s,a)] + γEs′∼p,π[Q(s′,a′)].

Similarly, Zπ(s,a) can be updated via the distributional
Bellman operator for DRL,

TπZ(s,a) = R(s,a) + γZ(s′,a′), (1)

where s′ ∼ P (·|s,a) and a′ ∼ π(·|s′). The distributional
Bellman operator Tπ is contractive under certain distribu-
tion divergence metrics. There are two main categories of
DRL algorithms relying on parametric approximations. One
is the Categorical distributional RL (CDRL, Bellemare et al.,
2017) which represents the return distribution Z with a cat-
egorical form. The other is the Quantile distributional RL
(QDRL, Dabney et al., 2018; Zhou et al., 2020; 2021c) that
represents the return distribution with a mixture of Diracs.

3. Case Study: State Perturbation in C51
We begin with a naive example to show how to build
the influence measure for DRL and how the measure can
be used to detect fragile states. We follow the idea of
the classic CDRL approach C51 (Bellemare et al., 2017)
and represent the return distribution Z with a categori-
cal form Z(s,a) =

∑N
i=1 pi(s,a)δzi

, where δz denotes
the Dirac distribution at z. The locations {zi = Vmin +
i(Vmax − Vmin)/(N − 1) : 0 ≤ i < N} are evenly spaced,
and N = 51 is a common choice. The parameters of the
distribution are the probabilities pi, represented as logits,
associated with each location zi. The atom probabilities
are determined by a parameter model θ : S × A → RN ,
Zθ(s,a) = zi.

To quantify the adversarial strength of the state, we use
the first-order influence measure (FI), which essentially
portrays the degree to which the objective function is af-
fected by the perturbation. We take the Q-function: f(ω) =

E[Z] =
∑N−1

i=0 ziP (zi|s,a,θ,ω), which is the expecta-
tion of Z as the objective function since the Q-function
captures all future information but only depends on the cur-
rent state s which is perturbed.

We provide a comprehensive discussion regarding the esti-
mation error of the Q-function and its impact on our FI anal-
ysis framework. While errors in Q-function may arise, they
do not undermine the significance of our method. Firstly, it
is important to note that the Q-function serves as an illustra-
tive example in our experiments. The FI method, however,
is versatile and can effectively handle various functions of
interest within the RL system. Secondly, the estimation
error in Q-function has negligible influence on our analysis
due to our use of actual Q-estimates during training, rather
than relying solely on theoretical Q-values. Consequently,

when evaluating the impact of perturbations on the trajec-
tory, we incorporate the actual estimated Q-values. Thus,
the potential error in the estimated Q-values does not affect
our perturbation analysis. In fact, the primary objective of
our method is to identify the components accountable for
the RL system’s underperformance, making it well-suited
for the case we are addressing.

The FI for the state perturbation ∆s, where ∆s0 = 0, can
be computed as

FI∆s(∆s0) = ∇T
f(∆s0)

G−1(∆s0)∇f(∆s0), (2)

where ∇f(∆s) and G(∆s) have the following forms, re-
spectively,

∇f(∆s) =
∂f(∆s)

∂s
=

N−1∑
i=0

zi∂ log(pi(∆s))/∂s

pi(∆s)
, (3)

G(∆s) =

N−1∑
i=0

pi(∆s)
∂T log pi(∆s)

∂s

∂ log pi(∆s)

∂s
,

(4)

with pi = P (zi|s,a,θ,∆s). In practice, the gradient term
∂ log(pi(∆s))/∂s can be easily computed via backpropa-
gation (Abadi et al., 2016; Paszke et al., 2017).

FI indicates the influence level of a small local perturbation
on the overall model performance, i.e. the Q-function in
this case. A higher FI implies that the corresponding state
has a greater effect on the Q-value after the perturbation,
resulting in a more significant change of the trajectory to a
greater extent. A lower FI indicates that the corresponding
state is less sensitive to the imposed perturbation and does
little damage to the overall RL system.

According to (2), (3) and (4), we compute FI for all states
on an observed trajectory and perturb the high-FI states
with the original policy being fixed. We record the change
of Q-values and rebuild part of the trajectory starting from
the state being perturbed. We find that perturbing states with
high FI can significantly change the decision process which
agrees with our assumptions above. For example, as Figure
1(a) shows, when perturbing the state 461 along the whole
trajectory generated by a trained policy, the perturbed trajec-
tory becomes quite different from the original one. These
empirical findings suggest that the proposed FI is useful
to detect potentially vulnerable states for DRL algorithms.
More details are in the experiment part.

4. The Influence Measure
The case study in Section 3 tells that FI can accurately
detect potentially fragile states. In this section, we propose
a more general form of FI and introduce some important
notations related to FI such as the perturbation manifold.
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Given a state s, an action a, and a trainable parame-
ter θ of the policy network, the distribution probability
of the future return is represented as P (z|s,a,θ). Let
ω = (ω1, . . . , ωp)

T be a perturbation vector, and ω varies in
an open subset Ω ⊆ Rp. The perturbations can be imposed
on either the state observation s or the network parameter θ,
and the perturbed model is denoted by P (z|s,a,θ,ω) by
introducing the perturbation ω, which has a natural geomet-
rical structure (Amari, 2012).

Following Zhu et al. (2007; 2011), the perturbed
model M = {P (z|s,a,θ,ω) : ω ∈ Ω} can be re-
garded as p-dimensional manifold. Let Tω be the vec-
tor space of M at ω, which is spanned by p func-
tions {∂iℓ(ω|z, s,a,θ)}pi=1, where ∂i = ∂/∂ωi and
ℓ(ω|z, s,a,θ) = logP (z|s,a,θ,ω). The inner product
of two basis operators ∂i and ∂j can be defined as

gij(ω) = ⟨∂i, ∂j⟩
= Eω [∂iℓ(ω|z, s,a,θ)∂jℓ(ω|z, s,a,θ)] ,

(5)

where Eω denotes the expectation taken with respect to
P (z|s,a,θ,ω). The p2 quantities gij(ω), i, j = 1, . . . , p
construct the metric tensor G(ω) ∈ Rp×p of the perturba-
tion ω, which is generally assumed to be positive definite in
a small neighborhood of ω0.

Lemma 4.1. Let ϕ = (ϕ1, . . . , ϕp) = ϕ(ω) be a new coor-
dinate system of M , kia = ∂ωi/∂ϕa, then the geometrical
quantities of M in the coordinate system ϕ can be written
as gab(ϕ) =

∑
i,j k

i
ak

j
bgij(ω).

The proof of Lemma 4.1 can be found in Amari (2012).
Then, for any two tangent vectors ti ∈ Tω with the form of
ti(ω) = hT

i ∂
T ℓ(ω|z, s,a,θ), where hi ∈ Rp for i = 1, 2,

we define the inner product ⟨t1(ω), t2(ω)⟩ as

⟨t1(ω), t2(ω)⟩ =
p∑
i,j

h1ih2jgij(ω) = hT
1 G(ω)h2. (6)

Furthermore, the length of t1(ω) can be expressed as

∥t1(ω)∥ =
√

⟨t1(ω), t1(ω)⟩ = [hT
1 G(ω)h1]

1/2. (7)

Definition 4.2. We define the Riemannian metric ten-
sor G(ω) by (5) and the Riemannian manifold M =
{P (z|s,a,θ,ω) : ω ∈ Ω} with the inner product defined
in (6) and (7) as the perturbation manifold around ω0.

Let f(ω) : Rp → R1 be the objective function, defining the
inference of interest for adversarial strength analysis. Let
C(t) : ω(t) = (ω1(t), . . . , ωp(t)) be a smooth curve on the
manifold M connecting two points ω1 = ω(t1) and ω2 =
ω(t2) with ω(0) = ω0 and dω(t)/dt|t=0 = hω0 ∈ Tω0 ,
then the distance between ω1 and ω2 along the curve C(t)

can be defined as

SC (ω1,ω2) =

∫ t2

t1

√
dω(t)

dt

T

G(ω(t))
dω(t)

dt
dt. (8)

We can then define the first-order local influence measure
(FI) of f(ω) at ω0 as

FIω(ω0) = max
C

lim
t→0

[f(ω(t))− f(ω(0))]2

S2
C(ω(t),ω(0))

, (9)

where [f(ω(t))− f(ω(0))]2/S2
C(ω(t),ω(0)) can be inter-

preted as the ratio of the change of the objective function
relative to the minimal distance between P (z|s,a,θ,ω(t))
and P (z|s,a,θ,ω0) on M . The maximum value FI of
the ratio quantifies the extent to which ω has a local in-
fluence on an objective function f(ω), with high FI rep-
resenting that f(ω) is more vulnerable to ω and low FI
representing that f(ω) is less vulnerable to ω. Obviously,
|f(ωt) − f(ω0)| also serves as a measure, and we give a
more detailed explanation of the relationship between FI
and |f(ωt) − f(ω0)|. As defined in (9), the numerator is
exactly |f(ωt)− f(ω0)|, which measures the change in the
objective function from ω0 (generally 0) to the perturbation
ωt. By dividing this difference by the distance between ωt

and ω0 in the denominator, and letting ω approximate ω0,
we obtain the FI. Therefore, FI is directly derived from
|f(ωt)− f(ω0)|. However, compared to |f(ωt)− f(ω0)|,
FI is more advanced and portrays the potential properties of
the perturbation ω, completely free from the constraints of
the perturbation ω. Meanwhile, the metric |f(ωt)− f(ω0)|
is still heavily constrained by the perturbation ω.

FI can be written in an explicit form and is invariant to
reparameterization of ω. We now have the following result.

Theorem 4.3. If G(ω) is positive definite, we have the
following results:

(i) FIω(ω0) = ∇T
f(ω0)

G−1(ω0)∇f(ω0).

(ii) If ϕ is a diffeomorphism of ω, then FIω(ω0) is in-
variant with respect to any reparametrization corre-
sponding to ϕ and FIω(ω0)=k2FIω(ω0) holds for
any k.

Proof. Note that f(ω(t)) is a function of ω(t) defined on
the perturbation manifold M . It follows from a Taylor
series expansion that f(ω(t)) = f(ω(0)) +∇T

f(ω0)
hω0t+

1
2

(
hT
ω0

Hf(ω0)hω0
+∇T

f(ω0)
d2ω(0)/dt2

)
t2 + o(t2),

where ∇f(ω0) = ∂f(ω)/∂ω|ω=ω0
and Hf(ω0) =

∂2f(ω)/∂ω∂ωT |ω=ω0 . By (8), S2
C(ω(t),ω(0)) =

t2hT
ω0

G(ω0)hω0 + o(t2). Then, using l’Hôpital’s rule, the
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influence measure defined in (9) can be rewritten as

FIω(ω0) = max
hω

hT
ω∇f(ω0)∇T

f(ω0)
hω

hT
ωG(ω0)hω

= ∇T
f(ω0)

G−1(ω0)∇f(ω0).

Assuming ω = ω(ϕ) and ϕ = ϕ(ω), the Jacobian matri-
ces are Φ = ∂ϕ/∂ω and Ψ = ∂ω/∂ϕ. Differentiating
the identities ϕ[ω(ϕ)] = ϕ and ω[ϕ(ω)] = ω with re-
spect to ϕ and ω, respectively, leads to ΦΨ = ΨΦ = Ip.
By lemma 4.1, we have G(ϕ) = ΨTG(ω)Ψ. Moreover,
∇f(ϕ0) = ΨT∇f(ω0) and hϕ0

= ∂ϕ(t)/dt|t=0 = Φhω0
,

where ϕ0 = ϕ(ω0). Using (i), we can prove (ii).

Theorem 4.3 indicates that FIω(ω0) is associated with the
first derivative of f(ω(t)) on M evaluated at t = 0 and
invariant to any reparameterization of ω(t). In contrast, the
conventionally used Cook measure (Cook, 1986) changes
with the transformation of ω, which can cause issues, espe-
cially when there is scale heterogeneity between parameters
to which the perturbation is imposed (Zhu et al., 2011).

Note that the above calculation of the influence measure
requires the positive definiteness of G(ω). However, this
condition is not always satisfied in many environments, such
as Atari games where the state is mostly a high-dimensional
image. Motivated by Shu & Zhu (2019), we transform
ω to a vector ν such that G(ν) is positive definite in a
small neighborhood of ν0 that corresponds to ω0. Specif-
ically, we apply cSVD G(ω0) = UT

0 U0, with U0 =
[P 1/2(z|s,a,θ,ω)∂T ℓ(ω|Z, s,a,θ)/∂ω] = V0W0 and
W0W

T
0 = R0Γ0R

T
0 . V0 and R0 are orthogonal matrices

and Γ0 is a diagonal matrix. We can then introduce the
following proposition, whose proof is similar to that in Shu
& Zhu (2019).

Proposition 4.4. Under the transformation ν =

Γ
1/2
0 (V0R0)

Tω, FIν(ν0) has the form of

FIν(ν0) = ∇T
f(ν0)

∇f(ν0)

= ∇T
f(ω0)

(V0R0)
TΓ−1

0 (V0R0)∇f(ω0).
(10)

We now summarize the three key steps in carrying out our
proposed adversarial learning framework for DRL.

• Step 1. Construct a perturbation manifold M =
{P (z|s,a,θ,ω) : ω ∈ Ω} as defined in Definition
4.2.

• Step 2. Given the perturbation manifold, we calculate
the geometric quantities, such as gij(ω).

• Step 3. Choose an objective function f(ω) and calcu-
late FI by (9) when the positive definiteness of G(ω)
is fulfilled; otherwise, we first transform ω and calcu-
late FI by (10).
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Figure 2. The distribution of FIs of all states along the trajectory.
The horizontal axis represents the index of state and the circle size
represents the magnitude of the FI value of each state.

5. Experiments
In this section, we perform numerical studies on the Atari
2600 platform to evaluate the proposed method. Specifi-
cally, we focus on the breakout environment and the C51
algorithm while everything can be extended to other games
and DRL algorithms. Additional experimental results can
be found in the Appendix.

5.1. Detection of fragile states

In this part, we apply adversarial learning to the states, fol-
lowing the experimental setup outlined in Section 3. We
compute FI scores for all the states along a trajectory gen-
erated by a trained policy. As Figure 2 shows, the states
with the large FI scores are between steps 1330 and 1360.
Specifically, we select two states, a high-FI state 1355 and a
low-FI state 1414, and assess the changes in the Q-values af-
ter imposing a small perturbation. The perturbation used in
this work takes the form of c∇f(∆s), which is proportional
to the gradient of the objective function and c is an extremely
small constant, as shown in Figure 3. The original Q-
values at state 1355 are [6.2796354, 6.5242834, 4.1185102,
6.4103985] for the four actions, and the four numbers be-
come [0.6616837, 0.5192522, 2.8266487, 0.08896617] after
the perturbation. In this case, the optimal action, determined
by selecting the action with the maximum Q-value, has
changed. However, for state 1414 with low FI, the Q-values
change from [9.973947, 9.993811, 9.985605, 9.992829] to
[9.977762, 9.995044, 9.987992, 9.99405 ] and the differ-
ence is negligible. This indicates that the Q-values of states
with high FI exhibit more significant changes compared to
the states with low FI after perturbation.

Notice that the gradients corresponding to the states with
high and low FI are quite different. To be fair, we also
impose the same small Gaussian noise to these two states.
In this case, the Q-values of state 1355 become [5.110825,
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Figure 3. Visualization of two states before and after perturbation.
Gradients of the objective function are in the first column, the
original states are in the second column, and the states after pertur-
bation are in the third column.

5.184224, 5.6336656, 4.8403316] and those of state 1414
become [9.763626, 9.86359, 9.777034, 9.81879]. State
1355 still suffers a larger change in the Q-values and the
optimal action to take differs from that before perturbation.
Comparing the two different kinds of perturbations, the
simple Gaussian noise requires the determination of the
mean and the variance, and the criteria for perturbation are
not clear. Thus, we prefer the gradient perturbation ∇f(∆s)

for the following experiments.

Moreover, we are interested in the change of the trajec-
tory after perturbation. As Figure 4 illustrates, there exist
significant differences between the perturbed and original
trajectories for three high-FI states. Taking state 1355 as
an example, we observe that the optimal action taken at this
state changes from FIRE to RIGHT after perturbation. This
alteration leads to a deviation from the original trajectory,
ultimately resulting in an 11% decrease in the final score
compared to the original trajectory. As Figure 5 shows, the
sphere is falling to the lower left and RIGHT is clearly not
a reasonable movement, contributing to the decline in the
final score following the perturbation.

We carry out some further analyses by changing the hy-
perparameter γ from 0.98 to 1. We summarize the FIs of
all states in Figure 6 and perturb the states with high FI
as shown in Figure 7. Figure 6 shows that the states with
high FI are mainly around the 500-th and 1500-th time
steps, which is similar to γ = 0.98. However, as depicted
in Figure 7, the changes in the trajectories after perturba-
tion are much more significant than those in the γ = 0.98

Table 1. The FIs of all layers in the policy network.

TRAINABLE LAYER FI

CON2VD1 KERNEL 0.06668868
CON2VD1 BIAS 0.06669269
CON2VD2 KERNEL 0.06676830
CON2VD2 BIAS 0.06674466
CON2VD3 KERNEL 0.06677952
CON2VD3 BIAS 0.06676660
DENSE1 KERNEL 0.06950542
DENSE1 BIAS 0.08280935
DENSE2 KERNEL 233.681872
DENSE2 BIAS 233.575852

scenario. Figure 8 provides a potential explanation for this
phenomenon. Although the trajectory does not change too
much immediately after the perturbed state 462, the devia-
tion becomes larger after 300 steps. As Figure 8 shows, the
sphere is moving to the left without landing on the board
while the agent stops selecting the right action FIRE again
which results in a premature stop of the trajectory compared
with the original trajectory. This result demonstrates that
FI is an effective tool for detecting potentially vulnerable
states that have a substantial negative impact on model per-
formance when being perturbed, even if the policy remains
unchanged.

5.2. Adversarial learning analysis of policy networks

The proposed FI also allows us to quantify the adversarial
strength of the parameters in the policy network. Table
1 presents the FI values for different layers in the policy
network. The FI values for all three convolutional layers
and the first dense layer are remarkably small, indicating
that these layers are less susceptible to perturbations. On
the other hand, the FI values for the second dense layer
are considerably larger, which is expected as this layer is
located in the later part of the network and is thus more
sensitive to changes.

Furthermore, we can precisely detect the anomalously sen-
sitive parameter that leads to the high FI of the entire layer.
The kernel dimension of the second dense layer is 512×204
and the bias dimension is 204. Experiments show that the
FI analysis of the kernel is similar to that of the bias, and
here we analyze with the bias out of simplicity. We compute
the FI values for each dimension of the DENSE2 BIAS
parameter, and the results are presented in Figure 9(b). As
depicted in Figure 9(b), the 26th, 51st, 77th, 102nd, 128th,
153rd, 179th, and 204th parameters in DENSE2 BIAS have
relatively large FIs exceeding 1.3, which indicates that these
parameters have stronger effects on the model performance.
Interestingly, we display all the 204 parameters of the bias
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Figure 4. Comparison of trajectories before and after perturbation for three selected states with high FIs.
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Figure 5. Visualization of state 1354, state 1355 after perturbation,
and the new state 1356.
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Figure 6. The distribution of FIs of states when γ = 1. The
horizontal axis represents the index of the state, and the circle size
represents the magnitude of the FI value of each state.

term in Figure 9(a) and find a coincidence that the majority
of the 204 parameters are negative, between -0.15 and 0.
Only eight parameters are positive, which just happens to be
the eight parameters with high FI detected by our method.
This coincidence suggests that although most parameters in
the policy network may be negative, the very few positive
parameters can still show great power in affecting the whole
system. Moreover, the absolute values of these positive
parameters tend to be higher than the negative ones, which
may result in their high FI values.

To better understand the results of the adversarial learning
analysis, we perform slight perturbations to the eight posi-
tive parameters with high FI by re-scaling them to be 80%
or 90% large. As a comparison, we also make some drastic
changes to the parameters with the lowest FI by changing
them to 0. As presented in Figure 10, small changes of the
parameters with high FI can dramatically change the whole
trajectory. The agent loses its ability to select appropriate
actions and consequently fails to receive any rewards. How-
ever, as Figure 10(c) shows, a 100% magnitude change of
the parameter with low FI does not have any effect on the
model performance. The complete trajectory comparison is
in the Appendix.

With the FI analysis, we can precisely detect all the ‘weak’
parts of the policy network which can help modify the ar-
chitecture to achieve better performance or when applying
the offline policy to the online environment. This is not the
main focus of this paper, but we point out this direction for
the future studies.

6. Related Work
One key challenge to RL is the distribution shift due to the
difference between the learned policy and the behavior pol-
icy (Lagoudakis & Parr, 2003; Lange et al., 2012; Schulman
et al., 2015; Sun et al., 2018; Janner et al., 2019). A lot of
efforts have been made to reduce the distribution shift, either
by limiting policy deviations or by estimating (cognitive)
uncertainty as a measure of the distribution shift. Different
tools have been developed to address the distribution shift
issue and facilitate generalization that can be used in of-
fline RL algorithms, including those from causal inference
(Schölkopf, 2022), uncertainty estimation (Gal & Ghahra-
mani, 2016; Kendall & Gal, 2017), density estimation and
generative modeling (Kingma et al., 2014), distributional
robustness (Sinha et al., 2017; Sagawa et al., 2019), and
invariance (Arjovsky et al., 2019). Despite some similari-
ties, these works only pay attention to the distribution shift
between the online and offline data while we care about
the whole RL system, including the perturbation imposed
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Figure 7. Comparison of trajectories before and after perturbation for three selected states with high FIs when γ = 1.
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Figure 8. States 780, 785 and 790 in the re-generated trajectory
after perturbing state 461 in the original trajectory when γ=1.

on the input observations, the transition dynamics, and the
policy networks.

Although the topic of adversarial learning analysis in RL
has never been discussed before, many existing works try
to improve the model robustness against the adversarial per-
turbation attacks in deep learning, see (Everett et al., 2021;
Korkmaz, 2020; Lütjens et al., 2020; Tekgul et al., 2022).
Adversarial training or retraining adds adversaries to the
training dataset (Kurakin et al., 2016; Madry et al., 2017)
to increase the robustness of the trained model during test-
ing. Other works increase robustness by distilling networks
(Papernot et al., 2016), comparing the output of model en-
sembles (Tramèr et al., 2017), or comparing the input with a
binary filtered transformation of the input (Xu et al., 2017).

Unlike these prior works, we aim to directly quantify the ex-
tent of the effect of subtle perturbations on RL performance.
We propose an influence measure (FI) for DRL following
the development of local influence analysis of (Zhu et al.,
2007; 2011). FI captures the local influence of the objective
function around ω0 (usually 0), and represents the poten-
tial sensitivity of a component in RL. FI is an intrinsic
property of the component that remains unchanged as the
perturbation changes. To the best of our knowledge, there
is currently no similar metric with this intrinsic property
that portrays sensitivity in the RL domain. Compared with
traditional Euclidean-space based measures, such as Cook’s

local influence measure (Cook, 1986), our influence mea-
sure for DRL captures the intrinsic variation of the objective
function (Zhu et al., 2011). Meanwhile, our influence mea-
sure provides invariance under diffeomorphisms, which is
crucial for evaluating simultaneous effects or comparing the
individual effects of different external and/or internal pertur-
bations with respect to their differences in scaling (Shu &
Zhu, 2019). Besides the usual analysis of state perturbations
(Zhang et al., 2020), our influence measure can also quantify
the adversarial strength of policy structure, which is rarely
studied.

7. Conclusion
In the real world, many policies are trained in one environ-
ment and then applied to another. Although the two environ-
ments appear almost the same, the pre-trained policies can
still perform poorly in the new environment due to some tiny
but non-negligible gaps between the two systems. To better
understand the underlying reasons that cause the failure of a
trained policy, we introduce a FI-based adversarial learning
framework to measure how the change of each local com-
ponent of the RL system affects the overall performance.
FI is constructed from a perturbation manifold and shows
invariance under any reparameterization of the perturbation.
We use the FI to effectively detect the sensitive parts of the
system which threaten the model robustness. We also try
to impose a small perturbation to the detected components
with high FIs to compare the performance of the same pol-
icy before and after perturbation. The experimental results
on the Atari 2600 platform demonstrate the efficiency of
the proposed adversarial learning framework in detecting
potentially fragile states and sensitive parameters in the pol-
icy network. Our work thus far has primarily concentrated
on conducting sensitivity analysis for external input states
and internal network structures. Our overarching objective
is to expand the FI analysis framework to encompass all
components of the RL system, including continuous action
spaces, rewards, and transition models. Additionally, we
explore the practical applications of our method. For task
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Figure 9. Visualization of the parameters in the DENSE2 BIAS layer and the corresponding FIs.
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Figure 10. The trajectory comparisons before and after perturbing the parameters with the high FI and low FI. (a)-(b) Comparison of
trajectories for two parameters with high FI, (i) Comparison of trajectories for the parameter with the lowest FI, where -10% and /100%
represent the change of the magnitude of the original parameters.

(i), where vulnerable states are identified, we can leverage
these states to generate adversarial examples or enhance
the policy through data augmentation. In tasks (ii) and (iii),
involving the identification of unstable policy architecture
and sensitive policy parameters, the FI analysis serves as
a valuable guide for selecting or improving the network
architecture.
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A. Additional Adversarial Learning Results
The complete trajectory comparisons before and after perturbing the eight positive parameters with high FI by re-scaling
them to be 80% or 90% large and changing the parameter with the lowest FI to 0 are in Figure 11. The influence of making
changes to parameters with high FIs is dramatic, but a 100% magnitude change to parameters with low FI does not have
any effect on the trajectory.
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Figure 11. The trajectory comparisons before and after perturbing the parameters with the high FI and the lowest FI, respectively, and
the original trajectory, (a)-(g) the comparisons of the first eight parameters with high FI, (i) the comparison of the parameter with the
lowest FI, where -10%/20%/100% represents the percentage value of the original parameter subtracted.

We provide some additional results of the state sensitivity analysis by FI, including the result of the breakout environment
when γ is 0.995, in Figure 12, and the corresponding results for the Alien and Asteroids environments are shown in Figure
13 and Figure 14, respectively, with sensitivity analysis similar to that mentioned above. In addition to the cases with a
relatively discrete FI distribution, our experiments also obtained some very concentrated FI distribution cases, for example,
in the Pong and Freeway environments, FI fluctuates around 0.032 and 0.025, respectively, see Figure 15, indicating that
there are no particularly vulnerable state points on the trajectory. Perturbing the state of the highest FI in the trajectory in
the pong environment changes the distribution of Q-values from [1.3898636, 1.4035478, 1.3787719, 1.3975887, 1.3763726,
1.4176952] to [1.4398711, 1.4520737, 1.4266012, 1.4448254, 1.4240125, 1.4781928], with minimal change, and does not
affect the choice of action. To investigate the reason, the trajectory scores in the Pong and Freeway environments basically
reach the upper limit, indicating that the strategies are well trained and do not have excessive fragility.
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Figure 12. The adversarial learning analysis of Breakout with γ=0.995, (a) for the the FI distribution along the steps, (b)-(d) for the
comparisons of the trajectory after perturbing the parameters with the high FIs.
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Figure 13. The adversarial learning analysis of Alien, (a) for the the FI distribution along the steps, (b) for the comparisons of the
trajectory after perturbing the parameters with the high FI.
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Figure 14. The adversarial learning analysis of Asteroids, (a) for the the FI distribution along the steps, (b) for the comparisons of the
trajectory after perturbing the parameters with the high FI.
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Figure 15. The FI distribution of Pong and Freeway, respectively, (a) for Pong, (b) for Freeway.
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