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Abstract

Numerical simulation of non-linear partial dif-
ferential equations plays a crucial role in mod-
eling physical science and engineering phenom-
ena, such as weather, climate, and aerodynamics.
Recent Machine Learning (ML) models trained
on low-resolution spatio-temporal signals have
shown new promises in capturing important dy-
namics in high-resolution signals, under the con-
dition that the models can effectively recover the
missing details. However, this study shows that
significant information is often lost in the low-
resolution down-sampled features. To address
such issues, we propose a new approach, namely
Temporal Stencil Modeling (TSM), which com-
bines the strengths of advanced time-series se-
quence modeling (with the HiPPO features) and
state-of-the-art neural PDE solvers (with learn-
able stencil modeling). TSM aims to recover
the lost information from the PDE trajectories
and can be regarded as a temporal generaliza-
tion of classic finite volume methods such as
WENO. Our experimental results show that TSM
achieves the new state-of-the-art simulation accu-
racy for 2-D incompressible Navier-Stokes turbu-
lent flows: it significantly outperforms the previ-
ously reported best results by 19.9% in terms of
the highly-correlated duration time and reduces
the inference latency into 80%. We also show
a strong generalization ability of the proposed
method to various out-of-distribution turbulent
flow settings, as well as lower resolution or 1-D
/ 3-D settings. Our code is available at https:
//github.com/Edward-Sun/TSM-PDE.
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1. Introduction
Complex physical systems described by non-linear partial
differential equations (PDEs) are ubiquitous throughout the
real world, with applications ranging from design problems
in aeronautics (Rhie & Chow, 1983), medicine (Sallam &
Hwang, 1984), to scientific problems of molecular model-
ing (Lelievre & Stoltz, 2016) and astronomical simulations
(Courant et al., 1967). Solving most equations of importance
is usually computationally intractable with direct numerical
simulations and the finest features in high resolutions.

Recent advances in machine learning-accelerated PDE
solvers (Bar-Sinai et al. 2019; Li et al. 2020c; Kochkov
et al. 2021; Brandstetter et al. 2021, inter alia) have shown
that end-to-end neural solvers can efficiently solve impor-
tant (mostly temporal) partial differential equations. Unlike
classical finite differences, finite volumes, finite elements,
or pseudo-spectral methods that require a smooth variation
on the high-resolution meshes for guaranteed convergence,
neural solvers do not rely on such conditions and are able
to model the underlying physics with under-resolved low
resolutions and produce high-quality simulations with sig-
nificantly reduced computational cost.

The power of learnable PDE solvers is usually believed to
come from the super-resolution ability of neural networks,
which means that the machine learning model is capable of
recovering the missing details based on the coarse features
(Bar-Sinai et al., 2019; Kochkov et al., 2021). In this pa-
per, we first empirically verify such capability by explicitly
training a super-resolution model, and then find that since
low-resolution down-sampling of the field can lead to some
information loss, a single coarse feature map used by pre-
vious work (Kochkov et al., 2021) is not sufficient enough.
We empirically show that the temporal information in the
trajectories and the temporal feature encoding scheme are
crucial for recovering the super-resolution details faithfully.

Motivated by the above observations, we propose Tempo-
ral Stencil Modeling (TSM), which combines the best of
two worlds: stencil learning (i.e., Learned Interpolation in
Kochkov et al. 2021) as that used in a state-of-the-art neu-
ral PDE solver for conservation-form PDEs, and HiPPO
(Gu et al., 2020) as a state-of-the-art time series sequence
model. Specifically, in this paper, we focus on trajectory-
enhanced high-quality approximation of the convective flux

1

https://github.com/Edward-Sun/TSM-PDE
https://github.com/Edward-Sun/TSM-PDE


A Neural PDE Solver with Temporal Stencil Modeling

Latest velocity

Velocity trajectory

Classic Stencil Interpolation
Schemes (e.g., WENO) Vanilla Stencil Modeling

(Kochkov et al., 2021)
Temporal Stencil 
Modeling (ours)

Divergence

Explicit timestep

Calculating stencil
interpolation coefficients

Convective flux 
approximation

Convective flux 
approximation

Convective flux 
approximation

HiPPO

Pressure projection

New velocity

External forcing F(T)

Raw

Figure 1: Illustration of classic finite volume solvers (in red color), learnable solvers with vanilla stencil modeling (in blue
color) and our temporal stencil modeling (in green color). While the convective flux approximation methods are different
in each method, the divergence operator, the explicit time-step operator, and the pressure projection (in yellow color) are
shared between classic solvers and learnable methods. Notice that the stencil interpolation coefficients in classic solvers
such as WENO can also be data-adaptive (see Sec. 3.1 for more details).

within a finite volume method framework. As illustrated in
Fig. 1, TSM can be regarded as a temporal generalization
of classic finite volume methods such as WENO (Liu et al.,
1994; Jiang & Shu, 1996) and recently proposed learned
interpolation solvers (Kochkov et al., 2021), both of which
adaptively weight or interpolate the stencils based on the
latest states only. On the other hand, in TSM we use the
HiPPO-based temporal features to calculate the interpola-
tion coefficients for approximating the integrated velocity
on each cell surface. The HiPPO temporal features pro-
vide a good representation for calculating the interpolation
coefficients, while the stencil learning framework ensures
that the neural system’s prediction exactly conserves the
Conservation Law and the incompressibility of the fluid.
With the abundant temporal information, we further utilize
the temporal bundling technique (Brandstetter et al., 2021)
to avoid over-fitting and improve the prediction latency for
TSM.

Following the precedent work in the field (Li et al., 2020c;
Kochkov et al., 2021; Brandstetter et al., 2021), we evaluate
the proposed TSM neural PDE solver on the 2-D incom-
pressible Navier-Stokes equation, which is the governing
equation for turbulent flows with the conservation of mass
and momentum in a Newtonian fluid. Our empirical eval-
uation shows that TSM achieves both state-of-the-art sim-

ulation accuracy (+19.9%) and inference speed (+25%).
We also show that TSM trained with steady-state flows
can achieve strong generalization performance on out-of-
distribution turbulent flows, including different forcings and
different Reynolds numbers.

2. Background & Related Work
2.1. Navier-Stokes Equation

A time-dependent PDE in the conservation form can be
written as

∂tu+∇ · J(u) = 0 (1)

where u : [0, T ]× X → Rn is the density of the conserved
quantity (i.e., the solution), t ∈ [0, T ] is the temporal dimen-
sion, X ⊂ Rn is the spatial dimension, and J : Rn → Rn is
the flux, which represents the quantity that passes or trav-
els (whether it actually moves or not) through a surface or
substance. ∇ · J is the divergence of J. Specifically, the in-
compressible, constant density 2-D Navier Stokes equation
for fluids has a conservation form of:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (2)

∇ · u = 0 (3)
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where ⊗ denotes the tensor product, ν is the kinematic
viscosity, ρ is the fluid density, p is the pressure filed, and f
is the external forcing. In Eq. 2, the left-hand side describes
acceleration and convection, and the right-hand side is in
effect a summation of diffusion, internal forcing source, and
external forcing source. Eq. 3 enforces the incompressibility
of the fluid.

A common technique to solve time-dependent PDEs is the
method of lines (MOL) (Schiesser, 2012), where the basic
idea is to replace the spatial (boundary value) derivatives
in the PDE with algebraic approximations. Specifically,
we discretize the spatial domain X into a grid X = Gn,
where G is a set of grids on R. Each grid cell g in Gn

denote a small non-overlapping volume, whose center is
xg, and the average solution value is calculated as ut

g =∫
g
u(t,x)dx. We then solve ∂tu

t
g for g ∈ Gn and t ∈

[0, T ]. Since g ∈ Gn is a set of pre-defined grid points,
the only derivative operator is now in time, making it an
ordinary differential equation (ODEs)-based system that
approximates the original PDE.

2.2. Classical Solvers for Computational Fluid
Dynamics

In Computational Fluid Dynamics (CFD) (Anderson &
Wendt, 1995; Pope & Pope, 2000), the Reynolds number
Re = UL/ν dictates the balance between convection and
diffusion, where U and L are the typical velocity and char-
acteristic linear dimension. When the Reynolds number
Re ≫ 1, the fluids exhibit time-dependent chaotic behav-
ior, known as turbulence, where the small-scale changes in
the initial conditions can lead to a large difference in the
outcome. The Direct Numerical Simulation (DNS) method
solve Eq. 2 directly and is a general-purpose solver with high
stability. However, as Re determines the smallest spatio-
temporal feature scale that need to be captured by DNS,
DNS faces a computational complexity as high as O(Re3)
(Choi & Moin, 2012) and cannot scale to large-Reynolds
number flows or large-size computation domains.

2.3. Neural PDE Solvers

A wide range of neural network-based solvers have recently
been proposed to at the intersection of PDE solving and
machine learning. We roughly classify them into four cate-
gories:

Physics-Informed Neural Networks (PINNs) PINN di-
rectly parameterizes the solution u as a neural network
F : [0, T ] × X → Rn (Weinan & Yu, 2018; Raissi et al.,
2019; Bar & Sochen, 2019; Smith et al., 2020; Wang et al.,
2022). They are closely related to the classic Galerkin
methods (Matthies & Keese, 2005), where the boundary
condition date-fitting losses and physics-informed losses

are introduced to train the neural network. These methods
suffer from the parametric dependence issue, that is, for
any new initial and boundary conditions, the optimization
problem needs to be solved from scratch, thus limiting their
applications, especially for time-dependent PDEs.

Neural Operator Learning Neural Operator methods
learn the mapping from any functional parametric de-
pendence to the solution as F : ([0, T ]× X → Rn) →
([T, T +∆T ]× X → Rn) (Lu et al., 2019; Bhattacharya
et al., 2020; Patel et al., 2021). These methods are usually
not bounded by fixed resolutions, and learn to directly pre-
dict any solution at time step t ∈ [T, T + ∆T ]. Fourier
transform (Li et al., 2020c; Tran et al., 2021), wavelet
transform (Gupta et al., 2021), random features (Nelsen
& Stuart, 2021), attention mechanism (Cao, 2021), or graph
neural networks(Li et al., 2020a;b) are often used in the
neural network building blocks. Compared to neural meth-
ods that mimic the method of lines, the operator learning
methods are not designed to generalize to dynamics for out-
of-distribution t ∈ [T +∆T,+∞], and only exhibit limited
accuracy for long trajectories.

Neural Method-of-Lines Solver Neural Method-of-
Lines Solvers are autoregressive models that solve the PDE
iteratively, where the difference from the latest state at time
T to the state at time T + ∆t is predicted by a neural
network F : ([0, T ]×X → Rn) → (X → Rn)t=T+∆t.
The typical choices for F include modeling the absolute
difference: ∀g ∈ X = Gn, uT+∆t

g = uT
g + Fg(u[0,T ])

(Wang et al., 2020; Sanchez-Gonzalez et al., 2020; Stachen-
feld et al., 2021) and modeling the relative difference:
uT+∆t
g = uT

g +∆t · Fg(u[0,T ]) (Brandstetter et al., 2021),
where the latter is believed to have the better consistency
property, i.e., lim∆t→0 ∥uT+∆t

g − uT
g ∥ = 0.

Hybrid Physics-ML Physics-ML hybrid models is a re-
cent line of work that uses a neural network to correct the
errors in the classic (typically low-resolution) numerical
simulators. Most of these approaches seek to learn the cor-
rections of the numerical simulators’ outputs (Mishra, 2019;
Um et al., 2020; List et al., 2022; Dresdner et al., 2022;
Frezat et al., 2022; Bruno et al., 2022), while Bar-Sinai et al.
(2019); Kochkov et al. (2021) learn to infer the stencils of
advection-diffusion problems in a Finite Volume Method
(FVM) framework. The proposed Temporal Stencil Model-
ing (TSM) method belongs to the latter category.

3. Temporal Stencil Modeling for PDEs
3.1. Neural stencil modeling in finite volume scheme

Finite Volume Method (FVM) is a special MOL technique
for conservation form PDEs, and can be derived from Eq. 1
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Figure 2: Illustration of super-resolution process from a
trajectory of frames (i.e., temporal super-resolution) or a
single-frame (vanilla super-resolution).

via Gauss’ theorem, where the integral of u (i.e., the aver-
aged vector field of volume) over unit cell increases only
by the net flux into the cell. Recall that the incompressible,
constant density Navier Stokes equation for fluids has a
conservation form of:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (4)

We can see that in FVM, the cell-average divergence can
be calculated by summing the surface flux, so the prob-
lem boils down to estimating the convective flux u⊗ u on
each face. This only requires estimating u by interpolating
the neighboring discretized velocities, called stencils. The
beauty of FVM is that the integral of u is exactly conserved,
and it can preserve accurate simulation as long as the flux
u ⊗ u is estimated accurately. Fig. 1 illustrates an imple-
mentation (Kochkov et al., 2021) of classic FVM for the
Navier-Stokes equation, where the convection and diffu-
sion operators are based on finite-difference approximations
and modeled by explicit time integration, and the pressure
is implicitly modeled by the projection method (Chorin,
1967). The divergence operator enforces local conservation
of momentum according to a finite volume method, and the
pressure projection enforces incompressibility. The explicit
time-step operator allows for the incorporation of additional
time-varying forces. We refer the readers to (Kochkov et al.,
2021) for more details.

Classic FVM solvers use manually designed nth-order ac-
curate method to calculate the interpolation coefficients
of stencils to approximate the convective flux. For exam-
ple, linear interpolation, upwind interpolation (Lax, 1959),
and WENO5 method (Shu, 2003; Gottlieb et al., 2006)
can achieve first, second, and fifth-order accuracy, respec-
tively. Besides, adjusting the interpolation weights adap-
tively based on the input data is not new in numerical simu-
lating turbulent flows. For example, given the interpolation
axis, the upwind interpolation adaptively uses the value
from the previous/next cell along that axis plus a correc-
tion for positive/negative velocity. WENO (weighted essen-
tially non-oscillatory) scheme also computes the derivative

estimates by taking an adaptively-weighted average over
multiple estimates from different neighborhoods. However,
the classic FVM solvers are designed for general cases and
can only adaptively adjust the interpolation coefficients with
simple patterns, and thus are sub-optimal when abundant
PDE observation data is available.

In this paper, we follow Kochkov et al. (2021) and aim to
learn more accurate flux approximation in the FVM frame-
work by predicting the learnable interpolation coefficients
for the stencils with neural networks. In principle, with 3×3
convolutional kernels, a 1, 2, 3-layer neural network is able
to perfectly mimic the linear interpolation, Lax-Wendroff
method, and WENO method, respectively (Brandstetter
et al., 2021). Such observation well connects the learnable
neural stencil modeling methods to the classical schemes.
However, previous work (Bar-Sinai et al., 2019; Kochkov
et al., 2021) investigates the learned interpolation scheme
that only adapts to the latest state uT , which still uses the
same information as classical solvers. In this paper, we fur-
ther generalize both classical and previous learnable stencil
interpolation schemes by predicting the interpolation coeffi-
cients with the abundant information from all the previous
trajectories {ut|t ∈ [0, T ]}.

3.2. Temporal Super-resolution with HiPPO features

A fundamental question in neural stencil modeling is why
ML models can predict more accurate flux approximations,
and previous work (Kochkov et al., 2021) attribute their suc-
cess to the super-resolution power of neural networks, that is,
the machine learning models can recover the missing details
from the coarse features. In this paper, we empirically ver-
ify this hypothesis by explicitly training a super-resolution
model.

Specifically, we treat the 2-D fluid velocity map as a
H ×W × 2 image, and train a CNN-based U-Net decoder
(Ronneberger et al., 2015) to generate the super-resolution
vorticity results. Our results are reported in Tab. 1 (right),
and we find that the super-resolution results generated by
neural networks is nearly 100× better than bicubic inter-
polation, which verify the super-resolution power of ML
models to recover the details.

Next, since the temporal information is always available
for PDE simulation1, we investigate whether the temporal
information can further reduce the super-resolution errors,
i.e., recovering more details from the coarse features. We
follow previous work (Kochkov et al., 2021) on the design
choice of using a convolutional neural network as the spatial
encoder, instead of another alternative like FNO (Li et al.,

1Even if we only have access to one step of the ground-truth
trajectory, we can still use the high-resolution DNS to generate a
long enough trajectory to initialize the spatial-temporal model.
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Errors w/ HiPPO features Errors w/ raw features Ground truth

Figure 3: 64× 64 → 2048× 2048 super-resolution errors with 32∆t-step
HiPPO features and 32∆t-step raw features.

Table 1: 64 × 64 → 2048 × 2048 super-
resolution MSE with different approaches.

Method MSE

Bicubic Interpolation 2.246
CNN w/ 1-step raw features 0.029
CNN w/ 32-step raw features 0.015
CNN w/ 32-step HiPPO features 0.007

2020c) or WMT (Gupta et al., 2021). This is because CNN
has a more efficient implementation on GPUs and trans-
lation invariant properties. The HiPPO features are used
as the input to CNN, which are not to be learned during
the process. Inspired by the recent progress in time series
modeling, we consider the following two types of features
as the CNN model’s inputs:

Raw features Following the previous work on video
super-resolution (Liao et al., 2015), we treat the H ×W ×
T × 2 -shaped velocity trajectory as an H ×W image with
feature channels C = T × 2.

HiPPO features HiPPO (High-order Polynomial Projec-
tion Operators) (Gu et al., 2020; 2021) is a recently proposed
framework for the online compression of continuous time
series by projection onto polynomial bases. It computes
the optimal polynomial coefficients for the scaled Legendre
polynomial basis. It has been shown as a state-of-the-art
autoregressive sequence model for raw images (Tay et al.,
2020) and audio (Goel et al., 2022). In this paper, we pro-
pose to adopt HiPPO to encode the raw fluid velocity tra-
jectories. One benefit of HiPPO features is that they are
pre-processed (with the fixed optimal HiPPO recurrence)
before the learned CNN architecture, so using them is al-
most as fast as using raw features. Due to the space limit,
we leave the general description of the HiPPO technique to
Appendix C.

When dealing with the multi-variate time series such as
temporal PDE, we follow the original recipe and treat each
scalar component independently, that is, we treat the H ×
W×T×2 -shaped velocity trajectory as H×W×2 separate
time series of length T . Finally, we concatenate the resulted
H ×W × 2 × C features on the velocity dimension (i.e.,
H ×W × 2C) as the input to the CNN. Fig. 6 provided a
graphical illustration of the process.

Results We report the temporal super-resolution results
in Tab. 1. From the table, we can see that the 32∆t-step
raw features can reduce the super-resolution error by half,
and using the HiPPO to encode the time series can further
reduce the error scale by half. We also visualize the errors

of 32∆t-step HiPPO features and 32∆t-step raw features
in Fig. 3. Our temporal super-resolution results show that
plenty of information in the PDE low-resolution temporal
trajectories is missed with vanilla stencil modeling, or will
be underutilized with raw features, and HiPPO can better
exploit the temporal information in the velocity trajectories.

3.3. Temporal Stencil Modeling with HiPPO Features

As better super-resolution performance indicate that more
details can be recovered from the low-resolution features,
we propose to compute the interpolation coefficients in con-
vective flux with the HiPPO-based temporal information,
which should lead to a more accurate flux approximation.
Incorporating HiPPO features in the neural stencil modeling
framework is straight-forward: with ground-truth initial ve-
locity trajectories v[0,T ], we first recurrently encode the tra-
jectory (step by step with Eq. 7 in Appendix C), and use the
resulted features HiPPO(v[0,T ]) to compute the interpola-
tion coefficients for the stencils. Given model-generated new
velocity vT+∆t, due to the recurrence property of HiPPO,
we can only apply a single update on HiPPO(v[0,T ]) and
get the new encoded feature HiPPO(v[0,T+∆t]), which is
very efficient. Fig. 6 in the appendix illustrates such a pro-
cess.

4. Experiments
4.1. Experimental setup

Simulated data Following previous work (Kochkov et al.,
2021), we train our method with 2-D Kolmogorov flow, a
variant of incompressible Navier-Stokes flow with constant
forcing f = sin(4y)x̂ − 0.1u. All training and evaluation
data are generated with a JAX-based2 finite volume-based
direct numerical simulator in a staggered-square mesh (Mc-
Donough, 2007) as briefly described in Sec. 3.1. We refer
the readers to the appendix of (Kochkov et al., 2021) for
more data generation details.

We train the neural models on Re = 1000 flow data with
density ρ = 1 and viscosity ν = 0.001 on a 2π × 2π

2https://github.com/google/jax-cfd
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DNS 2048 x 2048
(ground-truth)

LI 64 x 64
(Kochkov et al. 2021)

TSM-HiPPO 64x64
+  4-bundle (ours)

Figure 4: Qualitative results of predicted vorticity fields for reference (DNS 2048× 2048), previous learnable sota model
(LI 64× 64) (Kochkov et al., 2021), and our method (TSM 64× 64), starting from the same initial condition. The yellow
box denotes a vortex that is not captured by LI.

Figure 5: (left) Comparison of the vorticity correlation between prediction and the ground-truth solution (i.e., DNS
2048× 2048). (middle) Energy spectrum scaled by k5 averaged between simulation time 6.0 to 20.0. (right) Comparison of
high vorticity correlation duration v.s. inference latency.

domain, which results in a time-step of ∆t = 7.0125×10−3

according to the Courant–Friedrichs–Lewy (CFD) condition
on the 64×64 simulation grid. For training, we generate 128
trajectories of fluid dynamics, each starting with different
random initial conditions and simulating with 2048× 2048
resolution for 40.0 time units. We use 16 trajectories for
evaluation.

Unrolled training All the learnable solvers are trained
with the Mean Squared Error (MSE) loss on the velocities.
Following previous work (Li et al., 2020c; Brandstetter et al.,
2021; Kochkov et al., 2021; Dresdner et al., 2022), we adopt
the unrolled training technique, which requires the learnable
solvers to mimic the ground-truth solution for more than

one unrolled decoding step:

L(ugt
[0,T ]) =

1

N

N∑
i=1

MSE(ugt(ti),u
pred(ti)) (5)

where ti ∈ {T + ∆t, . . . , T + N∆t} is the unrolled time
steps, ugt and upred are the ground-truth solution and learn-
able solver’s prediction, respectively. Unrolled training can
improve the inference performance but makes the training
less stable (due to bad initial predictions), so we use N = 32
unrolling steps for training.

Temporal bundling In our preliminary experiments, we
found that due to the abundant information in the trajec-
tories, the TSM solvers are more prone to over-fit. There-
fore, we adopt the temporal bundling technique (Brandstet-
ter et al., 2021) to the learned interpolation coefficients
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…

H x W x (C x 2)

Figure 6: Illustration of using HiPPO features as the CNN in-
puts for neural stencil modeling. After encoding the HiPPO
features for the initial velocity trajectory v[0,T ], given model-
generated new velocity, we only need an additional recurrent
update step to get the HiPPO features for v[0,T+∆t].

in TSM solvers. Assume that in a step-by-step predic-
tion scheme, we predict u[0,T ] → c(T + ∆t), where
c is the stencil interpolation coefficients in the convec-
tive flux approximation. In temporal bundling, we pre-
dict K steps of the interpolation coefficients u[0,T ] →
{c(T + ∆t), c(T + 2∆t), . . . , c(T + K∆t)} in advance,
and then time-step forward the FVM physics model for K
steps with pre-computed stencil interpolation coefficients.

Neural network architectures & hyper-parameters In
TSM-64×64 with a T -length trajectory, the input and output
shapes of TSM are 64× 64× T × 2 and 64× 64× C × 2,
while the input and output shapes of CNN are 64 × 64 ×
(C×2) and 64×64× (8× (42−1)), which represents that
for each resolution, we predict 8 interpolations that need
15 inputs each. For HiPPO3, we set the hyper-parameters
a = −0.5, b = 1.0, dt = 1.0. For CNN, we use a 6-layer
network with 3× 3 kernels and 256 channels with periodic
padding4.

4.2. Main results

The classic and neural methods we evaluated can be roughly
classified into four categories: 1) pure Physics models, i.e.,
the FVM-based Direct Numerical Simulation (DNS), 2)
pure Machine Learning (ML)-based neural method-of-lines
models, 3) Learned Correction (LC) models, which correct
the final outputs (i.e., velocities) of physics models with
neural networks (Um et al., 2020), and 4) Neural Stencil
Modeling models, including single-time-step Learned In-
terpolation (LI) (Kochkov et al., 2021), and our Temporal

3https://github.com/HazyResearch/
state-spaces

4https://github.com/google/jax-cfd/blob/
main/jax_cfd/ml/towers.py

Table 2: Quantitative comparisons with the metric of high-
correlation (ρ > 0.8) duration (w.r.t the reference DNS-
2048 × 2048 trajectories). All learnable solvers use the
64× 64 grids.

Method Type High-corr. duration

DNS-64× 64 Physics 2.805
DNS-128× 128 Physics 3.983
DNS-256× 256 Physics 5.386
DNS-512× 512 Physics 6.788
DNS-1024× 1024 Physics 8.752

1-step-raw-CNN ML 4.824
4-step-raw-CNN ML 7.517
32-step-FNO ML 6.283
32-step-WMT ML 5.890
1-step-raw-CNN LC 6.900
32-step-FNO LC 7.630
1-step-raw-CNN LI 7.910

32-step-FNO TSM 7.798
4-step-raw-CNN TSM 8.359

+ 4-step temporal-bundle TSM 8.303
32-step-HiPPO-CNN TSM 9.256

+ 4-step temporal-bundle TSM 9.481

Stencil Modeling (TSM).

For neural network baselines, except the periodic5 Con-
volutional Neural Networks (CNN) (LeCun et al., 1999;
Kochkov et al., 2021) with raw and HiPPO features we
already described, we also compare with Fourier Neural
Operators (FNO) (Li et al., 2020c) and Multiwavelet-based
model (MWT), two recent state-of-the-art pure-ML PDE
solvers based on spectral and wavelet features.

We evaluate all the solvers based on their Pearson correlation
ρ with the ground-truth (i.e., DNS with the highest 2048×
2048 resolution) flows in terms of the scalar vorticity field
ω = ∂xuy − ∂yux. Furthermore, to ease comparing all
the different solvers quantitatively, we focus on their high-
correlation duration time, i.e., the duration of time until
correlation ρ drops below 0.8.

The comparison between HiPPO-based TSM and 1-time-
step raw-feature LI (Kochkov et al., 2021) is shown in Fig. 4
and Fig. 5 (left). We can see that our HiPPO feature-based
TSM significantly outperforms the previous state-of-the-
art ML-physics model, especially when trained with a 4-
step temporal bundling6. From Fig. 5 (middle), we can
see that all the learnable solvers can better capture the
high-frequency features with a similar energy spectrum
E(k) = 1

2 |u(k)|
2 pattern as the high-resolution ground-

truth trajectories. From Fig. 5 (right), we can see that with

5https://github.com/google/jax-cfd/blob/
main/jax_cfd/ml/layers.py

6We tried temporal bundling steps K = 2, 4, and 8 and found
K=4 achieves the best performance on the validation set.
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Figure 7: Temporal stencil modeling performance (high-
correlation duration) with different feature types and differ-
ent initial trajectory steps.

the help of temporal bundling, HiPPO-TSM can achieve
high simulation accuracy while reducing the inference la-
tency to 80% when compared to the original LI.

4.3. Ablation Study

We present a quantitative comparison for more methods
in Tab. 1. We can see that the learned correction models
are always better than pure-ML models, and neural stencil
modeling models are always better than learned correction
models. In terms of neural network architectures, we find
that under the same ML-physics framework, raw-feature
CNN is always better than FNO, and HiPPO-feature CNNs
are always better than raw-feature CNNs. Finally, when
adopting temporal bundling, we can see that only HiPPO-
TSM can benefit from alleviating the over-fitting problem,
while the performance of raw-feature TSM can be hurt by
temporal bundling.

We also study the impact of the trajectory length on raw-
feature and HiPPO-feature TSM models in Fig. 7. Notice
that in raw features, the temporal window size is fixed during
unrolling, while in HiPPO features, the temporal window
size is expanded during unrolling decoding. From the fig-
ure, we can see that the raw-feature CNN achieves the best
performance with a window size of 4, while HiPPO features
keep increasing the performance, and reach the peak with
32 initial trajectory length.

4.4. Generalization tests

We evaluate the generalization ability of our HiPPO-TSM
(4-step bundle) model and LI trained on Kolmogorov flows
(Re = 1000). Specifically, we consider the following test
cases: (A) decaying flows (starting Re = 1000), (B) more
turbulent Kolmogorov flows (Re = 4000), and (C) 2×
larger domain Kolmogorov flows (Re = 1000). Our results
are shown in Fig. 8, from which we can see that HiPPO-
TSM achieves consistent improvement over LI. HiPPO-

TSM also achieves competitive performance to DNS-1024×
1024 or DNS-2048× 2048, depending on the ground truth
(i.e., highest resolution) being DNS-2048× 2048 or DNS-
4096× 4096).

4.5. Results on Navier-Stokes with 32× 32 and 16× 16
grids

Since TSM shows significant improvements over vanilla
neural stencil modeling on the 64 × 64 grid, we won-
der whether TSM can further push the Pareto frontier by
accurately approximating the convective flux in a lower-
resolution grid. Specifically, we still use DNS-2048× 2048
as the ground-truth training data, but train the TSM solver
in the 32× 32 and 16× 16 down-sampled grids.

The results are reported in Sec. D. Please refer to Fig. 9 and
Tab. 3 for the detailed analysis.

4.6. Results on 1-D Kuramoto–Sivashinsky (KS)
equation

To verify the generalization ability of TSM, we further eval-
uate it on 1D equations. Following previous work (Bar-
Sinai et al., 2019; Stachenfeld et al., 2021), we choose
Kuramoto–Sivashinsky (KS) equation as a representative
1D PDE that can generate unstable and chaotic dynamics.
While KS-1D is not technically turbulent, it is a well-studied
chaotic equation that can be used to assess the generalization
ability of our models in 1D cases.

The results are reported in Sec. E. Please refer to Fig. 10-12
for the detailed analysis.

4.7. Results on 3-D Navier-Stokes equation

To verify the generalization ability of TSM, we further eval-
uate it on 3D Navier Stokes equations. The results are
reported in Sec. F. Please refer to Fig. 13-16 for the detailed
analysis.

5. Conclusion & Future Work
In this paper, we propose a novel Temporal Stencil Mod-
eling (TSM) method for solving time-dependent PDEs in
conservation form. TSM can be regarded as the tempo-
ral generalization of classic finite volume solvers such as
WENO (Shu, 2003; Gottlieb et al., 2006) and vanilla neural
stencil modeling methods (Kochkov et al., 2021), in that
TSM leverages the temporal information from trajectories,
instead of only using the latest states, to approximate the
(convective) flux more accurately. Our empirical evaluation
on 2-D incompressible Navier-Stokes turbulent flow data
shows that both the temporal information and its temporal
feature encoding scheme are crucial to achieving state-of-
the-art simulation accuracy. We also show that TSM has a

8



A Neural PDE Solver with Temporal Stencil Modeling

A

B

C

Highest-resolution DNS
Learned Interpolation
(Kochkov et al. 2021)

Temporal Stencil Modeling
(ours)

Figure 8: Generalization test results of neural methods trained on Kolmogorov flows (Re = 1000) and evaluated on (A)
decaying flows (starting from Re = 1000), (B) more turbulent Kolmogorov flows (Re = 4000), and (C) 2× larger domain
Kolmogorov flow (Re = 1000).

strong generalization ability on various out-of-distribution
turbulent flows. Finally, we show that the proposed method
works well on 1-D Kuramoto–Sivashinsky (KS) equation
and 3-D Navier-Stokes.

For future work, we plan to evaluate our TSM method with
non-periodic boundary conditions. We are interested in
leveraging the Neural Architecture Search (NAS) technique
to automatically find better features and neural architectures
for solving the Navier-Stokes equation in the TSM frame-
work. We are also interested in evaluating the effectiveness
of TSM in irregular domains, asFinite Volume Methods
(FVMs) or stencil modeling methods are generally more
suited for irregular domains, which often arise in real-world
scenarios, compared to spectral methods.
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Alesiani, F., Pflüger, D., and Niepert, M. Pdebench: An
extensive benchmark for scientific machine learning. In
Thirty-sixth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers. In

11



A Neural PDE Solver with Temporal Stencil Modeling

International Conference on Learning Representations,
2020.

Tran, A., Mathews, A., Xie, L., and Ong, C. S.
Factorized fourier neural operators. arXiv preprint
arXiv:2111.13802, 2021.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Wang, C., Li, S., He, D., and Wang, L. Is l2
physics-informed loss always suitable for training
physics-informed neural network? arXiv preprint
arXiv:2206.02016, 2022.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu,
R. Towards physics-informed deep learning for turbulent
flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 1457–1466, 2020.

Weinan, E. and Yu, B. The deep ritz method: A deep
learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and
Statistics, 1(6):1–12, 2018.

12



A Neural PDE Solver with Temporal Stencil Modeling

A. Additional related work
A.1. Industrial Solvers for Computational Fluid Dynamics

Industrial CFD typically relies on either Reynolds-averaged Navier-Stokes (RANS) models (Boussinesq, 1877; Alfonsi,
2009), where the fluctuations are expressed as a function of the eddy viscosity, or coarsely-resolved Large-Eddy Simulation
(LES) (Smagorinsky, 1963; Lesieur & Metais, 1996), where only the large scales are numerically simulated, and the small
ones are modeled (with an a-priori physics assumption). However, there are severe limits in both methods associated with
their usage for general purposes. For example, RANS is too simple to model complex flows (Slotnick et al., 2014) and often
exhibits significant errors when dealing with complex pressure-gradient distributions and complicated geometries. LES can
exhibit limited accuracy in their predictions of high-Re turbulent flows, due to the first-order dependence of LES on the
subgrid-scale (SGS) model.

B. Infrastructures
We train and evaluate all the classic and neural Navier-Stokes solvers in 8 Nvidia Tesla V100-32G GPUs. The inference
latency is measured by unrolling 2 trajectories for 25.0 simulation time on a single V100 GPU.

C. HiPPO features for Temporal Stencil Modeling
For scalar time series u≤t := u(x)|x≤t, the HiPPO (Gu et al., 2020) projection aims to find a coefficient mapping for
orthogonal polynomials such that

c(t) ∈ RN = argmin ∥u≤t − g(t)∥µ(t) (6)

where g(t) =
∑N

n=1 cn(t)gn(t) and gn(t) is the nth Legendre polynomial scaled to the [0, t] domain. µ(t) = 1
t I[0,t] is the

uniform weight metric. By solving the corresponding ODE and its discretization, Gu et al. (2020) showed that the optimal
polynomial coefficients cT can be calculated by the following recurrence:

c(T +∆t) =

(
1− A

T/∆t

)
c(T ) +

1

T/∆t
B · u(T ) (7)

where Ank =


(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

, Bn = (2n+ 1)
1
2

We refer the readers to (Gu et al., 2020) for detailed derivations.

D. Solving Navier-Stokes with 32× 32 and 16× 16 grids
Since TSM shows significant improvements over vanilla neural stencil modeling on the 64× 64 grid, we wonder whether
TSM can further push the Pareto frontier by accurately approximating the convective flux in a lower resolution grid.

Specifically, we still use DNS-2048× 2048 as the ground-truth training data, but train the TSM solver in the 32× 32 and
16×16 down-sampled grids. In order to make a fair and direction comparison to our original 64×64 model, we additionally
train two 32 × 32 → 64 × 64 and 16 × 16 → 64 × 64 super-resolution model, and evaluate (on 64 × 64 vorticity) their
super-resolved results.

We report the results in Fig. 9 and Tab. 3. We can see that the super-resolution models actually work quite well for
32 × 32 → 64 × 64 and 16 × 16 → 64 × 64. Besides, though the lower-resolution neural solvers’ performance is
significantly worse than 64× 64, we can see that the improvement from temporal information in the trajectories is more
significant in lower resolutions.
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DNS-2048x2048
(Ground-truth)

DNS-512x512

HiPPO-TSM-64x64

HiPPO-TSM-32x32

HiPPO-TSM-32x32
+ super-resolution

HiPPO-TSM-16x16

HiPPO-TSM-16x16
+ super-resolution

Figure 9: Qualitative results with TSM evaluating on 32× 32 and 16× 16, and their 64× 64 super-resolution results. From
the super-resolution results of the T = 0, we can see that the super-resolution models actually work quite well.
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Table 3: Quantitative comparisons with the metric of high-correlation (ρ > 0.8) duration (w.r.t the reference DNS-
2048× 2048 trajectories). The results of TSM-32× 32 and TSM-16× 16 are evaluated on their corresponding 64× 64
super-resolution results with additionally trained super-resolution models.

Method High-corr. duration

DNS-64× 64 2.805
DNS-128× 128 3.983
DNS-256× 256 5.386
DNS-512× 512 6.788
DNS-1024× 1024 8.752

LI-64× 64 7.910
TSM-64× 64 9.481 (+19.86%)

LI-32× 32 5.400
TSM-32× 32 6.802 (+25.96%)

LI-16× 16 2.805
TSM-16× 16 3.576 (+27.50%)

Table 4: The p-values in one-sample T-test for the differences between TSM and other baseline models. The differences in
all 16 test trajectories are used for each significance test. We evaluate the significance for four high-correlation thresholds:
0.95, 0.9, 0.8, and 0.7.

p-value in one-sample T-test
Baseline ρ > 0.95 ρ > 0.9 ρ > 0.8 ρ > 0.7

DNS 64x64 1.06× 10−11 1.14× 10−10 1.20× 10−10 1.26× 10−10

DNS 128x128 8.80× 10−11 2.23× 10−10 6.75× 10−10 6.63× 10−10

DNS 256x256 1.22× 10−10 2.39× 10−09 4.78× 10−09 1.56× 10−09

DNS 512x512 2.38× 10−09 1.49× 10−07 2.27× 10−06 1.65× 10−06

DNS 1024x1024 6.63× 10−03 6.91× 10−03 1.53× 10−02 1.65× 10−02

LI 64x64 (Kochkov et al. 2021) 9.06× 10−04 1.65× 10−03 3.63× 10−03 3.08× 10−03
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Figure 10: Qualitative comparison of TSM and other baselines on 1D KS equation. The solutions are down-sampled to
32 grid in the space dimension for comparison. The dashed vertical yellow line denotes the time step where the Pearson
correlation between the model prediction and ground truth (i.e., DNS-1024) is lower than the threshold (ρ < 0.8).

E. Generalization on 1D Kuramoto–Sivashinsky (KS) equation
To verify the generalization ability of TSM, we further evaluate it on 1D equations. Following previous work (Bar-Sinai
et al., 2019; Stachenfeld et al., 2021), we choose Kuramoto–Sivashinsky (KS) equation as a representative 1D PDE that can
generate unstable and chaotic dynamics. While KS-1D is not technically turbulent, it is a well-studied chaotic equation that
can be used to assess the generalization ability of our models in 1D cases.

Specifically, the KS equation can be written in the conservation form of

∂v

∂t
+

∂J

∂x
= 0, v(x, t = 0) = v0(x) (8)

where

J =
v2

2
+

∂v

∂x
+

∂3v

∂x3
(9)

Following previous work (Bar-Sinai et al., 2019), we consider the 1D KS equation with periodic boundaries. The domain
size is set to L = 20π, and the initial condition is set to

v0(x) =

N∑
i=1

Ai sin (2πℓix/L+ ϕi) (10)

where N = 10, and A, ϕ, ℓ are sampled from the uniform distributions of [−0.5, 0.5], [−π, π], and {1, 2, 3}, respectively.
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Figure 11: Qualitative comparison of TSM and other baselines on 1D KS equation. The solutions are down-sampled to
64 grid in the space dimension for comparison. The dashed vertical yellow line denotes the time step where the Pearson
correlation between the model prediction and ground truth (i.e., DNS-1024) is lower than the threshold (ρ < 0.8).

Figure 12: Quantitative comparison of TSM and other baselines on the velocity correlation of 1D KS equation. The solutions
are down-sampled to 64 grid in the space dimension for comparison.
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Figure 13: Quantitative comparison of TSM and other baselines on the vorticity correlation (averaged over three directions)
of 3D incompressible Navier-Stokes equation.

Similar to the NS solution, we solve the nonlinear convection term by advecting all velocity components simultaneously,
using a high-order scheme based on the Van-Leer flux limiter or with a learnable interpolator, while the second and fourth
order diffusion are approximated using a second-order central difference approximation. The Fourier spectral method is not
used because of the precision issues in JAX FFT and IFFT 7.

We use DNS-1024 as the ground-truth training data, and train the TSM solver and LI solver in the 32 and 64 down-sampled
grids. A time-step of ∆t = 1.9635× 10−2 and ∆t = 9.81748× 10−3 is used for 32 and 64 grids, respectively. Following
Bar-Sinai et al. (2019), the interpolation coefficients of a 6-point stencil are predicted by TSM and LI. For training, we
generate 1024 trajectories of fluid dynamics, each starting with different random initial conditions and simulating with 1024
resolution for 200.0 time units (after 80.0 time unit warmup). We use 16 trajectories for evaluation.

When comparing with other DNS baselines, all solutions are down-sampled to 32 or 64 for comparison. Fig. 10 and
Fig. 11 show the results of TSM and LI compared with other baselines in the 32 and 64 grids, respectively. A quantitative
comparison of various solvers under 64-resolution is also presented in Fig. 12. We can see that TSM can outperform LI with
the same resolution, and outperform DNS with 4× ∼ 8× resolutions.

F. Generalization on 3D Navier-Stokes (NS) equation
To verify the generalization ability of TSM, we further evaluate it on 3D Navier Stokes equations. Recall that the
incompressible, constant density Navier Stokes (NS) equation for fluids has a conservation form of:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (11)

We train our method with 3D incompressible Navier-Stokes flow with a linear forcing f = 0.05u to avoid the decaying of
flows8. The viscosity of the fluid is set to ν = 6.65× 10−4 and the density ρ = 1. For training, we generate 128 trajectories
of fluid dynamics, each starting with different random initial conditions and simulating with 128× 128× 128 resolution for
10.0 time units (after 80.0 time unit warmup). We use 16 trajectories for evaluation.

Following previous work (Stachenfeld et al., 2021; Takamoto et al.), the ground-truth solution is obtained by simulation on
128×128×128 grid. According to the Courant–Friedrichs–Lewy (CFD) condition, we have time-step ∆ = 1.402497×10−2

on the 32× 32× 32 simulation grid. For TSM-32× 32× 32 and LI-32× 32× 32, most of the settings in 3D NS follow our

7https://github.com/google/jax/issues/2952
8https://github.com/google/jax-cfd/blob/main/jax_cfd/ml/physics_configs/linear_forcing.

gin
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Figure 14: Qualitative 3D incompressible Navier-Stokes equation results of predicted vorticity fields on the plane of x = 0.

setup for the 2D case, except that the interpolation coefficients are only calculated for a 2× 2× 2-point stencil to avoid
out-of-memory issues.

When comparing with other DNS baselines, all solutions are down-sampled to 32× 32× 32 for comparison. A quantitative
comparison of various solvers under 32× 32× 32-resolution is presented in Fig. 13. The qualitative results on the planes of
x = 0, y = 0, z = 0 are presented in Fig. 14, Fig. 15, and Fig. 16, respectively. We can see that TSM can outperform LI and
DNS with the same resolution, but cannot beat DNS with 2× higher resolution. This is consistent with the results reported
in previous work (Stachenfeld et al., 2021).
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Figure 15: Qualitative 3D incompressible Navier-Stokes equation results of predicted vorticity fields on the plane of y = 0.
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Figure 16: Qualitative 3D incompressible Navier-Stokes equation results of predicted vorticity fields on the plane of z = 0.
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