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Abstract
Sign Stochastic Gradient Descent (SIGNSGD) is a
communication-efficient stochastic algorithm that
only uses the sign information of the stochastic
gradient to update the model’s weights. However,
the existing convergence theory of SIGNSGD ei-
ther requires increasing batch sizes during train-
ing or assumes the gradient noise is symmetric
and unimodal. Error feedback has been used to
guarantee the convergence of SIGNSGD under
weaker assumptions at the cost of communication
overhead. This paper revisits the convergence of
SIGNSGD and proves that momentum can rem-
edy SIGNSGD under weaker assumptions than
previous techniques; in particular, our conver-
gence theory does not require the assumption of
bounded stochastic gradient or increased batch
size. Our results resonate with echoes of previ-
ous empirical results where, unlike SIGNSGD,
SIGNSGD with momentum maintains good per-
formance even with small batch sizes. Another
new result is that SIGNSGD with momentum can
achieve an improved convergence rate when the
objective function is second-order smooth. We
further extend our theory to SIGNSGD with major
vote and federated learning.

1. Introduction
This paper considers the following optimization problem
arising from machine learning:

min
x∈Rd

f(x) := Eξ∼Df(x; ξ), (1)

where D is the data distribution. Bernstein et al. (2018a)
propose SIGNSGD, which solves the optimization problem
in (1) via the following iterations:

xt+1 = xt − γSign(∇f(xt; ξt)), for t ≥ 0, (2)
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where ξt is the data sampled i.i.d. from the distribution
D in the t-th iteration, and γ > 0 is the learning rate (or
step size). In each iteration, SIGNSGD only uses the sign
information of the stochastic gradient, which reduces com-
munication costs in each iteration. However, using the sign
operator leads to biased expectations and prevents conver-
gence unless the batch size is increased or the gradient noise
is symmetric and unimodal (Bernstein et al., 2018a;b).

The error feedback technique has been developed to ad-
dress this issue and eliminate the need for large sampling
costs (Karimireddy et al., 2019). The error feedback tech-
nique is a variant of the momentum method, which has been
widely used for both theoretical and empirical improve-
ments in optimization (Karimireddy et al., 2019; Lin et al.,
2018; Stich et al., 2018). The basic momentum scheme
for the SIGNSGD, i.e., SIGNSGD with Simple Momentum
(SIGNSGD-SIM), is shown in Algorithm 1. However, the
current convergence guarantees for SIGNSGD-SIM, as pre-
sented in (Bernstein et al., 2018a;b)1, are established based
on the same assumptions as those for SIGNSGD.

Algorithm 1 SIGNSGD with SImple Momentum
(SIGNSGD-SIM)

Require: parameters γ > 0, 0 ≤ θ < 1
Initialization: x1 = 0, m0 = 0
for t = 1, 2, . . .
step 1: Sample ξt ∼ D i.i.d and update

mt = θmt−1 + (1− θ)∇f(xt; ξt)
step 2: xt+1 = xt − γSign(mt)

end for

Empirical performance of SIGNSGD and SIGNSGD-
SIM under different batch sizes. To investigate if the
simple momentum scheme can fix the convergence of
SIGNSGD, we conduct experiments on training ResNet110
from (He et al., 2016) for CIFAR-100 (Krizhevsky et al.,
2009) classification using SIGNSGD and SIGNSGD-SIM
with various batch sizes. The momentum parameter is set
to 0.9 for SIGNSGD-SIM, and the other hyperparameters
are the same as SIGNSGD, as described in more detail in
Section 4.1. The experimental results are shown in Figure 1,
where both SIGNSGD and SIGNSGD-SIM achieve a test-
ing accuracy of around 71%. As the batch size decreases,

1SIGNSGD-SIM is denoted as SIGNUM in their paper
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Figure 1. Experimental results of train losses, train accuracies, and test accuracies for training ResNet110 on CIFAR-100 with different
batch sizes. As the batch size reduces, both training loss and test accuracy of SIGNSGD deteriorate substantially. In contrast, the
performance of SIGNSGD-SIM is nearly preserved, even when using a very small batch size.

SIGNSGD-SIM maintains similar training curves while the
performance of SIGNSGD drops significantly. The above
experimental results align with previous empirical findings
in (Karimireddy et al., 2019; Bernstein et al., 2018b), which
show that SIGNSGD-SIM often outperforms SIGNSGD,
especially when the batch size is small.

Indeed, in Theorem 1 in Section 2, we present an improved
convergence guarantee for SIGNSGD-SIM that does not
require the assumption of bounded stochastic gradient, large
batch size, or symmetric unimodal gradient noise. The
assumptions in our theorem are even weaker than those
used in the error feedback scheme. Additionally, we show
that SIGNSGD-SIM has a faster convergence rate when the
objective function is second-order smooth. We also extend
these theoretical findings to other variants of SIGNSGD,
including SIGNSGD with major vote and federated learning.

1.1. Additional related works

SIGNSGD and its variants: Gradient quantization is a
technique that aims to reduce the amount of information
that needs to be transmitted when training machine learning
models in a parallel setting (Alistarh et al., 2017). One
specific type of gradient quantization is sign-based quan-
tization, which involves transmitting only the sign of the
gradient rather than the full gradient. While the reduction
in information can lead to biased estimators, SIGNSGD is
empirically shown to perform well even when using just
1-bit of information (Seide et al., 2014; Strom, 2015; Li
et al., 2014) and has been used for distributed learning since
the early days of deep learning (Li et al., 2014). Meanwhile,
Balles & Hennig (2018) show that the sign-based method
has a deep connection with the well-known Adam method
(Kingma & Ba, 2015; Zhang et al.).

Thus, there has been a line of research to understand sign-
based methods. For example, Bernstein et al. (2018a) pro-
vide a theoretical analysis of iteration error bound on the
SIGNSGD. Bernstein et al. (2018b) propose the Major Vote
(MV-) SIGNSGD, an extension of SIGNSGD for distributed
setting that only requires transmitting the sign information.

Motivated by black-box adversarial attacks in robust deep
learning, Liu et al. (2019) propose the Zeroth Order (ZO-
) SIGNSGD, which gets rid of employing the stochastic
gradient directly. Al-Dujaili & O’Reilly (2020) present a
new black-box adversarial attack algorithm by exploiting a
sign-based gradient estimation approach.

However, most of the papers about SIGNSGD mentioned
above require an increasing batch size to guarantee their
convergence. Some researchers have recently proposed
modifications of SIGNSGD that reduce sampling costs. For
example, in (Karimireddy et al., 2019), the authors introduce
the error feedback technique to remove the large sampling
assumption and propose SIGNSGD-EF. The paper (Safaryan
& Richtarik, 2021) modifies the scheme of SIGNSGD by
comparing the global objective function values in each iter-
ation, resulting in the algorithm SIGNSGD-CF. By consid-
ering a coordinate Lipschitz-like property, Crawshaw et al.
(2022) propose a robust general SIGNSGD algorithm with
stepsize adjusted by historical gradients.

Applications of SIGNSGD: By using SIGNSGD, in (Sohn
et al., 2020), SIGNSGD is used to develop a coding method
that minimizes the worker-master communication load to
guarantee Byzantine-robustness for distributed learning.
In (Jin et al., 2020), the sign-based method is applied to
the federated training tasks and shown to have provable
convergence guarantees.

1.2. Why do we need a simpler scheme?

The need for large batch sizes to achieve convergence can
be costly in terms of both sampling and computation. This
requirement can make it challenging to use SIGNSGD and
its variants in specific settings. Although the error feedback
and function value comparison methods are proposed to
reduce the sampling cost of SIGNSGD, these methods also
have limitations for applying to the distributed systems, such
as the need to transmit additional information or the require-
ment for extra computation. In particular, the error feedback
(SIGNSGD-EF) requires transmitting the magnitudes of the
gradients, which accounts for 32-bit per layer in addition
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References BSG-F FBS-F IR AS FLE EA-F
SIGNSGD (Bernstein et al., 2018a)

√
× × × ×

√

MV-SIGNSGD (Bernstein et al., 2018b)
√

× ×
√

×
√

ZO-SIGNSGD (Liu et al., 2019) × × × × ×
√

SIGNSGD-EF (Karimireddy et al., 2019) ×
√

× × ×
√

SIGNSGD-CF (Safaryan & Richtarik, 2021)
√ √

× × × ×
Federated MV-SIGNSGD (Jin et al., 2020) × × ×

√ √
×

SIGNSGD-SIM (This paper)
√ √ √

× ×
√

MV-STO-SIGNSGD-SIM (This paper) ×
√ √ √

×
√

Federated MV-STO-SIGNSGD-SIM (This paper) ×
√ √ √ √ √

Table 1. Comparisons with previous closely related works on different assumptions for convergence. “BSG-F ” stands for “Bounded
Stochastic Gradient Free” (i.e, we do not need to assume E∥∇f(x; ξ)∥2 ≤ σ̂2 for some σ̂ > 0.), “FBS” stands for “Fixed Batch Size”,
“IR” is short for “ Improved Rates”, “AS” means the “transmitted information are All Signs”, “FLE” is “Federated Learning Extension”,
and “EA-F” is short for “Extra Assumptions Free”.

to the signs, hurting communication efficiency. The func-
tion value comparison method requires obtaining the global
training function value, which needs extra computational
costs and is even untractable in the distributed setting. Com-
pared with the vanilla SIGNSGD, the simple momentum
scheme in Algorithm 1 only recruits an extra addition of
vectors, which costs only a few computations and minimal
memory overhead. SIGNSGD-SIM can be easily extended
to the distributed schemes where communication efficiency
is achieved by only transmitting 1-bit sign information.

1.3. Contributions

In this paper, we prove that the SIGNSGD with simple
momentum converges under weaker assumptions. Different
convergence results are established for other variants, of
which all needed assumptions are weakened. We elaborate
on our contributions below.

• We prove O( 1
T 1/4 ) convergence of SIGNSGD with simple

momentum without the need for increasing batch sizes.
When comparing with the error feedback SIGNSGD,
the studied algorithm only requires the assumption of
bounded variance rather than the bounded gradient.

• When the objective function f is second-order smooth,
we prove that the SIGNSGD-SIM enjoys a faster con-
vergence rate as O( 1

T 2/7 ) if we modify the momentum
update slightly.

• We develop two communication-efficient variants for the
distributed setting cases; the MV-SIGNSGD with simple
momentum (MV-STO-SIGNSGD-SIM), and its federated
scheme, in which all transmitted information just signs.
We prove the convergence of these algorithms under both
first- and second-order smooth assumptions.

We list the comparisons with related works on different
assumptions for convergence in Table 1.

Notation. Throughout this paper, we use boldface letters
to denote vectors, e.g., x ∈ Rd. The j-th coordinate of
a vector x is denoted by xj . We use Diag(γ1, γ2, . . . , γd)
to denote the diagonal matrix whose diagonal entries are

γ1, γ2, . . . , γd. Given a function f(x; ξ), the gradient
∇f(x; ξ) is taken with respect to variable x. The Hessian
matrix of the function f is denoted by ∇2f . We denote E[·]
as the expectation with respect to the underlying probability
space. We use ∥ · ∥, ∥ · ∥1, and ∥ · ∥op to denote the L2-, L1-
norm, and spectral norm, respectively. We denote the mini-
mum value of the function f as min f . Given non-negative
sequences (at, bt)t≥0, we use at = O(bt) if at ≤ Cbt
with some constant C > 0 and we write at = Θ(bt) if
at = O(bt) and bt = O(at).

2. SIGNSGD with Simple Momentum
2.1. Assumptions

We collect several common and necessary assumptions in
this subsection.

Assumption 1 Function f(·) is differentiable with the Lip-
schitz gradient, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rd. (3)

Assumption 1 can be replaced by Lipschitz smoothness
on f(x; ξ), i.e., ∥∇f(x; ξ) − ∇f(y; ξ)∥ ≤ L∥x −
y∥, ∀x,y ∈ Rd, ξ ∼ D. Nevertheless, such an assump-
tion is stronger than Assumption 1 because ∥∇f(x) −
∇f(y)∥ ≤ ∥E∇f(x; ξ) − E∇f(y; ξ)∥ ≤ E∥∇f(x; ξ) −
∇f(y; ξ)∥.

Assumption 2 The stochastic sample ξ ∼ D is i.i.d. and
E∥∇f(x; ξ)−∇f(x)∥2 ≤ σ2 for any x ∈ Rd.

Assumption 1 is the Lipschitz smoothness and Assumption
2 indicates the uniform bounded variance of the stochastic
gradient. These two assumptions are standard in the analysis
of stochastic optimization algorithms (Bottou et al., 2018).

2.2. Convergence under weaker assumptions

Theorem 1 Let (xt)t≥0 be generated by the SIGNSGD-
SIM, and Assumptions 1 and 2 hold. For integer T ≥ 2, if
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γ = 1
LT 3/4 and θ = 1− 1√

T
, it holds that

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x0)−min f

LT 1/4
+

2d

T 1/4

+
2
√
dσ

T 1/4
+

2
√
d∥ϵ0∥
T 1/2

+
d

2T 3/4
.

We present an explanation on the specific use of the learning
rate and momentum: Note that the optimal convergence rate
for nonconvex first-order stochastic methods is O

(
1

T 1/4

)
(Arjevani et al., 2023). To ensure this rate in our proof and
considering the term 1

γT , we need to choose γ = Θ
(

1
T 3/4

)
.

Combining the last two terms, γL
1−θ and

√
1− θσ, yielding

1 − θ = Θ
(

1
T 1/2

)
, which leads to the specific choices of

learning rate and momentum parameter in Theorem 1.

We want to clarify that while Bernstein et al. (2018a) present
a convergence result for signSGD with momentum (Theo-
rem 3), their algorithm requires “warmup,” meaning that
the first few steps use plain signSGD instead of signSGD
with momentum. The number of “warmups” needed de-
pends on the momentum parameter θ in such a way that
prevents a possible momentum scheduling. Additionally,
their convergence rate is O( 1

T 1/4 + σ
(1−θ)

√
B
), where B is

the batchsize, and T denotes the number of iterations, and
σ2 is the variation of the stochastic noise. Consequently,
B must grow as Θ(T 1/2) to achieve this convergence rate,
significantly increasing the sampling costs. In comparison,
Theorem 1 has an advantage over Bernstein et al. (2018a)
by demonstrating that the same convergence rate O( 1

T 1/4 )
can be achieved without increasing batching size.

Theorem 1 indicates that a simple momentum is sufficient
to guarantee the convergence of SIGNSGD. The conver-
gence rate is O

(
f(x0)−min f+

√
dσ

T 1/4

)
, which also achieves

the same convergence rate as SIGNSGD with error feed-
back (Karimireddy et al., 2019). An interesting finding
is that compared with the SIGNSGD with error feedback,
Theorem 1 uses a weaker assumption on the stochastic
gradient: we just need the boundedness of the variance,
i.e., E∥∇f(x; ξ)−∇f(x)∥2 ≤ σ2; while in (Karimireddy
et al., 2019), the authors use a stronger assumption, i.e.,
E∥∇f(x; ξ)∥2 ≤ σ̂2 for some σ̂ > 0.

In SGD, the convergence rate can be as fast as

min
1≤i≤T

E∥∇f(xt)∥ = O
(√f(x0)−min f + σ2

T 1/4

)
;

see (Ghadimi & Lan, 2013) for details. Notice that ∥x∥1 ≤√
d∥x∥ for any x ∈ Rd, thus for SGD, we have

min
1≤i≤T

E∥∇f(xt)∥1 = O
(√d(f(x0)−min f) + dσ2

T 1/4

)
,

Therefore, we have i) If σ2 ≫ f(x0)−min f , SIGNSGD-
SIM can be as fast as SGD. ii) If σ2 ≪ f(x0) −
min f , the rate of SIGNSGD-SIM is dominated by the

term O
(

f(x0)−min f+
√

d(f(x0)−min f)

T 1/4

)
, and the rate of

SGD is dominated by O
(√

d(f(x0)−min f)

T 1/4

)
. In this case,

SIGNSGD-SIM is worse than SGD if f(x0)−min f ≫ d.
While when f(x0)−min f ≪ d, both algorithms perform
similarly. We stress that SIGNSGD-SIM only uses the signs
for the update, SIGNSGD-SIM consumes significantly fewer
gradient communication costs than the SGD if they need
the same iterations to output the desired solution.

In SIGNSGD-SIM, the constant learning rate can be re-
placed with the coordinate version, i.e., step 2 in Algo-
rithm 1 can be replaced by the following iteration xt+1 =
xt − A · Sign(mt) with A := Diag(γ1, γ2, . . . , γd) and
γj > 0 (j = 1, 2, . . . , d). Using Lemma 1 in the supple-
mentary material, the above variant also enjoys the same
convergence rate when γj = Θ( 1

LT 3/4 ) as j = 1, 2, . . . , d.

2.3. Smoothness improves convergence rates

When the objective function is second-order smooth, we can
obtain an improved convergence rate for SIGNSGD with
momentum compared to that in Section 2.2. Motivated by
(Arnold et al., 2019; Cutkosky & Mehta, 2020), we consider
the scheme as follows

yt = xt +
θ

1− θ
(xt − xt−1),

mt = θmt−1 + (1− θ)∇f(yt; ξt),

xt+1 = xt − γSign(mt).

(4)

Compared with Algorithm 1, (4) uses an extra momentum
before calculating the stochastic gradient. The second-order
smoothness is used to characterize the Hessian matrix of
the objective function, and our theory also relies on the
following assumption.

Assumption 3 The Hessian matrix of function f satisfies
∥∇2f(x)−∇2f(y)∥op ≤ ρ∥x− y∥ for x,y ∈ Rd.

With the second-order smoothness assumption, we are pre-
pared to present the improved convergence of scheme (4).
In particular, we have the following theorem.

Theorem 2 Let (xt)t≥0 be generated by scheme (4), and
Assumptions 1, 2 and 3 hold. For integer T ≥ 2, if θ =
1− 1

T 4/7 and γ = 1
max{√ρ,L}T 5/7 , it holds that

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤
max{√ρ, L}(f(x0)−min f)

T 2/7

+
2
√
dσ + d3/2

T 2/7
+

1

2T 5/7
+

2
√
d∥∇f(x0)∥
T 3/7

.
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The convergence rate, in this case, is

O
(f(x0)−min f +

√
dσ + d3/2

T 2/7

)
,

which is faster than the speed with only Lipschitz smooth-
ness when d is not very large. The previous sign-based
methods mentioned in the introduction do not consider the
second-order case. As far as we are aware, our paper is
the first to investigate the improved convergence rate of the
sign-based method.

3. The Major Vote SIGNSGD with Momentum
This section considers the sign-based methods in distributed
settings. In particular, we study two algorithms: the first
one is SIGNSGD with major vote and momentum, and the
second one further extends the algorithm to the federated
learning setting, resulting in Federated MV-SIGNSGD-SIM.

3.1. Major vote

Now we consider the following distributed training task

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), fi(x) = Eξ∼Difi(x; ξ), (5)

where Di denotes the data distribution of the i-th client and
fi(x; ξ) is the loss function associated with the training data
ξ. The centralized distributed system assumes that there is a
Parameter Server (PS) connects n workers, and Di is stored
in the i-th worker. In Major Vote (MV-) SIGNSGD, each
worker stores the parameter with the same initialization.
In the t-th iteration, the workers calculate local stochastic
gradients and send their signs to the PS. After collecting all
sign information, the PS then sends the sign of the average
to all workers. All information transmitted in the networks
is signed, leading to remarkable communication efficiency.

Unlike the distributed SGD, the PS only processes the in-
formation received from the workers but does not update
the parameter in MV-SIGNSGD. The parameter update is
performed in all workers. Because the workers get the same
feedback from the PS, the parameters in all workers are
identical, given the same initialization.

We cannot directly extend Algorithm 1 to the major vote
scheme presented in (Bernstein et al., 2018b), i.e., replac-
ing Sign[·] with Sign[

∑n
i=1 Sign(·)] in Algorithm 1 because

the two-layer sign operator breaks some critical properties.
Alternatively, we use the stochastic method to sign the gra-
dient information introduced by Jin et al. (2020). We denote
the stochastic sign method employed major vote SIGNSGD
in (Jin et al., 2020) as MV-STO-SIGNSGD. Before estab-
lishing our theoretical convergence of MV-STO-SIGNSGD,
we present another necessary assumption below.

Assumption 4 For any x ∈ Rd, and ξ ∼ D, the stochastic
gradient satisfies ∥∇f(x; ξ)∥2 ≤ R2 with R > 0.

In many neural network training tasks, the stochastic
gradient is usually bounded due to the activation func-
tions. When Assumption 4 holds, we have ∥∇f(x)∥2 =
∥E∇f(x; ξ)∥2 ≤ R2 and E∥∇f(x; ξ) − ∇f(x)∥2 ≤
2E∥∇f(x; ξ)∥2 + 2E∥∇f(x)∥2 ≤ 4R2. Thus, Assump-
tion 4 implies Assumption 2. This assumption is also used
to analyze the convergence of distributed SIGNSGD in (Jin
et al., 2020).

Given a d-dimensional vector v that satisfies ∥v∥ ≤ R, we
denote a stochastic sign operator as

[SR(v)]i =

{
−Sign(vi), with probability 1

2
− |vi|

2R
,

Sign(vi), with probability 1
2
+ |vi|

2R
.

(6)

It is easy to see that SR(v) only contains signs but follows
E(SR(v)) =

v
R . The unbiased expectation yields favorable

properties in the proof.

In MV-SIGNSGD with momentum for this distributed opti-
mization, each worker receives the same information from
the parameter server for updating and thus enjoys the same
parameter if we use the same initialization for all workers.
To this end, we can use yt and xt to denote the parameters
in all workers. We formulate MV-STO-SIGNSGD-SIM in
Algorithm 2.

Algorithm 2 Major Vote SIGNSGD with stochastic SImple
Momentum (MV-STO-SIGNSGD-SIM)

Require: parameters γ > 0, 0 ≤ θ < 1, α ≥ 0 , R > 0
Initialization: x0 = y0 = 0, m0 = 0
for t = 1, 2, . . .

step 1: All workers update yt = xt + α(xt − xt−1)
step 2: Worker i samples ξt(i) ∼ Di i.i.d and update

mt(i) = θmt−1(i) + (1− θ)∇fi(yt; ξt(i))
step 3: PS pulls [SR(m

t(i))]1≤i≤n and update

xt+1 = xt − γSign
[∑n

i=1 SR(m
t(i))

]
end for

Indeed, we consider two types of “momentum”: one is
Algorithm 1 (single momentum), and the other one is the
scheme in equation (4) (double momentum). In Algorithm
2, we employ the parameter α to combine single momentum
and double momentum for major vote variants, where when
α = 0, Algorithm 2 becomes single momentum while α >
0 means the double one. Therefore, the case when α > 0
is used to prove the nonconvex acceleration, but we still
presented the results for α = 0.

We are prepared to present the convergence of MV-STO-
SIGNSGD with momentum. In particular, we have

Theorem 3 Let (xt)t≥0 be generated by MV-STO-
SIGNSGD-SIM, Assumptions 1, 2, and 4 hold for ξt(i) and

5
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∇fi(·; ·). For integer T ≥ 2, if α = 0, γ = 1
LT 3/4 , and

θ = 1− 1√
T

, it holds that

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x1)−min f

LT 1/4
+

2dγ

T 1/4

+
2
√
dσ√

nT 1/4
+

d

2T 3/4
+

2
√
d∥∇f(x0)∥
T 1/2

+
2dR√

n
.

Furthermore, if Assumptions 1, 2, 3, and 4 hold for ξt(i)
and ∇fi(·; ·), and α = θ

1−θ , 1 − θ = 1
T 4/7 and γ =

1
max{√ρ,L}T 5/7 ,

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤
max{√ρ, L}[f(x0)−min f ]

T 2/7
+

d3/2

T 2/7
+

2
√
dσ√

nT 2/7
+

d

2T 5/7
+

2
√
d∥∇f(x0)∥
T 3/7

+
2dR√

n
.

The sign operator used in our algorithm is slightly differ-
ent from that (Bernstein et al., 2018a;b) and identical to
the one used in (Jin et al., 2020). Compared with the
MV-SIGNSGD (Bernstein et al., 2018a;b) and MV-STO-
SIGNSGD (Jin et al., 2020), our algorithm achieves the
same rate without increasing the batch size in each itera-
tion when α = 0. While when α = θ

1−θ , the algorithm
enjoys faster convergence with second-order smooth proper-
ties. Although the error-feedback MV-STO-SIGNSGD has
been proposed in (Jin et al., 2020), it is required to send
non-sign compressed information, while in our algorithm,
all information transmitted is signed. Theorem 3 shows that
the error bound can be improved if the number of workers
n increases, which means that the algorithm is friendly for
large-scale distributed training tasks.

Regarding the majority vote algorithm, we have proved a
better rate under weaker assumptions than Bernstein et al.
(2018a). They assume that the gradient noise is symmet-
ric and unimodal, which is removed for our momentum
majority vote scheme. The convergence rate in Bernstein
et al. (2018a) is O

(
1

T 1/4 +
σ√
Bn

)
, where n is the number of

nodes. Hence, to reach ϵ error for min1≤t≤T E∥∇f(xt)∥1,

one needs to set T = O
(

1
ϵ4

)
andB = Θ

(
1

nϵ2

)
for majority

vote signSGD. While our algorithm only needs T = O
(

1
ϵ4

)
,

also saving significant sampling costs.

3.2. Towards a federated formulation

We consider the variant of the major vote for federated
learning. Specifically, each node performs local SGD sev-
eral times (we set it to be K) before sending the signs to
the PS; that is, in each iteration, each worker performs the
following iteration

zt,k+1(i) = zt,k(i)− η∇fi(z
t,k(i); ξt,k(i))

with zt,0(i) = yt. The federated version performs a sim-
ilar scheme as Algorithm 2 and modifies the momentum
updating as follows

mt(i) = θmt−1(i) + (1− θ)∇fi(y
t(i); ξt(i))

with yt(i) = zt,K(i). We formulate MV-STO-SIGNSGD
with momentum in Algorithm 3. The convergence results
of the federated MV-STO-SIGNSGD with momentum is
presented in Theorem 4.

Algorithm 3 Federated Major Vote stochastic SIGNSGD
with SImple Momentum (Federated MV-STO-SIGNSGD-
SIM)

Require: parameters γ > 0, α ≥ 0, 0 ≤ θ < 1, R > 0,
K > 0
Initialization: x0 = y0 = 0, m0 = 0
for t = 1, 2, . . .
step 1: All workers update yt = xt+α(xt−xt−1) and
set zt,0(i) = yt for i ∈ {1, 2, . . . , n}
step 2: Worker i

for k = 1, 2, . . . ,K
samples ξt,k(i) ∼ Di i.i.d and updates

zt,k+1(i) = zt,k(i)− η∇fi(zt,k(i); ξt,k(i))
end for outputs yt(i) = zt,K(i)
samples ξt(i) ∼ Di i.i.d and update

mt(i) = θmt−1(i) + (1− θ)∇fi(yt(i); ξt(i))
step 3: PS pulls [SR(m

t(i))]1≤i≤n and update

xt+1 = xt − γSign
[∑n

i=1 SR(m
t(i))

]
end for

Theorem 4 Let (xt)t≥0 be generated by federated MV-
SIGNSGD with momentum, Assumptions 1, 2 and 4 hold for
ξt(i) and ∇fi(·; ·). For integer T ≥ 2, if α = 0, γ = 1

LT 3/4 ,
θ = 1− 1√

T
, η = 1

4LK2 , and K = T 1/4, it holds that

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x1)−min f

LT 1/4
+

2dγ

RT 1/4
+

d

2T 3/4

+
2
√
dσ√

nT 1/4
+

2
√
d∥∇f(x0)∥
T 1/2

+
2dR√

n
+

√
2σ2 +R2

T 1/4
.

Furthermore, if Assumptions 1, 2, 3 and 4 hold, and α =
θ

1−θ , if 1− θ = 1
T 4/7 , γ = 1

max{√ρ,L}T 5/7 , and η = 1
4LK2 ,

and K = T 1/4, we have

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤
max{√ρ, L}[f(x0)−min f ]

T 2/7

+
d3/2

T 2/7
+

2
√
dσ√

nT 2/7
+

max{√ρ, L}Ld
2T 5/7

+
2
√
d∥∇f(x0)∥
T 3/7

+
2dR√

n
+

√
2σ2 +R2

T 1/4
.

The results show that the federated MV-STO-SIGNSGD
with momentum can be as fast as MV-STO-SIGNSGD with
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(a) Train losses, train accuracies, and test accuracies for training ResNet56 on CIFAR-10 with different batch sizes.
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(b) Train losses, train accuracies, and test accuracies for training ResNet56 on CIFAR-100 with different batch sizes.

Figure 2. Performance comparison between SIGNSGD-SIM and SIGNSGD on training ResNet56: in sharp contrast, SIGNSGD-SIM
maintains its performance with smaller batch sizes while the performance of SIGNSGD drops significantly.

momentum. As the number of workers n increases, the
algorithm can achieve better convergence rates. Compared
with the federated algorithm in (Jin et al., 2020), our method
does not require a large batch size in each iteration.

4. Numerical Results
We provide numerical verification of our convergence result
in Theorems 1, 3, and 4. The results confirm that i) com-
pared with SIGNSGD (MV-STO-SIGNSGD), the added mo-
mentum in SIGNSGD-SIM and (MV-STO-SIGNSGD-SIM
and its federated variant) maintains good performance with
small batch sizes and ii) the training of MV-STO-SIGNSGD-
SIM and its federated variant can be benefited from more
workers (see Appendix G.2).

4.1. Experimental evaluation of SIGNSGD-SIM

Models and dataset. We train various ResNet models from
(He et al., 2016) on CIFAR-10/CIFAR-100 (Krizhevsky
et al., 2009) with the optimization algorithms SIGNSGD
and SIGNSGD-SIM. The CIFAR-10 and CIFAR-100 are
popular image classification datasets that consist of small,
32x32 pixel colored images. CIFAR-10 contains 60,000
images, divided into 10 classes with 6,000 images per class.
CIFAR-100 contains 60,000 images but is divided into 100
classes with 600 images per class. Both datasets are split
into a training set of 50,000 images and a test set of 10,000

images. Our code is based on open-source libraries2.

The result of training ResNet110 on CIFAR-100 is already
presented in Figure 1 in the introduction where SIGNSGD-
SIM significantly outperforms SIGNSGD when the batch
size is small. Indeed, similar phenomena occur when train-
ing ResNet20/32/56 on CIFAR-10/CIFAR-100. We present
the result of ResNet56 (see Table 2 and Figure 2) in this sec-
tion and leave the results of ResNet20/32 in Appendix G.1
for the sake of space.

Algorithms Batch Size

128 32 8

CIFAR-10
SGD-M 92.37% 93.89% 93.80%
signSGD 92.12% 90.32% 88.32%
signSGD-SIM 91.60% 92.48% 92.51%

CIFAR-100
SGD-M 68.22% 71.71% 72.16%
signSGD 67.36% 65.54% 48.09%
signSGD-SIM 69.70% 71.07% 69.79%

Table 2. The testing accuracies of training ResNet56 on CIFAR-
10/CIFAR-100 with different batch sizes using SIGNSGD, and
SIGNSGD-SIM. We also include the results with (uncompressed)
gradient descent with momentum (SGD-M) as a reference.

Training parameters. All of the algorithms in the study are

2github.com/akamaster/pytorch_resnet_
cifar10, github.com/epfml/error-feedback-SGD
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(a) Experimental results of test accuracies for training MLP on MNIST across different batch sizes with IID data splitting.
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(b) Experimental results of test accuracies for training MLP on MNIST across different batch sizes with Non-IID data splitting.

Figure 3. In both IID and Non-IID cases, MV-STO-SIGNSGD-SIM and Federated MV-STO-SIGNSGD-SIM maintains better performance
for smaller batch sizes.
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Figure 4. Experimental results of test accuracies for training CNN on CIFAR-10 across different batch sizes. Both MV-STO-SIGNSGD-
SIM and Federated MV-STO-SIGNSGD-SIM obtain excellent performance across batch sizes. In sharp contrast, both MV-STO-SIGNSGD
and MV-SIGNSGD train much slower with deteriorating accuracies for smaller batch sizes.

run for a total of 200 epochs. The learning rate is decimated
twice during this time, first at 100 epochs and again at 150
epochs. The initial learning rate for a batch size of 128 is
1 × 10−3. For smaller batch sizes, the learning rate was
proportionally reduced, as suggested in (Goyal et al., 2017)
and adopted in a previous study (Karimireddy et al., 2019).
The momentum parameter of SIGNSGD-SIM is set to 0.9,
and the weight decay for both algorithms is set to 1× 10−4.

Results. The averaged results from 5 independent runs
are reported in Table 2 and Figure 2. As shown in the
results, SIGNSGD experiences convergence issues when
the batch size is small, while SIGNSGD-SIM consistently
performs well regardless of the batch size. These results
align with previous findings across various architectures
and datasets ((Karimireddy et al., 2019; Bernstein et al.,
2018b)) that SIGNSGD-SIM is not as sensitive to batch size
as SIGNSGD, supporting Theorem 1.

4.2. Experimental evaluation of
MV-STO-SIGNSGD-SIM and its federated variant

In this section, we run experiments comparing MV-STO-
SIGNSGD-SIM (Algorithm 2) and its federated variant
Federated MV-STO-SIGNSGD-SIM (Algorithm 3) with
MV-SIGNSGD (Bernstein et al., 2018a;b) and MV-STO-
SIGNSGD (Jin et al., 2020) on training Multi-Layer Percep-
tron (MLP) on MNIST (LeCun et al., 1998) and Convolu-
tional neural network (CNN) on CIFAR-10 dataset.

Multi-layer perceptron and MNIST. We train an MLP
with 2-hidden layers with 64 units each using ReLU activa-
tions on the MNIST dataset. MNIST is a dataset of 28× 28
grayscale images of digits from 0 to 9, containing 60, 000
training samples and 10, 000 testing samples. We investigate
two methods for dividing the MNIST data among clients:
IID, where the data is shuffled and evenly distributed into 50
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clients, and Non-IID, where the clients receive data accord-
ing to a Dirichlet distribution with concentration parameter
α = 1 (Hsu et al., 2019).

Convolutional neural network and CIFAR-10. We train
a CNN model on CIFAR-10. The model has two 5 × 5
convolutional layers with max-pooling, two fully-connected
layers with 384 and 192 units, respectively, and a final soft-
max output layer. The 50, 000 training images are shuffled
and evenly distributed to 100 clients in the IID fashion.

Training parameters. All the optimization algorithms
in the study run for a total of 250 (1000) commuta-
tion rounds on MNIST (CIFAR-10) experiments with
50 (100) workers. We tune the learning rate from the
set {0.1, 0.01, 0.001, 0.0001} for each algorithm in both
experiments. The optimal learning rates for MV-STO-
SIGNSGD and MV-SIGNSGD are 0.01 for MNIST and
0.001 for CIFAR-10. The optimal learning rate for MV-
STO-SIGNSGD-SIM and Federated MV-STO-SIGNSGD-
SIM is 0.001 for all experiments. We adopt the constant
learning rate in the MNIST experiment and a decaying learn-
ing rate at the rate of 0.999 per commutation round for the
CIFAR-10 experiment. For MV-STO-SIGNSGD, MV-STO-
SIGNSGD-SIM and Federated MV-STO-SIGNSGD-SIM,
we fix the parameter R to be 0.001. In the algorithms
SIGNSGD-SIM and Federated MV-STO-SIGNSGD-SIM,
the momentum parameter θ is set to 0.9, and the parame-
ter α is set to 0. The Federated MV-STO-SIGNSGD-SIM
performs 5 local iterations on each worker, i.e. K = 5.

Results. The averaged results from 5 independent runs are
reported in Figure 3 and Figure 4. Both MV-STO-SIGNSGD-
SIM and its federated variant maintain good performance
with smaller batch sizes validating Theorem 4.

5. Concluding Remarks
In this paper, we first provide a theoretical interpretation of
why momentum benefits the convergence of SIGNSGD; in
particular, we show that SIGNSGD with momentum guar-
antees convergence with smaller batch size than the vanilla
SIGNSGD, echoing existing numerical evidence. We fur-
ther extend our theory to SIGNSGD in distributed settings,
including SIGNSGD with major vote and SIGNSGD in a fed-
erated learning scenario. We verify our theory with various
numerical experiments in different settings.
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Supplementary materials for
Momentum Ensures Convergence of SIGNSGD under Weaker Assumptions

A. Technical Lemmas
Lemma 1 Let x†,m ∈ Rd be arbitrary vectors, and A = Diag(a1, a2, . . . , ad) ∈ Rd with ai > 0, i ∈ {1, 2, . . . , d}. We
denote

x‡ = x† − γA · Sign(m), (7)

and ϵ := m−∇f(x†). If Assumption 1 holds, we have

f(x‡)− f(x†) ≤ −γ∥A∇f(x†)∥1 + 2γ∥A∥F ∥ϵ∥+
Lγ2∥A∥2F

2
.

Specifically, if A is the identity matrix,

f(x‡)− f(x†) ≤ −γ∥∇f(x†)∥1 + 2
√
dγ∥ϵ∥+ Lγ2d

2
.

Lemma 2 Let x† be an arbitrary vector, and m(i) ∈ Rd be a vector associated with node i such that ∥m(i)∥ ≤ R. If we
denote

x‡ = x† − γ · Sign(
n∑

i=1

SR(m(i))),

and ϵ :=
∑n

i m(i)

nR − ∇f(x†)
R , it then holds

Ef(x‡)− Ef(x†) ≤ −γE∥∇f(x†)∥1 + 2
√
dγRE∥ϵ∥+ 2dγR√

n
+
Lγ2d

2
.

Lemma 3 Let Assumptions 1, 2 and 4 hold for ξt(i) and ∇fi(·; ·). Assume node i performs local SGD as

zt,k+1(i) = zt,k(i)− η∇fi(zt,k(i); ξt,k(i))

with zt,0(i) = yt. Since 0 < η ≤ 1
4LK , it holds

E∥yt(i)− yt∥ ≤ η
√

8Kσ2 + 16K2σ2 + 16K2R2.

B. Proof of Theorem 1
We use the notations gt := ∇f(xt; ξt), and ϵt := mt −∇f(xt), and δt := gt −∇f(xt). Therefore,

mt = θmt−1 + (1− θ)gt = θ(ϵt−1 +∇f(xt−1)) + (1− θ)(δt +∇f(xt))

⇒ ϵt = mt −∇f(xt) = θϵt−1 + θ (∇f(xt−1)−∇f(xt))︸ ︷︷ ︸
:=st

+(1− θ)δt.

That is,

ϵt = θϵt−1 + st + (1− θ)δt.

Notice that, the smoothness of the gradient implies

∥st∥ = ∥∇f(xt−1)−∇f(xt)∥ ≤ L∥xt−1 − xt∥ ≤ L
√
dγ. (8)

Using Mathematical Induction, we have

ϵt = θtϵ0 +

t∑
i=1

θt−isi + (1− θ)

t∑
i=1

θt−iδi. (9)

11



Momentum Ensures Convergence of SIGNSGD under Weaker Assumptions

By taking the norms of both sides of inequality (9) and use the bound of si in inequality (8), we obtain

∥ϵt∥ ≤ L
√
dγ

t∑
i=1

θt−i + (1− θ)
∥∥∥ t∑

i=1

θt−iδi
∥∥∥+ θt∥ϵ0∥.

By further taking the expectations of both sides of the above inequality, there is

E∥ϵt∥ ≤ L
√
dγ

1− θ
+ (1− θ)E

∥∥∥ t∑
i=1

θt−iδi
∥∥∥+ θt∥ϵ0∥. (10)

Notice that the random variables (δi)1≤i≤t are independent. We have

E
∥∥∥ t∑

i=1

θt−iδi
∥∥∥ ≤

√√√√E
∥∥∥ t∑

i=1

θt−iδi
∥∥∥2 =

√√√√E
t∑

i=1

θ2t−2i∥δi∥2 ≤ σ√
1− θ2

,

by using Cauchy’s inequality and the fact that E∥δi∥2 ≤ σ2. Finally, we obtain the following inequality by plugging the
above result into inequality (10):

E∥ϵt∥ ≤ L
√
dγθ

1− θ
+

√
1− θ√
1 + θ

σ + θt∥ϵ0∥ ≤ L
√
dγ

1− θ
+

√
1− θσ + θt∥ϵ0∥.

Using Lemma 1 with x† → xt and m → mt, we obtain

f(xt+1)− f(xt) ≤ −γ∥∇f(xt)∥1 + 2
√
dγ∥ϵt∥+ Lγ2d

2
.

Summing the recursion from t = 1 to T and taking expectations,

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x1)−min f

γT
+

2Ldγ

1− θ
+ 2

√
d
√
1− θσ +

Lγd

2
+ 2

√
d

T∑
t=1

θt∥ϵ0∥/T.

As 1− θ = 1√
T

and γ = 1
LT 3/4 , we then have

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x1)−min f

LT 1/4
+

2d

T 1/4
+

2
√
dσ

T 1/4
+

2
√
d∥ϵ0∥
T 1/2

+
d

2T 3/4
.

Notice that x1 = x0 due to the initialization m0 = 0, we then proved the result.

C. Proof of Theorem 2
We adopt the following notations: gt := ∇f(yt; ξt), and ϵt := mt −∇f(xt), and δt := gt −∇f(yt), and H(y,x) :=
∇f(y)−∇f(x)− [∇2f(x)](y−x). Recall ∥∇2f(x)−∇2f(y)∥op ≤ ρ∥x− y∥ for x,y ∈ Rd from Assumption 3, it is
then easy to see

∥H(y,x)∥ = ∥∇f(y)−∇f(x)− [∇2f(x)](y − x)∥

= ∥
∫ 1

s=0

[∇2f(x+ (y − x)s)−∇2f(x)](x− y)ds∥

≤
∫ 1

s=0

∥∇2f(x+ (y − x)s)−∇2f(x)∥op∥x− y∥ds

≤ ρ

∫ 1

s=0

(1− s)∥x− y∥2ds = ρ

2
∥x− y∥2.

12
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Through direct computations, we have

mt = θmt−1 + (1− θ)gt = θ(ϵt−1 +∇f(xt−1)) + (1− θ)(δt +∇f(yt))

= θ(ϵt−1 +∇f(xt) + [∇2f(xt)](xt−1 − xt) +H(xt−1,xt))

+ (1− θ)(δt +∇f(xt) + [∇2f(xt)] (yt − xt)︸ ︷︷ ︸
= θ

1−θ (x
t−xt−1)

+H(yt,xt))

= θ(ϵt−1 +∇f(xt) +H(xt−1,xt)) + (1− θ)(δt +∇f(xt) +H(yt,xt))

⇒ ϵt = mt −∇f(xt) = θϵt−1 + θH(xt−1,xt) + (1− θ)H(yt,xt) + (1− θ)δt.

Using Mathematical Induction, we have

ϵt = θtϵ0 + θ

t∑
i=1

θt−iH(xi−1,xi) + (1− θ)

t∑
i=1

θt−iH(yi,xi) + (1− θ)

t∑
i=1

θt−iδi.

Taking the norms and expectations of both sides of the above equation, we obtain

E∥ϵt∥ ≤ θ

t∑
i=1

θt−iE∥H(xi−1,xi)∥+ (1− θ)

t∑
i=1

θt−iE∥H(yi,xi)∥+ E

∥∥∥∥∥(1− θ)

t∑
i=1

θt−iδi

∥∥∥∥∥+ θt∥ϵ0∥

≤ ρ

2
θ

t∑
i=1

θt−iE∥xi−1 − xi∥2 + ρ

2
(1− θ)

t∑
i=1

θt−iE∥yi − xi∥2 + E

∥∥∥∥∥(1− θ)

t∑
i=1

θt−iδi

∥∥∥∥∥+ θt∥ϵ0∥

≤ ρ

2

θ

1− θ

t∑
i=1

θt−iE∥xi−1 − xi∥2 + E

∥∥∥∥∥(1− θ)

t∑
i=1

θt−iδi

∥∥∥∥∥+ θt∥ϵ0∥,

where we used yi − xi = θ
1−θ (x

i − xi−1). With the scheme of the algorithm, we have

E∥xi−1 − xi∥2 = E∥γSign(mi−1)∥2 ≤ γ2d.

On the other hand, by independence between the random variables (δi)i≥0, there is

E

∥∥∥∥∥(1− θ)

t∑
i=1

θt−iδi

∥∥∥∥∥ ≤

√√√√E

∥∥∥∥∥(1− θ)

t∑
i=1

θt−iδi

∥∥∥∥∥
2

= (1− θ)

√√√√ t∑
i=1

θ2t−2iE∥δi∥2 ≤
√
1− θ√
1 + θ

σ ≤
√
1− θσ.

Hence, we obtain the following bound for E∥ϵt∥ by combining the computations above:

E∥ϵt∥ ≤ dρ

2

θ

(1− θ)2
γ2 +

√
1− θσ + θt∥ϵ0∥.

Using Lemma 1 with x† → xt and m → mt in the algorithm, we obtain

f(xt+1)− f(xt) ≤ −γ∥∇f(xt)∥1 + 2
√
dγ∥ϵt∥+ Lγ2d

2
.

By summing the above inequalities with t ranging from 1 to T and then taking the the expectation, we have

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x1)−min f

γT
+ d3/2ρ

θ

(1− θ)2
γ2 + 2

√
d
√
1− θσ +

Lγd

2
+ 2

√
d

T∑
t=1

θt∥ϵ0∥/T.

We then conclude the proof of this theorem by noting that 1− θ = 1
T 4/7 , γ = 1

max{√ρ,L}T 5/7 and x0 = x1.

13
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D. Proof of Theorem 3
I.) α = 0: In this case, yt = xt. We use the notations gt :=

∑n
i=1 ∇fi(x

t;ξt(i))

nR , and ϵt :=
∑n

i mt(i)

nR − ∇f(xt)/R, and
δt := gt −∇f(xt)/R. With the scheme of the algorithm,∑n

i m
t(i)

nR
= θ

∑n
i m

t−1(i)

nR
+ (1− θ)gt

= θ(ϵt−1 +∇f(xt−1)/R) + (1− θ)(δt +∇f(xt)/R).

Hence, we are led to

ϵt =

∑n
i m

t(i)

nR
−∇f(xt)/R = θϵt−1 + st + (1− θ)δt,

where st := θ(∇f(xt−1)−∇f(xt))/R. With the scheme of the algorithm,

∥st∥ =
θ

R
∥∇f(xt−1)−∇f(xt)∥ ≤ L

R
∥xt−1 − xt∥ ≤ L

√
dγ

R
.

Because (ξt(i))1≤i≤n,t≥1 are independent with each other, E⟨δi, δj⟩ = 0 when i ̸= j; and

E∥δi∥2 =
E∥∑n

i=1 ∇fi(xt; ξt(i))−∑n
i=1 ∇fi(xt)∥2

n2R2
=

σ2

nR2
.

Similar to the proof of Theorem 3, it follows

E∥ϵt∥ ≤ L
√
dγ

R(1− θ)
+

√
1− θσ

R
√
n

+ θt∥ϵ0∥.

Using Lemma 2 with x† → xt and m(i) → mt(i), we get

Ef(xt+1)− Ef(xt) ≤ −γE∥∇f(xt)∥1 + 2
√
dγRE∥ϵt∥+ 2dγR√

n
+
Lγ2d

2
. (11)

The sum of the recursion from t = 1 to T yields

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x1)−min f

γT
+

2Ldγ

1− θ
+

2
√
d
√
1− θσ√
n

+
Lγd

2
+

2dR√
n

+ 2
√
dR

T∑
t=1

θt∥ϵ0∥/T.

Note x0 = x1, and we then proved the result. Let γ = 1
LT 3/4 , and θ = 1− 1√

T
, we have

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x1)−min f

LT 1/4
+

2dγ

T 1/4
+

2
√
dσ√

nT 1/4
+

d

2T 3/4
+

2
√
d∥∇f(x0)∥
T 1/2

+
2dR√
n
.

II.) α = θ
1−θ . In this case, by denoting gt :=

∑n
i=1 ∇fi(y

t;ξt(i))

nR , and ϵt :=
∑n

i mt(i)

nR − ∇f(xt)/R, and δt := gt −
∇f(yt)/R, and H(x,y) := ∇f(x)−∇f(y)− [∇2f(x)](x− y), it follows∑n

i m
t(i)

nR
= θ

∑n
i m

t−1(i)

nR
+ (1− θ)gt = θ(ϵt−1 +∇f(xt−1)/R) + (1− θ)(δt +∇f(yt)/R)

= θ(ϵt−1 +∇f(xt)/R+ [∇2f(xt)](xt−1 − xt)/R+H(xt−1,xt)/R)

+ (1− θ)(δt +∇f(xt)/R+ [∇2f(xt)](yt − xt)/R+H(yt,xt)/R)

= θ(ϵt−1 +∇f(xt)/R+H(xt−1,xt)/R) + (1− θ)(δt +∇f(xt)/R+H(yt,xt)/R)

⇒ ϵt =

∑n
i m

t(i)

nR
−∇f(xt) = θϵt−1 + θH(xt−1,xt)/R+ (1− θ)H(yt,xt)/R+ (1− θ)δt.

14
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With Mathematical Induction, we have

ϵt = θ

t∑
i=1

θt−iH(xi−1,xi)/R+ (1− θ)

t∑
i=1

θt−iH(yi,xi)/R+ (1− θ)

t∑
i=1

θt−iδi + θt∥ϵ0∥.

Similar to the proof of Theorem 2, we obtain the following bound

E∥ϵt∥ ≤ dρ

2

θ

(1− θ)2R
γ2 +

√
1− θσ

R
√
n

+ θt∥ϵ0∥.

The sum of the recursion from t = 1 to T yields

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x0)−min f

γT
+ d3/2ρ

θ

(1− θ)2
γ2 +

2
√
d
√
1− θσ√
n

+
Lγd

2
+ 2

√
dR

T∑
t=1

θt∥ϵ0∥/T +
2dR√
n
.

When 1− θ = 1
T 4/7 and γ = 1

max{√ρ,L}T 5/7 ,

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ max{√ρ, L}[f(x0)−min f ]

T 2/7
+
d3/2

T 2/7
+

2
√
dσ√

nT 2/7
+

max{√ρ, L}Ld
2T 5/7

+
2
√
dR∥ϵ0∥
T 3/7

+
2dR√
n
.

E. Proof of Theorem 4
I.) α = 0: In this case, xt = yt. Denote ĝt :=

∑n
i=1 ∇fi(x

t(i);ξt(i))

nR , and follow the notation in [I, the proof of Theorem 3].
In the federated SIGNSGD, it follows∑n

i m
t(i)

nR
= θ

∑n
i m

t−1(i)

nR
+ (1− θ)ĝt

= θ

∑n
i m

t−1(i)

nR
+ (1− θ)gt + (1− θ)[ĝt − gt]

= θ(ϵt−1 +∇f(xt−1)/R) + (1− θ)(δt +∇f(xt)/R) + (1− θ)[ĝt − gt].

Thus, we derive

ϵt =

∑n
i m

t(i)

nR
−∇f(xt)/R = θϵt−1 + st + (1− θ)δt + (1− θ)[ĝt − gt],

where st := θ(∇f(xt−1)−∇f(xt))/R. We have

ϵt = θtϵ0 +

t∑
i=1

θt−isi + (1− θ)

t∑
i=1

θt−iδi + (1− θ)

t∑
i=1

θt−i
[
ĝi − gi

]
.

With the definition of ĝi, note that xt = yt, with Lemma 3,

E∥ĝi − gi∥ ≤ L
∑n

i=1 E∥xt(i)− xt∥
nR

≤ ηL
√
8Kσ2 + 16K2σ2 + 16K2R2

R
.

Taking the expectations and norms of both sides,

E∥ϵt∥ ≤ L
√
dγ

R(1− θ)
+ (1− θ)E

∥∥∥ t∑
i=1

θt−iδi
∥∥∥+ (1− θ)E

∥∥∥ t∑
i=1

θt−i
[
ĝi − gi

]∥∥∥+ θt∥ϵ0∥

≤ L
√
dγ

R(1− θ)
+

√
1− θσ

R
√
n

+
ηL

√
8Kσ2 + 16K2σ2 + 16K2R2

R
+ θt∥ϵ0∥

≤ L
√
dγ

R(1− θ)
+

√
1− θσ

R
√
n

+
ηL

√
24K2σ2 + 16K2R2

R
+ θt∥ϵ0∥.
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Note that (11) still holds,

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x0)−min f

γT
+

2Ldγ

(1− θ)
+

2
√
d
√
1− θσ√
n

+
Lγd

2
+

2dR√
n

+
√

24σ2 + 16R2ηLK +
2
√
d∥∇f(x0)∥
T 1/2

.

II.) α = θ
1−θ : Denote ĝt :=

∑n
i=1 ∇fi(y

t(i);ξt(i))

nR , and follow the notation in [II, the proof of Theorem 3],

∑n
i m

t(i)

nR
= θ

∑n
i m

t−1(i)

nR
+ (1− θ)ĝt = θ

∑n
i m

t−1(i)

nR
+ (1− θ)gt + (1− θ)[ĝt − gt]

= θ(ϵt−1 +∇f(xt−1)/R) + (1− θ)(δt +∇f(yt)/R) + (1− θ)[ĝt − gt]

= θ(ϵt−1 +∇f(xt)/R+ [∇2f(xt)](xt−1 − xt)/R+H(xt−1,xt)/R) + (1− θ)[ĝt − gt]

+ (1− θ)(δt +∇f(xt)/R+ [∇2f(xt)](yt − xt)/R+H(yt,xt)/R) + (1− θ)[ĝt − gt]

= θ(ϵt−1 +∇f(xt)/R+H(xt−1,xt)/R) + (1− θ)(δt +∇f(xt)/R+H(yt,xt)/R) + (1− θ)[ĝt − gt]

Thus, we have

ϵt =

∑n
i m

t(i)

nR
−∇f(xt) = θϵt−1 + θH(xt−1,xt)/R+ (1− θ)H(yt,xt)/R+ (1− θ)δt + (1− θ)[ĝt − gt].

Noticing ϵ0 = 0, and ĝ0 = g0, we have

ϵt = θ

t∑
i=1

θt−iH(xi−1,xi)/R+ (1− θ)

t∑
i=1

θt−iH(yi,xi)/R+ (1− θ)

t∑
i=1

θt−iδi + (1− θ)

t∑
i=1

θt−i
[
ĝi − gi

]
+ θtϵ0.

Taking the expectations and norms of both sides gives us

E∥ϵt∥ ≤ dρ

2

θ

(1− θ)2R
γ2 + (1− θ)E

∥∥∥ t∑
i=1

θt−iδi
∥∥∥+ (1− θ)E

∥∥∥ t∑
i=1

θt−i
[
ĝi − gi

]∥∥∥+ θt∥ϵ0∥

≤ dρ

2

θ

(1− θ)2R
γ2 +

√
1− θσ

R
√
n

+
ηL

√
8Kσ2 + 16K2σ2 + 16K2R2

R
+ θt∥ϵ0∥,

and thus

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ f(x0)−min f

γT
+ d3/2ρ

θ

(1− θ)2
γ2 +

2
√
d
√
1− θσ√
n

+
Lγd

2

+
2dR√
n

+ ηL
√

24K2σ2 + 16K2R2 + 2
√
dR

T∑
t=1

θt∥ϵ0∥/T.

When 1− θ = 1
T 4/7 , γ = 1

max{√ρ,L}T 5/7 , and η = 1
4LK2 , and K = T 1/4,

1

T

T∑
t=1

E∥∇f(xt)∥1 ≤ max{√ρ, L}[f(x0)−min f ]

T 2/7
+
d3/2

T 2/7
+

2
√
dσ√

nT 2/7

+
max{√ρ, L}Ld

2T 5/7
+

2
√
dR∥ϵ0∥
T 3/7

+
2dR√
n

+

√
2σ2 +R2

T 1/4
.
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F. Proofs of Technical Lemmas
F.1. Proofs of Lemma 1

The proof of this lemma is motivated by (Cutkosky & Mehta, 2020). The smoothness of the gradient gives us

f(x‡)− f(x†) ≤ ⟨∇f(x†),x‡ − x†⟩+ L

2
∥x‡ − x†∥2

≤ −γ⟨∇f(x†),A · Sign(m)⟩+ Lγ2
∑d

i=1 a
2
i

2

= −γ⟨∇f(x†),A · Sign[∇f(x†)]⟩+ γ⟨∇f(x†),A · Sign(m)−A · Sign[∇f(x†)]⟩+ Lγ2
∑d

i=1 a
2
i

2

= −γ∥A∇f(x†)∥1 + γ⟨∇f(x†),A · Sign(m)−A · Sign[∇f(x†)]⟩+ Lγ2
∑d

i=1 a
2
i

2
.

Notice that

⟨∇f(x†),A · Sign[∇f(x†)]−A · Sign(m)⟩ =
d∑

i=1

ai[∇f(x†)]i · [Sign([∇f(x†)]i)− Sign([m]i)].

1) If Sign([∇f(x†)]i) = Sign([m]i), ai[∇f(x†)]i · [Sign([∇f(x†)]i)− Sign([m]i)] = 0.

2) Otherwise, [∇f(x†)]i · [m]i ≤ 0 which means

|ϵi| = |[∇f(x†)]i − [m]i| ≥ |[∇f(x†)]i|.
In this case, it then holds

ai[∇f(x†)]i · [Sign([∇f(x†)]i)− Sign([m]i)] ≤ 2ai|[∇f(x†)]i| ≤ 2ai|ϵi|. (12)

In summary, for any i ∈ [d], the inequality (12) holds. Thus, we have

⟨∇f(x†),A · Sign[∇f(x†)]−A · Sign(m)⟩ ≤ 2

d∑
i=1

ai|ϵi| ≤ 2∥A∥F ∥ϵ∥

and

f(x‡)− f(x†) ≤ −γ∥A∇f(x†)∥1 + 2γ∥A∥F ∥ϵ∥+
Lγ2∥A∥2F

2
.

When A is the identity matrix, ∥A∥F =
√
d, which directly gives

f(x‡)− f(x†) ≤ −γ∥∇f(x†)∥1 + 2
√
dγ∥ϵ∥+ Lγ2d

2
.

F.2. Proof of Lemma 2

Using a shorthand notation m :=
∑n

i=1 SR(m(i))/n, it holds

x‡ = x† − Sign(m).

Using the Lipschitz property of the gradient, we have

f(x‡)− f(x†) ≤ ⟨∇f(x†),x‡ − x†⟩+ L

2
∥x‡ − x†∥2

≤ −γ⟨∇f(x†),Sign(m)⟩+ Ldγ2

2

= −γ⟨∇f(x†),Sign[∇f(x†)]⟩+ γ⟨∇f(x†),Sign(m)− Sign[∇f(x†)]⟩+ Ldγ2

2

= −γ∥∇f(x†)∥1 + γ⟨∇f(x†),Sign(m)− Sign[∇f(x†)]⟩+ Ldγ2

2
.
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If [∇f(x†)/R]i · [m]i > 0, i.e., Sign([∇f(x†)]i) = Sign([m]i), then we get

[∇f(x†)]i · [Sign([∇f(x†)]i)− Sign([m]i)] = 0.

If [∇f(x†)/R]i · [m]i ≤ 0,
|[∇f(x†)]i/R− [m]i| ≥ |[∇f(x†)]i/R|

due to 1/R > 0. In this case, for each coordinate i, it then holds

[∇f(x†)]i · [Sign([∇f(x†)]i)− Sign([m]i)] ≤ 2|[∇f(x†)]i| = 2R|[∇f(x†)]i/R| ≤ 2R|∇f(x†)]i/R− [m]i|. (13)

Thus, we have the following estimate:

⟨∇f(x†),Sign[∇f(x†)]− Sign(m)⟩ ≤ 2R

d∑
i=1

|[∇f(x†)]i/R− [m]i| ≤ 2
√
dR∥∇f(x†)/R−m∥.

Then, we get the following inequality

f(x‡)− f(x†) ≤ −γ∥∇f(x†)∥1 + 2
√
dγR∥∇f(x†)/R−m∥+ Lγ2d

2
. (14)

Recall the definition of m, inequality (14) is equivalent to the following expression:

f(x‡)− f(x†) ≤ −γ∥∇f(x†)∥1 + 2
√
dγR

∥∥∥∥∥
n∑

i=1

SR(m(i))/n−∇f(x†)/R

∥∥∥∥∥+ Lγ2d

2
.

For any v ∈ Rd such that ∥v∥ ≤ R, with direct computations, there is

E∥SR(v)− v/R∥2 ≤ d− ∥v∥2
R2

≤ d.

Thus, we have

E

(∥∥∥∥∥
n∑

i=1

SR(m(i))/n−∇f(x†)/R

∥∥∥∥∥
∣∣∣∣∣ {m(i)}1≤i≤n

)

≤ E

(∥∥∥∥∥
n∑

i=1

SR(m(i))/n−
n∑

i=1

m(i)/(nR)

∥∥∥∥∥
∣∣∣∣∣ {m(i)}1≤i≤n

)
+ E

(∥∥∥∥∥
n∑

i=1

m(i)/(nR)−∇f(x†)/R

∥∥∥∥∥
∣∣∣∣∣ {m(i)}1≤i≤n

)

≤

√√√√√E

∥∥∥∥∥
n∑

i=1

SR(m(i))/n−
n∑

i=1

m(i)/(nR)

∥∥∥∥∥
2 ∣∣∣∣∣ {m(i)}1≤i≤n

+ E
(
∥ϵ∥

∣∣∣ {m(i)}1≤i≤n

)

=

√√√√ n∑
i=1

1

n2
E
(
∥SR(m(i))−m(i)/R∥2

∣∣∣{m(i)}1≤i≤n

)
+ E

(
∥ϵ∥

∣∣∣ {m(i)}1≤i≤n

)

≤
√
d

n
+ E

(
∥ϵ∥

∣∣∣ {m(i)}1≤i≤n

)
.

Taking full expectations, we then obtain the desired results.

F.3. Proof of Lemma 3

Note that for any k ∈ {0, 1, . . . ,K − 1}, in node i,

E∥zt,k+1(i)− yt∥2 = E∥zt,k(i)− η∇f(zt,k(i); ξt,k(i))− yt∥2

≤ E
∥∥∥zt,k(i)− yt − η

(
∇f(zt,k(i); ξt,k(i))−∇fi(zt,k(i))

+∇fi(zt,k(i))−∇fi(yt) +∇fi(yt)
)∥∥∥2,
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By using the Cauchy’s inequality

E∥a+ b∥2 ≤ (1 +
1

ψ
)E∥a∥2 + (1 + ψ)E∥b∥2

with a = zt,k(i)−xt−η(∇f(zt,k(i); ξt,k(i))−∇fi(zt,k(i)), b = η(∇fi(zt,k(i))−∇fi(xt)+∇fi(xt) and ψ = 2K−1.

Denote that ℜ := (1+ 1
2K−1 )E∥zt,k(i)−xt−η(∇f(zt,k(i); ξt,k(i))−∇fi(zt,k(i))∥ and ℑ := 2Kη2E∥(∇fi(zt,k(i))−

∇fi(yt) +∇fi(yt)∥2. The unbiased expectation property of ∇f(zt,k(i); ξt,k(i)) gives us

ℜ = (1 +
1

2K − 1
)
(
E∥zt,k(i)− yt∥2 + η2E∥∇f(zt,k(i); ξt,k(i))−∇fi(zt,k(i))∥2

)
≤ (1 +

1

2K − 1
)
(
E∥zt,k(i)− yt∥2 + η2σ2

)
On the other hand, we have the following bound

ℑ ≤ 4Kη2E∥∇fi(zt,k(i))−∇fi(yt)∥2 + 4Kη2E∥∇fi(yt)∥2

≤ 4L2Kη2∥zt,k(i)− yt∥2 + 4Kη2R2.

When 0 < η ≤ 1
4LK ,

1 +
1

2K − 1
+ 4L2Kη2 ≤ 1 +

1

K − 1
,

and we can obtain

E∥zt,k+1(i)− yt∥2

≤ (1 +
1

2K − 1
+ 4L2Kη2)E∥zt,k(i)− yt∥2 + 2η2σ2 + 4Kη2σ2 + 4Kη2R2

≤ (1 +
1

K − 1
)E∥zt,k(i)− yt∥2 + 2η2σ2 + 4Kη2σ2 + 4Kη2R2.

The recursion from j = 0 to k yields

E∥zt,k(i)− yt∥2 ≤
K−1∑
j=0

(1 +
1

K − 1
)j
[
2η2σ2 + 4Kη2σ2 + 4Kη2R2

]
≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

]
×
[
2η2σ2 + 4Kη2σ2 + 4Kη2R2

]
≤ 8Kη2σ2 + 16K2η2σ2 + 16K2η2R2,

where we used the inequality (1 + 1
K−1 )

K ≤ 5 holds for any K ≥ 1. Noticing the fact yt(i) = zt,K(i), we then prove

E∥yt(i)− yt∥2 ≤ 8Kη2σ2 + 16K2η2σ2 + 16K2η2R2

for Assumption 4. With Cauchy’s inequality,

E∥yt(i)− yt∥ ≤
√

E∥yt(i)− yt∥2 ≤ η
√

8Kσ2 + 16K2σ2 + 16K2R2.

G. Additional experiments
G.1. Additional experiments on CIFAR-10/CIFAR-100

In this section, we provide additional experiments of training ResNet20/32 on CIFAR-10/CIFAR-100 using SIGN-SGD and
SIGN-SGD-SIM. The results in Figure 5, Figure 6, and Table 3 align with the result in Section 4.1 that SIGN-SGD-SIM
does not require a large batch size to guarantee convergence.
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(a) Experimental results of train losses, train accuracies, and test accuracies for training ResNet20 on CIFAR-10 with different batch
sizes.
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(b) Experimental results of train losses, train accuracies, and test accuracies for training ResNet20 on CIFAR-100 with different batch
sizes.

Figure 5. Performance comparison between SIGNSGD-SIM and SIGNSGD on training ResNet20: in sharp contrast, SIGNSGD-SIM
maintains its performance with smaller batch sizes while the performance of SIGNSGD drops significantly.

ResNet-20, CIFAR-10 ResNet-20, CIFAR-100 ResNet-32, CIFAR-10 ResNet-32, CIFAR-100Batch size
SIGNSGD SIGNSGD-SIM SIGNSGD SIGNSGD-SIM SIGNSGD SIGNSGD-SIM SIGNSGD SIGNSGD-SIM

128 90.53% 91.26% 62.43% 68.45% 90.92% 92.19% 65.12% 69.01%
32 88.88% 91.60% 59.50% 67.36% 89.86% 92.53% 61.53% 69.63%
8 85.23% 91.15% 42.72% 65.99% 86.78% 92.12% 47.11% 67.94%

Table 3. The testing accuracies of training ResNet20 and ResNet32 on CIFAR-10/CIFAR-100 with different batch sizes using SIGNSGD
and SIGNSGD-SIM.
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(a) Experimental results of train losses, train accuracies, and test accuracies for training ResNet32 on CIFAR-10 with different batch
sizes.
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(b) Experimental results of train losses, train accuracies, and test accuracies for training ResNet32 on CIFAR-100 with different batch
sizes.

Figure 6. Performance comparison between SIGNSGD-SIM and SIGNSGD on training ResNet32: in sharp contrast, SIGNSGD-SIM
maintains its performance with smaller batch sizes while the performance of SIGNSGD drops significantly.
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G.2. Additional experiments on MNIST with different number of workers

In this section, we examine how the number of workers affects the performance of MV-STO-SIGNSGD-SIM and Federated
MV-STO-SIGNSGD-SIM. We follow the setting of training MLP on MNIST in Section 4.2 and consider the cases of 50,
100, and 150 workers. The results for MV-STO-SIGNSGD-SIM and Federated MV-STO-SIGNSGD-SIM are presented in
Figure 7 and Figure 8 respectively. In both cases, the algorithms benefit from more workers, especially when the batch is
small.
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(a) Experimental results of test accuracies for training MLP using MV-STO-SIGNSGD-SIM on MNIST in IID setting with different
batch sizes and number of users.
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(b) Experimental results of test accuracies for training MLP using MV-STO-SIGNSGD-SIM on MNIST in Non-IID setting with different
batch sizes and number of users.

Figure 7. The experimental results in both Non-IID and Non-IID settings demonstrate that incorporating more users in the training
procedure improves the speed and stability of MV-STO-SIGNSGD-SIM, particularly when the batch size is small.
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(a) Experimental results of test accuracies for training MLP using Federated MV-STO-SIGNSGD-SIM on MNIST in IID setting with
different batch sizes and number of users.
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(b) Experimental results of test accuracies for training MLP using Federated MV-STO-SIGNSGD-SIM on MNIST in Non-IID setting
with different batch sizes and number of users.

Figure 8. The experimental results in both Non-IID and Non-IID settings demonstrate that incorporating more users in the training
procedure improves the speed and stability of Federated MV-STO-SIGNSGD-SIM, particularly when the batch size is small.
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