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Abstract
Devoted to interpreting the explicit behaviors of
machine learning models, explanation methods
can identify implicit characteristics of models to
improve trustworthiness. However, explanation
methods are shown as vulnerable to adversarial
perturbations, implying security concerns in high-
stakes domains. In this paper, we investigate when
robust explanations are necessary and what they
cost. We prove that the robustness of explanations
is determined by the robustness of the model to
be explained. Therefore, we can have robust ex-
planations for free for a robust model. To have
robust explanations for a non-robust model, com-
posing the original model with a kernel is proved
as an effective way that returns strictly more ro-
bust explanations. Nevertheless, we argue that
this also incurs a robustness-faithfulness trade-off,
i.e., contrary to common expectations, an explana-
tion method may also become less faithful when
it becomes more robust. This argument holds
for any model. We are the first to introduce this
trade-off and theoretically prove its existence for
SmoothGrad. Theoretical findings are verified by
empirical evidence on six state-of-the-art explana-
tion methods and four backbones.

1. Introduction
Through the years, many explanation methods have been de-
signed to interpret the behaviors of black-box machine learn-
ing (ML) models. For instance, a commonly-used method
is to explain model behaviors by attributing an importance
score to each feature (Ribeiro et al., 2016; Lundberg & Lee,
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Figure 1. Illustration of our results. (a) Gradient explanations
of robust and non-robust ResNet18 on an image x and a per-
turbed image x + δ by adding Gaussian noise with magnitude
δ ∼ N (0, 0.1I). The numbers in the second column are L2 dis-
tance between Gradient map on x and x + δ. Explanations of
robust ResNet18 are more robust. (b) SmoothGrad explanations
of non-robust ResNet18 with different noise level σ. Explanation
becomes more robust when σ increases. (c) As the explanation
becomes more robust, its faithfulness w.r.t. non-robust ResNet18
first increases and then decreases.

2017; Baehrens et al., 2010; Simonyan et al., 2013; Mon-
tavon et al., 2017; Smilkov et al., 2017; Sundararajan et al.,
2017). These importance scores can help users identify the
most influential features for the model they use.

However, these explanation methods have been shown to
be vulnerable to adversarial perturbations by recent works
(Dombrowski et al., 2019; Ghorbani et al., 2019; Heo et al.,
2019; Lakkaraju & Bastani, 2020; Le Merrer & Trédan,
2020; Slack et al., 2020; 2021). The fragility of explanation
may mislead users make wrong decisions and thus cause
security concerns in high-stakes domains such as finance,
healthcare, and criminal justice (Ghorbani et al., 2019; Agar-
wal et al., 2021; Wang et al., 2020). For example, when
a doctor prescribes medicines and diagnoses based on at-
tribution maps on patients’ chest imaging, it would cause
misdiagnosis if explanations are different for two almost
visually indistinguishable images.

Therefore, many efforts have been devoted to investigating
robust attributions (Alvarez Melis & Jaakkola, 2018; Dom-
browski et al., 2019; Yang et al., 2020; Rieger & Hansen,
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2020; Lakkaraju & Bastani, 2020; Wang et al., 2020; Chen
et al., 2019; Boopathy et al., 2020; Anders et al., 2020;
Lakkaraju et al., 2020; Upadhyay et al., 2021; Bykov et al.,
2022). Many of them achieve this objective by retraining
the model with an extra regularization term and show empir-
ically that robust explanations can be obtained by training a
robust model.

Nevertheless, retraining a model is time-consuming. Mean-
while, the retrained model may differ dramatically with the
original model. These limitations raise three questions: (1)
Do we really need to pay extra efforts to make our expla-
nations robust? (2) Can we achieve robust explanations
without retraining? (3) Are robust explanations really better
than their non-robust counterparts?

In this paper, we theoretically show that robust models are
guaranteed to have more robust explanations than their non-
robust counterparts (see Theorem 4.1), which provides an
answer to question (1). As shown in Figure 1 (a), attribution
maps on two visually similar images are computed for both
robust and non-robust ResNet18. The L2 distance between
two attribution maps for non-robust ResNet18 is much larger
than that for robust ResNet18. The intuition behind this
result is that a robust model behaves similarly on similar
inputs and, therefore, explanations should also be similar.
This result also sheds light on how adding regularization
and retraining can achieve robust attributions as shown in
(Wang et al., 2020; Chen et al., 2019; Boopathy et al., 2020).
Specifically, regularization can lead to a locally more robust
model, which in turn produces more robust explanations.

To attribute robustly without retraining, we propose to
smooth the model by composing it with a kernel, i.e., for a
classifier f , use f̂ = Eϵ∼µ[f(x+ ϵ)] for attribution where
µ is a probability distribution. With an appropriate µ, we
prove that explanations are strictly more robust which shows
a positive answer to question (2). SmoothGrad (Smilkov
et al., 2017) just computes Gradient explanation by smooth-
ing with Gaussian kernel. In Figure 1 (b), SmoothGrad
explanations with different noise level σ are computed on
non-robust ResNet18. As σ increases, explanations become
more robust since the L2 distance between explanations
on two images becomes smaller. The derived theoretical
result not only provides evidence for why SmoothGrad and
UniGrad are effective but also has broader implications.
Specifically, our finding suggests that other types of kernels
may also be able to achieve similar results. This insight
has important practical implications for developing more
effective and efficient attribution methods.

Although robust attribution can be achieved in diverse ways,
we argue that there exists a trade-off between robustness
and faithfulness. Specifically, we prove that the faithfulness
of SmoothGrad may decrease during the increase of σ in
SmoothGrad, which shows a negative answer to question

(3). As shown in Figure 1 (c), more robust explanations
are not necessarily more faithful. SmoothGrad is Gradient
explanation for a smoothed model f̂ , and the behaviors of f̂
and f become increasingly different when σ becomes larger.
Explanations for f̂ should not be expected as faithful to f .
Empirically, this trade-off also exists for explanations across
different explanation methods (see Figure 6).

The most similar work to ours is (Yeh et al., 2019). Our
definitions of robustness and faithfulness look similar to
sensitivity and infidelity in (Yeh et al., 2019) but are in fact
different. Yeh et al. (2019) prove under certain conditions,
smoothing with kernel improves robustness and faithfulness
at the same time while we show both theoretically and em-
pirically that there exists a robustness-faithfulness trade-off.
This trade-off also occurs in Figure 6 of (Yeh et al., 2019),
but further analysis is not provided in (Yeh et al., 2019).

To summarize, our contributions are as follows:

• We prove that the robustness of an explanation is de-
termined by the robustness of the ML model, i.e., for
a robust model, we can obtain robust explanations for
free. We validate this finding with experiments on six
explanation methods and four backbones.

• Without a robust model, we argue that by composing
the ML model with an appropriate kernel, an explana-
tion method can become strictly more robust. Smooth-
Grad, as an example, is the Gradient explanation of a
model composed with the Gaussian kernel.

• Although robust explanations can be achieved in
many ways, we prove the existence of a robustness-
faithfulness trade-off for SmoothGrad. When σ be-
comes larger, explanations become more robust while
they become less faithful at the same time. Empirical
evidence suggests that this trade-off also exists across
methods with different robustness.

2. Related Work
Due to the space limitation, we primarily name some of
the most related works in this section. Please refer to Ap-
pendix A for a more complete review.

Fragility of Explanation. A line of research investigates
the fragility of explanation. Dombrowski et al. (2019);
Ghorbani et al. (2019) find that explanation can be manipu-
lated by adversarial perturbations. Slack et al. (2021) show
similar result for counterfactual explanations. Besides adver-
sarial perturbation, Heo et al. (2019); Lakkaraju & Bastani
(2020) show how to find a model that preserves accuracy
but has different explanations with the original model at the
same time. Slack et al. (2020); Le Merrer & Trédan (2020)
propose that explanations cannot be easily trusted as they
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present an attack that can generate explanations to hide the
use of an arbitrary set of features by a classifier.

Robust Attribution. Another line of research aims to de-
sign robust and stable explanations. Rieger & Hansen (2020)
propose that the explanation averaged across different meth-
ods is more robust than a single explanation method. For any
classifier, Anders et al. (2020) prove that there exists another
classifier which behaves the same on the data but has attri-
butions arbitrarily close to target attributions. They demon-
strate that projecting attributions to a low-dimensional sub-
manifold helps improve robustness. Lakkaraju et al. (2020)
formulate a minimax objective to find explanations robust
to input distribution shift. Many works propose to add an
extra regularization term and retrain the model (Wang et al.,
2020; Chen et al., 2019; Boopathy et al., 2020). They the-
oretically and empirically demonstrate that these methods
return robust attributions. However, as we have suggested,
retraining a model is time-consuming and this model may
differ dramatically with the original model.

Connection between Model Robustness and Inter-
pretability. There also exist many works investigating the
connection between model robustness and interpretability.
Etmann et al. (2019) prove that an increase in robustness
may induce an increase in the alignment between an input
image and its respective saliency map for linear models.
Ignatiev et al. (2019) relate adversarial example and expla-
nations by hitting set duality and propose an algorithm to
compute adversarial examples from explanations or vice
versa. Chalasani et al. (2020) theoretically find that ad-
versarial training using an l∞-bounded adversary produces
models with sparse attribution vectors. Meanwhile, the natu-
ral training that encourages stable explanations is equivalent
to adversarial training for 1-layer networks. Agarwal et al.
(2022b) show the first analysis on the behavior of various
state-of-the-art GNN explanation methods with respect to
faithfulness, stability, and fairness preservation.

3. Preliminary
In this section, we introduce the notations used in our paper
and the six explanation methods that we focus on.

3.1. Notation

We denote X and Y as the input and output space of a model
f : X → Y , where X ⊂ Rd,Y ⊂ R. For example, model
f is a ResNet50 classifier that takes a CIFAR10 image as an
input and generate the probability of the most likely class as
its output. Mapping ϕ : X → E is an explanation function
that interprets the behaviors of f , where E is the explanation
space. For example, given an image x ∈ X in CIFAR10
and the associate model output f(x), function ϕ(x) = ∇f
outputs a scalar value for each pixel in x. We denote ⊙,

∥ · ∥2, ∥ · ∥F , and O as element-wise product, L2 norm,
Frobenius norm, and the big O notation, respectively.

Note that we assume X and f as bounded throughout this
paper, i.e., ∃β,R > 0,∀x ∈ X , ∥x∥2 ≤ β, |f(x)| ≤ R.

3.2. Post-hoc Explanation

Post-hoc explanation aims at interpreting model behaviors
without access to model details. One of its subclass, feature
importance explanation, assigns each feature a score of the
importance to model output, i.e., a feature with a higher
score can influence the output more. This paper focuses on
six widely-used feature importance explanation methods:

Gradient(Grad): It returns ϕ(x) = ∇f to measure the
influence of each feature under infinitesimal perturbation
(Baehrens et al., 2010; Simonyan et al., 2013).

Gradient×Input(GI): ϕ(x) = x ⊙ ∇f for this method
(Montavon et al., 2017). It masks input by its corresponding
gradient.

SmoothGrad(SG): Vanilla gradient explanations are shown
to be noisy. SmoothGrad proposes to smooth out noise
by averaging gradients at local neighborhood (Smilkov
et al., 2017). The feature importance is thus ϕ(x) =
Eϵ∼N (0,σ2I)[∇f(x+ ϵ)]. In case dependence on σ should
be shown explicitly, we use ϕσ(x).

Integrated Gradient(IG): This method is designed to sat-
isfy several axioms (Sundararajan et al., 2017). It com-
putes the path integral from a baseline x0 to x, ϕ(x) =

(x− x0)⊙
∫ 1

0
∇f(x0 + α(x− x0))dα.

LIME: LIME obtains samples in the local neighborhood of
x by adding perturbations and then approximates f locally
by an interpretable model (Ribeiro et al., 2016). In specific,
ϕ(x) = argming∈G

∑
z πx(z)(f(x⊙ z)− g(z))2 +Ω(g),

where G is a class of interpretable models, πx(z) weights
perturbed samples and Ω measures the complexity of g.
z ∈ {0, 1}d in LIME is a interpretable representation(e.g.,
superpixels in an image) that represents the inclusion and
exclusion of features. The perturbed samples are obtained by
uniformly sampling elements in z and then setting features
not present with a baseline value. In this paper, we consider
G, πx(z),Ω(g) as the following:

G ={g(z)|g(z) = w⊤z,w ∈ Rd},

πx(z) = exp

(
− ∥x− x⊙ z∥

σ2

)
,Ω(g) = λ∥w∥2.

SHAP: SHAP is an additive feature attribution method
that unifies several explanation methods (Lundberg & Lee,
2017). The feature importance of the ith feature provided by
SHAP is ϕi(x) =

∑
S⊂[d]\{i}

|S|!(d−|S|−1)!
d! [f(xS∪{i}) −

f(xS)] where x̂ = xS is such that x̂j = xj ,∀j ∈ S and x̂j

equals to a reference value for j /∈ S.
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3.3. Definitions

Robustness. We define the robustness of ϕ as its local
Lipschitz.

Definition 3.1 (Explanation Robustness (Alvarez-Melis &
Jaakkola, 2018; Wang et al., 2020)). An explanation func-
tion ϕ is said to be (δ, L)-Lipschitz if we have

∥ϕ(x)− ϕ(x′)∥2 ≤ L∥x− x′∥2

for ∀x,x′ that satisfy ∥x− x′∥2 ≤ δ.

For the machine-learning model f itself, we introduce two
robustness measures: L-Lipschitz and H-smoothness.

Definition 3.2 ((δ, L)-Lipschitz). A model f is (δ, L)-
Lipschitz if ∀x, x′, ∥x− x′∥2 ≤ δ, we have

∥f(x)− f(x′)∥ ≤ L∥x− x′∥2

Definition 3.3 ((δ,H)-Smoothness). A model f is (δ,H)-
smooth if ∀x,x′, ∥x− x′∥2 ≤ δ, we have

∥∇f(x)−∇f(x′)∥ ≤ H∥x− x′∥2

Faithfulness. We use the similarity between feature impor-
tance and the marginal contribution of each feature as the
faithfulness measure.

Definition 3.4 (Faithfulness). The faithfulness of an expla-
nation method is defined as follows:

F(ϕ(x)) = Sim(ϕ(x), p(x)), (1)

p(x) = [p1(x), · · · , pd(x)]⊤, pi(x) =
f(x)− f(x̄−i)

xi − ri

where Sim(·, ·) is a similarity metric and x̄−i equals x in
each dimension except setting the value of dimension i to a
reference value ri, i.e., (x̄−i)j = xj , j ̸= i, (x̄−i)i = ri.

A similar faithfulness definition has been introduced in (Liu
et al., 2021a) where they choose Sim to be Pearson corre-
lation and f(x̄−i) to be the expected output of removing
feature i. Sim could be any similarity measure, for example,
the reciprocal of L2 distance between ϕ(x) and p(x).

4. Robust Explanation for Free
In this section, we aim to answer question (1): Do we really
need to pay extra effort to make our explanation robust? We
theoretically show that a robust model has robust explana-
tions, i.e., a robust model requires no extra payment.

4.1. Robust Explanation for Robust Model

An explanation method is designed to reveal the underlying
reasoning process of the model. Explanations are expected

to be similar if the underlying inferences of f for two similar
inputs x,x′ are similar. On the other hand, if the underlying
inferences of f for two similar inputs x,x′ are different, the
explanations provided are expected to be different. Hence,
it is intuitive to argue that explanations for robust models
are more robust than those for non-robust models as robust
models produce similar outputs on similar inputs.

Formally, we can prove that explanation robustness is deter-
mined by model robustness:

Theorem 4.1. Let f : X → Y be a (δ, L)-Lipschitz func-
tion, then we have SmoothGrad, LIME, SHAP are (δ,L)-
Lipschitz with corresponding L as the following:

LSG = O(L/σ)

LLIME = O(

√
dL

λ
+

βR(λ+ d)
√
d

λ2σ2
exp(

2β

σ2
))

LSHAP = O(
√
dL)

If f is also H-smooth, then we have Gradient,
Gradient×Input and Integrated Gradient(IG) are (δ,L)-
Lipschitz with corresponding L as the following:

LGrad = O(H)

LGI = O(βH + L)

LIG = O(βH + L)

Note that from Theorem 4.1, the robustness of LIME and
SHAP depends on the input dimension while SmoothGrad
is independent of the input dimension. For sufficiently
large σ, the local Lipschitz of SmoothGrad explanation
is smaller than that of the classifier itself. Since Gradi-
ent, Gradient×Input, and Integrated Gradient rely on gra-
dient information, we need to bound the gradient change
in the neighborhood, which needs the smoothness condi-
tion. Therefore, the local Lipschitz of these three methods
depends on H . The reason SmoothGrad does not rely on
smoothness condition is that we can get rid of the gradient
by Stein’s Lemma (see (Lin et al., 2019)).

Connection with robust attribution by regularization.
Many efforts have been dedicated to developing robust at-
tribution methods by adding a regularization term to the
loss function and retraining the model. For example, Dom-
browski et al. (2022); Wang et al. (2020) regularize the
Hessian. Theorem 4.1 explains the mechanisms underlying
their success: the explanation can have a smaller local Lip-
schitz because the regularization makes the trained model
have a small local Lipschitz or be locally more smooth.

4.2. Robust Explanation for Any Model: Smoothing

From the above discussion and Theorem 4.1, we see that if
f is robust, i.e., L,H are small, explanations are robust with
lower local Lipschitz. However, one may ask if it is possible
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to have a lower Lipschitz without adjusting the explanation
method when f is not robust. We discuss this question in
this section to provide an answer for question (2).

In randomized smoothing literature, it has been shown that
fσ(x) = Eϵ∼N (0,σ2I)[f(x + ϵ)] has certified robustness.
Actually, we can prove the following Proposition.

Proposition 4.2. Let f : X → Y be a bounded above (δ, L)-
Lipschitz function, i.e., ∃R > 0, |f(x)| ≤ R,∀x ∈ X . The
smoothed function fσ(x) = Eϵ∼N (0,σ2I)[f(x+ϵ)] is (δ,L)-
Lipschitz where L = min

(
L, R

2σ

)
. If σ > R/(2L), then

L < L, i.e., fσ has strictly smaller local Lipschitz than f .

It can be implied from the above proposition that the
smoothed version of f has lower Lipschitz (by choosing
σ > βL/2) than the original version.

Since fσ has lower Lipschitz, the explanations computed
on fσ also have provably lower Lipschitz than the explana-
tions computed on the original f , implying that we can have
robust explanations by smoothing f . This result is similar
but not equivalent to the observation in (Wang et al., 2020)
because their bound on σ for SmoothGrad and Gradient de-
pends on δ while our bound does not have this dependence.

Although Gaussian kernel is widely adopted, we suggest
that other appropriate kernels can achieve the same results.

Theorem 4.3. Let f : X → Y be a bounded above (δ, L)-
Lipschitz function. For any measure µ and variable z ∼ µ,
we denote µx as the probability measure w.r.t. z+ x. If the
total variation distance between µx and µx′ is bounded by

dTV (µx, µx′) ≤ γ∥x− x′∥2

for any ∥x − x′∥ ≤ δ, then fµ(x) = Ez∼µ[f(x + z)] is
(δ,L)-Lipschitz with L = Rγ. If γ < L/R, then L < L, i.e,
fµ has a lower local Lipschitz than f .

The above theorem states that smoothing f with a kernel can
return a more robust function than f if this kernel is robust
in the sense that the total variation between the original
distribution and the distribution after shifting is small.

Connection with UniGrad and SmoothGrad. Uniform
Gradient proposed by Wang et al. (2020) and SmoothGrad
are just gradient with uniform kernel µ = I[z ∈ [−r, r]d]
and Gaussian kernel µ = N (0, σ2I), respectively. For
SmoothGrad, we have γ = 1

2σ , and thus L = Rγ = R
2σ

(see Appendix C.2 for details), which is consistent with
Proposition 4.2. In Appendix C.2 we prove that γ =

√
d
r

for UniGrad. Therefore, Theorem 4.3 actually unifies and
generalizes UniGrad and SmoothGrad. We can obtain a
model fΦ by composing f with any kernel Φ that satisfies
Theorem 4.3. Then we can compute explanations for f
on fΦ. These explanations are provably more robust than
explanations computed on f . UniGrad and SmoothGrad

are Gradient explanations on fΦ. However, any explanation
method ϕ can also be applied on fΦ. The explanations
computed are more robust that those computed by applying
ϕ on f .

Connection with β-smoothing. Dombrowski et al. (2019)
prove that replacing ReLU non-linearity with softplus im-
proves the robustness of gradient-based explanation meth-
ods. Their method is equivalent to SmoothGrad for a one-
layer neural network and leads to visually similar maps
for deep networks. Thus, their work bridges between soft-
plus and Gaussian kernel. Theorem 4.3 suggests that the
equivalence between other non-linearities and kernels could
be further investigated. If any connection could be built,
we could potentially replace ReLU with the non-linearity
and robust explanations could be achieved by computing
explanations on the modified network.

5. Robustness-Faithfulness Trade-off
In this section, we attempt to explain why the trade-off
exists by illustrating it with a toy example and providing
theoretical results for general cases.

5.1. Why Trade-off Exists

In Section 4, we analyze the relationship between model
robustness and explanation robustness. We show that a ro-
bust model has robust explanations for free. To improve the
robustness of a given explanation, we develop a smoothing
technique that generalizes previous methods (Smilkov et al.,
2017; Wang et al., 2020) and returns provably more robust
explanations by choosing an appropriate smoothing kernel.

However, by applying explanation methods after adding a
smoothing kernel to f , we are actually explaining another
model which may be dramatically different from the original
one. Therefore, new explanations do not necessarily explain
f as desired. Smoothing may not only smooth out the noise
contained in the explanation Smilkov et al. (2017) but also
smooth out useful information. Therefore, the faithfulness
of explanations may be hurt.

Another way to see why robustness does not necessarily
imply faithfulness is to consider what explanations should
be. Explanations are computed with the hope that they
reflect the underlying reasoning process of a model. If the
model to be explained is not robust, i.e., behave differently
for similar inputs, a faithful explanation method is expected
to output different explanations as the model is actually
reasoning differently. On the contrary, if explanations are
similar on two inputs while the model behaves differently
on them, the explanations are not faithful. If the explanation
method incurs extra instability, it is not faithful.

In summary, the intuition behind why trade-off exists is
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Figure 2. A Toy Example. (a) Gradient of f defined in Equation 2.
Increasing x2 by ∆ also increase f (b) SmoothGrad attributions
of x1, x2 for different σ. As σ increases, the attribution of each
feature tends to be 0.5 which is not faithful for x = [∆,−1.5∆]⊤

that while over-smoothing costs useful information to be
smoothed out, under-smoothing incurs noise and cost infor-
mation loss. Robustness of the most faithful explanation
method should match the robustness of the model it ex-
plained. In the example shown in Section 5.2, SmoothGrad
is over-smoothed when σ is very large and it outputs almost
constant explanation which is uninformative.

With the above consideration, we analyze this robustness-
faithfulness trade-off in this section. We will first illustrate
the intuition why the robustness-faithfulness trade-off may
occur through a toy example. And then we will show theo-
retically that when SmoothGrad explanations become more
robust (σ becomes larger), the faithfulness of these explana-
tions decreases at some point.

5.2. An Illustrative Example

Consider a function

f(x1, x2) =

{
x1 − n∆ if ⌊ |x1−x2|

∆ ⌋ = 2n

x2 + n∆ if ⌊ |x1−x2|
∆ ⌋ = 2n− 1

(2)

where ∆ > 0 is a small constant. Then, it is easy to see that
f is continuous and differentiable a.e. and

∇f(x1, x2) =

{
[1, 0]⊤ if ⌊ |x1−x2|

∆ ⌋ = 2n

[0, 1]⊤ if ⌊ |x1−x2|
∆ ⌋ = 2n− 1

(3)

For x = (x1, x2), x2 + 2∆ ≤ x1 < x2 + 3∆, we have
f(x) = x1 − ∆,∇f(x) = [1, 0]⊤ as shown in Figure 2.
Explanation methods that only use information at x(e.g.,
Gradient, Gradient×Input) would attribute 0 to x2 indi-
cating that x2 has no contribution to f(x) which is not
faithful since increasing x2 by ∆ changes the value of f :
f(x1, x2 +∆) = x2 + 2∆ > x1 −∆ = f(x).

Gradient and Gradient×Input attribute nothing to x2 be-
cause ∇f(x) aggregates information from an infinitesimal
neighborhood of x while f remains constant w.r.t x2 with

infinitesimal perturbations. When information from a larger
neighborhood is aggregated, attributions change as the per-
turbations on x2 can change the value of f . However, if
information from points far away is aggregated, attribution
can be incorrect. For example, as noise level σ in Smooth-
Grad tends to infinity, the attribution output will tend to
[0.5, 0.5]⊤ (see Figure 2 (b)), which indicates that x1, x2

are equally important but f depends more on x1 at x.

Therefore, we hypothesize that for an explanation method to
be faithful, it should use information from a local neighbor-
hood that is not very small, as the importance of a feature
cannot be revealed in a very small neighborhood, nor very
large, as much irrelevant information is included. Our hy-
pothesis is validated by our theoretical analysis of Smooth-
Grad in Section 5.3 and empirical evidence in Section 6.3.

Remark 5.1. The hypothesis above recommends to add a
relatively large perturbation to the original input when eval-
uating the faithfulness of explanations. The perturbation
should be large enough for function f to have notably differ-
ent outputs. For image data, pixel-wise perturbation is often
too small, and grouping pixels into superpixels may be a
more appropriate way to perturb the image on a larger scale.
As for text data, if the perturbation is on the token level, the
perturbation scale should be carefully chosen. Word-level
perturbation may be a better way to perturb the input text on
a larger scale. Finally, for tabular data, changing the value
for categorical features may be enough. For continuous fea-
tures, the perturbation can be chosen by splitting the value
range into bins and selecting a value in a bin that is different
from the bin where the original input value lies.

5.3. Theoretical Analysis

In this section, we analyze the relationship between the
robustness and faithfulness of SmoothGrad. For Smooth-
Grad, we use ϕσ to denote its dependence on σ. We choose
Sim(u,v) to be a decreasing function w.r.t. ∥u− v∥2. We
prove that ϕσ first increases and then decreases w.r.t. σ:
Theorem 5.2. f : X → Y is a continuously differentiable
function that is (δ, L)-Lipschitzbounded above, i.e., ∃β >
0, |f(x)| ≤ β,∀x ∈ X . If the following two conditions

1. ∃α > 0, for any 0 < σ < ∞, ⟨Eϵ∼N (0,σ2I)[∇f(x +
ϵ)], p(x)⟩ > α∥Eϵ∼N (0,σ2I)[∇f(x+ ϵ)]∥∥p(x)∥,

2. ∃τ, ν > 0 s.t. ν < ∥p(x)∥/∥∇f(x)∥ ≤ τ and 2τ −
1− α2ν2 < 0

hold, there exists 0 < σ∗ < ∞ such that σ∗ =
argmaxσ F(ϕσ(x)), i.e, the faithfulness of ϕσ first in-
creases and then decreases as σ increases from 0 to +∞.

The first assumption of the above theorem roughly states that
the angle between the explanation returned by SmoothGrad
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and p(x) is acute. This assumption is mild since ϕσ(x) and
p(x) are both close to ∇f(x). ϕσ(x) is close to ∇f(x)
because ϵ is zero mean. In practice, on image data for
example, one use Gaussian blur or average value of x as a
reference so x̄−i ≈ x,∀i. Consequently, p(x) is close to
∇f(x). This also corroborates the mildness of our second
assumption, where the norm of p(x) is bounded by ∇f(x).

This finding shows neither the most robust nor the most
non-robust explanation is most faithful. In addition, it also
shows given a non-robust model, we cannot expect robust
explanations for free as it may lead to a loss of faithfulness.
Although we only prove the robustness-faithfulness trade-
off for SmoothGrad, we empirically observe this trade-off
across different methods in Figure 6. Therefore, we sug-
gest practitioners to be aware of this robustness-faithfulness
trade-off and choose the best explanation method by exam-
ining their robustness and faithfulness.

6. Experiments
6.1. Experimental Setup

Datasets and Models. We perform our experiments on
1000 randomly selected images from CIFAR10. We use
robustness (Engstrom et al., 2019) library to train both ro-
bust and non-robust versions of GoogLeNet (Szegedy et al.,
2015), VGG16 (Simonyan & Zisserman, 2014), ResNet18,
ResNet50 (He et al., 2016) and a tiny Swin Transformer,
Swin-T (Liu et al., 2021b). See Appendix B for details.

Metrics. We evaluate the robustness and faithfulness of
explanations from Gradient, Gradient×Input, SmoothGrad,
Integrated Gradient, LIME, and SHAP. We compute the
local Lipschitz to evaluate robustness. For each image x,
we compute its explanation and explanations for n images
x1, · · · ,xn sampled from N (x, σ2I). Then, we approxi-
mate the local Lipschitz by the following:

L(x) = max
i

∥ϕ(x)− ϕ(xi)∥
∥x− xi∥

(4)

We average this value on 1000 images to obtain the final
robustness measure. For faithfulness, we choose

F(ϕ(x)) =
1

∥ϕ(x)− p(x)∥
. (5)

Note that the same results hold for any Sim(ϕ(x), p(x)) that
is a decreasing function w.r.t. ∥ϕ(x)−p(x)∥ and some other
similarity measures (e.g., Pearson correlation and Spearman
rank correlation, see Appendix B for more results).

6.2. Explanation for Robust Model is Robust

Explanations are more robust for more robust models.
We compute the robustness of the explanations for six meth-

Figure 3. The robustness of six explanation methods for
ResNet18 with different robustness. The line with a marker
in the middle shows the mean local Lipschitz while the shadow is
area within one standard deviation. The number on the top of each
subfigure is the rank correlation between classifier robustness and
corresponding explanation robustness.

ods on eight models in Table 1. We list explanation robust-
ness for each backbone model on its robust and non-robust
versions. Rows are in descending order according to the ro-
bustness of corresponding robust models. From the results,
we can draw several conclusions:

• Explanations of robust models are more robust than
their non-robust counterparts, which corroborates the
theoretical results of Theorem 4.1.

• By composing a smoothing kernel with the original
model, the robustness of its Gradient explanation in-
creases. This confirms our arguments in Section 4.2
and Theorem 4.3.

• As shown by the last row of Table 1, a more robust
model has more robust explanations. From VGG16 to
GoogLeNet, the robustness of the classifier decreases
while the robustness of explanations also decreases,
which supports our results in Theorem 4.1.

To further explore how local Lipschitz of explanation
changes w.r.t. local Lipschitz of the model, we use robust
training to train 10 models with different robustness on the
ResNet18 backbone. We show local Lipschitz of these mod-
els and local Lipschitz of their explanations in Figure 3. In
the title of each subfigure, we show the rank correlation be-
tween them. It is clear that on each explanation method, the
local Lipschitz of explanation is almost perfectly correlated
with the local Lipschitz of the underlying model.
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Grad GI IG SG LIME SHAP
NR Rob. NR Rob. NR Rob. NR Rob. NR Rob. NR Rob.

Swin-T 6.556 0.084 3.163 0.044 1.140 0.107 4.590 0.087 1.558 0.566 0.240 0.012
VGG16 17.318 0.414 8.171 0.207 6.463 0.459 9.937 0.302 7.883 1.215 0.832 0.304

ResNet18 23.835 0.724 11.394 0.357 6.723 0.699 10.894 0.535 8.401 1.341 0.571 0.334
ResNet50 29.859 0.860 14.043 0.423 7.211 0.982 12.525 0.637 6.695 1.536 0.490 0.382

GoogLeNet 34.415 1.184 16.315 0.575 7.442 1.021 13.134 0.859 6.540 1.381 0.599 0.315

Rank Corr. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.9 0.3 0.7

Table 1. Lipschitz of six explanation methods on five different backbone models. For each backbone, we show the results on both
non-robust(NR) version and robust(Rob.) versions. The robustness of 5 robust models decreases from the top to the bottom row. The last
row shows the Spearman rank correlation between classifier robustness and explanation robustness. It can be observed that for all six
methods, explanation robustness correlates almost perfectly to classifier robustness.

Smoothing Improves Explanation Robustness of Any
Model. Figure 4 shows how explanation robustness varies
w.r.t σ in SmoothGrad. A larger σ leads to better explanation
robustness across four different models. Given the same σ,
models with smaller local Lipschitz generally have more
robust explanations. This result validates the local Lipschitz
bound for SmoothGrad in Theorem 4.1.

Additionally, by comparing these results with the local Lip-
schitz of Gradient explanation listed in Table 1 which cor-
responds to σ = 0 in SmoothGrad, it can be concluded
that smoothing improves the explanation robustness of any
model which is argued in Section 4.2 and Theorem 4.3.

6.3. Robustness-Faithfulness Trade-off

Trade-off on σ in SmoothGrad. For different σ, explana-
tions and their robustness and faithfulness are computed on
five models. Since the faithfulness of different models is
measured on different scales, we normalize the faithfulness
of each model by dividing it by its maximum value. Re-
sults are shown in Figure 5. With increasing σ, explanation
robustness increases, as validated both theoretically and em-
pirically in Theorem 4.1 and Section 6.2, while faithfulness
decreases at some point. This phenomenon emerges for all
five models. This shows that choosing a suitable σ may be
tricky and a very large σ may not be a good choice as it
may exchange faithfulness for robustness. If SmoothGrad is
used to provide explanations, σ should be tuned according
to the user’s utility of robustness and faithfulness.

Trade-off on different methods. For six explanation meth-
ods, their local Lipschitz and faithfulness on five models
are presented in Figure 6. The above observation leads us
to hypothesize that such trade-offs may also exist across
different methods. For each model, we normalize the local
Lipschitz on six methods by the maximum of them so that
the largest local Lipschitz is 1 for each model. At least
two conclusions can be drawn: (1). On different methods,
there also exists a robustness-faithfulness trade-off, and the

Figure 4. Sensitivity of the robustness of SmoothGrad on
smoothing noise σ. The line shows the change of the mean of
each box w.r.t σ. This shows that as σ increases, the robustness of
SmoothGrad also increases. In addition, for the same σ, Smooth-
Grad is more robust for more robust classifiers.

trend is similar to that shown in Figure 5. (2). The order of
explanation robustness and their faithfulness stays almost
the same across the five models. For example, Gradient has
the largest local Lipschitz, and LIME and SHAP are the
most robust and unfaithful methods.

With the above evidence, the arguments in Section 5 are
supported. Therefore, in practice, users should be aware of
this trade-off and do not trust explanation systems that are
claimed to be robust unconditionally. Users should choose
a system and corresponding parameters under this trade-off
in their applications.

7. Conclusion
By the intuition that a robust model should have robust ex-
planations, we prove that the local Lipschitz of explanation
is determined by the local Lipschitz of the model to be ex-
plained. By composing an appropriate smoothing kernel
with a model, the local Lipschitz is proved to be reduced so

8



Robust Explanation for Free or At the Cost of Faithfulness

Figure 5. Sensitivity of faithfulness of SmoothGrad w.r.t σ. For
all models, faithfulness of SmoothGrad first increases when σ is
very small and then decreases when σ becomes large.

Figure 6. Robustness-faithfulness trade-off on 6 explanation
methods for 5 non-robust models trained on CIFAR10. Each
line represents a model while each marker stands for an expla-
nation method. For each model, the Lipschitz constants for 6
methods are divided by the maximum of them. Therefore, the
maximum Lipschitz shown for each model is 1. We can see that as
explanations become robust starting from being non-robust, their
faithfulness first increases and drops quickly afterward.

that its explanation becomes robust in the meantime. We
show both theoretically and empirically that there exists a
robustness-faithfulness trade-off. The idea is that the most
faithful explanation is one ”matches” the robustness of the
underlying model. Thus, neither explanation that is ex-
tremely non-robust nor extremely robust is not faithful. We
are the first to introduce the robustness-faithfulness trade-
off. It would be interesting to explore this trade-off further
both theoretically and empirically. For example, we only
prove this trade-off for SmoothGrad and show results on
different methods by experiments. It would be exciting to
provide a more general theoretical justification.
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A. Related Work
Fragility of Explanation. A line of research investigates the fragility of explanation. Dombrowski et al. (2019) find that
explanations can be manipulated by adding unperceivable noise to inputs. They show theoretically that it is due to the large
curvature of the underlying manifold and propose to replace ReLU non-linearity with SoftPlus to make explanations robust.
Ghorbani et al. (2019) investigate adversarial perturbation to neural network interpretation and develop an algorithm to find
target perturbations for two classes of interpretation methods. Heo et al. (2019) demonstrate that neural network explanation
methods are easily fooled by a model fine-tuning step that alters the explanations while preserving accuracy. Lakkaraju &
Bastani (2020) show the existence of a high-fidelity explanation that does not accurately reflect the biases in the black box
model which may mislead users into trusting a problematic model. Le Merrer & Trédan (2020) propose that explanations
cannot be easily trusted as they present an attack that can generate explanations to hide the use of an arbitrary set of features
by a classifier. Slack et al. (2021) show that counterfactual explanations can be manipulated by adding small changes to the
input so that the optimization algorithm can find a lower cost recourse.

Robust Attribution. Another line of research aims to design robust and stable explanations. Rieger & Hansen (2020)
propose to average explanation from different methods and show that it is more robust than the single explanation method.
Lakkaraju et al. (2020) formulate a minimax objective to find explanations robust to input distribution shift. Wang et al.
(2020) propose Smooth Surface Regularization(SSR) that regularizes the maximum eigenvalue of the Hessian matrix of the
original loss and propose UniGrad that is similar to SmoothGrad but with the uniform kernel. They show that both SSR and
UniGrad are able to output robust explanations. Chen et al. (2019) add the attribution change computed by IntegratedGradient
as a regularization term so that attribution is robust locally. Boopathy et al. (2020) prove that interpretation discrepancy
is lower bounded by classification margin and propose interpretability-aware robust training which adds the maximum
interpretation discrepancy in a δ-neighborhood as a regularization term. Anders et al. (2020) prove that for any classifier
there exists another classifier that behaves the same on the data while having attribution arbitrarily close to target attribution
and demonstrate that projecting attribution to low-dimensional submanifold helps improve robustness.

Evaluation of Faithfulness and Robustness. (1) Robustness. Alvarez-Melis & Jaakkola (2018) define local Lipschitz as
a measure of explanation robustness and calculate the robustness of several widely-used local explanation methods. Yeh
et al. (2019) propose to evaluate explanations with infidelity and sensitivity which is defined in their paper and proved that
smoothing attribution can reduce infidelity and sensitivity so that explanation becomes more faithful and robust. Dai et al.
(2022) use the expected L1 distance between explanations of original input and perturbed input with Gaussian noise to
measure the stability of explanations. Levine et al. (2019); Huai et al. (2022) use top-K overlap to measure explanation
robustness. (2) Faithfulness. Faithfulness measures how accurately an explanation method reflects the true reasoning
process of the model. Samek et al. (2016) evaluate heatmap by iteratively removing the most important features and use
the area over the perturbation curve as the final metric. Yu et al. (2019); DeYoung et al. (2019) propose two faithfulness
metrics: comprehensiveness and sufficiency which measure the degree by which the model is influenced by the removal
and inclusion of the highest-ranked features, respectively. Bhatt et al. (2020) measure faithfulness of an explanation by
subsampling feature subsets and calculate the correlation between total attribution scores of features in the subset and
prediction change after setting features in the subset to a reference value. Dai et al. (2022); Agarwal et al. (2022a) use
Prediction Gap Fidelity which computes expected prediction change while adding random noise to unimportant features
recognized by attribution. Liu et al. (2021a) define faithfulness as the Pearson correlation coefficient between the feature
importance and the approximate marginal contribution for each feature.

Connection between Model Robustness and Interpretability. There are also many works investigating the connection
between model robustness and interpretability. Etmann et al. (2019) observe that robust network gives more clearer indication
of what the classifier deems to be discriminative features. They prove it for linear model that an increase in robustness may
induce an increase in the alignment between an input image and its respective saliency map. Ignatiev et al. (2019) relate
adversarial example and explanations by hitting set duality and propose an algorithm that computes adversarial examples
from explanations and vice-versa. Chalasani et al. (2020) theoretically find that adversarial training using an l∞-bounded
adversary produces models with sparse attribution vectors, while natural training that encouraging stable explanations is
equivalent to adversarial training for 1-layer networks. Agarwal et al. (2022b) show the first analysis on the behavior of
various state-of-the-art GNN explanation methods with respect to faithfulness, stability and fairness preservation.

12



Robust Explanation for Free or At the Cost of Faithfulness

B. Details on Experiments
B.1. Training Models

We use robustness library to train all of our models. The parameters we specify are listed in Table 2. The parameters used
for training non-robust models are the same as those for training robust models except that we use adversarial training to
train robust models. We adopt the implementation of Swin Transformer in vision-transformers-cifar101. For Swin-T, we use

Model eps constraint total epochs attack lr

Swin-T 0.031372 inf 400 0.00784313
ResNet18 0.031372 inf 150 0.00784313
ResNet50 0.031372 inf 200 0.00784313

Vgg16 0.031372 inf 200 0.00784313
GoogLeNet 0.031372 inf 200 0.00784313

Table 2. Training Parameters.

Adam as the training optimizer while SGD is used for other models. We choose the patch size to be 4 because the height and
width of images in CIFAR10 is 32× 32.

B.2. Implementation of Explanation Methods

For Gradient, Gradient×Input, Integrated Gradient, SmoothGrad, we adopt code from (Bansal et al., 2020)2 while for LIME
and SHAP, we use the implementation from captum3.

B.3. Robustness Computation

We select 1000 image from CIFAR10, for each image x we randomly sample 50 points from N (x, σ2I) with σ = 0.03. For
each sample x′, we compute ∥ϕx′ − ϕx∥2/∥x− x′∥. Then, we take the maximum of these 50 values as the local Lipschitz
of x. The parameters we use for each explanation method are as follows:

Integrated Gradient: We use zero baseline and 10 intermediate points to compute the integral.

SmoothGrad: We use σ = 0.03 as the default value. The number of samples n is determined by σ. For σ < 0.01, n = 10.
For σ ≥ 0.01, n = ⌊σ/0.01⌋ · 10.

LIME: Quickshift segmentation algorithm is used to segment images to superpixels. kennel size is set to 1, max dist is set
to 200, and ratio is set to 0.1. We choose num samples as 100 and α in Ridge regressor as 1.

SHAP: We choose num samples to be 100.

The random seed is fixed in our experiments. For images, we fix the random seed to its index before computing its local
Lipschitz.

B.4. Faithfulness Computation

We split pixels into ∼100 groups and regard pixels in a group as a feature. Then we use Equation 1 to compute faithfulness
for x. The reference value is zero. The final faithfulness of an explanation method is the average of 1000 values computed.

B.5. More Experiment Results

1https://github.com/kentaroy47/vision-transformers-cifar10
2https://github.com/anguyen8/sam
3https://github.com/pytorch/captum
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(a) Robustness-Faithfulness Tradeoff on σ (Pearson
correlation).

(b) Robustness-Faithfulness Tradeoff on different meth-
ods (Pearson correlation).

(a) Robustness-Faithfulness Tradeoff on σ (Spearman
rank correlation).

(b) Robustness-Faithfulness Tradeoff on different meth-
ods (Spearman rank correlation).
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C. Proofs
C.1. Proof of Theorem 4.2

Proposition C.1. Let f : X → Y be a (δ, L)-Lipschitz function that is bounded above, i.e., ∃β > 0, |f(x)| ≤ R,∀x ∈ X .
Then the smoothed function fσ(x) = Eϵ∼N (0,σ2I)[f(x + ϵ) is (δ,L)-Lipschitz where L = min

(
L, R

2σ

)
. If σ > R/(2L),

then L < L, i.e., fσ has strictly smaller local Lipschitz than f .

Proof. We only need to show that for x,x′, ∥x− x′∥ ≤ δ, we have

|fσ(x)− fσ(x
′)| ≤ L∥x− x′∥

and
|fσ(x)− fσ(x

′)| ≤ R

2σ
∥x− x′∥

Since fσ(x) = Eϵ∼N (0,σ2I)[f(x+ ϵ), we have

|fσ(x)− fσ(x
′)| =|Eϵ∼N (0,σ2I)[f(x+ ϵ)− f(x′ + ϵ)]|

≤Eϵ∼N (0,σ2I)[|f(x+ ϵ)− f(x′ + ϵ)|]
≤Eϵ∼N (0,σ2I)[L∥x− x′∥]
=L∥x− x′∥

We can also bound the difference by bounding the difference between two distributions.

|fσ(x)− fσ(x
′)| =|Eµ∼N (x,σ2I)[f(µ)]− Eν∼N (x′,σ2I)[f(ν)]|

=|
∫
Rd

f(z)Pµ(z)− Pν(z)dz|

≤
∫
Rd

|f(z)||Pµ(z)− Pν(z)|dz

≤R

∫
Rd

|Pµ(z)− Pν(z)|dz

=RdTV (Pµ, Pν)

where Pµ is the induced probability measure of µ ∼ N (x, σ2I) and dTV (Pµ, Pν) is the total variation distacne between
probability measure Pµ, Pν .

By Pinsker’s inequality,

dTV (Pµ, Pν) ≤
√
KL(Pµ||Pν)/2 =

∥x− x′∥
2σ

.

Therefore, we have

|fσ(x)− fσ(x
′)| ≤ R

2σ
∥x− x′∥.

Combining two bounds together, we have

|fσ(x)− fσ(x
′)| ≤ L∥x− x′∥.

where L = min
(
L, R

2σ

)
. And it follows directly that, when σ > R/(2L), L < L, i.e., fσ has strictly smaller local Lipschitz

than f .

C.2. Proof of Theorem 4.3

Theorem C.2. Let f : X → Y be a (δ, L)-Lipschitz function that is bounded above, i.e., ∃R > 0, |f(x)| ≤ R,∀x ∈ X .
For any probability measure µ and random variable z ∼ µ, denote µx as the probability measure w.r.t. z + x. If for
∥x− x′∥ ≤ δ, the total variation distance bewtween µx, µx′ is bounded by

dTV (µx, µx′) ≤ γ∥x− x′∥2,

then fµ(x) = Ez∼µ[f(x + z)] is (δ,L)-Lipschitz with L = Rγ. If γ < L/R, then L < L, that is fµ has a lower local
Lipschitz than f .
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Robust Explanation for Free or At the Cost of Faithfulness

Proof. For fµ(x) = Ez∼µ[f(x+ z)] and x,x′, ∥x− x′∥ ≤ δ,

|fµ(x)− fµ(x
′)| =|Ez∼µx [f(z)]− Ez∼µx′ [f(z)]|

=|
∫
Rd

f(z)(Pµx(z)− Pµx′ (z))dz|

≤
∫
Rd

|f(z)||Pµx(z)− Pµx′ (z)|dz

≤RdTV (µx, µx′)

Thus, if dTV (µx, µx′) ≤ γ∥x− x′∥2, we have

|fµ(x)− fµ(x
′)| ≤ L∥x− x′∥2,L = Rγ

If γ < L/R, then L < L, that is fµ has a lower local Lipschitz than f .

For UniGrad, µx = U(x+ [−r, r]d) which is uniform distribution centered at x with radius r. we can prove that

dTV (µx, µx′) ≤
√
d

r
∥x− x′∥.

Therefore, UniGrad is (δ,R
√
d/r)-Lipschitz. We prove the above inequality holds in the following.

Denote ρ = x − x′ = (ρ1, · · · , ρd),
√∑

i ρ
2
i = ∥ρ∥. The total variation distance between µx, µx′ is then the volume of

two hypercubes x+ [−r, r]d and x′ + [−r, r]d minus the volume of their intersection divided by (2r)d, i.e.,

dTV (µx, µx′) =
1

(2r)d

(
Vol(x+ [−r, r]d) + Vol(x′ + [−r, r]d)− 2Vol((x+ [−r, r]d) ∩ (x′ + [−r, r]d))

)
It is easy to see that Vol(x+ [−r, r]d) = Vol(x′+ [−r, r]d) = (2r)d. The volume of intersection is

∏
i(2r− ρi). Therefore,

dTV (µx, µx′) equals to

2− 2
∏

(1− ρi
2r

) ≤ 2− 2(1−
∑
i

ρi
2r

) = 2

∑
i ρi
2r

≤ 2

√
d

2r
∥ρ∥ =

√
d

r
∥x− x′∥

The first inequality follows from Weierstrass inequality and the second one follows from Cauchy-Schwarz inequality.

C.3. Proof of Theorem 5.2

For notation simplicity, we denote fσ : x 7→ Eϵ∼N (0,σ2I)[f(x+ ϵ)] and ϕσ as explanations on fσ .

Lemma C.3. For f : X → Y is C1, i.e., its gradient is continuous. Suppose f is bounded above, i.e., ∃R > 0, |f(x)| ≤
R,∀x ∈ X . Then limσ→∞ fσ(x) = c,∀x ∈ X , i.e., fσ is constant function when σ → ∞. In addition, for any of six
considered explanation method ϕ, we have ϕσ(x) = 0,∀x ∈ X .

Proof. Intuitively, fσ is the average of f in a neighborhood. When σ → ∞, fσ(x) is the average of f(X ). More formally,

∇fσ(x) = ∇Eϵ∼N (0,σ2I)[f(x+ ϵ)] = Eϵ∼N (0,σ2I)[∇f(x+ ϵ)]

By Stein’s lemma, this also equals to

∇fσ(x) = Eϵ∼N (0,σ2I)[σ
−2ϵf(x+ ϵ)] = Eϵ∼N (0,I)[

ϵ

σ
f(x+ σϵ)]

Since f is bounded above, we have

∥∇fσ(x)∥ = ∥Eϵ∼N (0,I)[
ϵ

σ
f(x+ σϵ)]∥ ≤ Eϵ∼N (0,I)[∥

ϵ

σ
∥R] → 0, σ → ∞

This holds for all x ∈ X , which means that
lim
σ→∞

fσ(x) = c,∀x ∈ X
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Robust Explanation for Free or At the Cost of Faithfulness

Since the gradient of fσ is 0 when σ → ∞, for any gradient based explanation method ϕ, the corresponding ϕσ = 0. For
SHAP, fσ(S ∪ {i}) = fσ(S), and therefore (ϕσ)i = 0, i = 1, · · · , d. For LIME, it tends to a constant times c from the
expression of x in Lemma C.8. In the official implementation of LIME4, fσ is pre-processed to be zero-mean, and thus
c = 0 which means ϕσ(x) = 0.

Theorem C.4. For f : X → Y is C1, i.e., its gradient is continuous. Suppose f is bounded above, i.e., ∃R > 0, ∥f(x)∥ ≤
R,∀x ∈ X . If the following three conditions hold

1. ∃α > 0, for any 0 < σ < ∞, ⟨ϕσ(x), p(x)⟩ > α∥ϕσ(x)∥∥p(x)∥,

2. ∃τ, ν > 0 s.t. ν < ∥p(x)∥/∥ϕ(x)∥ ≤ τ

3. and if τ > 1/2 then 2τ − 1− α2ν2 < 0

then there exists 0 < σ∗ < ∞, such that
σ∗ = argmax

σ
F(ϕσ)

that is, as σ increases from 0 to +∞, the faithfulness of ϕσ has a trend that first increases and then decreases.

Proof. We define unfaithfulness U(ϕσ) = F−2(ϕσ∗) = ∥ϕσ(x)− p(x)∥2.

We first derive the expressions for U(ϕ0),U(ϕ∞). Since f is continuous, by Lebesgue’s dominated convergence theorem,
we have

U(ϕ0) = lim
σ→0

U(ϕσ)

= lim
σ→0

∥ϕσ(x)− p(x)∥2

=∥ϕ(x)− p(x)∥2

By Lemma C.3

U(ϕ∞) = lim
σ→∞

U(ϕσ)

= lim
σ→∞

∥ϕσ(x)− p(x)∥2

=∥p(x)∥2

Next, we prove the existence of σ∗.

U(ϕσ)− U(ϕ∞) =∥ϕσ(x)− p(x)∥2 − ∥p(x)∥2

=∥ϕσ(x)∥2 − 2⟨ϕσ(x), p(x)⟩

U(ϕσ)− U(ϕ0) =∥ϕσ(x)− p(x)∥2 − ∥ϕ(x)− p(x)∥2

=∥ϕσ(x)− ϕ(x)∥2 + 2⟨ϕσ(x)− ϕ(x), ϕ(x)− p(x)⟩

In order to prove the existence of σ∗, we only need to prove that there exists 0 < σ < ∞, satisfies the following three
conditions simultaneously.

∥ϕσ(x)∥2 − 2⟨ϕσ(x), p(x)⟩ ≤0

∥ϕσ(x)− ϕ(x)∥2 + 2⟨ϕσ(x)− ϕ(x), ϕ(x)− p(x)⟩ ≤0

Next, we consider two cases:
4https://github.com/marcotcr/lime
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1. If U(ϕ0) > U(ϕ∞), we have

U(ϕ0)− U(ϕ∞) =∥ϕ(x)− p(x)∥2 − ∥p(x)∥2

=∥ϕ(x)∥2 − 2⟨ϕ(x), p(x)⟩ > 0

U(ϕσ)− U(ϕ∞) =∥ϕσ(x)∥2 − 2⟨ϕσ(x), p(x)⟩

Since for 0 < σ < ∞,
⟨ϕσ(x), p(x)⟩ > α∥ϕσ(x)∥∥p(x)∥

and
∥ϕσ(x)∥ → 0, σ → ∞

Because ∥ϕσ(x)∥ is continuous w.r.t. σ, and it equals to 0 when σ = ∞ and equals to ∥ϕ(x)∥ when σ = 0, then for
any ∆ > 0 that is sufficiently small, ∃σ0, s.t.

∆

2
≤ ∥ϕσ(x)∥ ≤ ∆

Then

∥ϕσ(x)∥2 − 2⟨ϕσ(x), p(x)⟩ ≤ ∆2 − α∆∥p(x)∥

By choosing ∆ < α∥p(x)∥, we have
∥ϕσ(x)∥2 − 2⟨ϕσ(x), p(x)⟩ < 0

Therefore, setting σ∗ = σ0, we have

U(ϕσ∗)− U(ϕ∞) =∥ϕσ(x)∥2 − 2⟨ϕσ(x), p(x)⟩ < 0

=⇒ 0 < U(ϕσ∗) <U(ϕ∞) < U(ϕ0)

=⇒ F(ϕσ∗) >F(ϕ∞) > F(ϕ0)

2. If U(ϕ0) ≤ U(ϕ∞), we have

U(ϕ0)− U(ϕ∞) =∥ϕ(x)− p(x)∥2 − ∥p(x)∥2

=∥ϕ(x)∥2 − 2⟨ϕ(x), p(x)⟩ < 0

U(ϕσ)− U(ϕ0) =∥ϕσ(x)− ϕ(x)∥2 + 2⟨ϕσ(x)− ϕ(x), ϕ(x)− p(x)⟩
=∥ϕσ(x)∥2 + ∥ϕ(x)∥2 − 2∥ϕ(x)∥2

+ 2⟨ϕ(x), p(x)⟩ − 2⟨ϕσ(x), p(x)⟩
=∥ϕσ(x)∥2 − ∥ϕ(x)∥2

+ 2⟨ϕ(x), p(x)⟩ − 2⟨ϕσ(x), p(x)⟩

Since we assume that ν∥ϕ(x)∥ ≤ ∥p(x)∥ ≤ τ∥ϕ(x)∥ then

⟨ϕ(x), p(x)⟩ ≤ ∥ϕ(x)∥∥p(x)∥ = τ∥ϕ(x)∥2

0 < −∥ϕ(x)∥2 + 2⟨ϕ(x), p(x)⟩ ≤ (2τ − 1)∥ϕ(x)∥2

−⟨ϕσ(x), p(x)⟩ ≤ −α∥ϕσ(x)∥∥p(x)∥ ≤ −αν∥ϕσ(x)∥∥ϕ(x)∥

Combining these inequalities, we have

∥ϕσ(x)∥2 − ∥ϕ(x)∥2 + 2⟨ϕ(x), p(x)⟩ − 2⟨ϕσ(x), p(x)⟩
≤∥ϕσ(x)∥2 + (2τ − 1)∥ϕ(x)∥2 − 2αν∥ϕσ(x)∥∥ϕ(x)∥

=
(
∥ϕσ(x)∥ − αν∥ϕ(x)∥

)2
+ (2τ − 1− α2ν2)∥ϕ(x)∥2
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Because ∥ϕσ(x)∥ is continuous w.r.t. σ, and it equals to 0 when σ = ∞ and equals to ∥ϕ(x)∥ when σ = 0, thus
∃0 < σ̂ < ∞, s.t., ∥ϕσ(x)∥ = αν∥ϕ(x)∥, which implies

U(ef,σ̂)− U(ϕ0) ≤ (2τ − 1− α2ν2)∥ϕ(x)∥2 < 0

Therefore, setting σ∗ = σ̂, we have

0 < U(ϕσ∗) <U(ϕ0) ≤ U(ϕ∞)

=⇒ F(ϕσ∗) >F(ϕ∞) ≥ F(ϕ0)

In summary, there exists 0 < σ∗ < ∞ that achieves maximum of F(ϕσ).

C.4. Proofs of Theorem 4.1

Theorem C.5. Let f : X → Y be a (δ, L)-Lipschitz function, then we have SmoothGrad, LIME, SHAP are (δ,L)-Lipschitz
with corresponding L as the following:

LSmoothGrad = O(L/σ)

LLIME = O(

√
dL

λ
+

βR(λ+ d)
√
d

λ2σ2
exp(

2β

σ2
))

LSHAP = O(
√
dL)

If f is also H-smooth, then we have Gradient, Gradient×Input and Integrated Gradient(IG) are (δ,L)-Lipschitz with
corresponding L as the following:

LGradient = O(H)

LGradient×Input = O(βH + L)

LIG = O(βH + L)

C.4.1. SMOOTHGRAD

Lemma C.6. For an univariate Gaussian variable ϵ ∼ N (0, σ2), we have E|ϵ| =
√

2
πσ

Proof.

Eϵ∼N (0,σ2)[|ϵ|] =2

∫ ∞

0

1√
2πσ2

x exp(− x2

2σ2
)dx

=

√
2

π

∫ ∞

0

σ exp(
x2

2σ2
)d(

x2

2σ2
)

=

√
2

π
σ

∫ ∞

0

e−xdx

=

√
2

π
σ

Theorem C.7. For SmoothGrad, if f is (δ, L)−Lipschitz, then we have ϕ(x) is (δ,
√

2
πσ2L)− Lipschitz.
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Proof. For x, x′, ∥x− x′∥2 ≤ δ, we have

∥ϕ(x)− ϕ(x′)∥2 =∥Eϵ∼N (0,σ2I)[∇f(x+ ϵ)−∇f(x′ + ϵ)]∥2
(Stein’s Lemma) =∥Eϵ∼N (0,σ2I)[σ

−2ϵ(f(x+ ϵ)− f(x′ + ϵ))]∥2
=σ−2 sup

u:∥u∥2=1

|⟨u,Eϵ∼N (0,σ2I)[ϵ(f(x+ ϵ)− f(x′ + ϵ))]⟩|

=σ−2 sup
u:∥u∥2=1

Eϵ∼N (0,σ2I)[|⟨u, ϵ⟩||f(x+ ϵ)− f(x′ + ϵ)|]

(f is (δ, L)−Lipschitz) ≤σ−2 sup
u:∥u∥2=1

Eϵ∼N (0,σ2I)[|⟨u, ϵ⟩|L∥x− x′∥]

The third equality holds because the L2 norm of a vector is the largest length of its projection on the unit L2 ball:

∥v∥2 = sup
u:∥u∥2=1

|⟨u, v⟩|

In order to draw our conclusion, we only need to bound

sup
u:∥u∥2=1

Eϵ∼N (0,σ2I)[|⟨u, ϵ⟩|]

Since z = ⟨u, ϵ⟩ is a linear combination of Gaussian variables which in turn is also Gaussian. Since ϵ ∼ N (0, σ2I), it is
easy to see that

E[z] = 0,E[z2] = E(
∑
i

uiϵi)
2 = E

∑
i

u2
i ϵ

2
i = σ2∥u∥22 = σ2

Therefore, z ∼ N (0, σ2). By Lemma C.6, we have

sup
u:∥u∥2=1

Eϵ∼N (0,σ2I)[|⟨u, ϵ⟩|] =
√

2

π
σ

And it follows that

∥ϕ(x)− ϕ(x′)∥2 ≤
√

2

πσ2
L∥x− x′∥

C.4.2. LIME

We first derive the closed form solution of w in LIME in terms of πx.

Lemma C.8. For LIME with L2 penalty:

ϕ(x) = argmin
w

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)(f(x⊙ ϵ)−w⊤ϵ)2] + λ∥w∥22,

we have the closed form of ϕ(x) is

ϕ(x) =

(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)f(x⊙ ϵ)ϵ]

If πx = 1, then

ϕ(x) =
1

λ+ 1
4

(
I− 1

λ+ 1
4 + d

11⊤)Eϵ∼Bern(0.5)[f(x⊙ ϵ)ϵ]

Proof. Let O(x) be the objective function in ϕ(x), then the gradient of O w.r.t w is

∇wO = Eϵ∼Bern(0.5)[πx(x⊙ ϵ)(2ϵϵ⊤w − 2f(x⊙ ϵ)ϵ)] + 2λw
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For optimal w, we have ∇wO = 0, that is

w =

(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)f(x⊙ ϵ)ϵ]

Therefore,

ϕ(x) = w =

(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)f(x⊙ ϵ)ϵ]

If πx(x⊙ ϵ) = 1, we have

w =

[
Eϵ∼Bern(0.5)[ϵϵ

⊤] + λI

]−1

Eϵ∼Bern(0.5)[f(x⊙ ϵ)ϵ]

=
(1
4
11⊤ + (

1

4
+ λ)I

)−1Eϵ∼Bern(0.5)[f(x⊙ ϵ)ϵ]

=
1

4λ+ 1

( 1

λ+ 1
4

11⊤ + I
)−1Eϵ∼Bern(0.5)[f(x⊙ ϵ)ϵ]

(Sherman-Morrison Formula) =
4

4λ+ 1

(
I− 1

4λ+ 1 + d
11⊤)Eϵ∼Bern(0.5)[f(x⊙ ϵ)ϵ]

Before diving into the derivation of LIME with the exponential kernel, we first provide the local Lipschitz of LIME with
πx = 1. The proof is much simpler, but the overall process is similar. Thus, readers can get an overview of how we obtain
the local Lipschitz of LIME with exponential kernel.

Lemma C.9. For LIME with L2 penalty:

ϕ(x) = argmin
w

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)(f(x⊙ ϵ)−w⊤ϵ)2] + λ∥w∥22,

where

πx(x⊙ ϵ) = 1

we have ϕ(x) is (δ, 2
√
d+1L
4λ+1 )-Lipschitz.

Proof. If πx(z) = 1,∀x, z, then we have

∥ϕ(x)− ϕ(x′)∥2 =∥ 4

4λ+ 1

(
I− 1

4λ+ 1 + d
11⊤)Eϵ∼Bern(0.5)[(f(x⊙ ϵ)− f(x′ ⊙ ϵ))ϵ]∥2

≤∥ 4

4λ+ 1

(
I− 1

4λ+ 1 + d
11⊤)∥2∥Eϵ∼Bern(0.5)[(f(x⊙ ϵ)− f(x′ ⊙ ϵ))ϵ]∥2

≤CλEϵ∼Bern(0.5)[|f(x⊙ ϵ)− f(x′ ⊙ ϵ)|∥ϵ∥2]
≤CλEϵ∼Bern(0.5)[L∥(x− x′)⊙ ϵ∥2∥ϵ∥2]
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(
Eϵ∼Bern(0.5)[∥(x− x′)⊙ ϵ∥2∥ϵ∥2]

)2

≤Eϵ∼Bern(0.5)[∥(x− x′)⊙ ϵ∥22∥ϵ∥22]

=Eϵ∼Bern(0.5)

[(∑
i

(xi − x′
i)

2ϵ2i
)
(
∑
j

ϵ2j )

]

=Eϵ∼Bern(0.5)

[∑
i

(xi − x′
i)

2
∑
j

ϵ2jϵ
2
i

]

=
∑
i

Eϵ∼Bern(0.5)

[
(xi − x′

i)
2
∑
j

ϵ2jϵ
2
i

]
=
1 + d

4

∑
i

(xi − x′
i)

2 =
1 + d

4
∥x− x′∥22

Therefore,

Eϵ∼Bern(0.5)[∥(x− x′)⊙ ϵ∥2∥ϵ∥2] ≤
√

1 + d

4
∥x− x′∥2 =

√
1 + d

2
∥x− x′∥2

and

∥ϕ(x)− ϕ(x′)∥2 ≤CλEϵ∼Bern(0.5)[L∥(x− x′)⊙ ϵ∥2∥ϵ∥2]

≤
√
d+ 1CλL

2
∥x− x′∥2

where

Cλ = ∥ 4

4λ+ 1

(
I− 1

4λ+ 1 + d
11⊤)∥2 =

4

4λ+ 1

Theorem C.10. For LIME with L2 penalty:

ϕ(x) = argmin
w

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)(f(x⊙ ϵ)−w⊤ϵ)2] + λ∥w∥22,

where

πx(x⊙ ϵ) = exp

(
− ∥x− x⊙ ϵ∥22

σ2

)
= exp

(
− ∥x⊙ (1− ϵ)∥22

σ2

)

we have ϕ(x) is (δ,O(
√
dL
λ + βR(λ+d)

√
d

λ2σ2 exp( 2βσ2 )))-Lipschitz
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Proof. For exponential kernel πx(z) = exp(−∥x− z∥22/σ2), we have

∥ϕ(x)− ϕ(x′)∥2 =∥
(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)f(x⊙ ϵ)ϵ]

−
(
Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ)ϵ]∥2

=∥
(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx(x⊙ ϵ)f(x⊙ ϵ)ϵ]︸ ︷︷ ︸
(a)

−
(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ)ϵ]︸ ︷︷ ︸
(a)

+

(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ)ϵ]︸ ︷︷ ︸
(b)

−
(
Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ)ϵ]︸ ︷︷ ︸
(b)

∥2

We bound (a), (b) separately in the following.

∥(a)∥2 =∥
(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

Eϵ∼Bern(0.5)

[
(πx(x⊙ ϵ)f(x⊙ ϵ)− πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ))ϵ

]
∥2

≤∥
(
1

4
e−

β2

σ2 11⊤ + (
1

4
e−

β2

σ2 + λ)I

)−1

︸ ︷︷ ︸
η

Eϵ∼Bern(0.5)

[
(πx(x⊙ ϵ)f(x⊙ ϵ)− πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ))ϵ

]
∥2

=∥ηEϵ∼Bern(0.5)

[
(πx(x⊙ ϵ)f(x⊙ ϵ)− πx(x⊙ ϵ)f(x′ ⊙ ϵ) + πx(x⊙ ϵ)f(x′ ⊙ ϵ)− πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ))ϵ

]
∥2

≤∥η∥2
[
Eϵ∼Bern(0.5)

[
∥πx(x⊙ ϵ)(f(x⊙ ϵ)− f(x′ ⊙ ϵ))∥2∥ϵ∥2

]
+ Eϵ∼Bern(0.5)

[
∥(πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ))f(x′ ⊙ ϵ)∥2∥ϵ∥2

]]
≤∥η∥2

[
Eϵ∼Bern(0.5)

[
∥f(x⊙ ϵ)− f(x′ ⊙ ϵ)∥2∥ϵ∥2

]
+ Eϵ∼Bern(0.5)

[
∥πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)∥2R∥ϵ∥2

]]
≤∥η∥2

[
Eϵ∼Bern(0.5)

[
L∥(x− x′)⊙ ϵ∥2∥ϵ∥2

]
+ Eϵ∼Bern(0.5)

[
R|πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)|∥ϵ∥2

]]
≤∥η∥2

[√
1 + dL

2
∥x− x′∥2 + Eϵ∼Bern(0.5)

[
R|πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)|∥ϵ∥2

]]
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If ∥x⊙ (1− ϵ)∥2 > ∥x′ ⊙ (1− ϵ)∥2,

|πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)| =| exp(−∥x⊙ (1− ϵ)∥22
σ2

)− exp(−∥x′ ⊙ (1− ϵ)∥22
σ2

)|

=exp(−∥x⊙ (1− ϵ)∥22
σ2

)
(
exp(

∥x⊙ (1− ϵ)∥22 − ∥x′ ⊙ (1− ϵ)∥22
σ2

)− 1
)

≤ exp(
(∥x⊙ (1− ϵ)∥2 + ∥x′ ⊙ (1− ϵ)∥2)(∥x⊙ (1− ϵ)∥2 − ∥x′ ⊙ (1− ϵ)∥2)

σ2
)− 1

≤ exp(
2β(∥x⊙ (1− ϵ)∥2 − ∥x′ ⊙ (1− ϵ)∥2)

σ2
)− 1

≤ exp(
2β∥(x− x′)⊙ (1− ϵ)∥2

σ2
)− 1

The last inequality follows from triangle inequality.

If on the other hand ∥x′ ⊙ (1− ϵ)∥2 > ∥x⊙ (1− ϵ)∥2,

|πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)| =| exp(−∥x⊙ (1− ϵ)∥22
σ2

)− exp(−∥x′ ⊙ (1− ϵ)∥22
σ2

)|

=exp(−∥x′ ⊙ (1− ϵ)∥22
σ2

)
(
exp(

∥x′ ⊙ (1− ϵ)∥22 − ∥x⊙ (1− ϵ)∥22
σ2

)− 1
)

≤ exp(
(∥x′ ⊙ (1− ϵ)∥2 + ∥x⊙ (1− ϵ)∥2)(∥x′ ⊙ (1− ϵ)∥2 − ∥x⊙ (1− ϵ)∥2)

σ2
)− 1

≤ exp(
2β(∥x′ ⊙ (1− ϵ)∥2 − ∥x⊙ (1− ϵ)∥2)

σ2
)− 1

≤ exp(
2β∥(x− x′)⊙ (1− ϵ)∥2

σ2
)− 1

If ∥x′ ⊙ (1− ϵ)∥2 = ∥x⊙ (1− ϵ)∥2, the bound we derive in the following also holds.

Consider function q(z) = exp(2βzσ2 )− 1− exp( 2βσ2 )
2βz
σ2 ,

q′(z) =
2β

σ2
exp(

2βz

σ2
)− exp(

2β

σ2
)
2β

σ2

Let q′(z) = 0, we have z = 1. Then for z ≤ 1, we have q′(z) ≤ 0. Overall, we have q(z) ≤ q(0) = 0,∀z ≤ 1, that is

exp(
2βz

σ2
)− 1 ≤ exp(

2β

σ2
)
2βz

σ2
,∀z ≤ 1

Therefore, as ∥(x− x′)⊙ (1− ϵ)∥2 ≤ ∥x− x′∥2 ≤ δ ≤ 1

|πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)| ≤ exp(
2β∥(x− x′)⊙ (1− ϵ)∥2

σ2
)− 1 ≤ exp(

2β

σ2
)
2β

σ2
∥(x− x′)⊙ (1− ϵ)∥2

Thus,

Eϵ∼Bern(0.5)

[
R|πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)|∥ϵ∥2

]
≤Eϵ∼Bern(0.5)

[
R exp(

2β

σ2
)
2β

σ2
∥∥(x− x′)⊙ (1− ϵ)∥2ϵ∥2

]
≤R

2β

σ2
exp(

2β

σ2
)

√
d− 1

2
∥x− x′∥2

=
βR

√
d− 1

σ2
exp(

2β

σ2
)∥x− x′∥2
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The last inequality is due to the following fact(
Eϵ∼Bern(0.5)[∥(x− x′)⊙ (1− ϵ)∥2∥ϵ∥2]

)2

≤Eϵ∼Bern(0.5)[∥(x− x′)⊙ ϵ∥22∥ϵ∥22]

=Eϵ∼Bern(0.5)

[(∑
i

(xi − x′
i)

2(1− ϵi)
2
)
(
∑
j

ϵ2j )

]

=Eϵ∼Bern(0.5)

[∑
i

(xi − x′
i)

2
∑
j

ϵ2j (1− ϵi)
2

]

=
∑
i

Eϵ∼Bern(0.5)

[
(xi − x′

i)
2
∑
j

ϵ2j (1− ϵi)
2

]
=
d− 1

4

∑
i

(xi − x′
i)

2 =
d− 1

4
∥x− x′∥22

So far, we have proved the following upper bound for (a),

∥(a)∥2 ≤ ∥η∥2
[√

1 + nL

2
+

βR
√
d− 1

σ2
exp(

2β

σ2
)

]
∥x− x′∥2

Next, we show how to upper bound (b).

∥(b)∥2 =∥

[(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

−
(
Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)ϵϵ⊤] + λI

)−1
]

︸ ︷︷ ︸
c

Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ)ϵ]∥2

Let

γ(x) =

(
Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

)−1

, µ(x) = γ(x)−1 = Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI

∥c∥2 =∥γ(x)− γ(x′)∥2 = ∥γ(x)(µ(x′)− µ(x))γ(x′)∥2
≤∥γ(x)∥2∥µ(x′)− µ(x)∥2∥γ(x′)∥2

Since πx > 0, ϵ > 0, λ > 0, we have

∥γ(x)∥2 =∥(Eϵ∼Bern(0.5)[πx(x⊙ ϵ)ϵϵ⊤] + λI)−1∥2

≤∥(exp(−β2

σ2
)Eϵ∼Bern(0.5)[ϵϵ

⊤] + λI)−1∥2

=∥(1
4
e−

β2

σ2 11⊤ + (
1

4
e−

β2

σ2 + λ)I)−1∥2

=∥η∥2

∥µ(x)− µ(x′)∥F =∥Eϵ∼Bern(0.5)[(πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ))ϵϵ⊤]∥2
≤∥Eϵ∼Bern(0.5)[|πx(x⊙ ϵ)− πx′(x′ ⊙ ϵ)|ϵϵ⊤]∥2

≤Eϵ∼Bern(0.5)[exp(
2β

σ2
)
2β

σ2
∥(x− x′)⊙ (1− ϵ)∥2∥ϵϵ⊤∥2]

≤
√
2β(d− 1)

σ2
exp(

2β

σ2
)∥x− x′∥2
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Robust Explanation for Free or At the Cost of Faithfulness

(Eϵ∼Bern(0.5)[∥(x− x′)⊙ (1− ϵ)∥2∥ϵϵ⊤∥])2 ≤Eϵ∼Bern(0.5)[∥(x− x′)⊙ (1− ϵ)∥22∥ϵϵ⊤∥2]

=
∑
i

(xi − x′
i)

2Eϵ∼Bern(0.5)[(1− ϵi)
2
∑
j

∑
k

ϵ2jϵ
2
k]

=
∑
i

(xi − x′
i)

2 · (d− 1)2

8
=

(d− 1)2

8
∥x− x′∥22

To summarize, we have

∥c∥ ≤ ∥γ(x)∥∥µ(x′)− µ(x)∥∥γ(x′)∥ ≤ ∥η∥22

√
2β(d− 1)

σ2
exp(

2β

σ2
)∥x− x′∥2

∥Eϵ∼Bern(0.5)[πx′(x′ ⊙ ϵ)f(x′ ⊙ ϵ)ϵ]∥ ≤ Eϵ∼Bern(0.5)[|πx′(x′ ⊙ ϵ)||f(x′ ⊙ ϵ)|∥ϵ∥] ≤ REϵ∼Bern(0.5)[∥ϵ∥] ≤
√
2dR

2

The last inequality is derived as follows:

Eϵ∼Bern(0.5)[∥ϵ∥] ≤
(
Eϵ∼Bern(0.5)[∥ϵ∥2]

)− 1
2 =

√
2d

2

where the inequality holds by Jensen’s inequality.

Therefore, summarizing the above results, we have

∥(b)∥2 ≤ ∥η∥22
βR(d− 1)

√
d

σ2
exp(

2β

σ2
)∥x− x′∥2

In order to obtain the final result, we only need to bound ∥η∥2.

∥η∥2 =∥(1
4
e−

β2

σ2 11⊤ + (
1

4
e−

β2

σ2 + λ)I)−1∥2

=
4

e−
β2

σ2 + 4λ
∥( e−

β2

σ2

e−
β2

σ2 + 4λ
11⊤ + I)−1∥2

=
4

e−
β2

σ2 + 4λ
∥I− e−

β2

σ2

e−
β2

σ2 + 4λ+ e−
β2

σ2 d
11⊤∥2

=
4

e−
β2

σ2 + 4λ
= Cλ,σ

In summary, we have

∥ϕ(x)− ϕ(x′)∥2 ≤

[
Cλ,σ

[√
1 + dL

2
+

βR
√
d− 1

σ2
exp(

2β

σ2
)

]
+ C2

λ,σ

βR(d− 1)
√
d

σ2
exp(

2β

σ2
)

]
∥x− x′∥2

=O(

√
dL

λ
+

βR(λ+ d)
√
d

λ2σ2
exp(

2β

σ2
))∥x− x′∥2

When σ → +∞, it is easy to see that the coefficient in the bracket tends to

Cλ,σ

[√
1 + dL

2
+

βR
√
d− 1

σ2
exp(

2β

σ2
)

]
+ C2

λ,σ

βR(d− 1)
√
d

σ2
exp(

2β

σ2
) →

√
d+ 1CλL

2
.

Since πx → 1 as σ → +∞, LIME tends to be Uniform LIME in the limit. The above result just shows that as σ → +∞,
the Lipschitz constant of LIME converges to the Lipschitz constant of Uniform LIME, which validates the correctness and
compactness of our proof.
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Robust Explanation for Free or At the Cost of Faithfulness

C.4.3. SHAP

Theorem C.11. For SHAP, if f is (δ, L)−Lipschtz, we have ∀x,x′, ∥x− x′∥2 ≤ δ

∥ϕ(x)− ϕ(x′)∥2 ≤ 2
√
dL∥x− x′∥2

that is, ϕ(x) is (δ, 2
√
dL)−Lipschitz

Proof. Denote ϕ(x)i as the i−th element of ϕ(x).

|ϕ(x)i − ϕ(x′)i| =
∣∣ ∑
S⊂[d]:i∈S

(|S| − 1)!(d− |S|)!
d!

[
(f(x⊙mS)− f(x⊙mS\{i}))

− (f(x′ ⊙mS)− f(x′ ⊙mS\{i}))
]∣∣

=
∣∣ ∑
S⊂[d]:i∈S

(|S| − 1)!(d− |S|)!
d!

[
(f(x⊙mS)− f(x′ ⊙mS))

− (f(x⊙mS\{i})− f(x′ ⊙mS\{i}))
]∣∣

(Triangle Inequality) ≤
∑

S⊂[d]:i∈S

(|S| − 1)!(d− |S|)!
d!

[
|f(x⊙mS)− f(x′ ⊙mS)|

+ |f(x⊙mS\{i})− f(x′ ⊙mS\{i})|
]∣∣

(f is (δ, L−Lipschitz) ≤
∑

S⊂[d]:i∈S

(|S| − 1)!(d− |S|)!
d!

[
L∥(x− x′)⊙mS∥2

+ L∥(x− x′)⊙mS\{i}∥2
]

≤
∑

S⊂[d]:i∈S

(|S| − 1)!(d− |S|)!
d!

[
L∥x− x′∥2 + L∥x− x′∥2

]
=2L∥x− x′∥2

The last inequality is due to the fact that mS ∈ {0, 1}n and that

∥x⊙ms∥22 =
∑
i:i∈S

x2
i ≤

d∑
i=1

x2
i = ∥x∥22.

The last equality holds by the following derivation:

∑
S⊂[d]:i∈S

(|S| − 1)!(d− |S|)!
d!

=

d∑
k=1

∑
S:|S\{i}|=k

(k − 1)!(d− k)!

d!
=

d∑
k=1

(
d− 1

k − 1

)
(k − 1)!(d− k)!

d!
=

d∑
k=1

1

d
= 1

With bound on |ϕ(x)i − ϕ(x′)i|,∀i, we can easily bound ∥ϕ(x)− ϕ(x′)∥2

∥ϕ(x)− ϕ(x′)∥2 ≤
√
dmax

i
|ϕ(x)i − ϕ(x′)i| = 2

√
dL∥x− x′∥2

C.4.4. INTEGRATEDGRADIENT

Lemma C.12. For two vectors a, b ∈ Rn, we have

∥a⊙ b∥2 ≤ ∥a∥2∥b∥2
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Proof.

∥a⊙ b∥22 =

n∑
i=1

a2i b
2
i

L2 norm is bounded by L1 norm ≤
( n∑
i=1

|aibi|
)2

Holder’s Inequality ≤
( n∑
i=1

a2i
)( n∑

i=1

b2i
)

=∥a∥22∥b∥22

Lemma C.13 (Paulavičius & Žilinskas (2006) Theorem 1). If f is (δ, L)−Lipschitz and f is differentiable, then we have

∥∇f∥2 ≤ L

Theorem C.14. For IntegratedGradient, assume that |f(x)| ≤ R,∀x ∈ X , and that f is (δ,H)−smooth:

∥∇f(x)−∇f(x′)∥2 ≤ H∥x− x′∥2, ∥x− x′∥2 ≤ δ.

We have if f is (δ, L)−Lipschitz, then ϕ(x) is (δ, βH+2L
2 )− Lipschitz.

Proof.

∥ϕ(x)− ϕ(x′)∥2 =∥Eϵ∼U(0,1)[x⊙∇f(ϵx)− x′ ⊙∇f(ϵx′)]∥2
=∥Eϵ∼U(0,1)[x⊙∇f(ϵx)− x⊙∇f(ϵx′) + x⊙∇f(ϵx′)− x′ ⊙∇f(ϵx′)]∥2

(Minkowski Inequality) ≤∥Eϵ∼U(0,1)[x⊙∇f(ϵx)− x⊙∇f(ϵx′)]∥2
+ ∥Eϵ∼U(0,1)[x⊙∇f(ϵx′)− x′ ⊙∇f(ϵx′)]∥2

(Jensen’s Inequality) ≤Eϵ∼U(0,1)[∥x⊙∇f(ϵx)− x⊙∇f(ϵx′)∥2]
+ Eϵ∼U(0,1)[∥x⊙∇f(ϵx′)− x′ ⊙∇f(ϵx′)∥2]

(Lemma C.12) ≤Eϵ∼U(0,1)[∥x∥2∥∇f(ϵx)−∇f(ϵx′)∥2]
+ Eϵ∼U(0,1)[∥x− x′∥2∥∇f(ϵx′)∥2]

(f is (δ,H)−smooth and Lemma C.13) ≤β ·HEϵ∼U(0,1)[ϵ∥x− x′∥2] + L∥x− x′∥2

=
βH + 2L

2
∥x− x′∥2

C.5. Gradient

Theorem C.15. For Gradient, if f is (δ,H)-smooth, then we have ϕ(x) is (δ,H)-Lipschitz.

Proof. Because f is (δ,H)-smooth, we have

∥ϕ(x)− ϕ(x′)∥ =∥∇f(x)−∇f(x′)∥ ≤ H∥x− x′∥

which means ϕ(x) is (δ,H)-Lipschitz.

C.6. Gradient×Input

Theorem C.16. For Gradient×Input, if f is (δ, L)-Lipschitz and (δ,H)-smooth, then we have ϕ(x) is (δ, βH+L)-Lipschitz.
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Proof.

∥ϕ(x)− ϕ(x′)∥ =∥∇f(x)⊙ x−∇f(x′)⊙ x′∥
=∥∇f(x)⊙ x− |∇f(x)⊙ x′ + |∇f(x)⊙ x−∇f(x′)⊙ x′∥
≤∥∇f(x)⊙ x− |∇f(x)⊙ x′∥+ ∥∇f(x)⊙ x′ −∇f(x′)⊙ x′∥
=∥∇f(x)∥∥x− x′∥+ ∥∇f(x)−∇f(x′)∥∥x′∥
≤∥∇f(x)∥∥x− x′∥+ βH∥x− x′∥

By Lemma C.13
∥∇f(x)∥ ≤ L

therefore, we have

∥ϕ(x)− ϕ(x′)∥ ≤∥∇f(x)∥∥x− x′∥+ βH∥x− x′∥
≤(βH + L)∥x− x′∥
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