
All in a Row: Compressed Convolution Networks for Graphs

Junshu Sun 1 2 Shuhui Wang 1 3 Xinzhe Han 1 2 Zhe Xue 4 Qingming Huang 1 2 3

Abstract

Compared to Euclidean convolution, existing
graph convolution methods generally fail to learn
diverse convolution operators under limited pa-
rameter scales and depend on additional treat-
ments of multi-scale feature extraction. The chal-
lenges of generalizing Euclidean convolution to
graphs arise from the irregular structure of graphs.
To bridge the gap between Euclidean space and
graph space, we propose a differentiable method
for regularization on graphs that applies permuta-
tions to the input graphs. The permutations con-
strain all nodes in a row regardless of their input
order and therefore enable the flexible general-
ization of Euclidean convolution. Based on the
regularization of graphs, we propose Compressed
Convolution Network (CoCN) for hierarchical
graph representation learning. CoCN follows the
local feature learning and global parameter shar-
ing mechanisms of Convolution Neural Networks.
The whole model can be trained end-to-end and
is able to learn both individual node features and
the corresponding structure features. We validate
CoCN on several node classification and graph
classification benchmarks. CoCN achieves supe-
rior performance over competitive convolutional
GNNs and graph pooling models. Codes are avail-
able at https://github.com/sunjss/CoCN.

1. Introduction
Graph Neural Networks (GNNs) based on convolution have
become ubiquitous in various graph representation learning

1Key Laboratory of Intelligent Information Processing, Insti-
tute of Computing Technology, Chinese Academy of Sciences,
China 2School of Computer Science and Technology, University
of Chinese Academy of Sciences, China 3Peng Cheng Laboratory,
China 4Beijing Key Laboratory of Intelligent Telecommunication
Software and Multimedia, School of Computer Science, Beijing
University of Posts and Telecommunications, China. Correspon-
dence to: Shuhui Wang <wangshuhui@ict.ac.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tasks, such as node classification (Hamilton et al., 2017)
and graph classification (Xu et al., 2019). Despite their ef-
fectiveness, convolutional GNNs (Defferrard et al., 2016;
Kipf & Welling, 2017; He et al., 2021; Chien et al., 2022)
suffer from inherent problems. First, the customized graph
convolution based on polynomials is less expressive under
limited parameter scales (Li et al., 2018; Huang et al., 2022;
Eliasof et al., 2022). Second, convolutional GNNs fail to
directly perform hierarchical representation learning (Ying
et al., 2018). Existing graph convolution models require
additional node clustering (Ying et al., 2018) or node drop
methods (Gao & Ji, 2019) to extract multi-scale features. In
contrast, Convolution Neural Networks (CNNs) based on
Euclidean convolution are free of the above problems. Own-
ing to the local feature learning ability and global parameter
sharing mechanism, CNNs can learn diverse convolution
operators and capture multi-scale local patterns on regular
grid data. The expressiveness of CNN has led to its great
success in various domains such as image understanding
(Krizhevsky et al., 2017; He et al., 2016) and video under-
standing (Ji et al., 2013; Tran et al., 2015). In light of this, a
straightforward solution is to adopt Euclidean convolution
for GNNs on non-grid graph data.

Nevertheless, directly generalizing Euclidean convolution
to graphs faces with challenges from various aspects. From
the graph perspective, they generally have irregular local
structures that are different from the grid data in Euclidean
space. Therefore, a graph regularization module is required
to extend the expressiveness of Euclidean convolution from
regular grids to irregular topology. Methods have been
proposed for the regularization of graphs based on node se-
quence selection (Niepert et al., 2016; Eliasof et al., 2022).
However, these methods may generate less informative reg-
ularized graphs for the subsequent convolution operations,
since their regularization methods on graphs are indepen-
dent of the convolution process and hence cannot be opti-
mized for specific tasks. From the Euclidean convolution
perspective, it is sensitive to the local spatial order, while
GNNs should preserve permutation invariance, i.e., produce
the same node representations regardless of the order of
the nodes. For permutation invariant transformation, recent
studies (Murphy et al., 2019a;b; Huang et al., 2022) propose
to enumerate or sample permutations to adopt permutation-
sensitive operators for GNNs, but they are computationally

1

All in a Row: Compressed Convolution Networks for Graphs

intractable for learning on large graphs.

In this paper, we propose Compressed Convolution Network
(CoCN), a hierarchical GNN model for end-to-end graph
representation learning. Compared to existing models, we
highlight our CoCN as follows: (1) it optimizes regular re-
ceptive field for convolution while preserving permutation
invariance; (2) it can learn diverse local operators; and (3)
it directly applies hierarchical feature learning on graphs.
Technically, CoCN generalizes Euclidean convolution to
graphs with two main components, i.e., Permutation Gener-
ation and Diagonal Convolution. For Permutation Genera-
tion, we consider regularization on graphs as a permutation
problem that arranges input nodes under a proper order. It
constrains all nodes in a row with permutation invariance,
enabling flexible generalization of Euclidean convolution to
graphs. This is achieved by approximating the permutation
matrix through a differentiable transformation with node
position regression and cyclic shift.

We theoretically demonstrate the convergence of our pro-
posed permutation generation method and the permutation
invariance of the permuted features. Based on the permuted
graph representation, Diagonal Convolution is proposed
to aggregate both individual node features and the corre-
sponding structure features. It inherits the local feature
learning and global parameter sharing mechanisms from
Euclidean convolution and follows the diagonal sliding fash-
ion for edge feature learning. Moreover, to directly achieve
hierarchical feature learning with Diagonal Convolution,
anti-diagonal compression (Fig. 1) is proposed for edge
features update. Therefore, CoCN can learn diverse local
operators and extract both node features and edge features
explicitly with hierarchical convolution. Our contribution
can be summarized as follows:

• We propose a novel method for regularization
on graphs that enables the generalization of the
permutation-sensitive Euclidean convolution to graphs.

• We propose a hierarchical GNN model, CoCN, which
can learn both individual node features and the corre-
sponding structure features from coarse to fine.

• We demonstrate the advantages of CoCN on six node
classification and six graph classification benchmarks.

2. Related Work
Convolution Operator on Graphs. To generalize convo-
lution operators to graph-structured data, Bruna et al. first
propose graph convolution based on graph signal processing
theory. To reduce filter parameter scale, ChebyNet (Deffer-
rard et al., 2016) uses parameterized graph Laplacian poly-
nomial to learn convolution filters. Following up this work,
models with simpler filter structures have been proposed,

e.g., first-order low-pass filter model (Kipf & Welling, 2017;
Wu et al., 2019). Except for graph Laplacian polynomials,
methods have been proposed for more expressive convo-
lution operators. Klicpera et al. extend graph Laplacian
to a more general transition matrix. Inspired by Feynman
path integral theory, PAN (Ma et al., 2020) formulates graph
convolution as the polynomial of adjacency matrix with
coefficients depending on the corresponding path. Though
polynomials can approximate any sophisticated filter the-
oretically (Wang & Zhang, 2022), its expressive power is
bounded by the order, and high-order filters are known to
be computationally expensive.

The other vital type of graph convolution is combining reg-
ularized graphs with shared filters. These methods are able
to learn complex filters without the constraint of polyno-
mial order. Niepert et al. propose to extract normalized
neighborhoods to serve as input data to CNNs. However,
the model is less expressive since its normalization cannot
be integrated into the learning process. PathConv (Elia-
sof et al., 2022) regularizes graphs with random walk and
applies convolution to the generated node sequence. PG-
GNN (Huang et al., 2022) also utilizes sampling methods
to convert the neighborhood of nodes into sequences and
models pairwise correlations by RNN. Despite using expres-
sive spatial filters, the above-mentioned sampling strategies
involve increasing computational costs and may inject noise
signals. Compared to existing regularization-based models,
our CoCN regularizes the input graphs with differentiable
permutations that can be optimized for specific tasks.

Hierarchical Pooling GNNs. Except for node-level and
graph-level features, the intermediate-scale features are also
crucial for graph representation learning (Ying et al., 2018;
Boguñá et al., 2021). GNNs with hierarchical representation
learning have been studied, which are generally called graph
pooling or graph coarsening. Defferrard et al. use Graclus
greedy algorithm to select and combine node pairs at every
coarsening level. To further preserve structural information,
more topology-based clustering methods are adopted for
iterative graph pooling, such as edge collapsing (Hu, 2006;
Chen et al., 2018), structural similarity (Hu et al., 2019) and
spectral similarity (Deng et al., 2020). Other node cluster-
ing methods (Ying et al., 2018; Baek et al., 2022) learn soft
assignment matrix rather than deterministic clustering to
perform graph pooling. Node drop methods (Cangea et al.,
2018; Gao & Ji, 2019; Lee et al., 2019) use top-K selection
method to drop irrelevant nodes. Despite their effectiveness,
these methods suffer from information loss (Wu et al., 2022).
To address this problem, Wu et al. use structural entropy
to get a learning-free hierarchical structure. Different from
graph pooling methods, our CoCN avoids node clustering
or node drop layer-by-layer and performs hierarchical rep-
resentation learning directly through diagonal convolution
with anti-diagonal compression.

2

All in a Row: Compressed Convolution Networks for Graphs

1 2 7 5 3 46
1

2
7

5

3
4

6

1
2

7
5

3

4

6

PERMUTE CONV

0
0 0 0

0
0
0
0

00

00

0
0

0
0
0

0
0

0
0

0

0

CONV

3

Figure 1. Compressed Convolution Network Pipeline. CoCN first permutes the node feature matrix and the edge feature matrix based
on the learnable permutation matrix. Then diagonal convolution is applied to both feature matrices following the diagonal sliding fashion
on the edge feature matrix. The off-diagonal features, displayed with twill pattern, are not involved in the convolution, so they are learned
in the subsequent layers.

3. Regularization on Graphs
We describe how to regularize graph-structured data through
learnable permutations, which facilitates the whole model
to be trained end-to-end. This enables task-specific opti-
mization on the regularized graph.

3.1. Notations

Let G = (V, E) be a graph with node set V =
{v1, v2, · · · , vn} of n nodes and edge set E . Each node
v ∈ V has a feature vector xv ∈ Rd where d denotes the
number of features. We use X ∈ Rn×d to denote the graph
node feature matrix. Node feature vector x⊤

vi corresponds
to the i-th row of X. Let A ∈ Rn×n be the adjacency
matrix of G and D ∈ Rn×n be the diagonal degree ma-
trix. Ai,j = 1 if there exists an edge ei,j = (i, j) ∈ E
and Di,i =

∑
j Ai,j . We use 1 ∈ Rn to denote the all-

ones vector. Let P be the permutation set over n indices,
|P| = n!. For any P ∈ P , P ∈ Rn×n, P1 = 1⊤P = 1,
Pi,j ∈ {0, 1}.

3.2. Position Regression

We formulate permutation generation as a position regres-
sion problem. The intuition behind is that nodes with similar
features or short paths in between will get closer position
prediction. The approximate position rA ∈ Rn is given by:

rA = f (X,A) , (1)

where f can be any permutation equivariant function. Since
the approximate position for each node is a scalar, we can
apply global pair-wise value comparison to rank the nodes.
The resulted absolute position r ∈ Rn can be formulated as:

r = sgn
(
rA1

⊤ − 1r⊤A
)
1, (2)

where sgn(·) denotes the sign function. If x > 0,
sgn(x) = 1 otherwise sgn(x) = 0. Note that the sign

function is not differentiable. To address this problem, we
use the sigmoid function to approximate the sign function
in backpropagation.

3.3. Permutation Matrix Generation

With Eq. 1 and Eq. 2, the generated node positions are
assigned to all input nodes. A natural follow-up question is
how to convert the absolute position r into a permutation
matrix. We resort to the cyclic shift (Carter, 2009) of matrix
entries.

Take row permutation as an example, Pi,j = 1 indicates
moving the j-th row to the i-th row. Therefore, given ab-
solute position ri for the i-th node, the corresponding per-
mutation matrix P should have an entry equal to 1 at (ri, i).
To convert absolute positions into a permutation matrix, the
model needs to assign 1 to the given positions.

We first consider the column vector P·,j which corresponds
to the j-th node assignment. Let m ∈ Rn denote the in-
dicator of P·,j , initialized as mi = i. The zero entry of
m indicates that the corresponding entry of P·,j equals 1,
while non-zero entries indicate the number of cyclic shift
steps to 1. Pi,j is mi steps away from value 1. The cyclic
shift on m is equivalent to value assignment on P·,j . We
can use element-wise addition and modulus to cyclically
shift the indicator entries. Given absolute position k, the
initial indicator m takes k steps cyclic shift by (m− k+ n)
(mod n).

We now extend to determine the whole permutation matrix
for the given absolute position r. Each column of the permu-
tation matrix corresponds to a single node assignment. Let
m1⊤ denote the initial indicator of the permutation matrix.
The absolute position r can be converted into permutation
matrix as:

P̂ = exp
{
−τ
[(
m1⊤ − 1r⊤ + n

)
(mod n)

]}
, (3)

3

All in a Row: Compressed Convolution Networks for Graphs

where τ denotes the relaxation factor and exp(·) denotes
the exponential function for mapping indicator entries to
permutation entries. Note that the Eq. 3 gives the relaxed
permutation matrix to overcome the gradient vanishing prob-
lem, where P̂i,j ∈ (0, 1]. One can instead use Proposition
3.1 or replace exp(·) with other functions to get the standard
permutation matrix. Proofs for propositions in this section
are provided in Appendix A.

Proposition 3.1. (Permutation Convergence) P̂ converges
to standard permutation matrix as relaxation factor τ ap-
proaching positive infinity: lim

τ→+∞
P̂ = P,P ∈ P .

For simplicity, we compile Eq. 1-3 as operation PERM(·).
The output of PERM(·) can be used to generate permutation
invariant input for the subsequent convolution.

Proposition 3.2. (Permutation Invariant Input) Let f
be a permutation equivariant function such that for any
P ∈ P , f(PX,PAP⊤) = Pf(X,A). Then given P̂ =

PERM(X,A), X̂ = P̂X, and Â = P̂AP̂⊤, for any P ∈ P
on X and A, X̂ and Â are invariant.

Regularization on graphs with position regression and or-
der permutation transfers the irregular graph to a regular
vector with proper order. Proposition 3.1 and 3.2 demon-
strate that such permutation is differentiable, convergent,
and input-order invariant, which facilitates flexible calcula-
tion of spatial convolutions.

4. Compressed Convolution Network
In this section, we present Compressed Convolution Net-
work (CoCN), a GNN model based on diagonal convolution
for hierarchical graph representation learning. We first out-
line the implementation of the building blocks of CoCN and
then describe the network architecture for node classifica-
tion and graph classification.

4.1. Permutation Generation

The permutation module is described in Section 3. There are
many possible implementations of the permutation equiv-
ariant function in Eq. 1. In this paper, we use MLP to learn
node features and the Laplacian operator to smooth the ap-
proximate position of connected nodes. Nodes with similar
features or short paths in between will have similar positions.
Eq. 1 can be written as:

rA = ÃtMLP(X), (4)

where Ã = D− 1
2AD− 1

2 denotes the Laplacian operator,
and t denotes the power of Ã to adjust the smoothness.
MLP uses ReLU as the activation function at each layer. In
practice, we produce multiple approximate positions rA to
allow node arrangements under different similarities. The

permutation generation module then follows Eq. 2 and Eq. 3
to generate multiple permutations to the subsequent convo-
lution layers.

4.2. Diagonal Convolution

The permutations can be seen as a spatial position map-
ping to Euclidean space where all nodes are in a row. The
adjacent nodes can be defined as a sequence of neighbors
regardless of the edge connection. All nodes share the con-
stant local geometry structure, allowing us to generalize
convolution in Euclidean space to graphs. We now present
our diagonal convolution operator.

Let X̂ = P̂X be the sequential node feature matrix and
Â = P̂AP̂⊤ be the sequential topological feature matrix.
Note that the adjacency matrix can be seen as the edge fea-
ture matrix with a single channel. We can easily generalize
our model to multi-channel edge features. For simplicity,
we only consider the adjacency matrix here. Similar to
2D convolution, the diagonal structural convolution with a
single kernel can be formulated as:

Kstr
i

(
Â, k

)
=

k−1∑
p=0

k−1∑
q=0

wp,qÂi+p,i+q, (5)

where w ∈ Rk×k denotes the convolution kernel parame-
ters for Â, k denotes the kernel size and i denotes the index
of Â that corresponds to the top-left entry of convolution
kernel. Eq. 5 gives the single-step diagonal structural con-
volution. Typical 2D convolution follows the progressive
sliding fashion on images where the kernels first slide in a
column-wise manner and then row-wise. Instead, we per-
form diagonal sliding on Â to adapt to the scale of graphs.
Specifically, for k × k convolution with step length s, the
top-left entry index i starts at (0, 0), moves to (s, s) and
stops at (n−k+1, n−k+1). Further including sequential
node features, the diagonal structural convolution can be
generalized to a unified diagonal convolution as:

Ki

(
Â, X̂, k

)
=

k−1∑
p=0

(
k−1∑
q=0

wp,qÂi+p,i+q +

d−1∑
t=0

vp,tX̂i+p,t

)
,

(6)
where v ∈ Rk×d denotes the convolution kernel parameters
for X̂. For the input graph of n nodes, applying k × k
diagonal convolution with diagonal sliding step length s
gives rise to the node feature vector of length ⌊n−k

s ⌋ +

1. Let S = (Sj) ∈ R⌊n−k
s ⌋+1 denote the output single

channel node feature vector. We can formulate the multi-
step diagonal convolution with diagonal sliding as:

S = K
(
Â, X̂, k, s

)
,

Sj = Ki

(
Â, X̂, k

)
, i = sj.

(7)

4

All in a Row: Compressed Convolution Networks for Graphs

4.3. Compressed Convolution Layer

To construct a multi-layer network with diagonal convolu-
tion, we need to update the input features at each layer. As
described in Subsection 4.2, the diagonal convolution fol-
lows the diagonal sliding fashion on the input edge feature
matrix (Â for example). At each step, the diagonal convo-
lution extracts node set features including individual node
features from X̂ and the structure features among nodes
from the main diagonal blocks of Â.

For individual node feature update, we take input nodes as
n node sets where each node set only contains a single node.
Let H be the node set feature matrix and H(0) = X̂ be the
initial node set feature matrix. H can be updated with the
diagonal convolution output.

For structure feature update, let E be the structure fea-
ture matrix initialized with E(0) = Â1. The off-
diagonal features in E that are not involved in the convo-
lution represent the topological structure features among
node sets. If the diagonal convolution takes unit slid-
ing steps, we can update E by removing the main diag-
onal blocks. We use PyTorch-style pseudo-code to for-
mulate the update equation as E(l) = Tri(E(l−1), k) =
triu(E(l−1), k)+tril(E(l−1),−k), where k denotes the
kernel size, triu(·, i) denotes the upper triangular matrix
with i diagonals above the main diagonal and tril(·,−i)
denotes the lower triangular matrix with i diagonals below
the main diagonal. If the diagonal convolution takes non-
unit steps, we use standard 2D max pooling with the same
kernel size and step size as diagonal convolution to update
the structure features.

With the proposed update method, the structure feature ma-
trix E is compressed from the anti-diagonal direction. We
name this network layer with diagonal convolution and anti-
diagonal compression as compressed convolution layer. The
l-th compressed convolution layer with k(l) × k(l) diagonal
convolution and sliding step s(l) is formulated as:

H(l) = σ
(
K
(
E(l−1),H(l−1), k(l), s(l)

))
, (8)

E(l) =

{
Tri

(
E(l−1), k(l)

)
, if s(l) = 1;

MaxPool
(
E(l−1), k(l), s(l)

)
, otherwise.

(9)
where σ denotes the ReLU function, E(l) ∈ Rn(l)×n(l)

and
n(l) denotes the number of the output node sets. Following
the common practice in CNN models, compressed convolu-
tion layers will contain multiple convolution kernels which
give rise to H(l) ∈ Rn(l)×c(l) , where c(l) denotes the num-
ber of kernels. We refer to the compressed convolution layer
with non-unit step as compressed pooling layer.

1Â can be replaced with any multi-channel edge feature matrix.

Input
Module

Output
Module

CoConv
Layer

× ��

+ Pooling

× ��

+
CoConv
Layer

+

Permutation
Module

Convolution Module

(a) Graph Classification

CoConv
Layer

× ��+

TConv

�� ×

+Pooling

× ��+

TConv

�� ×

+
Input

Module
Output
Module

Permutation
Module

Convolution Module

CoConv
Layer

+

TConv +

(b) Node Classification

Figure 2. Compressed Convolution Network Structure. The Co-
Conv layer represents compressed convolution layers. Pooling
represents compressed pooling layers. TConv represents trans-
posed convolution with ReLU. The dashed lines represent shortcut
with average pooling

4.4. Network Architecture

We now present our hierarchical graph representation learn-
ing model CoCN. CoCN mainly contains four modules,
i.e., input module, permutation generation module, convo-
lution module and output module. The network structures
of CoCN for graph classification and node classification are
presented in Fig. 2(a) and Fig. 2(b). The input module is
implemented with a single-layer linear transformation fol-
lowed by layer normalization and ReLU. The permutation
generation module has been described in Subsection 4.1. In
the convolution module, features permuted under different
permutation matrices are learned in parallel, where different
permutation heads share the same module parameters.

For both tasks, the down-sampling convolution block con-
sists of L1 compressed convolution layers with unit step,
L2 compressed pooling layers with the same step length as
filter size, and a single compressed convolution layer with
unit step. To recover node representations from multi-scale
features, we stack L1+L2+1 transposed convolution layers
(Noh et al., 2015) as an up-sampling convolution block for
node classification. Direct shortcut connections are estab-
lished between the compressed convolution/pooling layers

5

All in a Row: Compressed Convolution Networks for Graphs

Table 1. Graph Classification Results (measured by accuracy: %).

MUTAG PROTEINS NCI1 IMDB-B IMDB-M COLLAB
GRAPHS 188 1,113 4,110 1,000 1,500 5,000
AVG NODES 17.93 39.06 29.87 19.77 13 74.5
AVG EDGES 39.6 145.6 64.6 193.1 131.87 4,914.4
NODE FEATURES 7 3 37 0 0 0
PATCHY-SAN 88.95±4.21 75.00±2.51 78.60±1.90 71.00±2.29 45.23±2.84 72.60±2.15
GCN 69.50±1.78 73.24±0.73 76.29±1.79 73.26±0.46 50.39±0.41 80.59±0.27
GIN 81.39±1.53 71.46±1.66 80.00±1.40 72.78±0.86 48.13±1.36 78.19±0.63
GRAPHSAGE 83.60±9.60 73.00±4.50 76.00±1.80 68.80±4.50 47.60±3.50 73.90±1.70
PG-GNN - 76.80±3.80 82.80±1.30 76.80±2.60 53.20±3.60 80.90±0.80
TOPKPOOL 67.61±3.36 70.48±1.01 67.02±2.25 71.58±0.95 48.59±0.72 77.58±0.85
SAGPOOL 73.67±4.28 71.56±1.49 67.45±1.11 72.55±1.28 50.23±0.44 78.03±0.31
ASAP 77.83±1.49 73.92±0.63 71.48±0.42 72.81±0.50 50.78±0.75 78.64±0.50
DIFFPOOL 79.22±1.02 76.25±1.00 62.32±1.90 73.14±0.70 51.31±0.72 82.13±0.43
MINCUTPOOL 79.17±1.64 74.72±0.48 74.25±0.86 72.65±0.75 51.04±0.70 80.87±0.34
STRUCTPOOL 79.50±0.75 75.16±0.86 78.64±1.53 72.06±0.64 50.23±0.53 77.27±0.51
EDGEPOOL 74.17±1.82 75.12±0.76 - 72.46±0.74 50.79±0.59 -
SEP 85.56±1.09 76.42±0.39 79.35±0.33 74.12±0.56 51.53±0.65 81.28±0.15
GMT 83.44±1.33 75.09±0.59 76.35±2.62 73.48±0.76 50.66±0.82 80.74±0.54
COCN (OURS) 87.08±0.17 76.86±0.13 82.89±0.19 77.26±0.27 56.32±0.18 86.15±0.10

and the transposed convolution layers for better feature re-
covery. Within both the compressed convolution/pooling
layers and the transposed convolution layers, we also add
average pooling as shortcuts. Eq. 8 can be written as:

H(l) =σ
(
K
(
E(l−1),H(l−1), k(l), s(l)

))
+ AvgPool

(
H(l−1), k(l), s(l)

)
.

(10)

In the output module of graph classification, CoCN uses
max pooling to extract graph-level representation. While
for node classification, CoCN re-permutes the extracted
features from the L-th layer with P̂⊤H(L) and concatenates
the re-permuted features under different permutations to
perform the final predictions.

5. Experiments
We empirically evaluate CoCN on real-world benchmarks.
The code of CoCN is implemented with PyTorch (Paszke
et al., 2019) and PyTorch-Geometric (Fey & Lenssen, 2019).
CoCN is trained on a single Nvidia Geforce RTX 3090. The
detailed model structure and hyper-parameter setting are
presented in Appendix B.

5.1. Graph Classification

Datasets. For graph classification, we use six datasets (Mor-
ris et al., 2020) including three biochemical datasets MU-
TAG, PROTEINS, NCI1 and three social network datasets
COLLAB, IMDB-BINARY and IMDB-MULTI. We per-
form 10-fold cross-validation with LIB-SVM following Xu
et al. and report average performance. Since COLLAB,
IMDB-BINARY and IMDB-MULTI have no input node

features, we use the one-hot encoding of node degrees as
node features following Xu et al.. The statistics of these
datasets are summarized in Tab. 1.

Baselines. For baseline models, we consider (1) GNNs
with different convolution designs including PATCHY-SAN
(Niepert et al., 2016), GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), GIN (Xu et al., 2019) and
PG-GNN (Huang et al., 2022); (2) Node drop based hierar-
chical graph pooling models including TopKPool (Gao &
Ji, 2019), SAGPool (Lee et al., 2019) and ASAP (Ranjan
et al., 2020); and (3) Node clustering based hierarchical
graph pooling models including DiffPool (Ying et al., 2018),
EdgePool (Diehl, 2019), MinCutPool (Bianchi et al., 2020),
StructPool (Yuan & Ji, 2020), SEP (Wu et al., 2022) and
GMT (Baek et al., 2022).

Performance. The results of CoCN and baselines for graph
classification are presented in Tab. 1. CoCN surpasses con-
volutional GNNs and graph pooling methods on all datasets
except MUTAG, especially on social network datasets like
COLLAB that do not provide any node features. For MU-
TAG, only PATCHY-SAN outperforms our method but it
is very unstable across repeat tests and degrades a lot on
COLLAB and IMDB-M due to the lack of edge feature
learning. In Section 5.3, we further demonstrate that CoCN
can achieve comparable performance to PATCHY-SAN with
only structure features on MUTAG.

5.2. Node Classification

Datasets. For node classification, we conduct experiments
on six datasets including Chameleon, Squirrel (Rozember-
czki et al., 2021), Cornell, Texas, Wisconsin (Pei et al.,

6

All in a Row: Compressed Convolution Networks for Graphs

Table 2. Node Classification Results (measured by accuracy: %).

CHAMELEON SQUIRREL CORNELL TEXAS WISCONSIN ACTOR

AVG RANK
NODES 2,277 5,201 198 183 251 7,600
EDGES 36,101 198,493 295 309 499 33544
FEATURES 2,325 2,089 1,703 1,703 1,703 932
GCN 59.82±2.58 36.89±1.34 57.03±4.67 59.46±5.25 59.80±6.99 30.26±0.79 11.17
CHEBYNET 55.24±2.76 43.86±1.64 74.30±7.46 77.30±4.07 79.41±4.46 34.11±1.09 8.17
GEOM-GCN 60.00±2.81 38.15±0.92 60.54±3.67 66.76±2.72 64.51±3.66 31.59±1.15 10.17
GRAPHSAGE 49.06±1.88 36.73±1.21 80.08±2.96 82.03±2.77 81.36±3.91 35.07±0.15 7.00
FAGCN 46.07±2.11 30.83±0.69 76.76±5.87 76.49±2.87 79.61±1.58 34.82±1.35 9.17
APPNP 40.44±2.02 29.20±1.45 56.76±4.58 55.10±6.23 54.59±6.13 30.02±0.89 13.00
MIXHOP 60.50±2.53 43.80±1.48 73.51±6.34 77.84±7.73 75.88±4.90 32.22±2.34 8.33
LINKX 68.42±1.38 61.81±1.80 77.84±5.81 74.60±8.37 75.49±5.72 36.10±1.55 6.33
GGCN 71.14±1.84 55.17±1.58 85.68±6.63 84.86±4.55 86.86±3.29 37.54±1.56 2.50
ACMII-GCN 68.46±1.70 51.80±1.50 85.95±5.64 86.76±4.75 87.45±3.74 36.43±1.20 2.33
GPRGCN 62.59±2.04 46.31±2.46 78.11±6.55 81.35±5.32 82.55±6.23 35.16±0.90 5.17
GCNII 63.86±3.04 38.47±1.58 77.86±3.79 80.39±3.83 77.57±3.40 37.44±1.30 5.83
COCN (OURS) 79.17±0.17 72.95±0.23 86.22±0.49 85.21±0.49 86.88±0.45 36.35±0.12 1.83

2020) and Actor (Tang et al., 2009). For Chameleon, Squir-
rel, Cornell, Texas and Wisconsin, we use the same random
train/validation/test splits of 48%/32%/20% as Pei et al.2

and report average performance over ten splits. The statis-
tics of node classification datasets are summarized in Tab. 2

Baselines. We consider GNNs with different convolu-
tion designs which can make node-level predictions, in-
cluding ChebyNet (Defferrard et al., 2016), GCN (Kipf
& Welling, 2017), GraphSAGE(Hamilton et al., 2017),
APPNP (Gasteiger et al., 2018), MixHop (Abu-El-Haija
et al., 2019), Geom-GCN (Pei et al., 2020), GCNII (Chen
et al., 2020), FAGCN (Bo et al., 2021), GGCN (Yan et al.,
2022), LINKX (Lim et al., 2022), GPRGCN (Chien et al.,
2022) and ACMII-GCN (Luan et al., 2022).

Performance. The results of CoCN and baselines are
presented in Tab. 2. CoCN gets competitive results on
all six datasets and outperforms other baseline models on
Chameleon, Squirrel and Cornell. For Texas, Wisconsin and
Actor, CoCN slightly underperforms GGCN and ACMII-
GCN. This is because the node connectivity is weak on these
datasets, making the structure features less informative for
CoCN. However, CoCN still constantly achieves superior
performance compared to other models, which proves the
efficacy of our model for node classification.

Filtered Datasets. Platonov et al. find that there are many
duplicate nodes among the train, validation and test splits in
Chameleon and Squirrel. This results in the train-test data
leakage that induces GNNs to fit the test splits during the
training stage, making the performances on Chameleon and
Squirrel become less convincing. To further validate CoCN
on Chameleon and Squirrel, we adopt filtered Chameleon
and Squirrel datasets that do not contain duplicate nodes

2The original random splits in Pei et al. is 60%/20%/20%,
which is different from their open source data splits.

Table 3. Node Classification Results (measured by accuracy:
%) on Original / Filtered Chameleon and Squirrel.

Chameleon Squirrel
Ori. Filtered Ranks Ori. Filtered Ranks

FAGCN 64.23 41.90 6 / 2 47.63 41.08 5 / 1
GCN 50.18 40.89 11 / 4 39.06 39.47 7 / 3
ResNet+adj 71.07 38.67 3 / 13 65.46 38.37 3 / 5
FSGNN 77.85 40.61 2 / 5 68.93 35.92 2 / 11

CoCN (Ours) 79.61 41.95 1 / 1 73.27 39.69 1 / 2

following Platonov et al.. The performance comparison
between original and filtered datasets is presented in Tab. 3.
The results of baselines are from Platonov et al.. The ranks
denote the accuracy ranking out of 18 models on original
and filtered datasets respectively. We only list four top-
ranking baselines here: FSGNN (Maurya et al., 2022) and
ResNet+adj (Platonov et al., 2023) for original datasets,
GCN and FAGCN for filtered datasets. For full compar-
ison results, please refer to Appendix C.1. As presented
in Tab. 3, CoCN consistently outperforms baseline models
on both original and filtered datasets. Compared to other
models, CoCN is less sensitive to node duplicates and has
stronger generalizing ability. The results further validate the
reliability of CoCN on Chameleon and Squirrel.

Mini-Batch Classification. CoCN achieves permutation
invariance through learnable permutations. Compared to
permutation enumeration, the permutation module of CoCN
depends on specific tasks to generate the required permu-
tations. As a result, CoCN reduces the time complexity
of permutation modeling on n nodes from O(n!) to O(n2)
which enables node permutation on large graphs. How-
ever, as the scale of real-world graphs continuously grows,
mini-batching becomes vital for scalable graph learning

7

All in a Row: Compressed Convolution Networks for Graphs

Table 4. Batching Node Classification Results (amazon-ratings
measured by accuracy: %, questions and genius measured by
ROC AUC: %).

questions amazon-ratings genius

Nodes 48,921 24,492 421,961
Edges 153,540 93,050 984,979
Features 301 300 12

GCN 76.09 48.70 87.42
GAT 77.43 49.09 55.80
APPNP 64.49 46.62 85.36
GPRGCN 55.48 44.88 90.05
GCNII 75.17 46.13 90.24
GloGNN 65.74 36.89 90.66
MixHop 58.51 42.06 90.58
LINKX 69.43 44.76 90.77

CoCN (Ours) 77.86 49.05 90.58

(Zeng et al., 2020). To evaluate the potential of CoCN on
large-scale graphs, we conduct batching node classification
experiments on three datasets including genius (Lim et al.,
2022), questions and amazon-ratings (Platonov et al., 2023).
We use the mini-batching method Cluster-GCN (Chiang
et al., 2019) for CoCN and full-batch training for baselines.
The batch size is selected from {10, 50, 100} that achieves
the best performance on the validation set. CoCN performs
comparably to full-batch classification results in Tab. 4. The
results show that CoCN still demonstrates promising node
classification efficacy under mini-batch training settings.
This facilitates its application to large-scale graphs.

(a) Original (b) 0.01 (c) 0.1 (d) 1.0 (e) 10.0

Figure 3. Permutation Information Loss. The results under dif-
ferent relaxation factors τ are compared.

5.3. Model Analysis

5.3.1. PERMUTATION ANALYSIS

Information Loss. We conduct graph reconstruction ex-
periments following Bianchi et al. to study whether the
approximate permutations cause information loss. Given in-
put features, an autoencoder is trained to recover the original
features from the permuted features. The learning objective
is to minimize the mean squared error (MSE) between the
input features and the recovered features. The input graphs

(a) 0 (b) 1 (c) 2 (d) 4

Figure 4. Permutation Results. The results are compared under
different values of the smoothness parameter t. The first row
displays the permuted adjacency matrix and the brighter pixels
indicate that the nodes are connected in the adjacency matrix. The
second row displays the permuted node feature similarity and the
brightness of the pixels indicate the similarity.

include synthetic graphs (Bianchi et al., 2020) of ring and
grid. The input features are the coordinates of nodes in
2D Euclidean space. The original synthetic graphs and the
corresponding recovered graphs under different relaxation
factors τ are presented in Fig. 3. The autoencoder can re-
cover the original node position with small distortion. As
τ increases, the distortion gets reduced. When τ equals
10, the autoencoder can reconstruct the graph with almost
no visible distortion. This suggests that our permutation
generation module can well approximate the permutation
matrix with little information loss.

Smoothness. We compare the permutation matrix P̂t

with different values of the smoothness parameter t on
Chameleon. The relaxation factor τ is set to 0.01. The
permuted adjacency matrix P̂tAP̂⊤

t and the permuted node
feature similarity P̂tXX⊤P̂⊤

t are visualized in the first row
and second row of Fig. 4. When t equals 0, the absolute
positions only depend on node features. Nodes with similar
features are assigned together. As t increases, the adja-
cency of graph nodes has more influence on the permutation.
Edges in the adjacency matrix, i.e., the brighter pixels in
Fig. 4, are permuted close to the main diagonal. Moreover,
in Subsection 5.1 and 5.2 we find that the improvement
of CoCN is limited for weakly connected datasets, such
as MUTAG for graph classification and TEXAS for node
classification. We speculate that it is due to the implicit
encoding of structure information in Eq. 4. More detailed
analysis is provided in Appendix C.2.

Multiple Permutations. We conduct ablation studies on
the number of permutations and analyze the convolution
module output of different permutations. Fig. 5 presents
the classification accuracy under different numbers of per-
mutations on MUTAG, Chameleon, Cornell and Wisconsin.
As the number of permutations increases, CoCN gets im-
provement in accuracy for all the datasets. Following this

8

All in a Row: Compressed Convolution Networks for Graphs

0.7

0.8

0.9

2 4 6 8 10 16

A
cc

u
ra

cy

Number of Permutations

Chamleon Cornell Wisconsin MUTAG

Figure 5. Ablation Study on the Number
of Permutations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321

A
ve

ra
ge

 S
im

il
ar

it
y

Epoch

Cornell Wisconsin Chameleon MUTAG

Figure 6. Feature Similarity between
Different Permutations.

0.77

0.775

0.78

0.785

0.79

0.795

1 10 100 1000 10000 100000

A
cc

u
ra

cy

Receptive Field Size

k=3 k=5 k=7 k=9

Figure 7. Ablation Study on Kernel Size
and Receptive Field Size. The dashed line
represents the number of input nodes.

result, we further analyze the relationship between different
permutations. Fig. 6 presents the average feature similarity
between permutations during the training process. Given
two feature vectors x and y, the feature similarity is x⊤y/d
where d denotes the number of feature channels. The results
are normalized into [0, 1] for a unified presentation. From
Fig. 6, the model gradually learns to reduce the feature sim-
ilarity between different permutations. This indicates that
CoCN learns complementary feature representations under
different permutations and requires multiple permutations
for sufficient feature learning.

5.3.2. NETWORK STRUCTURE ANALYSIS

We conduct ablation studies on kernel size k and the number
of compressed pooling layers L2 for Chameleon (Fig. 7)
and MUTAG (presented in Appendix C.3). As shown in
Fig. 7, CoCN achieves better performance as the receptive
field size increases. However, if the receptive field size gets
larger than the number of input nodes, CoCN cannot extract
informative features anymore and therefore shows perfor-
mance degradation. For different kernel sizes k, CoCN with
k = 5 has better performance. This is because that larger
kernels (k = 7, 9) can hardly capture fine-grain features
well and smaller kernels (k = 3) requires more layers to
get the larger receptive field. CoCN mainly relies on com-
pressed pooling layers to get larger receptive fields. For
the compressed convolution layer with unit-step, stacking
multiple layers generally degrades the model performance.
We provide the quantitative results in Appendix C.3.

5.3.3. FEATURE ANALYSIS

We perform ablation studies on node features and struc-
ture features for the datasets described above. Results on
Chameleon, Cornell, MUTAG and IMDB-BINARY are pre-
sented in Tab. 5. Full results are provided in Appendix C.4.
From Tab. 5 we observe that CoCN with both types of fea-
tures has better performance on most datasets. Therefore,
both node features and structure features generally con-
tribute to the model prediction. CoCN can still obtain good
performance with only structure features, which indicates
its ability in capturing the structure information.

Table 5. Ablation Study (measured by accuracy: %) on Struc-
ture Features and Node Features.

Str. Feat. Nod. Feat. Both
MUTAG 88.35 85.12 87.08
IMDB-B 70.47 75.09 77.26
Chameleon 69.14 77.98 79.17
Cornell 66.22 79.19 81.08

6. Conclusion
We presented a differentiable permutation method for gener-
alizing Euclidean convolution to graphs. We formulated the
permutation generation as a node position assignment prob-
lem and transformed the generated node positions into ap-
proximated permutation matrix with cyclic shift. Based on
Euclidean convolution, we designed diagonal convolution
for graphs to learn both node features and the correspond-
ing structure features. We further presented Compressed
Convolution Network (CoCN), a hierarchical GNN model
for graph representation learning. Experiment results show
that CoCN achieves superior performance on both node
classification and graph classification.

Limitations For homophilous graph datasets, the nodes
with short paths in-between tends to be assigned closer
to each other after permutation. However, due to the im-
plicit encoding of structure information for the permutation
process, this tendency cannot be fully fulfilled. As a re-
sult, CoCN performs less promising on graphs with strong
homophily and gains limited improvement on weakly con-
nected datasets. We will explore more efficient position
regression techniques in future work.

Acknowledgements
This work was supported in part by the National Key
R&D Program of China under Grant 2018AAA0102000,
in part by National Natural Science Foundation of China:
62022083, 62236008, 61931008 and U21B2038, and in part
by ICT Innovative Project: E161060. Z. Xue is sponsored
by CCF-Tencent Open Fund: RAGR20220125. We would
like to thank anonymous reviewers for helpful suggestions
that improved this work.

9

All in a Row: Compressed Convolution Networks for Graphs

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Steeg, G. V., and Gal-
styan, A. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In In-
ternational Conference on Machine Learning, pp. 21–29,
Long Beach, USA, 2019. PMLR.

Baek, J., Kang, M., and Hwang, S. J. Accurate Learning of
Graph Representations with Graph Multiset Pooling. In
International Conference on Learning Representations,
virtual, 2022.

Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral
clustering with graph neural networks for graph pooling.
In International Conference on Machine Learning, pp.
874–883, virtual, 2020. PMLR.

Bo, D., Wang, X., Shi, C., and Shen, H. Beyond Low-
frequency Information in Graph Convolutional Networks.
In AAAI Conference on Artificial Intelligence, volume 35,
pp. 3950–3957, virtual, 2021.

Boguñá, M., Bonamassa, I., De Domenico, M., Havlin, S.,
Krioukov, D., and Serrano, M. Á. Network geometry.
Nature Reviews Physics, 3(2):114–135, 2021.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
Networks and Locally Connected Networks on Graphs. In
International Conference for Learning Representations,
Banff, Canada, 2013.

Cangea, C., Veličković, P., Jovanović, N., Kipf, T., and
Liò, P. Towards Sparse Hierarchical Graph Classifiers.
In Neural Information Processing Systems Workshop on
Relational Representation Learning, Montréal, Canada,
2018.

Carter, N. C. Visual group theory. pp. 65–66. Mathematical
Association of America, 2009.

Chen, H., Perozzi, B., Hu, Y., and Skiena, S. HARP: Hier-
archical Representation Learning for Networks. In AAAI
Conference on Artificial Intelligence, volume 32, New
Orleans, Louisiana, USA, 2018. AAAI Press.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and Deep Graph Convolutional Networks. In Interna-
tional Conference on Machine Learning, pp. 1725–1735,
virtual, 2020. PMLR.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-GCN: An Efficient Algorithm for Train-
ing Deep and Large Graph Convolutional Networks. In
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 257–266, New York, NY,
USA, 2019. Association for Computing Machinery.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
Universal Generalized PageRank Graph Neural Network.
In International Conference on Learning Representations,
virtual, 2022.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In International Conference on Neu-
ral Information Processing Systems, pp. 3844–3852, Red
Hook, NY, USA, 2016. Curran Associates Inc.

Deng, C., Zhao, Z., Wang, Y., Zhang, Z., and Feng, Z.
GraphZoom: A Multi-level Spectral Approach for Ac-
curate and Scalable Graph Embedding. In International
Conference on Learning Representations, Addis Ababa,
Ethiopia, 2020.

Diehl, F. Edge Contraction Pooling for Graph Neural Net-
works. arXiv preprint, arXiv.1905.10990, 2019.

Du, L., Shi, X., Fu, Q., Ma, X., Liu, H., Han, S., and Zhang,
D. GBK-GNN: Gated Bi-Kernel Graph Neural Networks
for Modeling Both Homophily and Heterophily. In ACM
Web Conference, pp. 1550–1558, New York, NY, USA,
2022. Association for Computing Machinery.

Eliasof, M., Haber, E., and Treister, E. pathGCN: Learning
General Graph Spatial Operators from Paths. In Interna-
tional Conference on Machine Learning, pp. 5878–5891,
Baltimore, Maryland, USA, 2022. PMLR.

Fey, M. and Lenssen, J. E. Fast Graph Representation Learn-
ing with PyTorch Geometric. In International Conference
on Learning Representations Workshop on Graphs and
Manifolds, 2019.

Gao, H. and Ji, S. Graph U-Nets. In International Confer-
ence on Machine Learning, pp. 2083–2092, Long Beach,
California, USA, 2019. PMLR.

Gasteiger, J., Bojchevski, A., and Günnemann, S. Predict
then Propagate: Graph Neural Networks meet Personal-
ized PageRank. In International Conference on Learning
Representations, Addis Ababa, Ethiopia, 2018.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In International
Conference on Neural Information Processing Systems,
pp. 1025–1035, Red Hook, USA, 2017. Curran Asso-
ciates Inc.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778,
Las Vegas, NV, USA, 2016.

10

All in a Row: Compressed Convolution Networks for Graphs

He, M., Wei, Z., Huang, z., and Xu, H. BernNet: Learning
Arbitrary Graph Spectral Filters via Bernstein Approxi-
mation. In Advances in Neural Information Processing
Systems, volume 34, pp. 14239–14251, virtual, 2021. Cur-
ran Associates, Inc.

Hu, F., Zhu, Y., Wu, S., Wang, L., and Tan, T. Hierarchical
graph convolutional networks for semi-supervised node
classification. In International Joint Conference on Arti-
ficial Intelligence, pp. 4532–4539, Macao, China, 2019.
AAAI Press.

Hu, Y. Efficient, high-quality force-directed graph drawing.
Mathematica journal, 10:37–71, 2006.

Huang, Z., Wang, Y., Li, C., and He, H. Going Deeper
into Permutation-Sensitive Graph Neural Networks. In
International Conference on Machine Learning, pp. 9377–
9409, Baltimore, Maryland, USA, 2022. PMLR.

Ji, S., Xu, W., Yang, M., and Yu, K. 3D Convolutional
Neural Networks for Human Action Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 35(1):221–231, 2013.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. In International Conference for Learn-
ing Representations, San Diego, USA, 2015. Comment:
Published as a conference paper at the 3rd International
Conference for Learning Representations, San Diego,
2015.

Kipf, T. N. and Welling, M. Semi-Supervised Classification
with Graph Convolutional Networks. In International
Conference on Learning Representations, Toulon, France,
2017.

Klicpera, J., Weiß enberger, S., and Günnemann, S. Diffu-
sion Improves Graph Learning. In International Confer-
ence on Advances in Neural Information Processing Sys-
tems, volume 32, pp. 13333–13345, Vancouver, Canada,
2019. Curran Associates, Inc.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

Lee, J., Lee, I., and Kang, J. Self-Attention Graph Pooling.
In International Conference on Machine Learning, pp.
3734–3743, Long Beach, California, USA, 2019. PMLR.

Li, Q., Han, Z., and Wu, X.-M. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning.
In AAAI Conference on Artificial Intelligence, New Or-
leans, USA, 2018.

Li, X., Zhu, R., Cheng, Y., Shan, C., Luo, S., Li, D., and
Qian, W. Finding Global Homophily in Graph Neural Net-
works When Meeting Heterophily. In International Con-
ference on Machine Learning, volume 162, pp. 13242–
13256, Baltimore, Maryland, USA, 2022. PMLR.

Lim, D., Hohne, F. M., Li, X., Huang, S. L., Gupta, V.,
Bhalerao, O. P., and Lim, S.-N. Large Scale Learning on
Non-Homophilous Graphs: New Benchmarks and Strong
Simple Methods. In Advances in Neural Information
Processing Systems, pp. 20887–20902, virtual, 2022.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting Heterophily
For Graph Neural Networks. In Advances in Neural
Information Processing Systems, virtual, 2022.

Ma, Z., Xuan, J., Wang, Y. G., Li, M., and Liò, P. Path
Integral Based Convolution and Pooling for Graph Neural
Networks. In Advances in Neural Information Processing
Systems, volume 33, pp. 16421–16433, virtual, 2020.
Curran Associates, Inc.

Maurya, S. K., Liu, X., and Murata, T. Simplifying approach
to node classification in Graph Neural Networks. Journal
of Computational Science, 62:101695, 2022.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. TUDataset: A collection of bench-
mark datasets for learning with graphs. In International
Conference on Machine Learning Workshop on Graph
Representation Learning and Beyond, 2020.

Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B.
Janossy Pooling: Learning Deep Permutation-Invariant
Functions for Variable-Size Inputs. In International Con-
ference on Learning Representations, New Orleans, LA,
USA, 2019a.

Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B.
Relational Pooling for Graph Representations. In Internet
Conference on Machine Learning, pp. 4663–4673, Long
Beach, California, USA, 2019b. PMLR.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning con-
volutional neural networks for graphs. In International
Conference on Machine Learning, volume 48, pp. 2014–
2023, New York, NY, USA, 2016. PMLR.

Noh, H., Hong, S., and Han, B. Learning Deconvolution
Network for Semantic Segmentation. In IEEE Interna-
tional Conference on Computer Vision, pp. 1520–1528,
Santiago, Chile, 2015. IEEE Computer Society.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

11

All in a Row: Compressed Convolution Networks for Graphs

L., Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In International
Conference on Neural Information Processing Systems,
pp. 8026–8037, Red Hook, NY, USA, 2019. Curran As-
sociates Inc.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-GCN: Geometric Graph Convolutional Networks.
In International Conference on Learning Representations,
Addis Ababa, Ethiopia, 2020.

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and
Prokhorenkova, L. A critical look at the evaluation of
GNNs under heterophily: Are we really making progress?
In International Conference on Learning Representations,
Kigali, Rwanda, 2023.

Ranjan, E., Sanyal, S., and Talukdar, P. ASAP: Adaptive
Structure Aware Pooling for Learning Hierarchical Graph
Representations. In AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5470–5477, New York, NY, USA,
2020.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-Scale at-
tributed node embedding. Journal of Complex Networks,
9(2), 2021.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and
Sun, Y. Masked Label Prediction: Unified Message
Passing Model for Semi-Supervised Classification. In
International Joint Conference on Artificial Intelligence,
volume 2, pp. 1548–1554. ijcai.org, 2021.

Tang, J., Sun, J., Wang, C., and Yang, Z. Social influ-
ence analysis in large-scale networks. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 807–816, New York, NY, USA, 2009.
Association for Computing Machinery.

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri,
M. Learning Spatiotemporal Features with 3D Convolu-
tional Networks. In IEEE International Conference on
Computer Vision, pp. 4489–4497, Santiago, Chile, 2015.
IEEE Computer Society.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph Attention Networks. In
International Conference on Learning Representations,
Vancouver, Canada, 2018.

Wang, X. and Zhang, M. How Powerful are Spectral Graph
Neural Networks. In International Conference on Ma-
chine Learning, pp. 23341–23362, Baltimore, Maryland,
USA, 2022. PMLR.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying Graph Convolutional Networks.
In International Conference on Machine Learning, pp.
6861–6871, Long Beach, USA, 2019. PMLR.

Wu, J., Chen, X., Li, S., and Xu, K. Structural entropy
guided graph hierarchical pooling. In International Con-
ference on Machine Learning, volume 162, pp. 24017–
24030, Baltimore, Maryland, USA, 2022. PMLR.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How Powerful
are Graph Neural Networks? In International Conference
on Learning Representations, New Orleans, LA, USA,
2019.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra,
D. Two Sides of the Same Coin: Heterophily and Over-
smoothing in Graph Convolutional Neural Networks.
In IEEE International Conference on Data Mining, pp.
1287–1292, Orlando, FL, USA, 2022. IEEE.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical Graph Representation Learning
with Differentiable Pooling. In Advances in Neural Infor-
mation Processing Systems, volume 31, pp. 4805–4815,
Montréal, Canada, 2018. Curran Associates, Inc.

Yuan, H. and Ji, S. StructPool: Structured Graph Pooling via
Conditional Random Fields. In International Conference
on Learning Representations, Addis Ababa, Ethiopia,
2020.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph Sampling Based In-
ductive Learning Method. In International Conference on
Learning Representations, Addis Ababa, Ethiopia, 2020.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. In International
Conference on Neural Information Processing Systems,
pp. 7793–7804, Red Hook, NY, USA, 2020. Curran As-
sociates Inc.

Zhu, J., Rossi, R. A., Rao, A., Mai, T., Lipka, N., Ahmed,
N. K., and Koutra, D. Graph neural networks with het-
erophily. In AAAI Conference on Artificial Intelligence,
pp. 11168–11176, virtual, 2021. AAAI Press.

12

All in a Row: Compressed Convolution Networks for Graphs

A. Proofs
A.1. Proof of Proposition 3.1

Proposition 3.1. (Permutation Convergence) P̂ converges to standard permutation matrix as relaxation factor τ
approaching positive infinity: lim

τ→+∞
P̂ = P,P ∈ P .

Proof. Assuming that we have absolute position r ∈ Rn given by Eq. 2 where sgn(·) ∈ {0, 1}, r is a integer vector and
ri ∈ [0, n− 1]. Let mP = (m1⊤ − 1r⊤ +n) (mod n) and P̂ = exp(−τmP). For every row of mP , there always exists
an entry equal to 0 where the corresponding entry in P̂ constantly equals 1. The rest of entries are integers belonging to
[1, n− 1] and the corresponding entries in P̂ converge to 0 as τ approaches positive infinity.

A.2. Proof of Proposition 3.2

Proposition 3.2. (Permutation Invariant Input) Let f be a permutation equivariant function such that for any P ∈ P ,
f(PX,PAP⊤) = Pf(X,A). Then given P̂ = PERM(X,A), X̂ = P̂X, and Â = P̂AP̂⊤, for any P ∈ P on X and A,
X̂ and Â are invariant.

Proof. We first prove that PERM(·) is permutation equivariant. Given PX and PAP⊤ for any P ∈ P , the output of f can
be written as PrA = f(PX,PAP⊤). Substituting PrA into Eq. 2 gives:

sgn
(
PrA1

⊤ − 1r⊤AP
⊤)1

=sgn
(
PrA1

⊤P⊤ −P1r⊤AP
⊤
)
1

=Psgn
(
rA1

⊤ − 1r⊤A
)
P⊤1

=Psgn
(
rA1

⊤ − 1r⊤A
)
1

=Pr

(A.11)

Therefore, Eq. 2 is permutation equivariant. Further substituting Pr into Eq. 3 gives:

exp
{
−τ
[(
m1⊤ − 1r⊤P⊤ + n

)
(mod n)

]}
=exp

{
−τ
[(
m1⊤P⊤ − 1r⊤P⊤ + n

)
(mod n)

]}
=exp

{
−τ
[(
m1⊤ − 1r⊤ + n

)
(mod n)

]}
P⊤

=P̂P⊤

(A.12)

Hence PERM(·) is permutation equivariant. For any P ∈ P , we can use the generated permutation matrix P̂P⊤ to permute
the input features where P̂P⊤(PX) = P̂X and P̂P⊤(PAP⊤)PP̂⊤ = P̂AP̂⊤. Therefore, given P̂ = PERM(X,A),
X̂ = P̂X and Â = P̂AP̂⊤, X̂ and Â are invariant for any P ∈ P on X and A.

B. Details for Experiments
B.1. Graph Classification

Datasets. We use six datasets (Morris et al., 2020) for graph classification experiments including three biochemical datasets
MUTAG, PROTEINS and NCI1, and three social network datasets COLLAB, IMDB-BINARY and IMDB-MULTI. MUTAG
is a collection of nitroaromatic compounds. It includes 188 graphs of chemical compounds labeled with their mutagenicity
on Salmonella typhimurium. PROTEINS is a collection of 1,113 proteins with amino acids as nodes. The goal is to predict
whether the protein graphs are enzymes or not. NCI1 is collected by National Cancer Institute (NCI) with 4,110 graphs of
chemical compounds. The graphs are labeled by whether the corresponding compounds are positive or negative for cell lung
cancer. All three biochemical datasets use the one-hot node labels as node features. IMDB-BINARY and IMDB-MULTI
are two movie actor/actress collaboration network datasets labeled by the genre of the movies. COLLAB is a scientific
collaboration network dataset. Each graph represents a researcher’s ego network with collaborators and is labeled by the
scientific study field of the researcher.

13

All in a Row: Compressed Convolution Networks for Graphs

Table A.6. Detailed Experimental Setup For Node Classification.

CHAMELEON SQUIRREL CORNELL TEXAS WISCONSIN ACTOR
t 1 1 0 0 0 0
L1 1 2 1 1 1 2
L2 4 4 3 3 3 4
DROPOUT 0.1 0.1 0.5 0.5 0.5 0.3

Experimental Setup. For experiments on all datasets, the learning rate is set to 1× 10−4, the hidden size is set to 64, and
the dropout rate is set to 0.5. For Adam (Kingma & Ba, 2015) optimizer, weight decay is set ∈ {1× 10−4, 5× 10−4, 1×
10−3, 1 × 10−2, 1 × 10−1}. We also use early stopping regularization, where we stop the training if there is no further
reduction in the validation loss during 100 epochs. The maximum epoch number is set to 200. The batch size is set to 4 on
MUTAG and PROTEINS, 8 on NCI1, IMDB-BINARY and IMDB-MULTI, and 32 on COLLAB. We follow the network
structure in Fig. 2(a) to construct CoCN. For all datasets, the smoothness parameter t in Eq. 4 is set ∈ {6, 8}, the number of
permutations is set to 8, the relaxation factor τ is set to 0.1, L1 and L2 are set to 1, the kernel size is set ∈ {5, 7, 9}.

B.2. Node Classification

Datasets. For node classification, we use six datasets including Chameleon, Squirrel (Rozemberczki et al., 2021), Cornell,
Texas, Wisconsin (Pei et al., 2020) and Actor (Tang et al., 2009). Chameleon and Squirrel are collected from Wikipedia.
Each graph corresponds to a topic in Wikipedia. The nodes represent Web pages with keywords of the pages as node
features. The edges are links between Web pages. Based on the average monthly traffic, the nodes are classified into five
classes. Cornell, Texas and Wisconsin are Web page datasets collected from computer departments of different universities.
Actor is an actor-actor relation dataset with nodes representing actors. For each node, the features are the keywords of the
corresponding actor on Wikipedia. Two nodes are connected if they appear on the same page.

Experimental Setup. For experiments on all datasets, the learning rate is set to 1× 10−4, the hidden size is set ∈ {64, 128},
and the weight decay is set ∈ {1× 10−4, 5× 10−4, 1× 10−3, 1× 10−2, 1× 10−1}. The maximum epoch number is set to
500. We stop the training if there is no further reduction in the validation loss during 150 epochs. We follow the network
structure in Fig. 2(b) to construct CoCN. The number of permutations is set ∈ {8, 10}, the relaxation factor τ is set to 0.1
and the kernel size is set to 5. The rest of the hyper-parameter setting and detailed network structure for all datasets are
summarized in Tab. A.6.

B.3. Model Analysis

For all the experiments in Subsection 5.3, the number of permutations is set to 8, the learning rate is set to 1× 10−4, and the
hidden size is set to 64. For the permutation information loss experiment, we construct the autoencoder with the permutation
generation module. The position smoothness parameter t is set to 6 and the dropout rate is set to 0, the maximum epoch is
set to 10, 000 and the early stopping patience is set to 2, 000 epochs. For the rest of the experiments, the experimental setup
is the same as the classification experiments except for the ablation items.

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

1 10 100 1000

A
cc

ur
ac

y

Receptive Field Size

k=3 k=5

k=7 k=9

Figure A.8. Ablation Study on the Kernel Size and Receptive Field Size for MUTAG. The dashed line represents the average number
of nodes for all graphs. The dotted line represents the maximum number of nodes in one graph.

14

All in a Row: Compressed Convolution Networks for Graphs

Table A.7. Full Comparison Results (measured by accuracy: %) on Original / Filtered Chameleon and Squirrel.

CHAMELEON SQUIRREL
ORIGINAL FILTERED RANKS ORIGINAL FILTERED RANKS

RESNET 49.52 36.73 13 / 15 33.88 36.55 13 / 8
RESNET+SGC 49.93 41.01 12 / 3 34.36 38.36 12 / 6
RESNET+ADJ 71.07 38.67 3 / 13 65.46 38.37 3 / 5
GCN 50.18 40.89 10 / 4 39.06 39.47 7 / 3
GRAPHSAGE 50.18 37.77 10 / 14 35.83 36.09 10 / 10
GAT 45.02 39.21 17 / 10 32.21 35.62 15 / 12
GAT-SEP 50.24 39.26 9 / 9 35.72 35.46 11 / 14
GT 44.93 38.87 18 / 12 31.61 36.30 16 / 9
GT-SEP 50.33 40.31 8 / 6 36.08 36.66 9 / 7
H2GCN 46.27 26.75 16 / 17 29.45 35.10 18 / 16
CPGNN 48.77 33.00 14 / 16 30.91 30.04 17 / 17
GPRGNN 47.26 39.93 15 / 7 33.39 38.95 14 / 4
FSGNN 77.85 40.61 2 / 5 68.93 35.92 2 / 11
GLOGNN 70.04 25.90 4 / 18 61.21 35.11 4 / 15
FAGCN 64.23 41.90 6 / 2 47.63 41.08 5 / 1
GBK-GNN 51.36 39.61 7 / 8 37.06 35.51 8 / 13
JACOBICONV 68.33 39.00 5 / 11 46.17 29.71 6 / 18
COCN (OURS) 79.61 41.95 1 / 1 73.27 39.69 1 / 2

Table A.8. Ablation Study on Smoothness Parameter t (measured by accuracy: %).

0 1 2 4 6 8
CHAMELEON 49.45 78.39 77.26 76.63 75.77 74,04
CORNELL 82.16 75.95 76.49 75.95 75.14 72.43
MUTAG 85.09 85.94 85.84 86.62 86.51 87.19

C. Additional Results
C.1. Node Classification on Filtered Datasets

Following Platonov et al., we further conduct node classification experiments on filtered Chameleon and Squirrel. Baselines
include: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), SGC (Wu et al.,
2019), H2GCN (Zhu et al., 2020), GT (Shi et al., 2021), CPGNN (Zhu et al., 2021), FAGCN (Bo et al., 2021), GPRGNN
(Chien et al., 2022), FSGNN (Maurya et al., 2022), GloGNN (Li et al., 2022), GBK-GNN (Du et al., 2022), JacobiConv
(Wang & Zhang, 2022) and ResNet with GNN methods (Platonov et al., 2023). Platonov et al. also separate ego- and
neighbor-embeddings in the GNN aggregation step of GAT and GT, which is denoted as sep. All the results of baselines are
from Platonov et al.. Full comparison results are presented in Tab. A.7. It shows that CoCN consistently outperforms other
models on both the original and filtered datasets, which further validates the reliability of CoCN.

C.2. Permutation Analysis

We conduct ablation studies on the smoothness parameter t in the permutation generation module. The results for Chameleon,
Cornel and MUTAG are presented in Tab. A.8. For node classification datasets, the optimal smoothness parameter t is small,
i.e., 1 for Chameleon and 0 for Cornell. The optimal value of t for graph classification dataset MUTAG is 8, which is larger
than that on node classification datasets. This indicates that graph classification requires representation learning from node
clusters with strong connections while node classification concentrates on nodes clustered by features.

We also find that the classification performance of CoCN is limited on the weakly connected datasets. The average degrees
for all datasets are summarized in Tab. A.9. CoCN slightly underperforms one or two baseline models on MUTAG, Texas,
Wisconsin and Actor which has a lower average degree than other datasets. To explain this, we speculate that it is due to the
implicit encoding of structure information in permutation generation in Eq. 4. We leave the further improvement of this
module to future work.

15

All in a Row: Compressed Convolution Networks for Graphs

Table A.9. Statistics on Average Degree.

MUTAG PROTEINS NCI1 IMDB-B IMDB-M COLLAB
AVG DEGREE 4 7 4 39 40 263

CHAMELEON SQUIRREL CORNELL TEXAS WISCONSIN ACTOR
AVG DEGREE 15.85 41.74 1.63 1.78 2.05 3.95

Table A.10. Ablation Study on L1 (measured by accuracy: %).

1 2 3 4 6 8 10
CHAMELEON 79.25 78.86 78.81 79.08 78.64 77.94 77.74
MUTAG 87.08 86.06 86.60 85.27 84.58 84.79 84.62

C.3. Network Structure Analysis

From Fig. A.8, CoCN also gains improvement on MUTAG as the size of the receptive field increases, and the improvement
is bounded by the maximum number of nodes in a single graph. Since the maximum number of nodes is small in MUTAG,
the number of compressed pooling layers can only be set to 1 with kernel size {5, 7, 9}. Among these configurations, CoCN
with kernel size 9 has the largest receptive field and shows the best performance.

For ablation studies on the number of compressed convolution layers with unit-step which is denoted as L1, the full results
are presented in Tab. A.10. We can see that on both Chameleon and MUTAG, CoCN achieves the best performance on
L1 = 1. This is because the compressed convolution layer cannot expand the size of the receptive field efficiently while
stacking multiple compressed convolution layers increases the difficulty of training.

C.4. Feature Analysis

The full ablation study results on structure features and node features are presented in Tab. A.11 and Tab. A.12. Compared
to baseline models in Tab. 1 and Tab. 2, CoCN can achieve comparable or even better performance with only structure
features which indicates that CoCN can capture structure information. CoCN with both node features and structure features
has better performance. Therefore, both kinds of features contribute to the classification.

Table A.11. Ablation Study on Structure Features and Node Features for Graph Classification Datasets (measured by accuracy:
%).

MUTAG PROTEINS NCI1 IMDB-B IMDB-M COLLAB
STR. FEAT. 88.35 72.03 64.08 70.47 48.16 78.14
NOD. FEAT. 85.12 76.22 78.65 76.17 54.03 84.46
BOTH 87.08 76.86 82.28 77.26 56.32 86.15

Table A.12. Ablation Study on Structure Features and Node Features for Node Classification Datasets (measured by accuracy: %).

CHAMELEON SQUIRREL CORNELL TEXAS WISCONSIN ACTOR
STR. FEAT. 67.82 72.79 66.22 72.16 79.23 33.73
NOD. FEAT. 77.98 71.91 79.19 79.41 83.53 34.36
BOTH 79.17 72.95 81.08 80.54 84.90 35.55

16

