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Abstract
For offline reinforcement learning (RL), model-
based methods are expected to be data-efficient
as they incorporate dynamics models to gen-
erate more data. However, due to inevitable
model errors, straightforwardly learning a pol-
icy in the model typically fails in the offline set-
ting. Previous studies have incorporated con-
servatism to prevent out-of-distribution explo-
ration. For example, MOPO penalizes rewards
through uncertainty measures from predicting the
next states, which we have discovered are loose
bounds of the ideal uncertainty, i.e., the Bellman
error. In this work, we propose MOdel-Bellman
Inconsistency penalized offLinE Policy Optimiza-
tion (MOBILE), a novel uncertainty-driven offline
RL algorithm. MOBILE conducts uncertainty
quantification through the inconsistency of Bell-
man estimations under an ensemble of learned
dynamics models, which can be a better approx-
imator to the true Bellman error, and penalizes
the Bellman estimation based on this uncertainty.
Empirically we have verified that our proposed un-
certainty quantification can be significantly closer
to the true Bellman error than the compared meth-
ods. Consequently, MOBILE outperforms prior
offline RL approaches on most tasks of D4RL and
NeoRL benchmarks.

1. Introduction
Offline reinforcement learning (RL) (Lange et al., 2012;
Levine et al., 2020), which learns a policy from a previ-
ously collected static dataset, is a promising way to enable a
safe training paradigm compared to conventional RL, which
needs a lot of online trial-and-error explorations. However,
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direct applications of online off-policy algorithms perform
poorly in the offline setting (Fujimoto et al., 2019; Kumar
et al., 2019). This is mainly attributed to the distribution
shift between the learned policy and the behavior policy
throughout training, which makes the policy evaluation on
out-of-distribution (OOD) samples quite inaccurate and in-
duces terrible performance.

Thus, a major principle for offline RL is to introduce conser-
vatism to prevent the learned policy from executing OOD
actions. Model-free offline RL algorithms train a policy
from only the offline data and achieve conservatism by com-
pelling the learned policy to be close to the behavior pol-
icy (Kumar et al., 2019; Fujimoto & Gu, 2021), or by penal-
izing the learned value functions from being over-optimistic
upon OOD actions (Kumar et al., 2020; Bai et al., 2022).

Compared to the model-free approaches, model-based of-
fline RL approaches (Yu et al., 2020; Kidambi et al., 2020;
Yu et al., 2021; Chen et al., 2021) are inherently data-
efficient as they incorporate dynamics models to generate
more data. With the help of supplementary synthetic data,
model-based algorithms can potentially generalize better
to states not present in the dataset. Similarly, model-based
offline RL also needs to incorporate conservatism due to
inevitable model errors (Xu et al., 2020; Janner et al., 2019;
Luo et al., 2019). To this end, some work (Yu et al., 2020;
Kidambi et al., 2020; Lu et al., 2022) proposes to quantify
the uncertainty of learned dynamics models, and explicitly
apply it to penalize reward. For example, MOPO (Yu et al.,
2020) penalizes rewards through the aleatoric uncertainty
from predicting the next states. However, referring to recent
theoretical investigation on offline RL (Jin et al., 2021), we
have discovered such uncertainty quantification is a loose
bound of the ideal uncertainty, i.e., the Bellman error. There-
fore, the performance of these model-based approaches falls
short of the model-free counterparts.

In this work, we propose MOBILE (MOdel-Bellman
Inconsistency Penalized OffLinE Policy Optimization), an
uncertainty-driven model-based algorithm for offline RL.
To better incorporate conservatism into the model utiliza-
tion, we devise a novel uncertainty quantifier termed Model-
Bellman Inconsistency to penalize the value estimation in
the learned dynamics. Concretely, this quantifier estimates
the Bellman errors induced by the learned dynamics through
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the inconsistency of Bellman estimations under different
learned models. With penalization by such a quantifier, the
policy is encouraged to yield consistent and reliable value
estimation in the learned dynamics. Crucially, unlike other
approaches such as MOPO, MOBILE leverages both the dy-
namics and the value to construct penalization and tends to
attain a better estimation of the Bellman error. Empirically
we have verified that our proposed uncertainty quantification
can be significantly closer to the true Bellman error than the
compared methods. Consequently, MOBILE outperforms
prior offline RL approaches and achieves state-of-the-art
performance on 20 out of 27 benchmark datasets. The code
is available at https://github.com/yihaosun1124/mobile.

2. Preliminaries
2.1. MDPs and Offline RL

We consider an episodic MDP specified by the tupleM =
(S,A, H, r, T, γ), where S is the state space,A is the action
space,H is the length of episodes, r(s, a) is the reward func-
tion, T (s′|s, a) is the transition function, and γ ∈ (0, 1) is
the discount factor. The goal of RL is to learn a policy π that
maximizes the expected cumulative reward E

[∑H−1
t=0 γtrt

]
.

Such a policy can be derived from Q-learning, which learns
a state-action value function that satisfies the following Bell-
man operator,

TQ(s, a)=r(s, a)+γEs′∼T (s′|s,a)

[
max
a′

Q(s′, a′)
]
, (1)

where Q(s, a) represents the expected cumulative dis-
counted reward when starting from state s and action a.
In Deep Reinforcement Learning (DRL), the Q-value is pa-
rameterized by a neural network and trained by minimizing
the TD error, namely E(s,a,r,s′)[(Qϕ − T Qϕ)2]. The tran-
sitions for training are collected by iteratively interacting
with the environment in online RL.

Nevertheless, in the context of offline RL, the transitions are
sampled from a static dataset D = {(s, a, r, s′)}. Directly
applying Q-learning in offline RL tends to have extrapola-
tion error since (s′, a′) has barely occurred in D, where a′

is the action taken by the agent under state s′. Such errors
will be accumulated due to the bootstrap training.

2.2. Model-based Offline RL Algorithms

Model-based offline RL attempts to find the optimal
policy with the help of a learned dynamics model.
Given a dataset D, a dynamics model T̂ is typi-
cally trained using maximum likelihood estimation as:
minT̂ E(s,a,s′)∼D[− log T̂ (s′|s, a)]. We assume the reward
function r is known throughout the paper, although r can
also be considered as part of the model if unknown. With
the learned model, we can construct an estimated MDP M̂.

Thereafter, any planning or RL algorithm can be used to
recover optimal policy in the estimated MDP.

Inevitably, the model will be inaccurate for some state-
action pairs due to the partial coverage of the state-action
space by the dataset. Therefore, naive policy optimization
on a learned model in the offline setting can be vulnerable
to model exploitation. An intuitive idea to mitigate this
issue is to use the model conservatively. MOPO (Yu et al.,
2020) and MOReL (Kidambi et al., 2020) optimize a lower
bound of policy performance constructed by an uncertainty
estimation of the learned model. With the penalization of
such an uncertainty estimation, we hope the policy to avoid
utilizing unreliable predictions of the model.

In line with some existing work, we choose model-based
policy optimization (MBPO) (Janner et al., 2019) to learn
the optimal policy for M̂. MBPO utilizes a standard actor-
critic RL algorithm but uses an augmented dataset D ∪
Dmodel to train the policy, where Dmodel is synthetic data
generated by performing h-step rollouts in M̂ starting from
states in D. During training policy, mini-batches of data are
drawn from D ∪ Dmodel, where each datapoint is sampled
from the real dataD with the probability f , and fromDmodel
with probability 1− f .

3. Model-Bellman Inconsistency Penalized
Offline Policy Optimization

The key to devising an effective model-based offline rein-
forcement learning algorithm is reasonably leveraging the
model. In principle, an agent should exploit “safe regions”
where the model is accurate and avoid “dangerous regions”
where the model is inaccurate. Meanwhile, it is crucial
to balance conservatism and generalization. Specifically,
finding a better policy requires taking the risk of access-
ing “dangerous” regions, while accessing “safe regions” too
conservatively hinders finding a better policy.

To approach the optimal balance, we propose Model-
Bellman Inconsistency for uncertainty quantification and
then use such quantification as penalization (Section 3.1).
This uncertainty quantification encourages the algorithm
to learn a policy with reliable and consistent value estima-
tions under ensemble dynamics models. Then, we provide a
theoretical analysis to show that our proposed uncertainty
quantification is reasonable and better than the previous
approach (Section 3.2). Finally, we present our overall algo-
rithm (Section 3.3).

3.1. Pessimistic Value Estimation via Model-Bellman
Inconsistency

In MOBILE, we learn an ensemble of N dynamics models
{T̂ iθ}Ni=1. Based on the learned dynamics model, the Q-
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function can be updated by fitting the following target

T̂ πQψ(s, a) := r(s, a) + γE s′∼T̂θ
a′∼π

[Qψ−(s′, a′)], (2)

where T̂θ = 1
N

∑N
i=1 T̂

i
θ , ψ is the parameter of Q-network

and ψ− is the parameter of a separate target-network for
stabilizing training (Mnih et al., 2015). Recall that we have
assumed that r is known, so we do not parameterize it in
Eq. (2). Here, we denote the empirical Bellman operator by
T̂ π, which estimates the TD target under the true dynam-
ics. Note that we also refer to the estimated result of this
empirical Bellman operator as “Bellman estimation” in this
paper.

We prefer a policy with reliable value estimation under the
learned models. In other words, we expect the Bellman
estimation of a policy under the learned models to be close
to that under the true dynamics. To this end, a natural
way is to penalize the Bellman estimation according to the
estimation error defined as

ϵ =
∣∣∣T̂ πQψ(s, a)− T πQψ(s, a)∣∣∣

= γ

∣∣∣∣E s′∼T̂θ
a′∼π

[Qψ−(s′, a′)]− E s′∼T∗
a′∼π

[Qψ−(s′, a′)]

∣∣∣∣ , (3)

where T ∗ is the transition function of the unknown true
dynamics.
Remark 3.1. In this paper, we also use Bellman error to
refer to the estimation error described in Eq. (3). Bellman
error is traditionally defined as the discrepancy between the
expected TD target, Es′∼T∗,a′∼π[r(s, a) + γQψ−(s′, a′)],
and the current value estimation, Qψ(s, a), for a given state-
action pair (s, a). Despite the potential misuse of this termi-
nology, it is justifiable in this context since we assume the
reward function is known and the value function’s fitting
error is negligible with enough data generated by the learned
dynamics model.

As we will show in Section 3.2, the Bellman error is the the-
oretically optimal penalization. However, such penalization
is intractable since the true transition function is unknown.
Our key idea is to build a proper uncertainty quantification
to estimate the Bellman error ϵ. Therefore, we introduce the
following uncertainty quantification based on the ensemble
models,

U(s, a) := Std
(
T̂ πi Qψ(s, a)

)
=

√√√√ 1

N

N∑
i=1

(
T̂ πi Qψ(s, a)− T̂ πQψ(s, a)

)2

,
(4)

where T̂ πi Qψ(s, a) is the Bellman estimation under the
i-th dynamics model, i.e., T̂ πi Qψ(s, a) = r(s, a) +
γE s′∼T̂ i

θ
a′∼π

[Qψ−(s′, a′)]. We term this quantification as

Model-Bellman Inconsistency since it quantifies the incon-
sistency of Bellman estimations under the learned ensemble
dynamics models. Intuitively, Bellman estimations usually
have small errors in areas with rich data and tend to yield
low inconsistency under the learned ensemble models, while
high estimation errors often appear in areas with scarce data
and then tend to yield high inconsistency under these ensem-
ble models. Now, we can penalize the Bellman estimation
via the Model-Bellman Inconsistency to obtain a pessimistic
value estimation,

T̂ MOBIPQψ(s, a) := T̂ πQψ(s, a)− βU(s, a), (5)

where β is a tuning coefficient. We refer to this operator as
MOdel-Bellman Inconsistency Penalized (MOBIP) opera-
tor.

The basic idea behind this novel operator is that if the
learned policy outputs actions that have high Model-
Bellman Inconsistency, we have reason to suspect that the
models will induce inaccurate value estimations on these
actions. Hence we give them large penalization to prevent
the policy from taking these dangerous actions.

3.2. Theoretical Connections to PEVI

In this section, we show that our proposed pessimistic target
is reasonable based on the recent theoretical investigation on
offline RL (Jin et al., 2021). Meanwhile, our analysis also
explains why pessimism implemented by Model-Bellman
Inconsistency is superior to the pessimism implementation
in MOPO.

We begin with the pessimistic value iteration algorithm
(PEVI) (Jin et al., 2021), which simply penalizes the Bell-
man estimation with a penalty function. We refer to Ap-
pendix A for a detailed introduction to PEVI (Algorithm 2).
Note that such a penalty function plays a key role in PEVI.
Specifically, it has been proved that this function should be
a ξ-uncertainty quantifier to ensure the effectiveness of the
offline algorithm (Jin et al., 2021).

Definition 3.2. (ξ-Uncertainty Quantifier (Jin et al., 2021)).
The set of penalization {Γh}h∈[H] forms a ξ-uncertainty
quantifier if it holds with probability at least 1-ξ that∣∣∣T̂ V̂h+1(s, a)− T V̂h+1(s, a)

∣∣∣ ≤ Γh(s, a) (6)

for all (s, a) ∈ S × A, where V̂h+1 is an estimated value
function at step h+1 and T̂ is an empirical Bellman operator
estimating the true Bellman operator T .

The ξ-uncertainty quantifier allows us to further characterize
the suboptimality of the derived policy from PEVI by the
following theorem.

Theorem 3.3. (Suboptimality of PEVI (Jin et al., 2021)).
Suppose {Γh}Hh=1 in PEVI is a ξ-uncertainty quantifier.
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Then the derived policy π̂ satisfies∣∣∣V π∗
(s1)−V π̂(s1)

∣∣∣≤2

H∑
h=1

Eπ∗ [Γh (sh, ah) |s1=s] , (7)

with probability at least 1 − ξ for all s ∈ S. Here Eπ∗ is
with respect to the trajectory induced by the optimal policy
π∗ in the underlying MDP given the fixed function Γh.

It is worth noting that the optimality gap is dominated by
the Bellman error and the uncertainty quantification Γh. On
the one hand, we expect the Γh to be as small as possible
to establish a tighter upper bound of the optimality gap.
On the other hand, the Bellman error determines the lower
bound of Γh, which makes it not arbitrarily small. This
motivates us to reduce the Bellman error and construct a
tighter uncertainty quantification Γh.

Compared to the model-free paradigm, the model-based
paradigm can effectively reduce the Bellman error in the
offline case, as demonstrated in Yu et al., 2020. Therefore,
we mainly consider how to build a tighter quantification for
the Bellman error.

Recall that in the model-based case, the Bellman error is
defined as Eq. (3), which is caused by the inconsistency
between the learned model T̂θ and the true model T ∗. In
order to estimate the Bellman error, we consider the pos-
terior distribution of the Bellman estimation T̂ V̂h+1(s, a),
which is determined by the posterior distribution of the
dynamics model T̂θ given the offline dataset D, and con-
struct an epistemic uncertainty based on the distribution over
T̂ V̂h+1(s, a). Formally, we make the following assumption.
Assumption 3.4. Consider an estimation of the standard
deviation of the posterior over T̂ V̂h+1(s, a), which is con-
structed by an ensemble of N dynamics models {T̂ iθ}Ni=1

trained on the dataset D:

Std
(
T̂iV̂h+1(s, a)

)
=

√√√√ 1

N

N∑
i=1

(
T̂iV̂h+1(s, a)− T̂ V̂h+1(s, a)

)2

,
(8)

where T̂iV̂h+1(s, a) = r(s, a) + γEs′∼T̂ i
θ
[V̂h+1(s

′)] and

T̂ V̂h+1(s, a) = 1
N

∑N
i=1 T̂iV̂h+1(s, a). Assume that this

epistemic uncertainty is an admissible error estimator for
T̂ under an appropriately selected tuning parameter βh, it
follows that∣∣∣T̂ V̂h+1(s,a)−T V̂h+1(s,a)

∣∣∣≤βhStd
(
T̂iV̂h+1(s,a)

)
(9)

for all s ∈ S, a ∈ A.

While this assumption lacks theoretical guarantees, using
aleatoric or epistemic uncertainty to estimate the approx-
imation error has been applied in many works (Yu et al.,

2020; Bai et al., 2022). We have provided much evidence
in Section 4.3 that this uncertainty quantification is suffi-
ciently accurate to estimate the Bellman error. From this
assumption, we have the following theorem.

Theorem 3.5. Under Assumption 3.4, our proposed Model-
Bellman Inconsistency

βhU(s, a) = βhStd
(
T̂iV̂h+1(s, a)

)
forms a valid ξ-uncertainty quantifier.

To further understand why our proposed uncertainty quan-
tification is superior to the model uncertainty used in MOPO,
we revisit MOPO under the perspective of PEVI. MOPO
adopts the max aleatoric error maxi=1,...,N ||Σiθ(s, a)||F as
penalization, where {Σiθ(s, a)}Ni=1 are the variance heads
of the ensemble models. The following theorem suggests
that such an uncertainty quantification is also a valid ξ-
uncertainty quantifier.

Theorem 3.6. Assume UMOPO(s, a)=maxi||Σiθ(s, a)||F is
an admissible error estimator, specifically,

DTV(T̂θ(s, a), T
∗(s, a)) ≤ UMOPO(s, a).

Then γc ·UMOPO(s, a) forms a valid ξ-uncertainty quantifier
where c = O( 1

1−γ ).

Proof. ∣∣∣T̂ πV̂h+1(s, a)− T πV̂h+1(s, a)
∣∣∣

= γ
∣∣∣Es′∼T̂θ

[V̂h+1(s
′)]− Es′∼T∗ [V̂h+1(s

′)]
∣∣∣

≤ γrmax

1− γ
DTV(T̂θ(s, a), T

∗(s, a))

≤ γrmax

1− γ
UMOPO(s, a).

Here the first inequality can be derived from the integral
probability metric (IPM) (Müller, 1997) associated with a
class F = {f : ∥f∥∞ ≤ 1}. We refer to Yu et al., 2020 for
a detailed explanation.

Theorem 3.6 shows that the uncertainty quantification in
MOPO is theoretically feasible since it is an upper bound of
the Bellman error. However, this quantification tends to be
too loose to be effective in practice. It first scales the Bell-
man error to the model error and then estimates the model
error. Therefore, it suffers from a loose bound O( 1

1−γ ).
In contrast, our proposed Model-Bellman Inconsistency re-
gards the Bellman error as a whole instead of breaking it
down and estimates it directly. Then our estimation has a
tighter bound O(1) w.r.t. the horizon, implying that it can
obtain a superior policy.
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Algorithm 1 MOBILE
1: Require: Dataset D, learned dyanmics models
{T̂ iθ}Ni=1, initialized policy and critics πϕ and
{Qψ1

, Qψ2
}.

2: Train the probabilistic dynamics model
T̂θ (s

′, r | s, a) = N (µθ(s, a),Σθ(s, a)) on D.
3: Initialize the replay buffer Dmodel ← ∅.
4: for i = 1 to Niter do
5: Generate synthetic h-step rollouts by T̂θ. Add transi-

tion data to Dmodel.
6: Sample a mini-batch B = {s, a, r, s′} from D ∪

Dmodel.
7: Compute targets for B according to Eq. (11) and Eq.

(12).
8: Update critics ψ1, ψ2 with gradient descent via mini-

mizing Eq. (10).
9: Update actor ϕ with gradient ascent via Eq. (14).

10: end for

3.3. Algorithm

We are now ready to present our overall approach in Algo-
rithm 1, which is built upon an off-the-shelf model-based
off-policy online RL algorithm, model-based policy opti-
mization (MBPO) (Janner et al., 2019). The first step of
MOBILE is to pretrain the environment dynamics models.
Following MBPO, we learn an ensemble of N dynamics
models {T̂ iθ = N (µiθ,Σ

i
θ)}Ni=1, each of which is a neural

network that outputs a Gaussian distribution over the next
state and reward and is trained independently via maximum
likelihood.

Prior to each agent update, we generate synthetic h-step
rollouts starting from states in D by simulating rollouts
in the learned dynamics models T̂θ, and then add these
transitions to the synthetic datasetDmodel. For agent training,
we incorporate the MOBIP operator with the off-the-shelf
soft actor-critic (SAC) algorithm (Haarnoja et al., 2018), as
presented in Eq. (10).

Lcritic = E(s,a,r,s′)∼D∪Dmodel [(Qψk
− y)2], (10)

where the target value for (s, a, r, s′) ∈ D is

y = r + γ

[
min
k=1,2

Qψ−
k
(s′, a′)− α log πϕ(a

′|s′)
]
, (11)

and the target for (s, a, r, s′) ∈ Dmodel is

y=r+γ

[
min
k=1,2

Qψ−
k
(s′, a′)−α log πϕ(a

′|s′)
]
−βU(s, a).

(12)
Note that we do not penalize targets of real samples since
we argue that these samples are unbiased and will not in-
duce Bellman error. Following the formulas of the Model-

Bellman Inconsistency in Eq. (4), U(s, a) is computed by:

U(s, a) = Std
(
T̂ πi Qψ(s, a)

)
= Std

γE {s′
j
}M∼T̂ i

θ

{a′
j
}M∼πϕ

[
min
k=1,2

Qψ−
k
(s′j , a

′
j)

] .

(13)
Here we omit the calculation of rewards due to the following
two reasons: one is to be more in line with our theoretical
analysis, and the other is that the std of rewards under dif-
ferent models is relatively small compared to that of value,
which can be ignored. The policy is then optimized by
solving the following optimization problem.

πϕ := max
ϕ

E s∼D∪Dmodel
a∼πϕ

[
min
k=1,2

Qψk
(s, a)−αlogπϕ(a | s)

]
.

(14)

4. Experiments
In this section, we focus on the following questions: 1) How
does MOBILE compare to previous methods in standard
offline RL benchmarks? 2) Is Model-Bellman Inconsistency
effective in terms of uncertainty quantification? 3) Does
Model-Bellman Inconsistency better estimate the Bellman
error than uncertainty quantifiers used in other model-based
offline RL algorithms?

We explore these questions using the standard D4RL offline
RL benchmark (Fu et al., 2020), which includes Gym and
Adroit domains, as well as the near-real-world NeoRL (Qin
et al., 2022) benchmark.

4.1. Benchmark Results

4.1.1. D4RL

We compare MOBILE with several offline RL algorithms,
including model-free methods: behavioral cloning (BC)
that simply mimics the data collecting policy, CQL (Ku-
mar et al., 2020) that penalizes Q-values on OOD samples
equally, TD3+BC (Fujimoto & Gu, 2021) that adopts a BC
constraint when optimizing policy, EDAC (An et al., 2021)
that quantifies the uncertainty of the Q-values via neural
network ensemble; and model-based methods: MOPO (Yu
et al., 2020) that uses the uncertainty of the transition pre-
diction as penalty function, COMBO (Yu et al., 2021) that
applies the penalty function of CQL within the model-based
regime, TT (Janner et al., 2021) that uses a Transformer to
model distributions over trajectories and incorporates beam
search to plan, RAMBO (Rigter et al., 2022) that trains the
policy and the dynamics model adversarially.

For the Gym domain, we evaluate these approaches on a
total of twelve datasets involving three environments (hop-
per, walker2d, halfcheetah) and four dataset types (random,
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Table 1. Normalized average returns on D4RL Gym tasks, averaged over 4 random seeds.

Task Name BC CQL TD3+BC EDAC MOPO MOPO* COMBO TT RAMBO MOBILE (Ours)

halfcheetah-random 2.2 31.3 11.0 28.4 35.4 38.5 38.8 6.1 39.5 39.3±3.0
hopper-random 3.7 5.3 8.5 25.3 11.7 31.7 17.9 6.9 25.4 31.9±0.6
walker2d-random 1.3 5.4 1.6 16.6 13.6 7.4 7.0 5.9 0.0 17.9±6.6

halfcheetah-medium 43.2 46.9 48.3 65.9 42.3 73.0 54.2 46.9 77.9 74.6±1.2
hopper-medium 54.1 61.9 59.3 101.6 28.0 62.8 97.2 67.4 87.0 106.6±0.6
walker2d-medium 70.9 79.5 83.7 92.5 17.8 84.1 81.9 81.3 84.9 87.7±1.1

halfcheetah-medium-replay 37.6 45.3 44.6 61.3 53.1 72.1 55.1 44.1 68.7 71.7±1.2
hopper-medium-replay 16.6 86.3 60.9 101.0 67.5 103.5 89.5 99.4 99.5 103.9±1.0
walker2d-medium-replay 20.3 76.8 81.8 87.1 39.0 85.6 56.0 82.6 89.2 89.9±1.5

halfcheetah-medium-expert 44.0 95.0 90.7 106.3 63.3 90.8 90.0 95.0 95.4 108.2±2.5
hopper-medium-expert 53.9 96.9 98.0 110.7 23.7 81.6 111.1 110.0 88.2 112.6±0.2
walker2d-medium-expert 90.1 109.1 110.1 114.7 44.6 112.9 103.3 101.9 56.7 115.2±0.7

Average 36.5 61.6 58.2 76.0 36.7 70.3 66.8 62.3 67.7 80.0
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Figure 1. Illustration of the uncertainty and Q-value for different state-action sets in the training process.

medium, medium-replay, medium-expert) per environment.
The datasets we use are of the “v2” version.

Table 1 reports the results in the Gym domain, including the
normalized score for each dataset and the average perfor-
mance over all datasets, which is obtained within the final
online evaluation at the end of the training process. We find
that MOBILE outperforms all baselines in most of the tasks
and achieves the highest average score among all methods.
Note that the results of MOPO in Table 1 come from two
sources: 1) results presented in the original paper (marked
with MOPO); 2) results obtained with our implementation
(marked with MOPO*).1 We refer to Appendix C.3 for more
details. Thus, the significant advantages shown by MOBILE
against MOPO/MOPO* provide empirical evidence that the
Model-Bellman Inconsistency induces better policies than
those induced solely by the uncertainty measures from pre-
dicting the next states.

Besides, we evaluate these methods in the Adroit domain.
The Adroit tasks are more complex and challenging than the

1MOPO and MOPO* differ in two ways: 1) MOPO*’s results
are obtained on the “v2” datasets while MOPO’s results are ob-
tained on the “v0” datasets. 2) MOPO*’s hyperparameters are
re-tuned.

Gym tasks in terms of both the dataset composition and high
dimensionality. We refer to the results in Appendix D.1.

4.1.2. NEORL

NeoRL (Qin et al., 2022) is a benchmark that aims to sim-
ulate real-world scenarios by collecting datasets with a
more conservative policy, which is more in line with real-
world data-collection scenarios. The narrow and limited
data makes it challenging for offline RL algorithms. Our
study focuses on nine datasets, which involve three envi-
ronments (HalfCheetah-v3, Hopper-v3, Walker2d-v3) and
three dataset types (L, M, H) that represent low, medium,
and high-quality datasets. It is worth noting that NeoRL
provides different numbers of trajectories for training data
(100, 1000, 10000) for each task, and we selected 1000
trajectories uniformly for our experiments.

In our evaluation, we compared the performance of our
MOBILE algorithm with several baselines (refer to Sec-
tion 4.1.1), excluding COMBO, TT, and RAMBO. The
reason for excluding these algorithms is that there are no
available results in their original papers or the NeoRL pa-
per, and determining appropriate hyperparameters for them
would be excessively time-consuming. We present the nor-
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Table 2. Normalized average returns on NeoRL tasks, averaged over 4 random seeds.

Task Name BC CQL TD3+BC EDAC MOPO MOBILE (Ours)

HalfCheetah-L 29.1 38.2 30.0 31.3 40.1 54.7±3.0
Hopper-L 15.1 16.0 15.8 18.3 6.2 17.4±3.9
Walker2d-L 28.5 44.7 43.0 40.2 11.6 37.6±2.0

HalfCheetah-M 49.0 54.6 52.3 54.9 62.3 77.8±1.4
Hopper-M 51.3 64.5 70.3 44.9 1.0 51.1±13.3
Walker2d-M 48.7 57.3 58.5 57.6 39.9 62.2±1.6

HalfCheetah-H 71.3 77.4 75.3 81.4 65.9 83.0±4.6
Hopper-H 43.1 76.6 75.3 52.5 11.5 87.8±26.0
Walker2d-H 72.6 75.3 69.6 75.5 18.0 74.9±3.4

Average 45.4 56.1 54.5 50.7 28.5 60.7

malized scores in Table 2.

Our MOBILE algorithm consistently achieves superior or
competitive performance across the majority of tasks, as
demonstrated by our results. Notably, when comparing the
performance evaluated on the D4RL gym tasks, specifically
focusing on the improvement achieved on BC, it is evident
that most of the baselines experience a decline in perfor-
mance. In contrast, MOBILE maintains its high level of
performance on both the D4RL and NeoRL benchmarks.
This remarkable success in the challenging NeoRL bench-
mark serves as compelling evidence for the potential of our
algorithm in real-world scenarios.

4.2. Uncertainty Quantification

Following Bai et al., 2022, we record the Q-values and the
uncertainties of different state-action sets in the training
process to verify the effectiveness of MOBILE in terms
of uncertainty quantification. The sets involve the same
states from the offline dataset with different types of actions.
The actions we consider include 1) actions from the offline
dataset, whose Q-values and uncertainties are labeled as Q-
Offline and U-Offline; 2) actions given by the policy learned
via MOBILE, whose Q-values and uncertainties are labeled
as Q-Policy and U-Policy; and 3) actions uniformly sampled
from the action space, whose Q-values and uncertainties are
labeled as Q-RandomAction and U-RandomAction.

Figure 1 shows the Q-values and uncertainty in the hopper
and walker2d tasks with the “medium-expert” dataset. We
can find that MOBILE assigns the largest uncertainty to
the random actions and the smallest uncertainty to the ac-
tions from the offline dataset, which indicates that MOBILE
can correctly quantify the uncertainties of the OOD and
in-distribution actions. Secondly, the uncertainties of the ac-
tions given by the policy are slightly higher than those of the
in-distribution actions, and the Q-values of the policy do not
deviate much from the in-distribution actions, which shows
that the learned policy avoids choosing actions with high

uncertainty with the constraint of uncertainty penalization.

4.3. Bellman Error Estimation

To empirically prove that Model-Bellman Inconsistency bet-
ter estimates the Bellman error than other uncertainty quan-
tifiers solely considering the dynamics model, we record the
uncertainty quantification of state-action pairs generated by
the learned dynamics model and compute the corresponding
Bellman error with the help of the real environment. Then
we calculate the correlation coefficient as a measurement of
the quality of the estimation. Other uncertainty quantifiers
we consider involve (i) max-aleatoric quantifier, the uncer-
tainty quantifier used in Yu et al., 2020, which corresponds
to the maximum aleatoric error; (ii) max-pairwise-diff quan-
tifier, the uncertainty quantifier used in Kidambi et al., 2020,
which corresponds to the pairwise maximum difference of
the ensemble predictions; (iii) ensemble-std quantifier, the
uncertainty quantifier suggested in Lu et al., 2022, which
combines the epistemic and aleatoric model uncertainty. We
refer to more details about these uncertainty quantifiers in
Appendix C.3.

Figure 2 (left) shows the correlation coefficients between
the uncertainty quantification of the four quantifiers and
the Bellman error. We can find that the Model-Bellman
Inconsistency is significantly more relevant with the Bell-
man error, which means when incorporated with a proper
coefficient β, MOBILE can better estimate the true Bellman
error than the other three methods. Besides, in order to
eliminate the impact of the different magnitude of the four
uncertainty quantifiers, we adjust the coefficients of the max-
aleatoric, max-pairwise-diff and ensemble-std quantifiers
to make these methods yield the same magnitude of un-
certainties, and record the uncertainties and corresponding
induced policy performance throughout the training process,
which are shown by Figure 2 (center) and Figure 2 (right),
respectively. We observe that with the same magnitude
of uncertainty, MOBILE still significantly outperforms the
other three methods, which helps verify that the high per-
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Figure 2. Illustration of the correlation coefficient between different quantifiers and the true Bellman error (left), the uncertainty quantifi-
cation given by different quantifiers (center), and the corresponding performance of the induced policies (right).

formance of MOBILE benefits from the high correlation
between the Model-Bellman Inconsistency and Bellman
error rather than the different magnitude of uncertainties.

5. Related Work
Direct application of online off-policy RL algorithms fails
in the offline RL setting, mainly due to value overestimation
and policy distribution shift. Existing offline RL works
differ in trading off conservatism against generalization.

Model-free offline RL. Existing model-free methods typi-
cally fall under two categories: policy constraint and value
regularization methods. Policy constraint approaches re-
strict the learned policy close to the behavior policy to re-
duce distribution shift. For example, BEAR (Kumar et al.,
2019) directly constrains the optimized policy by minimiz-
ing MMD distance to behavior policy. BCQ (Fujimoto et al.,
2019) limits the action space to actions in the dataset with
a learned generative model of the behavior policy. Alterna-
tively, TD3+BC (Fujimoto & Gu, 2021) simply adds a be-
havioral cloning regularization term to the policy optimiza-
tion objective and achieves excellent performance across
various tasks. In comparison, value regularization methods
obtain conservatism via regularization terms in the value
optimization objective, which penalizes the value function
from being over-optimistic upon OOD actions. CQL (Ku-
mar et al., 2020) penalizes Q-values for all OOD samples
equally, while EDAC (An et al., 2021) and PBRL (Bai et al.,

2022) assign penalization depending on the uncertainty de-
gree of the Q-value, which is quantified via neural network
ensemble.

Model-based offline RL. We focus on Dyna-style model-
based RL (Janner et al., 2019; Lin et al., 2022). Dyna-style
model-based offline RL methods learn a dynamics model
from the dataset and utilize the model to extend the dataset,
which can largely improve the data efficiency. Meanwhile,
as we can hardly learn a perfect model from the limited
dataset, conservatism is still necessary to prevent the pol-
icy from generalizing to areas where the prediction of the
dynamics model is erroneous. MOPO (Yu et al., 2020) and
MOReL (Kidambi et al., 2020) implement conservatism
by learning a pessimistic value function from rewards pe-
nalized with the uncertainty of the prediction given by the
dynamics model. COMBO (Yu et al., 2021) applies CQL in
Dyna-style and enforces small Q-values on OOD samples
generated by the dynamics model. RAMBO (Rigter et al.,
2022) implements conservatism via adversarially training
the dynamics model to minimize the value function while
keeping accurate on the transition prediction. CBOP (Jeong
et al., 2022), proposed concurrently with our method, intro-
duces adaptive weighting of h-step returns in the context of
the model-based value expansion (MVE) technique (Fein-
berg et al., 2018). CBOP also adopts the variance of values
under an ensemble of learned models to provide conserva-
tive value estimation. However, the difference is that CBOP
is under the MVE framework while MOBILE is under the
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Dyna-style framework.

Our approach is related to the uncertainty-driven offline RL
algorithms, including PBRL (Bai et al., 2022), EDAC (An
et al., 2021), and MOPO (Yu et al., 2020). We remark that
all these methods can be regarded as practical implementa-
tions of a meta-algorithm, namely pessimistic value iteration
(PEVI) (Jin et al., 2021). PEVI encourages an algorithm
to achieve a smaller Bellman error and to devise a tighter
estimation of the Bellman error. Compared to PBRL and
EDAC, which are model-free methods, our proposed MO-
BILE incorporates learned dynamics models to augment
the dataset and thus has a smaller Bellman error. MOPO
also leverages learned dynamics models, but it suffers from
a loose uncertainty quantification that only takes the dy-
namics model into account. Furthermore, Lu et al. discuss
various design choices for reward penalization in MOPO’s
framework, and have shown that using the ensemble vari-
ance or standard deviation is more highly correlated with
the true dynamics error and leads to improved empirical
performance. However, this approach still suffers from a
loose quantification as it does not incorporate the value
function. In contrast, MOBILE uses the Model-Bellman
Inconsistency as its uncertainty quantifier, which considers
both the dynamics model and the value function. As a result,
MOBILE achieves a better estimation of the Bellman error.

6. Conclusion
In this paper, we propose MOBILE, an uncertainty-driven
model-based offline RL algorithm. To better incorporate
conservatism into the model utilization, MOBILE conducts
uncertainty quantification through the inconsistency of Bell-
man estimations under an ensemble of learned dynamics
models, which inherently takes into account both the dynam-
ics and the value function. Therefore it can better estimate
the ideal uncertainty, i.e., the Bellman error. Through the-
oretical and empirical analysis, we find that our proposed
uncertainty quantification enables a better estimation of the
Bellman error compared to the model uncertainty as widely
used in previous model-based offline RL work (Yu et al.,
2020; Kidambi et al., 2020; Lu et al., 2022). Finally, on
the standard D4RL and NeoRL benchmarks, MOBILE gen-
erally performs well across different datasets compared to
prior offline RL approaches.
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A. Introduction to Pessimistic Value Iteration
A.1. Background of Pessimistic Value Iteration

In this section, we introduce a meta-algorithm (Algorithm 2) for offline RL, namely pessimistic value iteration (PEVI) (Jin
et al., 2021), which constructs an estimated Bellman operator T̂ based on dataset D so that T̂ V̂h+1 : S × A → R
approximates T V̂h+1 : S ×A → R. Here V̂h+1 : S → R is an estimated value function constructed by this meta-algorithm.

Algorithm 2 Pessimistic Value Iteration (PEVI): General MDP

1: Input: Dataset D =
{(
sτh, a

τ
h, r

τ
h, s

τ
h+1

)}K,H
τ,h=1

.

2: Initialization: Set V̂H+1 ← 0.
3: for step h = H,H − 1, ..., 1 do
4: Construct Bellman estimation T̂ V̂h+1(·, ·) and uncertainty quantifier Γh(·, ·).
5: Set Q̄h(·, ·)← T̂ V̂h+1(·, ·)− Γh(·, ·).
6: Set Q̄h(·, ·)← min{Q̄h(·, ·), H − h+ 1}+.
7: π̂h(·|·)← argmaxπh

⟨Q̂h(·, ·), πh(· | ·)⟩A.
8: V̂h(·)← ⟨Q̂h(·, ·), π̂h(· | ·)⟩A.
9: end for

10: Output: Pess(D) = {π̂h}Hh=1.

The penalty function Γh plays a key role in Algorithm 2, which guarantees the conservatism of the learned policy. Especially,
the {Γh}Hh=1 should be a ξ-uncertainty quantifier as follows.

Definition A.1. (ξ-Uncertainty Quantifier (Jin et al., 2021)). The set of penalization {Γh}h∈[H] forms a ξ-uncertainty
quantifier if it holds with probability at least 1-ξ that∣∣∣T̂ V̂h+1(s, a)− T V̂h+1(s, a)

∣∣∣ ≤ Γh(s, a)

for all (s, a) ∈ S ×A, where T is the true Bellman operator and T̂ is the empirical Bellman operator that estimates T .

The ξ-uncertainty quantifier allows us to further characterize the suboptimality of Algorithm 2 by the following theorem.

Theorem A.2. (Suboptimality of PEVI (Jin et al., 2021)). Suppose {Γh}Hh=1 in Algorithm 2 is a ξ-uncertainty quantifier.
Pess(D) in Algorithm 2 satisfies

SubOpt(Pess(D); s) ≤ 2

H∑
h=1

Eπ∗ [Γh (sh, ah) | s1 = s] , (15)

with probability at least 1− ξ for all s ∈ S. Here Eπ∗ is with respect to the trajectory induced by the optimal policy π∗ in
the underlying MDP given the fixed function Γh.

Proof. See (Jin et al., 2021) for detailed proof.

Theorem A.2 suggests finding a ξ-uncertainty quantifier that is sufficiently small to establish an adequately tight upper
bound of the suboptimality in Eq. (15).

A.2. Pratical Implementation of PEVI

We can specialize the meta-algorithm (Algorithm 2) by constructing T̂ V̂h+1 and Γh. In model-free case (Bai et al., 2022;
An et al., 2021), T̂ V̂h+1 can be estimated by the state-action value function Qψ where the parameter ψ is solved by the
Least-Squares Value Iteration (LSVI):

ψ = argmin
ψ

E(sh,ah,rh,sh+1)∼D

[(
Qψ(sh, ah)− rh − γV̂h+1(sh+1)

)2
]
. (16)
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In addition, the uncertainty quantification Γh can be constructed by the epistemic uncertainty of the Q functions as follows,

Std
(
Qiψ(s, a)

)
=

√√√√ 1

N

N∑
k=1

(
Qiψ(s, a)− Q̄ψ(s, a)

)2

, (17)

where it maintains N bootstrapped Q-functions {Qiψ}Ni=1 to quantify the epistemic uncertainty.

However, due to the limited samples in D, the Bellman estimation by Eq. (16) hardly generalizes beyond the state and action
support of the offline data. Instead, model-based RL methods make a natural choice for enabling generalization. Specifically,
given a dynamics model T̂θ trained on the dataset D, we can directly estimate the true Bellman equation for any state-action
pair as follows,

T̂ V̂h+1(s, a) := r(s, a) + γEs′∼T̂θ
[V̂h+1(s

′)]. (18)

Inspired by the uncertainty quantification in model-free case (Eq. (17)), we can use the epistemic uncertainty of T̂ V̂h+1 as
an uncertainty quantification,

Std
(
T̂iV̂h+1(s, a)

)
=

√
1

N

(
T̂iV̂h+1(s, a)− T̂ V̂h+1(s, a)

)2

, (19)

where we maintain N dynamics models {T̂ iθ}Ni=1 and denote T̂i by the Bellman estimation under the i-th dynamics model.

B. Implementation Details
B.1. Dynamics Model Training

In this work, we represent the model as a probabilistic neural network that outputs a Gaussian distribution over the next state
and reward given the current state and action:

T̂θ (st+1, rt | st, at) = N (µθ (st, at) ,Σθ (st, at)) .

We train an ensemble of 7 such dynamics models following (Janner et al., 2019; Yu et al., 2020) and pick the best 5 models
based on the validation prediction error on a held-out set that contains 1000 transitions in the offline dataset D. Each model
in the ensemble is represented as a 4-layer feedforward neural network with 200 hidden units. During model rollouts, we
randomly pick one dynamics model from the best 5 models.

B.2. Policy Optimization

The policy optimization in our method is based on SAC, and most hyperparameters follow its standard implementations. For
each update, we sample a batch size of 256 transitions where 5% of them is from the real dataset D and another 95% is from
the synthetic dataset Dmodel. We use the hyperparameter settings in Table 3 for all the Gym domain and NeoRL domain
tasks. We use different settings of networks and the number of critics for the experiment in the Adroit domain. See D.1 for
the setup of Adroit.

C. Experimental Details
C.1. Benchmarks

We conduct experiments on Gym tasks (v2 version) and Adroit tasks (v1 version), which are included in the D4RL (Fu
et al., 2020) benchmark. In addition, we challenge NeoRL (Qin et al., 2022), a near real-world benchmark, to better evaluate
offline RL algorithms on real-world tasks. As opposed to other benchmarks, NeoRL adopts a more conservative policy for
data-collection, which is more in line with real-world scenarios.

We now introduce the sources of our reported performance on these benchmarks.

D4RL. (i) For MOPO (Yu et al., 2020) and CQL (Kumar et al., 2020), we use our own code-
base github.com/yihaosun1124/OfflineRL-Kit and the official implementation github.com/aviralkumar2907/CQL to retrain
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Table 3. Hyperparameters of Policy Optimization in MOBILE.

Hyperparameters Value Description

K 2 The number of critics.
Policy network FC(256,256) Fully Connected (FC) layers with ReLU activations.
Q-network FC(256,256) Fully Connected (FC) layers with ReLU activations.
τ 5e− 3 Target network smoothing coefficient.
γ 0.99 Discount factor.
lr of actor 1e− 4 Policy learning rate.
lr of critic 3e− 4 Critic learning rate.
Optimizer Adam Optimizers of the actor and critics.
f 0.05 Ratio of the real samples.
Batch size 256 Batch size for each update.
Niter 3M Total gradient steps.

them on the “v2” datasets. (ii) For TD3+BC (Fujimoto & Gu, 2021), EDAC (An et al., 2021), TT (Janner et al., 2021), and
RAMBO (Rigter et al., 2022), since their original papers report the performance of Gym on the “v2” datasets, we directly
cite the reported scores in Table 1. (iii) COMBO (Yu et al., 2021) does not provide source codes. Therefore we include the
results from the original paper.

NeoRL. We report the performance of BC, CQL, and MOPO based on the original paper of NeoRL and retrain TD3+BC
and EDAC with their official implementations (refer to Appendix D.2).

Table 4. Hyperparameters of MOBILE.

Domain Name Task Name β h

Gym

halfcheetah-random 0.5 5
hopper-random 0.1 5
walker2d-random 2.0 5
halfcheetah-medium 0.5 5
hopper-medium 1.5 5
walker2d-medium 1.0 5
halfcheetah-medium-replay 0.5 5
hopper-medium-replay 0.1 5
walker2d-medium-replay 0.5 1
halfcheetah-medium-expert 1.0 5
hopper-medium-expert 1.5 5
walker2d-medium-expert 1.5 1

Adroit

pen-human 1.0 1
door-human 3.0 3
hammer-human 0.5 3
pen-cloned 0.5 1
door-cloned 0.5 3
hammer-cloned 3.0 3

NeoRL

HalfCheetah-L 0.5 5
Hopper-L 2.5 5
Walker2d-L 2.5 1
HalfCheetah-M 0.5 5
Hopper-M 1.5 5
Walker2d-M 2.5 1
HalfCheetah-H 1.5 5
Hopper-H 2.5 5
Walker2d-H 2.5 1

C.2. Hyperparameters

We list the hyperparameters we have tuned as follows.

Penalty coefficient β. For Gym tasks, we tune β in the range of {0.1, 0.5, 1.0, 1.5} (except for walker2d-random since we
find that a larger coefficient works well in it). For Adroit tasks, we sweep the parameters on β ∈ {0.5, 1.0, 3.0}. For NeoRL
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tasks, we search β ∈ {0.5, 1.5, 2.5}.

Rollout length h. We perform short-horizon branch rollouts in MOBILE, similar to MOPO. Specifically, we tune h in the
range of {1, 5} for Gym and NeoRL tasks. For Adroit tasks, we sweep the parameters on h ∈ {1, 3}.

The selected hyperparameters on each task are listed in Table 4.

C.3. Tuning for MOPO

We note that the original paper of MOPO conducts experiments on the old version of the D4RL benchmark. Therefore some
of its original hyperparameters (e.g., penalty coefficient and rollout length) are no longer suitable for the tasks evaluated
in our paper. In addition, we include different uncertainty quantifiers to implement MOPO, from recent works in offline
MBRL:

Max Aleatoric (Yu et al., 2020): maxi=1,...,N ||Σiϕ(s, a)||F , which corresponds to the maximum aleatoric error.

Max Pairwise Diff (Kidambi et al., 2020): maxi,j ||µiϕ(s, a)− µ
j
ϕ(s, a)||2, which corresponds to the pairwise maximum

difference of the ensemble predictions.

Ensemble-std (Lu et al., 2022): Σ∗(s, a) = 1
N

∑N
i ((Σiϕ(s, a))

2 + (µiϕ(s, a))
2) − (µ∗(s, a))2 where µ∗(s, a) =

1
N

∑N
i µ

i
ϕ(s, a). This corresponds to a combination of epistemic and aleatoric model uncertainty.

For a fair comparison, we only tune the penalty coefficient and the rollout length for these variants of MOPO and keep the
other hyperparameters the same as ours. For MOPO (max-aleatoric) and MOPO (max-pairwise-diff), we tune the penalty
coefficient β in the range of {0.5, 2.5, 5.0}. For MOPO (ensemble-std) we sweep the parameters on β ∈ {2.0, 10.0, 20.0}.
All these three variants search on the rollout length h within {1, 5}. The selected hyperparameters of different variants on
each task are listed in Table 5.

Table 5. Hyperparameters of different variants of MOPO used in the D4RL datasets.

Task Name max-aleatoric max-pairwise-diff ensemble-std

β h β h β h

halfcheetah-random 0.5 5 0.5 5 2.0 5
hopper-random 5.0 5 2.5 5 10.0 5
walker2d-random 0.5 1 0.5 1 2.0 1

halfcheetah-medium 0.5 5 0.5 5 2.0 5
hopper-medium 5.0 5 2.5 5 10.0 5
walker2d-medium 0.5 5 2.5 5 2.0 5

halfcheetah-medium-replay 0.5 5 0.5 5 10.0 5
hopper-medium-replay 2.5 5 0.5 5 10.0 5
walker2d-medium-replay 2.5 1 2.5 1 10.0 1

halfcheetah-medium-expert 2.5 5 2.5 5 10.0 5
hopper-medium-expert 5.0 5 5.0 5 10.0 5
walker2d-medium-expert 2.5 1 5.0 1 20.0 1

We present the performance of these variants of MOPO in Table 6 and report the best result for each task in Table 1 (marked
with MOPO*).

C.4. Computational Cost Comparison

To perform a computational cost comparison, we measure the runtime per epoch (1K gradient steps) and the number of
parameters for each algorithm based on the hopper-medium-v2 task. All the experiments are run with a single GeForce
GTX 3070 GPU and an AMD Ryzen 5900X CPU at 4.8GHz. We summarize the results in Table 7. As the results show, our
approach has almost the same computational cost as MOPO, which is more efficient than the other two algorithms. CQL
takes more runtime due to the additional computations for Q-value regularization, and EDAC has much more parameters
due to a large number of ensemble Q networks.
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Table 6. Normalized average returns on D4RL Gym tasks for different variants of MOPO, averaged over 4 random seeds.

Task Name max-aleatoric max-pairwise-diff ensemble-std

halfcheetah-random 37.3 38.0 38.5
hopper-random 31.7 14.3 10.2
walker2d-random 4.1 7.4 3.0

halfcheetah-medium 72.4 71.1 73.0
hopper-medium 62.8 33.0 62.5
walker2d-medium 84.1 83.4 79.2

halfcheetah-medium-replay 72.1 67.0 68.1
hopper-medium-replay 92.8 100.4 103.5
walker2d-medium-replay 85.2 83.0 85.6

halfcheetah-medium-expert 83.6 83.7 90.8
hopper-medium-expert 74.9 73.8 81.6
walker2d-medium-expert 105.3 112.3 112.9

Average 67.2 64.0 67.4

Table 7. Comparison of computational costs.

Runtime (s/epoch) Number of parameters

CQL 12 0.7M
EDAC 10 13.7M
MOPO 7 2.2M
MOBILE 8 2.2M

D. Omitted Experiments
D.1. Experiments in Adroit Domain

Adroit is a more challenging task that involves controlling a 24-DoF simulated robotic hand that aims at hammering a
nail, opening a door, twirling a pen, or picking moving a ball. We select two types of datasets: “human”, containing 25
trajectories of human demonstrations, and “cloned”, a 50-50 mixture between the demonstration data and the behavioral
cloned policy on the demonstration.

Since the observation spaces and action spaces of these tasks are more complex than those of MuJoCo Gym tasks, we adopt
deeper actor and critic networks which contain 3 hidden layers, i.e., FC(256, 256, 256) as well as a wider dynamics model,
i.e., FC(400, 400, 400, 400), and set the learning rate of actor to 3e − 5. Similar to EDAC (An et al., 2021), we adopt
max Q backup from CQL (Kumar et al., 2020) and normalize the rewards for training stability. Meanwhile, following the
recommendation of EDAC, we choose to use early-stopping and train each algorithm for 200,000 steps.2 In addition, we
increase the number of critics from 2 to 10 for better performance. We present the normalized scores of different algorithms
in Table 8.

In Table 8, the scores of BC, CQL, and EDAC are adopted from the results reported in EDAC. We retrain MOPO on our
own codebase and keep its hyperparameters the same as ours except for the penalty coefficient β. For TD3+BC, we attempt
different BC weights but can not get reasonable performance. We do not include COMBO, TT, and RAMBO since they
do not conduct experiments in the Adroit domain in their original papers and finding proper hyperparameters for these
algorithms is very time-consuming.

We find that MOBILE achieves the best performance on the “cloned” datasets and underperforms EDAC and CQL on the
“human” datasets. We hypothesize that the small amount of samples in the “human” datasets (only 5000 transitions) makes
it more difficult to learn a model that generalizes well. Fortunately, this setting is one in which model-free methods can
perform well, suggesting that model-based and model-free approaches are able to perform well in complementary settings.

2In EDAC, they find that the performance of CQL and EDAC degrades after about 200,000 steps. Therefore they choose to use
early-stopping and train each algorithm for 200,000 steps.
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Table 8. Normalized average returns on D4RL Adroit tasks, averaged over 4 random seeds.

Task Name BC CQL TD3+BC EDAC MOPO MOBILE (Ours)

pen-human 25.8 35.2 -1.0 52.1 10.7 30.1±14.6
door-human 2.8 9.1 -0.2 10.7 -0.2 -0.2±0.1
hammer-human 3.1 0.6 0.2 0.8 0.3 0.4±0.2

pen-cloned 38.3 27.2 -2.1 68.2 54.6 69.0±9.3
door-cloned 0.0 3.5 0.0 9.6 15.3 24.0±22.8
hammer-cloned 0.7 1.4 -0.1 0.3 0.5 1.5±0.4

D.2. Hyperparameters for TD3+BC and EDAC in NeoRL

We retrain TD3+BC (Fujimoto & Gu, 2021) and EDAC (An et al., 2021) with their official implementations for the NeoRL
benchmark (Qin et al., 2022). We present the selected hyperparameters in Table 9.

Table 9. Hyperparameters for TD3+BC and EDAC in the NeoRL datasets.

Task Name TD3+BC EDAC

λ N η

HalfCheetah-L 2.5 10 0.0
Hopper-L 2.5 50 0.0
Walker2d-L 2.5 10 1.0

HalfCheetah-M 2.5 10 1.0
Hopper-M 2.5 50 1.0
Walker2d-M 2.5 10 1.0

HalfCheetah-H 2.5 10 5.0
Hopper-H 2.5 50 1.0
Walker2d-H 2.5 10 5.0

D.3. MOBILE with Larger Ensemble

The supervised learning literature suggests that a higher number of models in the ensemble can improve the quality of the
uncertainty estimate, which could be an effective improvement to our algorithm. We therefore try to increase the number of
models in the ensemble from 7 to 30 and re-evaluate our algorithm on several tasks. The results are listed below:

Table 10. Normalized average returns on D4RL Gym tasks, averaged over 4 random seeds.

Task Name MOBILE (7 ensemble) MOBILE (30 ensemble)

walker2d-medium 87.7 92.4
halfcheetah-medium-replay 71.7 74.4
hopper-medium-replay 103.9 104.9
walker2d-medium-replay 89.9 94.1
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D.4. Omitted Uncertainty Quantification in Section 4.2
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Figure 3. Illustration of the uncertainty for different state-action sets in the training process.
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Figure 4. Illustration of the Q-value for different state-action sets in the training process.
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D.5. Omitted Bellman Error Estimation in Section 4.3
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Figure 5. Illustration of the correlation coefficient between different quantifiers and the true Bellman error.
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