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Abstract

Recent studies have experimentally shown that we
can achieve in non-Euclidean metric space effec-
tive and efficient graph embedding, which aims to
obtain the vertices’ representations reflecting the
graph’s structure in the metric space. Specifically,
graph embedding in hyperbolic space has exper-
imentally succeeded in embedding graphs with
hierarchical-tree structure, e.g., data in natural
languages, social networks, and knowledge bases.
However, recent theoretical analyses have shown
a much higher upper bound on non-Euclidean
graph embedding’s generalization error than Eu-
clidean one’s, where a high generalization error
indicates that the incompleteness and noise in
the data can significantly damage learning per-
formance. It implies that the existing bound can-
not guarantee the success of graph embedding in
non-Euclidean metric space in a practical training
data size, which can prevent non-Euclidean graph
embedding’s application in real problems. This
paper provides a novel upper bound of graph em-
bedding’s generalization error by evaluating the
local Rademacher complexity of the model as a
function set of the distances of representation cou-
ples. Our bound clarifies that the performance of
graph embedding in non-Euclidean metric space,
including hyperbolic space, is better than the ex-
isting upper bounds suggest. Specifically, our new
upper bound is polynomial in the metric space’s
geometric radiusR and can beO( 1

S ) at the fastest,
where S is the training data size. Our bound is
significantly tighter and faster than the existing
one, which can be exponential inR andO( 1√

S
) at

the fastest. Specific calculations on example cases
show that graph embedding in non-Euclidean met-
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ric space can outperform that in Euclidean space
with much smaller training data than the existing
bound has suggested.

1. Introduction
Graphs are a fundamental form of real-world entities and
their relations, such as words in natural languages, people
in social networks, and objects in knowledge bases. Here,
the vertices and edges of a graph correspond to the entities
and the relations among them, respectively. Based on the
formulation, graph embedding, learning representations of
the graph’s vertices in a metric space has enabled numer-
ous applications for those data, such as machine translation
and sentiment analysis for natural language (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al., 2017;
Tifrea et al., 2019), and community detection and link pre-
diction for social network data (Hoff et al., 2002; Perozzi
et al., 2014; Tang et al., 2015b;a; Grover & Leskovec, 2016),
pathway prediction of biochemical network (Dale et al.,
2010; MA Basher & Hallam, 2021), and link prediction and
triplet classification for knowledge base (Nickel et al., 2011;
Bordes et al., 2013; Riedel et al., 2013; Nickel et al., 2016;
Trouillon et al., 2016; Ebisu & Ichise, 2018). The metric
space where we get representations of the vertices is called
the representation space in this paper. Graph embedding
aims to obtain representations such that the metric reflects
the relations defined by the edges. Specifically, we expect
the representations of a couple of vertices to be close if they
are connected and distant if not.

It is essential in the representation learning context to dis-
cuss a generic metric space, not only Euclidean space, as a
representation space, although Euclidean space or the inner
product space has been widely used (Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017; Hoff et al.,
2002; Perozzi et al., 2014; Tang et al., 2015b;a; Grover &
Leskovec, 2016). It is because many studies have experi-
mentally shown the effectivity or representation learning
in non-Euclidean metric space, in particular, hyperbolic
space (Nickel & Kiela, 2017; Ganea et al., 2018a; Sala et al.,
2018; Ganea et al., 2018b; Chami et al., 2019; Gülçehre
et al., 2019; Tifrea et al., 2019; Balazevic et al., 2019) since
hyperbolic space can represent a graph with a hierarchical
tree-like structure with arbitrarily small approximation error
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(Gromov, 1987; Sarkar, 2011; Sala et al., 2018). This advan-
tage comes from the property that the volume of hyperbolic
space grows exponentially in its radiusR. This is in contrast
to Euclidean space, which has limitations in representing
such a graph (Lamping & Rao, 1994; Ritter, 1999; Nickel
& Kiela, 2017).

The above facts motivate us to use graph embedding in
non-Euclidean space actively. However, the ability of some
non-Euclidean space to represent a complex graph may lead
to overfitting in graph embedding settings, where data are in-
complete or noisy. It is because there is a trade-off between
a model’s representability and the potential of overfitting
in general machine learning settings. Hence, in order for
graph embedding users to select the best model, we need
to evaluate each model’s generalization error, that is, how
much the model’s performance is badly influenced by in-
completeness and noise of the data. Indeed, recent research
(Suzuki et al., 2021a;b), for the first time, has provided
upper bounds of representation learning in non-Euclidean
space by converting the graph embedding problem to a lin-
ear discrimination analysis problem from Gramian matrices
in the inner-product space or Minkowski space. Their results
suggest that the generalization error of the representation
learning’s performance could be exponential in the radius
R of the hyperbolic space that we use. This bound is in
line with the volume of the space. Their evaluation im-
plies that we might need an impractically large data size
(e.g., > 1072 as in Remark 11) to get a better performance
graph embedding in hyperbolic space than in Euclidean
space. Nevertheless, the following observations imply the
existing bounds overestimate the generalization error.

• They do not consider the metric space’s property. Even if
the volume of a ball grows exponentially in its radius R
as in hyperbolic space, the distance between two points
in the ball is always smaller than 2R. Hence, the general-
ization error might avoid an exponential dependency on
the space’s radius.

• They do not use the “local” model complexity around
the optimal representations, resulting in a convergence
rate O(1/

√
S) for data size S. According to past research

(Bartlett et al., 2005; Koltchinskii, 2006) in the learning
theory context, the generalization error can be O(1/S) if
the complexity of the “neighborhood” of the best hypoth-
esis function is limited. In the graph embedding setting,
the model is substantially finite-dimensional since there
are finite representation couples only. Hence, it is highly
possible that the “local” complexity is small enough.

Based on the above observation, we aim to derive a tighter
and faster generalization error bound of graph embedding
in metric space. The above observations imply that we
have the potential to achieve a tighter and faster bound if
we regard graph embedding’s loss function as a function

of the distance values of the finite representation couples.
Indeed, we have achieved the aim by reformulating graph
embedding’s loss function as a restriction of the composition
of a non-linear function and a linear function of the distances
of pairs of representations. Specifically, our contributions
are the following:

• We have derived a novel upper bound of the
Rademacher complexity (Koltchinskii, 2001; Koltchin-
skii & Panchenko, 2000; Bartlett et al., 2002) of graph
embedding’s hypothesis function set and its local subset,
called the local Rademacher complexity (Bartlett et al.,
2005; Koltchinskii, 2006). The bound is tighter than ex-
isting ones for most cases since it is polynomial for the
representation space’s radius if the space is metric. The
Rademacher complexity evaluation can apply to repre-
sentation learning settings discussed in the past papers
(Jain et al., 2016; Gao et al., 2018; Suzuki et al., 2021a;b)
since their bounds were also derived from the Rademacher
complexity evaluation.

• Based on the above global and local Rademacher complex-
ity bound, we have derived a novel upper bound of graph
embedding’s generalization error. Our bound is tighter in
that it is polynomial for the representation space’s radius
R if the space is metric and faster in that it is O(1/S) at
the fastest than the existing O(1/

√
S) bound.

• We have calculated specific bounds for graph embedding
in Euclidean and hyperbolic spaces and derived a sig-
nificantly improved upper bound of the data size that the
graph embedding in hyperbolic space needs to outperform
that in Euclidean space when the graph is a tree.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the graph embedding in the learning theory
style. Section 3 gives our assumptions and generalization er-
ror bounds, the main result of the paper. Section 4 provides
examples of the application of our main result. Section 5
gives the core technical result to enable comparisons to
previous work and discussions on potential future work.
Section 6 compares our result with previous work based on
Section 5. Section 7 discusses potential future work.

2. Preliminaries
Notation The symbol := indicates that its left side is
defined by its right side. We denote by Z,Z>0,R,R≥0

the set of integers, the set of positive integers, the set of
real numbers, and the set of non-negative real numbers,
respectively. For D ∈ Z>0, RD denotes the set of D-
dimensional real vectors. For z ∈ RD, z⊤ indicates its
transpose. sgn : R → {0,±1} is the sign function de-
fined by sgn (r) = −1 if r < 0, sgn (r) = +1 if r > 0,
and sgn (r) = 0 if r = 0. For r, r′ ∈ R, we define
r ∧ r′ := min {r, r′} and r ∨ r′ := max {r, r′}. For a finite

2



Tight and fast generalization error bound of graph embedding in metric space

set V , we denote the number of elements in V by |V| ∈ Z≥0,
and we denote the set of two element subsets of V by CV ,
i.e., CV := {A ⊂ V||A| = 2}. Note that |CV | = |V|(|V|−1)

2
holds. For sets A and B, we denote by 2A the power set on
A, and by BA the set of maps from A to B. For example,
RA denotes the set of real functions on A. If A is a mea-
surable space, we denote the set of measurable functions on
A by L0(A). We denote the expectation with respect to a
random variable z that follows a distribution P by Ez∼P.

2.1. True dissimilarity

First, we formulate the representation learning from pair-
label couples, which is of interest in this paper. This includes
graph embedding as a special case. Let V denote the en-
tity set. We assume that there exists a true dissimilarity
function ∆∗ : V × V → R≥0, where ∆∗(u, v) indicates
the true dissimilarity between entity u and entity v. The
entities u and v are “similar” or strongly related if ∆∗(u, v)
is small and “dissimilar” or weakly related if ∆∗(u, v) is
large. Specifically, we fix a threshold θ ∈ R and say u and v
are similar if ∆∗(u, v) < θ and dissimilar if ∆∗(u, v) > θ.
Note that ∆∗(u, v) = θ holds with probability at most zero
in this paper, so we can ignore this corner case. Throughout
this paper, we assume the symmetry of the dissimilarity
function, i.e., ∆∗(u, v) = ∆∗(v, u) for all u, v ∈ V . We
can regard the setting discussed in this section as graph em-
bedding if there exists a true undirected graph G = (V, E),
where E ⊂ CV , and the true dissimilarity is given by the
distance function ∆G defined by the graph G and we set
the threshold θ = 1.5. Here, ∆G(u, v) is defined by the
length of a shortest path in G between u and v. Note that
∆G(u, u) = 0 for all u ∈ V , and ∆G(u, u) = ∞ if there
exists no path between u and v. Here, ∆G(u, v) < θ = 1.5
if and only if {u, v} ∈ E or u = v. Thus, we can regard
graph embedding as a special case of the discussion here.

Remark 1. We do not assume properties of the true dis-
similarity function ∆∗ other than the symmetry, though all
dissimilarity function examples in this paper are metric.

Remark 2. Although we omit the case where ∆∗(u, v) = θ
for simplicity, considering this corner case is not difficult if
we simply regard u and v are similar if ∆∗(u, v) = θ and
modifying following definitions slightly.

2.2. Representation space and the objective of
representation learning

Fix some space W with a distance function ∆W : W ×
W → R that is symmetric, i.e., ∆W(w,w′) = ∆W(w′, w)
for all w,w′ ∈ W . Here, we consider two points w,w′ ∈
W to be “distant” if ∆W(w,w′) is large and “close” if
∆W(w,w′) is small. We call W the representation space.
The most typical example is the D-dimensional Euclidean
space

(
RD,∆RD

)
, where ∆RD : W × W → R≥0 de-

fined by ∆RD (z, z
′) =

√
(z − z′)

⊤
(z − z′). Note that

our main theorem allows distance functions not satisfying
non-negativity or triangle inequality. See Assumption 1 for
the rigorous conditions.

The objective of representation learning is to get a map
w : V → W which maps an entity to a representation in
W , such that the representations are consistent to the true
dissimilarity defined by ∆∗. Here, we call w the represen-
tation map, and for v ∈ V , we call wv := w(v) ∈ W the
representation of entity v. Specifically, the objective of
representation learning is to find a good representation map
w that satisfies

∆∗(u, v) ≶ θ ⇔ ∆W(wu, wv) ≶ θW , (1)

for “most” {u, v} ∈ CV . We quantify the meaning of “most”
in Section 2.5. Here, θW ∈ R is a threshold value. To make
the formulation compatible with learning theory’s notation,
we rewrite the above representation learning objective as
follows. Define the true label function y∗ : CV → {±1}
by y∗({u, v}) := sgn (∆∗(u, v)− θ). Let ψ : R → R be a
nondecreasing function and define the hypothesis function
fw,ψ : CV → R by

fw,ψ({u, v}) := ψ(∆W(wu, wv))− ψ(θW). (2)

Then, we can see that (1) is equivalent to the following.

y∗({u, v})fw,ψ({u, v}) > 0. (3)

Thus, our objective to find a representation map w that
satisfies the above inequality for “most” {u, v} ∈ CV .

Remark 3. We do not assume that the distance func-
tion ∆W is metric. Specifically, even if it violates the
triangle inequality or has two points w ̸= w′ such that
∆W(w,w′) ≤ 0, our main theorem holds. Nevertheless, the
triangle inequality is important to obtain a specific bound as
discussed in Section 4.1.

Remark 4. Mathematically, we do not need the function ψ
since we can achieve the same thing by simply composing
the ψ to the original ∆W and create a new distance function
∆′

W . However, it often makes interpretations easier if we fix
∆W to the distance function of a metric space and vary ψ
instead of varying ∆W . One good example is our discussion
in Section 6, where ∆W is fixed to the distance function of
Euclidean or hyperbolic space, while ψ can vary.

2.3. Couple-label pair data and graph embedding

We have discussed the objective of representation learning
in Section 2.2. To achieve the objective, we need to use
some data that contain partial information about the true
dissimilarity ∆∗. For simple discussion, this paper focus on
representation learning using couple-label pair data, which
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includes graph embedding as an important special case. Still,
our theory straightforwardly applies to existing settings,
i.e., that in (Suzuki et al., 2021b) as we discuss in Section 5.

A couple-label pair data sequence is a sequence (zs)
S
s=1 of

pairs of an unordered entity couple and a label. Specifically,
the s-th data point zs = (xs, ys) consists of a pair of an
unordered entity couple xs = {us, vs} ∈ CV and a label
ys ∈ {±1}. Here, ys = +1 indicates that the s-th data
point claims us and vs being similar, i.e., ∆∗(us, vs) < θ,
and ys = −1 indicates its converse, i.e., ∆∗(us, vs) >
θ. Nevertheless, this correspondence between the label ys
and dissimilarity ∆∗(us, vs) does not always hold because
the data point may be wrong owing to data noise. That
is, the learning task is agnostic with the label noise. As
discussed in Section 2.1, if the true dissimilarity is given by
the distance function ∆G defined by the graph G and we set
the threshold θ = 1.5, then ys = +1 claims that there exists
an edge between us and vs.

Remark 5. Strictly speaking, if the graph G is not connected
∆G can take +∞, which our setting does not formally cover
since the range of the true dissimilarity ∆∗ is R, not R ∪
{±∞}. However, the extension of the range to R∪{±∞} is
easy. In this paper, for notation simplicity, we limit the range
to R and we only discuss connected graphs as examples.

2.4. Loss function

To obtain representations using data as we discussed in
Section 2.3, we need to quantify how compatible represen-
tations are with the data. This is what a loss function does.
This subsection defines the loss function for generic cases.
The definitions in the remainder of this subsection consider
a generic prediction setting from a feature space X to label
space Y to compare the couple-label pair case to the general
discussion later. Still, we can always specialize the discus-
sion by substituting X = CV and Y = {±1}. Given a loss
function ℓ : X × Y × R → R≥0, the loss of a hypothesis
function f : X → R on a data point (xs, ys) ∈ X × Y is
given by ℓ(xs, ys, f(xs)). In the couple-label pair case, our
main interest on a data point (xs, ys) whether the hypothe-
sis function’s output f(xs) has the same sign as the label
ys has, as discussed in Section 2.2. That is, our interest is
the sign of ysf(xs). Hence, we mainly consider a margin-
based loss, that is, a loss function that can be defined by
ℓ(x, y, t) := ϕ(yt), where ϕ : R → R≥0 is a non-increasing
function. Here, we assume ϕ is non-increasing because it is
desirable and deserve a low loss if ysf(xs) is positive and
vice versa. The function ϕ is called a representing function.
A typical example is the hinge loss function defined by
ϕhinge(t) := max {−t+ 1, 0}, which is non-increasing.

If the input of the loss function is unrestricted, the loss
can be unbounded, which can lead to infinite risk. Hence,
we introduce clipping following (Chapter 2, Steinwart &

Christmann, 2008). For M ∈ R≥0, we define the clipped
value [t]

+M
−M ∈ [−M,+M ] by

[t]
+M
−M :=


−M if t ≤ −M ,
t if t ∈ [−M,+M ],
+M if t ≥ +M .

(4)

Fix M ∈ R≥0, and we say that a loss function ℓ : X × Y ×
R → R≥0 is clippable at M if ℓ

(
x, y, [t]

+M
−M

)
≤ ℓ(x, y, t)

for all (x, y) ∈ X ×Y . For example, the hinge loss function
is a typical clippable loss.

2.5. Data distribution and risks

We assume that a data point is generated by a distribution
P on X × Y . Once a distribution P is given, our interest is
the expectation of the loss of a hypothesis function f with
respect to P. This expectation is called the expected risk
of f with respect to the loss function ℓ and distribution P,
denoted by Rℓ,P(f). Here, the risk function Rℓ,P : RX →
R≥0 is defined by

Rℓ,P(f) := E(x,y)∼Phℓ,f (x, y), (5)

where hℓ,f : X × Y → R≥0 is defined by hℓ,f (x, y) :=
ℓ(x, y, f(x)). We also define the clipped expected
risk [Rℓ,P]

+M
−M (f) := E(x,y)∼P[hℓ,f ]

+M
−M (x, y), where

[hℓ,f ]
+M
−M (x, y) := ℓ

(
x, y, [f(x)]

+M
−M

)
. Now, we can for-

mally state that the objective of representation learning is
to minimize the expected risk. Since the definition of the
risk involves expectation, we only consider a measurable
function as a hypothesis function, i.e., f ∈ L0(X ). How-
ever, in the couple-pair label case, since X is a finite set and
we consider discrete topology, we have that L0(X ) = 2X .
Thus, every function on X is measurable and we can ignore
the discussion on measurability. Although the objective of
representation learning is to minimize the expected risk, we
cannot directly do that since we cannot directly observe the
data distribution. Instead, since we have a data sequence
(xs, ys)

S
s=1, we minimize the empirical risk

Rℓ,S(f) = E(x,y)∼Shℓ,f (x, y) =
1

S

S∑
s=1

hℓ,f (xs, ys). (6)

which is the risk calculated on the empirical measure
S : 2X×Y → R defined by S := 1

S

∑S
s=1 δ(xs,ys). Here,

δ(x,y)(A) = 1 if (x, y) ∈ A and δ(x,y)(A) = 0 otherwise.

Or, we might minimize the clipped version [Rℓ,S]
+M
−M .

We remark that if the loss function ℓ is clippable, then
[Rℓ,S]

+M
−M ≤ Rℓ,S(f) for all f ∈ L0(X ). Following (Stein-

wart & Christmann, 2008), we define empirical risk mini-
mization below so that the definition includes minimization
of both versions.
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Definition 1. Let F ⊂ L0(X ), and fix ϵ ∈ R≥0. Then
a map A : (X × Y)

S → F is called an ϵ-approximation
clipped empirical risk minimization (ϵ-CERM) if it satisfies

[R]
+M
−Mℓ,S

(
A
(
(zs)

S
s=1

))
≤ inf {Rℓ,S(f)|f ∈ F}+ ϵ,

(7)
for all (zs)

S
s=1 ∈ (X × Y)

S and empirical measure S deter-
mined by (zs)

S
s=1. A 0-CERM is called a clipped empirical

risk minimization (CERM).

Remark 6. The left hand side of the inequality in (7) is
not clipped. Hence, if the loss function ℓ is clippable and a
map A minimizes either the non-clipped empirical risk or
the clipped one, then it is a CERM.

Since we want to have as low a risk as possible, we are
interested in the infimum of the risk. We denote the
infimum of the risk in a given hypothesis function set

F ⊂ L0(X ) by [R∗,F
ℓ,P ]

+M

−M
, defined by [R∗,F

ℓ,P ]
+M

−M
:=

inf
{
[Rℓ,P]

+M
−M (f)

∣∣∣f ∈ F
}

.

The infimum [R∗
ℓ,P]

+M

−M
:= [R

∗,L0(X )
ℓ,P ]

+M

−M
of the expected

risk over all hypothesis functions is called the Bayes risk.

Since we try to achieve the Bayes risk using a CERM, we
are interested in how well it goes. Hence, we will evaluate
the excess risk defined by [Rℓ,P]

+M
−M (f)−[R∗

ℓ,P]
+M

−M , where
f is a CERM. We can regard the excess risk of a CERM as
a quantification of the generalization error.

3. Fast rate of generalization error bound in
representation learning

This section states our upper bounds of the excess risk in
representation learning on couple-label pair data.

Assumption 1. Fix M ∈ R>0. Consider the following
conditions regarding the representation space W , the dis-
similarity function ∆W , the function ψ, the loss function ℓ,
and the data distribution P.

(C1) The random variables z1, z2, . . . , zS follow the distri-
bution P on X × Y mutually independently.

(C2) The representation space W is a topological space and
compact.

(C3) The dissimilarity function ∆W : W × W → R is a
continuous symmetric function on W ×W .

(C4) The feature and label spaces are X = CV and Y =
{±1}, and the hypothesis function set F is given by
F = Fw,ψ := {fw,ψ|w : V → W}, where fw,ψ is
defined by (2) and ψ : R → R is a continuous non-
decreasing function.

(C5) The loss function ℓ is clippable at M .

(C6) The loss function ℓ is margin-based with a representing
function ϕ : R → R≥0.

(C7) The loss function ℓ satisfies the supremum bound
condition, i.e., ∃B ∈ R>0,∀(x, y) ∈ X × Y,∀t ∈
[−M,M ] : ℓ(x, y, t) ≤ B.

(C8) The representing function ϕ is Lipschitz continuous
i.e., there exists a constant L ∈ R≥0 such that
ϕ(t− t′) ≤ L|t− t′| for any t, t′ ∈ [−M,M ].

(C9) There exists a Bayes decision function in F , i.e., there
exists a hypothesis function f∗ ∈ F that satisfies
[Rℓ,P]

+M
−M (f∗) = inf

{
[Rℓ,P]

+M
−M (f)

∣∣∣f ∈ L0(X )
}

.

(C10) There exists ϑ ∈ [0, 1] such that the variance bound
condition holds, i.e., there exists U ∈ R≥0 such that
for all f ∈ F ,

Ex∼PX

[
[f(x)]

+M
−M − [f∗(x)]

+M
−M

]2
≤ U

[
[Rℓ,P]

+M
−M (f)− [Rℓ,P]

+M
−M (f∗)

]ϑ
.

(8)

Remark 7. In Assumption 1,

(a) If W is a metric space, then the condition (C2) holds if
and only if W is totally bounded and complete. Also,
its distance function always satisfy (C3). For example,
a closed ball in finite-dimensional Euclidean or hyper-
bolic space can satisfy (C2) and (C3). Furthermore, if
W is a subset of finite-dimensional Euclidean space,
then (C2) holds if and only if W is bounded and closed.
If W is a subset of finite-dimensional inner-product
space, then the (negative) inner-product function is a
continuous symmetric function, which satisfies (C3) as
a distance function.

(b) In (C10), ϑ = 1 requires the “strong-convexity” of the
loss function ℓ with respect to the hypothesis function
f , which is assumed in, e.g., (Bartlett et al., 2005;
Koltchinskii, 2006).

(c) The conditions (C8) and (C10) imply the following

E(x,y)∼P

[
[hℓ,f ]

+M
−M (x, y)− [hℓ,f∗ ]

+M
−M (x, y)

]2
≤ V

[
Rℓ,P

M (f)− Rℓ,P
M (f∗)

]ϑ
,

(9)

for f ∈ F with V = L2U , which corresponds to the
condition assumed in (Section 7, Steinwart & Christ-
mann, 2008).

We will discuss specific examples satisfying Assumption 1
in Section 4. The following is our main result.
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Theorem 1. Suppose that (C1) to (C8) in Assumption 1
holds. Let L,B ∈ R≥0 be constants that satisfy the inequal-
ities in items (C7) and (C8) in Assumption 1, respectively,
and define F ∈ R≥0 by

F 2 = max
f∈F

∑
{u,v}∈CV

[f({u, v})]2. (10)

Fix δ ∈ R>0 and ϵ ∈ R≥0. Then

(i) There exists a measurable (0-)CERM.

(ii) Any ϵ-CERM A : (X × Y)
S → R satisfies

[Rℓ,P]
+M
−M

(
A
(
(zs)

S
s=1

))
− inf {Rℓ,P(f)|f ∈ F}

≤ r0(S) + β′(S) + ϵ,
(11)

in probability at least 1− δ, where

r0(S) := 4LF ·
(
2

S

) 1
2

, β′(S) := B0 ·
(
ln 1

δ

S

) 1
2

. (12)

(iii) In addition, suppose items (C9) and (C10) hold, and
let U ∈ R≥0 and ϑ ∈ [0, 1] be constants that satisfy the
inequalities in item (C10) of Assumption 1 and fix B0 > B.
Then every ϵ-CERM A : (X × Y)

S → R satisfies

[Rℓ,P]
+M
−M

(
A
(
(zs)

S
s=1

))
− [R∗

ℓ,P]
+M

−M

≤ min {ri(S)|0 ≤ i ≤ |CV |} ∨ α(S) ∨ β(S) + 3ϵ,
(13)

in probability at least 1− δ. Here, α, β : Z>0 → R≥0 are
defined by

α(S) := 3 ·

(
72
(
B2−ϑ ∨ L2U

)
ln 3

δ

S

) 1
2−ϑ

, β(S) :=
15B0

S
ln

3

δ
,

(14)

and, ri(S) for 1, . . . |CV | is defined as the only positive
solution of the equation r = 30χi(r)/

√
S for r, where

χi(r) := 2L

√
2F 2

(
Urϑ

4F 2
i+ µPX (|CV | − i)

)
, (15)

with µPX (j) := minD⊂CV ,|D|=j PX (D). In particular,

r|CV |(S) := 3 ·
(
1800 · |CV | ·

L2U

S

) 1
2−ϑ

. (16)

We define ri(S) = 0 if LFU = 0.

Remark 8. In Theorem 1,

(a) Although Assumption 1 does not explicitly assume the
finiteness of F , it follows from the conditions (C2),
(C3), and (C4) since F is defined as the maximum of a
continuous function from a compact space W |V|.

(b) The bound (13) is O
((

1
S

) 1
(2−ϑ)

)
, which is faster than

O
((

1
S

) 1
2

)
if ϑ > 0. In particular, it is O

(
1
S

)
if ϑ = 1.

(c) We have that min {ri(S)|0 ≤ i ≤ |CV |} ≤ r0(S) ∧
r|CV |(S), whose right hand side is always analyti-
cally obtained. Here, r0(S) ⋛ r|CV |(S) ⇔ S ⋛

7200L2F 2
(
U |CV |
4F 2

) 2
ϑ

if ϑ > 0. This implies that the
additional conditions in (iii) provides a faster rate for
large S if ϑ > 0. Note that we can ignore α and β
unless we consider exponentially small δ. It is because
α and β are in no slower order with respect to S than
r|CV | and r0, respectively, and r|CV | and r0 depend on
|V| and F while α and β are independent of them.

(d) As we can see from the definition of χi, the behav-
ior of ri(S) for i = 1, 2, . . . , |CV | − 1 depend on PX .
If PX is the uniform distribution on X , then ri(S) ≥
r0∧r|CV | for i = 1, 2, . . . , |CV |−1. Hence, we cannot
improve the bound from r0(S) ∧ r|CV |(S). As an ex-
treme example of the other direction, consider the case
where there exists some D ⊂ CV satisfies PX (D) = 1.

Then we have that r|D| := 3 ·
(
1800 · |D| · L

2U
S

) 1
2−ϑ

.
This is given by replacing |CV | in r|CV | with |D|.
In particular, r|D| ≤ r|CV | and the equality holds if
and only if D = CV . This result is natural since
PX (D) = 1 means that we can ignore CV \ D.

Specific advantages of Theorem 1 over existing results will
be discussed in Section 6.

4. Examples
Assumption 1 and Theorem 1 are given in a general form,
including many parameters such as U, q, and F , which de-
pend on the situation. This section gives specific examples
of calculating these values in some application cases, and a
comparison between Euclidean and hyperbolic spaces using
the calculations.

4.1. Representation space and F

We assume that ψ(t) = tτ for τ ≥ 1, as a simplest
case. If (W,∆W) is a metric space, whose radius is
R, then from the triangle inequality, we have that F 2 ≤
|CV |((2R)τ − (θW)

τ
)
2 ≤ |CV |(2R)2τ if θW ∈ [0, 2R].

This is the worst case, and we have the following better
bound for Euclidean space.

Lemma 2. If W is a subset of a closed ball with radius 2R
in Euclidean space, then F 2 ≤ |V|

8 (2R)
2τ .

Here, the right side is linear for |V|. On the other hand,
the following lemma states that hyperbolic space almost
achieves the worst case if the diameter is sufficiently large.

Lemma 3. If W is a closed ball of radius R in hyperbolic
space (dimension D ≥ 2), then F 2

(2R)2τ
→ |CV |.

6
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The above result, at one glance, suggests that a Euclidean
ball is better than a hyperbolic ball. However, the discus-
sion is not trivial since hyperbolic space usually has a better
approximation error. We will compare in Section 6 a Eu-
clidean ball and a hyperbolic ball, considering both the
approximation and generalization errors.

4.2. Hinge loss and ϑ

The upper bound in Theorem 1 heavily depends on ϑ. The
value ϑ is determined by P and ℓ, but its calculation is
not trivial. As an example case, we introduce the hinge
loss case since it has been widely used as the loss func-
tion of the support vector machine (Cortes & Vapnik, 1995)
and mainly discussed in the context of generalization error
analysis in the classification problem (Steinwart & Christ-
mann, 2008; Jain et al., 2016; Gao et al., 2018; Suzuki
et al., 2021a;b). Suppose the loss function is the hinge
loss, i.e., ϕ(t) = max {−t+ 1, 0}. Then, it is known that
the parameter ϑ of the variance bound condition (C10) in
Assumption 1 depends on the data distribution. Define
η : X → [0, 1] by η(x) := P({(x,+1)})

PX ({x}) . Note that we
can ignore the definition for x such that PX ({x}) = 0
since it is about a measure-zero space. We say that a dis-
tribution P on x × {±1} has noise exponent q ∈ R≥0

with constant c ∈ R>0 if PX ({x ∈ X ||2η(x)− 1| < t}) ≤
(ct)

q, and noise exponent +∞ with constant c ∈ R>0 if
PX ({x ∈ X ||2η(x)− 1| < 3/c}) = 0, where PX is the
marginal distribution of P on X defined by PX (A) :=
P(A× {±1}) for a measurable set A ⊂ X . Here, a large q
indicates a small noise. The condition q = ∞ corresponds
to the strong low-noise condition, which has been assumed
in, e.g., (Koltchinskii & Beznosova, 2005). We have the
following, using existing results about ϑ for the hinge loss
(e.g., Chapter 8, Steinwart & Christmann, 2008).

Corollary 4. Suppose that conditions (C1) to (C4) in As-
sumption 1 are satisfied and the loss function is the hinge
loss given by ϕ(t′) := max {1− t′, 0}. Define F by (10)
and let M = 1. Fix δ ∈ R>0 and ϵ ∈ R≥0. Then (i)
there exists a measurable (0-)CERM. (ii) With L = 1, (ii)
of Theorem 1 holds. (iii) In addition, if the condition (C9)
holds and the distribution P has noise exponent q ∈ R≥0

with constant c ∈ R>0, then, with B0 > 2, ϑ = q
q+1 , and

U = 6c
q
q+1 , (iii) of Theorem 1 holds.

4.3. Improved comparison: Euclidean vs hyperbolic.

Suzuki et al. (2021b) showed a sufficient condition with
respect to S for graph embedding in hyperbolic space to
be better than that in Euclidean space. Following their
paper’s setting, we give a sufficient condition based on The-
orem 1.

Assume that the posterior distribution is given by

η({u, v}) = 1
2 (1 + ξy∗({u, v})), where ξ ∈ [0, 1]. Fix

ψ. The hypothesis function fw,ψ given by a representation
map w gives a Bayes decision function if and only if

y∗({u, v}) = +1 ⇒ ψ(∆W(wu, wv)) ≤ ψ(θW)− 1,

y∗({u, v}) = −1 ⇒ ψ(∆W(wu, wv)) ≥ ψ(θW) + 1.
(17)

Note that the above condition is stronger than (1).

In the following, RD and HD denote the D-dimensional
Euclidean space and hyperbolic space, respectively. For
a representation space W and a representation map
w, we define vW : WV → Z≥0 by vW(w) :=
|{D|∀{u, v} ∈ D : {u, v} violates (17)}| and vmin(W) :=
min {vW(w)|w : W → V}. Then, we can see that
R

∗,FW,ψ

ℓ,P − R∗
ℓ,P = vmin(W)

|CV | ξ. If W is a metric space, let a
closed ball with radius R in W denoted by B[R;W].

If the true dissimilarity ∆∗ is the graph distance of a
tree, the following lemmata regarding vmin

(
B[R;R2]

)
and

vmin
(
B[R;H2]

)
hold as straightforward modifications of re-

sults in (Sarkar, 2011; Suzuki et al., 2019; 2021a). (See the
supplementary materials for the proofs).

Lemma 5. Suppose that (V, E) is a tree and ∆∗ : V ×
V → R≥0 is given by its graph distance. Then, there exist
R ∈ R≥0 such that vmin

(
B[R;HD]

)
= 0 for any D.

Lemma 6. Let p(D) be the packing number of the D-
dimensional unit sphere with the unit distance. In partic-
ular, p(2) = 5. Suppose that the true dissimilarity ∆∗ is
given by the graph distance of a graph G = (V, E). Then,
vmin

(
B
[
R;R2

])
is larger than or equal to the number of

disjoint (p(D) + 1)-star subgraphs in the graph.

Lemmata 5 and 6 help the comparison between embedding
in Euclidean space and hyperbolic space. The following is
an example of a specific comparison in the setting discussed
in (Suzuki et al., 2021b). For a more general discussion, see
Appendix F.

Example 1. We consider the complete balanced λ-ary tree
with height h, and the noise margin ξ = 1

2 . Suppose λ = 5
and h = 4. Here, we have that |V| = 156 and Lemma 5
gives R = 39.51. If S ≥ 1.19 × 109 for τ = 1 or S ≥
7.43× 1012 for τ = 2, then in probability at least 1− 2−10,
the expected risk of a CERM using B[R;H2] is better than
that using any ball in R2.

Remark 9. The above evaluation uses the approximation
error of the embedding using R2 as the lower bound of
the error by ERM. We may obtain a better threshold in
the near future once we obtain a good lower bound of the
generalization error of representation learning using R2.

4.4. ℓ1 embedding

Theorem 1 can apply to embedding using a general metric
space. Here, we discuss an important example, ℓ1 embed-
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ding in the same setting as in Section 6. The ℓ1 embed-
ding is representation learning in (a subset of) the metric
space

(
RD,∆D,1

)
, where ∆D,1 is the Manhattan distance

∆D,1(w,w
′) = ∥w −w′∥1. Here, ∥·∥1 is the 1-norm op-

erator. The following lemma holds for ℓ1 embedding.
Lemma 7. If W is a subset of a closed ball with radius R
in a D-dimensional Manhattan distance space

(
RD,∆D,1

)
,

then we have that

F 2 ≤ |V|Dτ

8
(2R)

2τ
. (18)

The proof of Lemma 7 is easy from Lemma 2, the inequality
∆D,1(w,w

′) ≤
√
D∆RD (w,w

′), and the fact that, for
any Manhattan distance ball with radius R, there always
exists a Euclidean ball with radius R that covers it (since
∆D,1(w,w

′) ≥ ∆RD (w,w
′)).

One interesting suggestion here is that it depends on the
dimension. This is different from our bound on Euclidean
space or hyperbolic space. The dependency of the general-
ization error bound of ℓ1-embedding on the space dimension
has a significant meaning in discussing the approximation-
generalization (or bias-variance) trade-off of ℓ1-embedding
since we know specific results on the dependency of ℓ1-
embedding’s approximation error on the space dimension
D, for example:
Proposition 8 (A corollary from Proposition 11.1.4 in (Deza
et al., 1997)). The following statements are equivalent to
each other:

• A tree T has 2D leaves.

• A tree T can be embedded with zero distortion in the
D-dimensional Manhattan distance space.

Hence, Proposition 8 and Lemma 7 quantitatively state a
trade-off: if we increase D then the approximation error de-
creases but the generalization error increases. Interestingly,
if we try to achieve the zero approximation error by setting
D = |V|

2 , then the generalization error is the same as that of
hyperbolic space given in Lemma 3, up to a constant factor.
The above result indicates that we suffer from almost the
same generalization error if we try to achieve an arbitrar-
ily small approximation error for a tree, whether we use a
hyperbolic space or a Manhattan space.

5. Core evaluation: Rademacher complexity
In this section, we provide the core technical result used to
prove Theorem 1, to make an essential comparison in Sec-
tion 6 between our results and existing results, without being
influenced by the loss function’s non-essential difference.

Our proof depends on the standard schemes in the statistical
learning theory using the Rademacher complexity (RC).

Definition 2. Let σ1, σ2, . . . , σS , z1, z2, . . . , zS be mu-
tually independent random variables, where each of
σ1, σ2, . . . , σS takes values {−1,+1} with equal probabil-
ity and each of z1, z2, . . . , zS follows some distribution P
on a set Z . The Rademacher complexity (RC) RadP,S(F)
of a function set F ⊂ L0(Z) on P is defined by

RadP,S(F) := E(zs)
S
s=1

E(σs)
S
s=1

[
1

S
sup
f∈F

S∑
s=1

σsf(zs)

]
. (19)

In the following, we fix a measurable loss function ℓ :
X × Y × R → R≥0 and hypothesis function set F ⊂
L0(X ), and we define hℓ,F ⊂ L0(X × Y) by hℓ,F :=
{hℓ,f |f ∈ F} and local hypothesis function set Fr :={
f ∈ F

∣∣∣[Rℓ,P]
+M
−M (f)− [R∗

ℓ,P]
+M

−M ≤ r
}

for r ∈ R≥0.
Existing research, (e.g., Bartlett & Mendelson, 2002), has
shown that we can obtain an upper bound of generaliza-
tion error proportional to RadP,S(hℓ,F ). It is also shown
(e.g., Bartlett et al., 2005; Koltchinskii, 2006) that we can
obtain a faster upper bound by evaluating RadP,S(hℓ,Fr ),
which we call the local Rademacher complexity (LRC).
For the above reason, we are interested in the RC and LRC.
Our evaluation of the RC and LRC in the couple-label data
learning setting is the following.
Theorem 9. Assume that the conditions (C2) to (C4), (C6)
and (C8) hold. Then, we have that

RadP,S(hℓ,Fr ) ≤ min
i=0,1,...,|CV |

χi(r)√
S
, (20)

where χi is defined by (15). In particular, by sub-
stituting r = +∞, we have that RadP,S(hℓ,F ) =

RadP,S(hℓ,F∞) = 2LF ·
(
2
S

) 1
2 .

Remark 10. Regarding Theorem 9,

(a) To the best of our knowledge, Theorem 9 is the first
LRC evaluation in the context of representation learn-
ing, including couple-label pair data learning and graph
embedding.

(b) Theorem 9 implies that we can have a meaningful LRC
evaluation even without regularization, though we need
it for e.g., the support vector machine analysis (Stein-
wart & Christmann, 2008). It is advantageous since it
can exploit the non-Euclidean space’s representability
in the resulting upper bound.

(c) We can straightforwardly update existing generaliza-
tion error bounds of graph embedding based on the RC,
such as that in (Suzuki et al., 2021b), using the above
bound, although this paper’s discussion focuses on our
simplest couple-label pair setting to save space.

As explained, the RC evaluation is substantial in deriving
generalization error bounds, regardless of the specific form
of the loss function. The discussion makes us ready for
comparison in Section 6 between existing results and ours.
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6. Related work and comparison
The generalization error of representation learning has been
studied for the ordinal data case (Jain et al., 2016; Suzuki
et al., 2021a) and where random variables associated with
entities are observed (Wang et al., 2018). Still, the first paper
that has derived a generalization error bound for a typical
graph embedding setting is (Gao et al., 2018), although this
paper only considers linear space and gives a result with
some unevaluated term. To the best of our knowledge, only
(Suzuki et al., 2021b) considers the generalization error
for graph embedding in non-Euclidean space, including
hyperbolic space. This section aims to compare our result
with the result by (Suzuki et al., 2021b). In (Suzuki et al.,
2021b), the positive-negative example data case is mainly
discussed, which needs a large space to introduce and has a
loss function different from ours. However, since the core
technique of their result is also the RC evaluation, we can
make an essential comparison between them throughout the
evaluations. The following is the result by (Suzuki et al.,
2021b).

Corollary 10 (Rademacher complexity evaluation by
(Suzuki et al., 2021b)). Let W be a closed ball with ra-
dius R in D-dimensional Euclidean space RD or hyper-
bolic space HD. Let ψ(t) = γ

(
t2
)

for Euclidean case
and ψ(t) = γ(cosh t) for hyperbolic space case, where
γ : R≥0 → R is a non-descreasing Lipschitz continuous
function whose Lipschitz constant is Lγ . Also, let the loss
function be the hinge loss given by ϕ(t′) := max {1− t′, 0}.
Then

RadP,S
(
hℓ,FW,ψ

)
≤ ω(R)

S
Lγ |V|

(√
2Sν ln |V|+ κ

3
ln |V|

)
,

(21)

where ω(R) := (2R)
2 and κ = 2 for Euclidean ball cases,

and ω(R) := cosh2R+ sinh2R and κ = 1
2 for hyperbolic

ball cases. See Appendix G for the definition of ν, which
depends on PX and |V|.
Remark 11 (Comparison of Theorem 9 to Corollary 10).

(a) Theorem 9 can apply to the most natural case ψ(t) = t,
while Corollary 10 cannot since γ(t) =

√
t or γ(t) =

acosh t is not Lipschitz continuous.

(b) No LRC evaluation in (Suzuki et al., 2021b). Hence
we cannot derive a faster bound than O( 1√

S
) in their

direction, while we did as in (iii) of Theorem 1 thanks
to the LRC evaluation by Theorem 9.

(c) The bound in Theorem 9 is polynomial in R even for
hyperbolic space, better than Corollary 10, which is
exponential in R. The comparison regarding the de-
pendency on |V| is complicated. If we regard other
variables as constants, Theorem 9, which is O(|V|), is
always better than Corollary 10 owing to the second

term in Corollary 10. However, if S is sufficiently
large, then the second term vanishes. In that case, the
discussion depends on ν, which again depends on PX .
See Appendix G for detailed discussion. In any case,
the bound in Theorem 1 is much better in practical
evaluations as the following example shows owing to
the difference in the dependency on R.

(d) For Example 1 with ψ(t) = t, Corollary 10 gives
S ≥ 7.30× 1072, a much larger data size than that by
Theorem 1, as a sufficient condition for the hyperbolic
method to outperform Euclidean method.

7. Discussion on proof and future work
As we explained in the Introduction section, our idea
is to regard each hypothesis function as a function of
the |CV | distance values, each of which corresponds to
a couple of entities. Specifically, the proof of Theo-
rem 9 evaluates RadP,S

(
hℓ,F ′

r

)
, where F ′

r is given by
replacing the condition f ∈ F in the definition of Fr
by

∑
{u,v}∈CV

(f({u, v}))2 ≤ F 2. Since Fr ⊂ F ′
r,

RadP,S
(
hℓ,F ′

r

)
≤ RadP,S

(
hℓ,F ′

r

)
holds. Intuitively speak-

ing, we allow any distance values that satisfy the condition
about F , regardless of whether they are actually achievable
by the representations in W . This leads to an easy local
Rademacher complexity evaluation. A potential issue here
is that using F ′

r might be too conservative since this function
set has “forgot” the information that the hypothesis function
comes from the representation space W and its distance
function, other than it is restricted by F . Hence it is possible
that Fr is no more than a very small part of F ′

r. If this is
the case, we could improve our bound in the future.
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Supplementary Materials
for Generalization Error Bound for Hyperbolic Ordinal Embedding

A. Proof of Theorem 1
We first confirm fundamental theorems to obtain excess risk bound from the Rademacher complexity.

Corollary 11 (Corollary from Theorem 3 in (Kakade et al., 2008)). Suppose that the conditions (C1) and (C7) holds. Fix
δ ∈ R>0 and ϵ ∈ R≥0. Then every ϵ-CERM A : (X × Y)

S → R satisfies

[Rℓ,P]
+M
−M

(
A
(
(zs)

S
s=1

))
− inf {Rℓ,P(f)|f ∈ F} ≤ 2RadP,S(hℓ,F ) + 2B

√
ln 1

δ

S
+ ϵ, (22)

in probability at least 1− δ.

The convergence rate of the bound given by the above corollary Corollary 11 is at the fastest O
(

1√
S

)
. Theorem 1 (ii) is

derived using Corollary 11.

On the other hand, the other type of the excess risk bound, explained below, can give faster rate with some additional
conditions. It uses the Rademacher complexity of a localized hypothesis function set, often called the local Rademacher
complexity (Bartlett et al., 2005; Koltchinskii, 2006). The following is a simplified version of the version in (Steinwart &
Christmann, 2008).

Corollary 12 (A simplified version of Theorem 7.20 in (Steinwart & Christmann, 2008)). Let F ⊂ L0(X ) be
equipped with a complete, separable metric dominating the pointwise convergence. Assume that conditions (C5)
to (C9) and (9) are satisfied and fix L,B, V that satisfy the inequalities there. Also, assume that there exists a
Bayes decision function f∗ ∈ L0(X ), which satisfies [Rℓ,P]

+M
−M (f∗) = [R∗

ℓ,P]
+M

−M . Define the approximation error

ρ := inf
{
[Rℓ,P]

+M
−M (f)− [R∗

ℓ,P]
+M

−M

∣∣∣f ∈ F
}

. For r ≥ ρ, define Fr :=
{
f ∈ F

∣∣∣[Rℓ,P]
+M
−M (f)− [R∗

ℓ,P]
+M

−M ≤ r
}

. Fix

f0 ∈ F and B0 > sup {ℓ(x, y, f0(x))|(x, y) ∈ X × Y} ∨ B. Fix S ∈ Z>0, and assume that there exists a function
φS : R≥0 → R≥0 that satisfies φS(4r) ≤ 2φS(r) and φS(r) ≥ RadP,S(hℓ,Fr ). Fix δ ∈ R>0, ϵ ∈ R≥0, and

r ≥ 30φ(r) ∨
(

72V ln 3
δ

S

) 1
2−ϑ ∨ 5B0 ln 3

δ

S ∨ ρ. Then every ϵ-CERM A : (X × Y)
S → R satisfies

[Rℓ,P]
+M
−M

(
A
(
(zs)

S
s=1

))
− [R∗

ℓ,P]
+M

−M ≤ 6
(
Rℓ,P(f0)− R∗

ℓ,P

)
+ 3r + 3ϵ, (23)

in probability at least 1− δ.

Proof of Theorem 1. Since X is a finite sum, the expected risk is a finite weighted average of the loss. Since the loss
function ℓ, the function ψ, and the distance function ∆W are all continuous from the assumption (C3), (C4) and (C8), we
can regard the risk function Rℓ,P is a continuous real function on W |V|. Since W |V| is a compact topological space from
the assumption (C2), the image of Rℓ,P is also compact. Hence, we have a 0-CERM. Since X is a finite set, any map from
XS is measurable. In particular, the 0-CERM is measurable. It implies the statement (i) of Theorem 1.

The statement (ii) of Theorem 1 is the direct consequence of Corollary 11 if we admit Theorem 9, which we prove in the
next section.

To prove the statement (iii) of Theorem 1, we need to show that F = FW,ψ is equipped with a complete, separable metric
dominating the pointwise convergence. Since X is a finite set, we can regard FW,ψ ⊂ L0(X ) as a subset of |X |-dimensional
vector space. If we consider i.e., a standard Euclidean metric in the |X |-dimensional vector space, it is obvious that is
dominates the pointwise convergence and FW,ψ is separable by the metric. Also, under the metric, the map w 7→ fw,ψ is
continuous from the continuity of ψ and ∆w. Here, we consider the topology of WV by identifying it with W |V|. Since
FW,ψ is the image of the compact set WV by the above continuous map, FW,ψ is also compact. This implies that FW,ψ is
complete (and totally bounded).
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What remains to consider is the selection of φS . According to Theorem 9, we have that RadP,S(hℓ,Fr ) ≤
χ(r)√
S
,, where

χ(r) := min {χi(r)|i = 0, 1, . . . , |CV |}. However, if we substitute φS(r) with χ(r)√
S

, it does not satisfy φS(4r) ≤ 2φS(r).

Hence, we cannot directly apply Corollary 12 by substituting φS(r) with χ(r)√
S

.

Nevertheless, we can see the following. There exist a, b, d ∈ R≥0 such that φS(r) := a
(
rϑ + d

) 1
2ϑ + b satisfies φS(4r) ≤

2φS(r), φS(4r) ≥ χ(r)√
S

, and r ≥ 30φS(r) ⇔ r ≥ 30χ(r)√
S

, for all r ∈ R≥0. Specifically, we can find such a, b, d as follows.
First, recall that ri(S) for 1, . . . |CV | is defined as the only positive solution of the equation r = 30χi(r)/

√
S for r, where

χi(r) := 2L

√
2F 2

(
Urϑ

4F 2
i+ µPX (|CV | − i)

)
= c

√
rϑ + d, (24)

with c = 2L
√
2F 2 U

4F 2 i and d = 4F 2

U µPX (|CV | − i). Then, we can see that (a, b, d) =(
cϑ(ri(S))

− 1−ϑ
2 , c(1− ϑ)(ri(S))

ϑ
2 , d

)
satisfying the above properties, noting that φS(ri(S)) = χ(ri(S))√

S
and

d
drφS(ri(S)) =

d
dr

χ(ri(S))√
S

are satisfied with the (a, b, d).

Substituting such a φS and f0 = f∗ ∈ F in Corollary 12, we complete the proof of (iii) of Theorem 1. Note that f∗ ∈ F is
guaranteed by the condition (C9).

B. Proof of Theorem 9
We review some basic properties of the Rademacher complexity.
Lemma 13. Let c ∈ R, F ⊂ L0(X ), and f ′ ∈ L0(X ). Then,

RadP,S({cf + f ′|f ∈ F}) = |c|RadP,S(F). (25)

For the proof of Lemma 13, see (e.g., Lemma 26.6, Shalev-Shwartz & Ben-David, 2014).
Lemma 14. Let ϕ : R → R be a Lipschitz continuous function and F ⊂ L0(X ). Then, RadP,S({ϕ ◦ f |f ∈ F}) =
Lip (ϕ)RadP,S(F), where Lip (ϕ) ∈ R≥0 is the Lipschitz constant of ϕ.

For the proof of Lemma 14, see (e.g., Lemma 26.9, Shalev-Shwartz & Ben-David, 2014). The following is easy using
Lemma 14.
Lemma 15. Suppose that the conditions (C6) and (C8) hold and L is a constant that satisfies the inequality in (C8).

RadP,S(hℓ,F ) ≤ LRadPX ,S(F). (26)

Proof of Theorem 9. We regard every element in FW,ψ as a |CV |-dimensional vector as follows. First, we fix an index map
ind : {1, 2, . . . , |CV |} → CV . We can use any map as ind as long as it is bijective. In the following, for a vector u, we
denote the i-th element by [u]i. We define fw,ψ ∈ R|CV | by

[
fw,ψ

]
i
= fw,ψ(ind (i)). Also, define e{u,v} ∈ R|CV | by

[
e{u,v}

]
i
=

{
1 if ind (i) = {u, v},
0 if ind (i) ̸= {u, v}.

(27)

Since f⊤
w,ψe{u,v} = fw,ψ({u, v}), we can identify fw,ψ and x{u,v} with fw,ψ and {u, v}, respectively. For f : X → R,

we define [f ]
+M
−M : X → R by [f ]

+M
−M (x) = [f(x)]

+M
−M .

Recall

Fr =
{
[fw,ψ]

+M
−M

∣∣∣[Rℓ,P]
+M
−M (f)− [R∗

ℓ,P]
+M

−M ≤ r.
}
, (28)

and

F ′
r =

[f ]
+M
−M

∣∣∣∣∣∣∣∣∣∣
f : X → R,∑

x∈CV

(f(x))
2 ≤ F 2,

[Rℓ,P]
+M
−M (f)− [R∗

ℓ,P]
+M

−M ≤ r.

. (29)

13



Tight and fast generalization error bound of graph embedding in metric space

Here, we have F ⊂ F ′.

Define

F (2)
r :=

[f ]
+M
−M

∣∣∣∣∣∣∣∣∣∣

f : X → R,∑
x∈CV

(f(x))
2 ≤ F 2,

Ex∼PX

[
[f(x)]

+M
−M − [f∗(x)]

+M
−M

]2
≤ Urϑ.

, (30)

then F ′
r ⊂ F (2)

r follows the condition (C10).

Using the vector notation, we have that

F (2)
r =

[f ]
+M
−M

⊤
e(·)

∣∣∣∣∣∣
f⊤f ≤ F 2,

Ex∼PX

[
[f⊤ex]

+M

−M − [f∗⊤ex]
+M

−M

]2
≤ Urϑ


=

[f ]
+M
−M

⊤
e(·)

∣∣∣∣∣∣
f⊤f ≤ F 2,

Ex∼PX

[
[f ]

+M
−M

⊤
ex − [f∗]

+M
−M

⊤
ex

]2
≤ Urϑ

,
(31)

where we define f∗ ∈ R|CV | by [f∗]i = f∗(ind (i)) and for f ∈ R|CV | we define [f ]
+M
−M ∈ R|CV | by

[
[f ]

+M
−M

]
i
=

[[f ]i]
+M
−M .

Since f⊤f ≤ F 2 ⇒ [f ]
+M
−M

⊤
[f ]

+M
−M ≤ F 2, we have that F (2)

r ⊂ F (3)
r , where F (3)

r is defined by

F (3)
r :=

f⊤e(·)

∣∣∣∣∣∣
f⊤f ≤ F 2,

Ex∼PX

[
f⊤ex − f∗⊤ex

]2
≤ Urϑ

. (32)

By Lemma 13, we have RadPX ,S

(
F (3)
r

)
= RadPX ,S

(
F (4)
r

)
, where F (4)

r is given by

F (4)
r :=

(f − f∗)
⊤
e(·)

∣∣∣∣∣∣
f⊤f ≤ F 2,

Ex∼PX

[
f⊤ex − f∗⊤ex

]2
≤ Urϑ

 ⊂ (33)

We can evaluate the above set as follows.

F (4)
r ⊂

(
f − f ′)⊤e(·)

∣∣∣∣∣∣
f⊤f ≤ F 2,f ′⊤f ′ ≤ F 2,

Ex∼PX

[(
f − f ′)⊤ex]2 ≤ Urϑ


=

2f⊤e(·)

∣∣∣∣∣∣
f⊤f ≤ F 2,

Ex∼PX

[
2f⊤ex

]2
≤ Urϑ


=

2Ff⊤e(·)

∣∣∣∣∣∣
f⊤f ≤ 1,

Ex∼PX

[
f⊤ex

]2
≤ Urϑ

4F 2

.
(34)

Hence, by defining F̂r as

F̂r :=

f⊤e(·)

∣∣∣∣∣∣
f⊤f ≤ 1,

Ex∼PX

[
f⊤ex

]2
≤ Urϑ

4F 2

, (35)

we have that RadPX ,S

(
F (4)
r

)
≤ 2FRadPX ,S

(
F̂r

)
from Lemma 14.
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We apply Theorem 41 in (Mendelson, 2002). The following is the version in (Bartlett et al., 2005) given as the first half of
Theorem 6.5.

Theorem 16 (The first half of Theorem 6.5 in (Bartlett et al., 2005), given in Theorem 41 in (Mendelson, 2002)for the first
time.). Let X be a measurable set and P is a distribution on it. Let k : X ×X → R be a positive semidefinite kernel function
that satisfies Ex∼Pk(x, x) < +∞. Define the integral operator T : L2(P) → L2(P) by (T (f))(x) := Ex′∼Pk(x, x

′)f(x′)
and let (λi)

∞
i=1 be the sequence of the eigenvalues of T . Let Hk be the reproducing kernel Hilbert space generated by k and

denote its norm function by ∥·∥Hk
. Then,

RadP,S

({
f ∈ Hk

∣∣∣∥f∥Hk
≤ 1,Ex∼P(f(x))

2 ≤ ρ
})

≤

√√√√ 2

S

∞∑
i=1

min {ρ, λi}. (36)

Here, we consider the linear kernel function k(x,x) = x⊤x. Then we can easily confirm
∥∥∥f⊤e(·)

∥∥∥
Hk

=

√
f⊤f , and T is

given by the matrix
∑|CV |
i=1 PX ({ind (i)})e(ind (i))e

⊤
(ind (i)). Hence, we have that

λi =

{
PX ({ind (i)}) if i = 1, 2, . . . , |CV |,
0 if i > |CV |.

(37)

Applying the above and using Lemma 15, we complete the proof.

C. Proof of Lemma 2
Proof of Lemma 2. We first prove it for τ = 1. Let wv ∈ RD be the representation of v ∈ V . Fix a bijective map
ind : {1, 2, . . . , |CV |} → CV , which we call an indexing map. We define the representation matrix W ∈ RD,|V| by
W :=

[
wind (1) wind (2) · · · wind (|V|)

]
. Then,∑

{u,v}∈|CV |

(∆W(w(u),w(v)))
2

=
1

2
Tr

{
W⊤W

(
|V|I|V| − 1|V|1

⊤
|V|

)}
≤ 1

2
Tr

{
W⊤W

(
|V|I|V|

)}
=

|V|
2

Tr
{
W⊤W

}
=

|V|
2

∑
v∈V

w⊤
v wv,

≤ |V|
2
R2.

(38)

If τ > 1, it follows that ∑
{u,v}∈|CV |

(∆W(w(u),w(v)))
2τ

≤
∑

{u,v}∈|CV |

(∆W(w(u),w(v)))
2
(2R)

2(τ−1)
,

(39)

which completes the proof.

D. Proof of Lemma 3
Proof of Lemma 3. First, we prove it for τ = 1. Since D ≥ 2, the space contains a two dimensional hyperbolic disk as a
subspace. In the hyperbolic disk, consider a regular polygon centered at the origin with |V| vertices and radius R. Using
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the hyperbolic law of sines, we have that the length of one side in the polygon is given by 2 asinh
(
sin π

|V| sinhR
)

. Since
2 asinh (sin π

|V| sinhR)
R → 2 as R → ∞, we obtain the consequence of the lemma for τ = 1. For τ > 1, we obtain the

consequence by (39), which completes the proof.

E. Hinge loss and Corollary 4
In this section, we just confirm that Corollary 4 immediately follows Theorem 1 and the following existing theorem.

Theorem 17 (Theorem 8.24 in (Steinwart & Christmann, 2008)). Let P be a distribution on X ×{±1} and the loss function
be the hinge loss ℓhinge(x, y, t) := ϕhinge(yt), where ϕhinge(t′) := max {1− t′, 0} with M = 1. Define the risk function
Rℓ,P as in Section 2.5. Assume that the distribution P has noise exponent q ∈ R≥0 with constant c ∈ R>0. Then, for all
f ∈ L0(X ), then the condition (C10) in Assumption 1 holds with ϑ = q

q+1 and U = 6c
q
q+1 .

F. General condition for hyperbolic to outperform Euclidean
In Example 1, we gave the condition for hyperbolic graph embedding to outperform Euclidean graph embedding on a
specific setting. We give the condition for a general setting in the following, which we can obtain by simple calculation from
Theorem 1.

Proposition 18. Suppose that conditions (C1) to (C4) in Assumption 1 are satisfied, the loss function be the hinge loss, and
ψ(t) = tτ . Let the true dissimilarity ∆∗ : V × V → R≥0 be given by the graph distance of a tree. Then, for R given by
Lemma 5, the expected risk of a CERM using B[R;H2] is better than any CERM using R2 in probability at least 1− δ if
S ≥

(
r0 ∧ r|CV |

)
∨ a, where

r0 := 97200
[
τ(2R)

τ−1
]2
|CV |2

1

ξ2vmin(R;R2)
,

r|CV | := 32R2
[
τ(2R)

τ−1
]2
|CV |2

1

ξ2[vmin(R;R2)]
2 ,

a := 3888
1

ξ2vmin(R;R2)
ln

3

δ
.

(40)

G. The definition of ν and dependency of the bounds by Theorem 1 and Corollary 10 on |V|.
The value ν, which the bound in Corollary 10 depends on, is defined in (Suzuki et al., 2021b) as ν :=∥∥∥E{u,v}∼PXE

2
{u,v}

∥∥∥
op,2

, where the symmetric matrix E{u,v} for {u, v} ∈ CV is given by

[
E{u,v}

]
i,j

=


cdiag if {ind (i), ind (j)} ⊊ {u, v},
coff if {ind (i), ind (j)} = {u, v},
0 if {ind (i), ind (j)} ̸⊂ {u, v}.

(41)

Here (cdiag, coff) = (1,−1) for the Euclidean case, and (cdiag, coff) =
(
0,− 1

2

)
. Here, ∥·∥op,2 is the operator norm with

respect to 2-norm. For a real symmetric matrix A, ∥A∥op,2 equals to the maximum eigenvalue of A and also equals to the
maximum singular value of A. We have that

[
E2

{u,v}

]
i,j

=


c′diag if {ind (i), ind (j)} ⊊ {u, v},
c′off if {ind (i), ind (j)} = {u, v},
0 if {ind (i), ind (j)} ̸⊂ {u, v},

(42)

where (cdiag, coff) = (2,−2) for the Euclidean case, and (cdiag, coff) =
(
1
4 , 0

)
. For the upper bound of ν, as pointed out

by (Suzuki et al., 2021b), we have that ν :=
∥∥∥E{u,v}∼PXE

2
{u,v}

∥∥∥
op,2

≤ E{u,v}∼PX

∥∥∥E2
{u,v}

∥∥∥
op,2

from Jensen’s inequality.

The right side is 4 for the Euclidean case and 1
4 for the hyperbolic case. Indeed, these upper bounds are achievable if only

one couple of entities is generated. For the lower bound, we can see that the trace of E2
{u,v} is always 4 for the Euclidean
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case and 1
2 for hyperbolic case, as we can see by summing the diagonal elements up. Hence, it also holds for its expectation

E{u,v}∼PXE
2
{u,v}. We remark that the trace equals to the sum of eigenvalues. Since we have |CV | eigenvalues, the mean of

eigenvalues is 4
|CV | for the Euclidean case and 1

2|CV | for the hyperbolic case. The value ν is the maximum in the eigenvalues,
which is not smaller than the mean. Hence, ν is lower-bounded by 4

|CV | for the Euclidean case and 1
2|CV | for the hyperbolic

case. For both cases, the lower-bound is achieved by the uniform distribution.

Let us consider the bound by Corollary 10 again. If we focus on |V| and S, the bound is O
(

|V|
√
ν ln |V|√
S

+ κ|V| ln |V|
S

)
. For

the upper bound case, Corollary 10 gives O
(

|V|
√

ln |V|√
S

+ κ|V| ln |V|
3S

)
. Since Theorem 9 gives the bound that is O

(√
|V|√
S

)
for the Euclidean case and O

(
|V|√
S

)
for the hyperbolic case, Theorem 9 is better than Corollary 10. For the lower bound case,

Corollary 10 gives O
(√

ln |V|√
S

+ κ|V| ln |V|
3S

)
. Here, the dependency on |V| is significantly different between the first and

second term. It implies that if S is sufficiently large, then Corollary 10 is better in the dependency on |V| than Theorem 9,
while the converse holds if S is not large.
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