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Abstract
We develop techniques for synthesizing neu-
rosymbolic programs. Such programs mix dis-
crete symbolic processing with continuous neu-
ral computation. We relax this mixed dis-
crete/continuous problem and jointly learn all
modules with gradient descent, and also incor-
porate amortized inference, overparameterization,
and a differentiable strategy for penalizing lengthy
programs. Collectedly this toolbox improves the
stability of gradient-guided program search, and
suggests ways of learning both how to parse con-
tinuous input into discrete abstractions, and how
to process those abstractions via symbolic code.

1. Introduction
We seek steps toward AI systems that learn to symboli-
cally process perceptual input. Consider, for example, a
system which learns to infer the 3D structure of objects:
starting from pixels, it must infer low-level symbols (curves,
parts), and then organize them according to symbolic rela-
tionships (symmetry, part repetitions, part hierarchy). Or,
consider a system which learns to control a moving ob-
ject that navigates around obstacles: starting from sensory
data (lidar, RGBD), it must first parse the world (into ob-
jects, proximities, freespace), and then compute trajecto-
ries using high-level computations (PID controllers, etc.).
Similar perceptual-symbolic problems arise when learning
structured world models from pixels, inferring instructions
from natural language, or constructing visual analogies. We
propose framing such tasks as neurosymbolic program
synthesis: learning neural components that extract sym-
bols from perception, and synthesizing programs to further
process those symbols with more complex computations.

Our ultimate goal is to develop general methods that could,
we hope, apply to challenging neurosymbolic tasks like
those previously mentioned. We take the stance that sym-
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bols should be grounded in perception, and that symbol
processing should be implemented by learnable program-
like representations. However, we also propose that rather
than hand-code a preordained set of primitive symbols, AI
systems should learn to carve the perceptual world into
their own discretization. What constitutes a ‘symbol’ may
vary across domain and across datasets, and can be hard
for human engineers to anticipate. By jointly learning the
symbols, as well as synthesizing the programs that operate
on them, we hope to side-step the pitfalls associated with
hand-engineered representations.

Delivering on the above promises requires synthesizing neu-
rosymbolic programs, which poses unique technical chal-
lenges. Unlike conventional programs, which are discrete,
a neurosymbolic program has both continuous weights and
discrete program structure, both of which must be synthe-
sized. In addition to solving a mixed discrete/continuous
problem, synthesizing a neurosymbolic program is severely
underconstrained. It is under constrained because it is not
clear what parts of the problem should be handled by sym-
bolic processing, and what should be handled by neural
networks. Because neural nets are universal function ap-
proximators, they can in theory satisfy any program learning
problem, at least on the training data.

Our main technical contribution is a suite of methods for
circumventing the above two challenges. We assume a
multitask setup where the learner is exposed to a variety
of neurosymbolic programming tasks. Having multiple
tasks introduces extra constraints, and also allows learning
across tasks how to search for programs. Hence multitask-
ing can address both the ill-posed nature of the problem,
and also the intractable search aspect due to the mixed dis-
crete/continuous nature of the problem.

Concretely, our method trains a neural search policy to
synthesize neurosymbolic programs. It uses a differentiable
interpreter to backprop gradients from the desired program
output all the way back to the parameters of the search
policy. We overparametrize the program search space to
ease continuous optimization, but this overparametrization
leads to bloated programs with too much code, hence we
regularize the length of the programs to produce concise,
interpretable code. We therefore call our method ROAP
(Regularize, Overparametrize, Amortize, for Programs).
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Figure 1. Top, CIFAR-MATH domain. System synthesizes symbolic equations, but instead of learning the equations from concrete
numbers, it inputs CIFAR-10 images, where each image category (dog, cat, frog, ...) has been mapped to a digit from 0–9. Note: we show
MNIST above for ease of understanding. Bottom, graphics domain. Given a partial observation of a 3D shape, system learns to infer a
3D graphics program completing the shape. Note: For CIFAR-MATH we show one task. For 3D we show several tasks.

We apply ROAP to two different domains (Fig. 1). Our
CIFAR-MATH domain is a harder version of a classic prov-
ing ground for neural logic programming (Manhaeve et al.,
2018), modified to include program synthesis. On it, we
show that ROAP can synthesize arithmetic equations while
at the same time learning to parse images into symbolic dig-
its. Our 3D-Reconstruction domain involves synthesizing
graphics programs that algebraically transform and combine
neural geometric primitives, and can be used to decompose
3D shapes and infer missing geometry. In total our work
makes the following contributions:

• A synthesis method for neurosymbolic programs. ROAP
works without supervising on source code, and so
doesn’t require a training set of programs, unlike e.g.
Codex (Chen et al., 2021a). This is important because
it allows unsupervised learning over large datasets, even
if those datasets are not designed for program synthesis.
ROAP also does not require pretraining the ‘neural’ part
of a neurosymbolic program, unlike (Chen et al., 2021b).
ROAP does require a Domain Specific Language, which
restricts the space of programs and imparts human prior
knowledge.

• Comparison against four prior neurosymbolic synthesis
methods (Shah et al., 2020; Gaunt et al., 2016; Valkov
et al., 2018; Cui & Zhu, 2021). To the best of our knowl-
edge, the neurosymbolic program synthesis field lacks
direct comparisons among these prototypical methods.

2. Problem statement & Technical background
Definitions: Architecture, parameters, denotation. A
neurosymbolic program has both a symbolic program ar-
chitecture α, and also continuous parameters θ. Each
architecture comes from a set A of possible architectures.
We can instantiate a fixed architecture with different con-
tinuous parameters, and we write αθ for the program with
architecture α and parameters θ. We assume a denotation
operator J·K, which takes a program αθ and outputs what
the program executes to. Generally, JαθK is a function.

An example of synthesizing a neurosymbolic program is
optimizing for the architecture α ∈ A and parameters θ ∈
Rd minimizing a loss function over training data D:

α, θ = argmin
θ∈Rd

α∈A

∑
(x ,y)∈D

Loss
(
y , JαθK (x )

)
(1)

This is challenging because it involves optimizing over dis-
crete α (from combinatorially large A) and continuous θ
(which is potentially high dimensional). The trick of relax-
ation is to convert this mixed discrete-continuous problem
into a purely continuous one, and then optimize with con-
tinuous methods. Intuitively, relaxations index the space
of architectures using continuous weights that interpolate
between discrete structures:

Definition: Relaxation. ArchitecturesA and denotation J·K
admit a k -dimensional relaxation when the architectures
are represented as k -dimensional vectors (A ⊂ Rk ) and we
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can take the denotation of any such k-dimensional vector,
even ones not in A, which means Rk ⊆ domain(J·K).

There are many relaxation approaches differing on what
exactly the denotation means as an embedding ‘interpo-
lates’ between architectures. Some relaxations define an
approximate probabilistic semantics and interpret the k -
dimensional vector as a vector of probabilities (Si et al.,
2019; Gaunt et al., 2016; Chaudhuri & Solar-Lezama, 2010).
Others use schemes reminiscent of fuzzy logic (Evans &
Grefenstette, 2018), or form linear combinations of discrete
subprograms (Sahoo et al., 2018). Either way, solving the
relaxation typically proceeds by finding a continuous vector
using gradient-based optimization, and then discretizing that
vector to the closest symbolic architecture.

Amortized inference: Learning to search. The idea be-
hind amortized inference (Gershman & Goodman, 2014) is
to learn to search for programs (“infer” programs). Instead
of directly optimizing over the space of programs, amor-
tized inference in this context means optimizing a policy
that probabilistically generates programs, conditioned on a
particular programming task to solve. Typically the policy
is trained across many tasks so that it learns to generate
programs that solve each task (Devlin et al., 2017).

3. Method
We assume a training corpus of neurosymbolic program-
ming tasks, T . Each such task t ∈ T is specified by a
dataset Dt of input-output pairs, (x , y). For example, in the
CIFAR-MATH domain, each input x is a triple of CIFAR-10
images, while each output y is a real number, and the task
t is a collection of (image-triple, scalar) input-outputs. In
the 3D reconstruction domain, x is a point in 3D space and
y is either 1 or 0, depending on if x is inside or outside the
object, respectively; meanwhile t is voxels, possibly with
missing or noisy data.

Amortization & Parameter Sharing. We start with an
objective function for amortized inference that optimizes
the parameters of a policy, ϕ, to increase the probability of
generating a program architecture that has low loss. We
also optimize the parameters θ of the neural networks in-
voked by these symbolic program architectures, ultimately
minimizing L(θ, ϕ) shown below:

L(θ, ϕ) = E
t∼T

α∼πϕ(·|t)

 ∑
(x ,y)∈Dt

Loss(y , JαθK(x ))

 (2)

Already, this framing helps address one issue with synthe-
sizing neurosymbolic programs: Each program can invoke
learned neural networks, but only ones using shared pa-
rameters θ. Thus having multiple tasks introduces extra
constraints on θ, preventing the system from solving every-

thing with monolithic neural networks. The alternative pos-
sibility of optimizing task-specific continuous parameters
(θt ,∀ t ∈ T ) would not introduce these extra constraints.

Gradient estimation via Relaxation. Learning to search
for programs requires optimizing the search policy parame-
ters ϕ. We implement our policies as neural networks, so we
are interested in taking gradients of L with respect to ϕ (and
also θ). While one could use a reinforcement-learning style
approach, getting useful training signal from such meth-
ods would require serendipitously finding good program
architectures from a randomly initialized policy. Absent
pretraining, symbolic programs are hard to randomly guess
correctly. How then can we get training off the ground?

At a high level, ROAP relaxes the symbolic program space;
assumes that sampling a program architecture is equivalent
to sampling an array of one-hot vectors from categorical
distributions; and then finally uses Gumbel-Softmax to back-
prop through these categorical draws. In low-level detail,
we assume the relaxed program semantics allow backpropa-
gating through the denotation operator. However, we still
have to pass gradients backward through the random sam-
pling from the policy (expectation over α ∼ πϕ(· | t) in
Eq. 2). To do this, we assume each symbolic architecture
α is encoded as C one-hot vectors,1 notated {αc}Cc=1, and
the policy πϕ samples an architecture α by drawing from C
categorical distributions with parameters {pc

ϕ(t)}Cc=1:

πϕ(α | t) =
∏

1≤c≤C

Cat
(
αc ; p

c
ϕ(t)

)
(3)

This licenses rewriting the objective in Eq. 2 as

E
t∼T

E
αc∼Cat(·; pc

ϕ(t))
∀ 1≤c≤C

 ∑
(x ,y)∈Dt

Loss(y , JαθK(x ))

 (4)

At this point we can deploy the well-known Gumbel-
Softmax trick (Jang et al., 2016), which offers a low-
variance approximation to the above expectation. Gumbel-
Softmax perturbs the raw probabilities {pc

ϕ(t)}Cc=1 with
Gumbel-distributed noise, then takes a softmax with a tem-
perature that aneals toward 0. At 0 temperature, Gumbel-
Softmax exactly implements Eq. 4. When the temperature is
positive, Gumbel-Softmax produces program architectures
α whose constituent “one-hot” vectors actually contain mul-
tiple positive components. This causes the relaxed denota-
tion operator to interpolate the behavior of nearby program
architectures, yielding stable gradient estimation.

1To get intuition on why this assumption is reasonable, imagine
that α is the contents of the input tape of a Universal Turing
Machine with tape alphabet Σ; the UTM’s output is α’s denotation.
If C is the maximum program length, then we need C one-hot
vectors of dimension | Σ | to encode α, because α would be
represented by a length C string.
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Expression: (x + x )× y
Domain Specific Language:

f+(a, b) = a + b f×(a, b) = a × b
Straight Line Code:

ℓ1 ← x
ℓ2 ← y
ℓ3 ← f+(ℓ1, ℓ1)
ℓ4 ← f×(ℓ3, ℓ2)

Architecture parametrization:
function left arg right arg
f+ f× ℓ1 ℓ2 ℓ3 ℓ1 ℓ2 ℓ3

Line 3 (1, 0) (1, 0) (1, 0)
Line 4 (0, 1) (0, 0, 1) (0, 1, 0)

Figure 2. Symbolic expressions are built from operators in a Do-
main Specific Language and represented as straightline code. Each
line of code is parametrized by three one-hot binary vectors speci-
fying a function from the Domain Specific Language, and left/right
arguments from earlier lines. (The first lines of code simply load
variables into scope.) The bottommost box shows the 6 one-hot
vectors encoding the example expression (α in the paper).

(Over)parameterizing the program space. We now spec-
ify what program architectures look like, and how we pa-
rameterize them in terms of one-hot vectors. We model each
program architecture as straightline code: A sequence of
L lines of code, each of which introduces a new variable
in scope by applying a function to variables introduced by
preceding lines of code (Fig. 2). Each function comes from
a Domain Specific Language, which contains components
customized to the kinds of programs we expect to synthesize.
Toggling which vector component of α is a 1 corresponds to
toggling which function each line of code uses, and which
preceding lines are passed as arguments to that function.

To compute the denotation of α, given its vectorized encod-
ing, we use a simple dynamic program that memoizes the
computation of the value computed by each line of code.
This runs in time quadratic w.r.t. the total lines of code.

Although this parametrization works reasonably well, there
are many alternatives. We also tried encoding a syntax tree
instead of a list of lines of code, but this worked worse. In
general, the classic program synthesis literature is filled with
different techniques for ‘sketching’ a large set of possible
programs, and then indexing that set with boolean decision
variables (Solar Lezama, 2008; Jha et al., 2010).

We now overparametrize the problem by expanding the
maximum possible lines of code far beyond what the system
needs to solve its programming problems. This dramatically
increases the dimensionality of α, and empirically we found
that this significantly improved the convergence properties
of gradient descent when optimizing Eq. 4. Without over-
parametrization, the system is prone to falling into poor

Figure 3. Simulation results showing probability of randomly ini-
tializing to a correct program, while varying max program length
and target program length

local minima. We speculate that overparametrization helps
for our problem for similar reasons as to why it helps for
deep networks: (1) that it is harder to get trapped in higher
dimensional spaces, because there is likely at least one direc-
tion which leads to lower loss, and (2) with more parameters
there is a higher chance of a randomly initialized subnet-
work falling within the basin of a good optimum, known as
the lottery ticket hypothesis (Frankle & Carbin, 2018).

Speculatively, if lottery-ticket type behavior accounts for
the success of overparametrization in our setting, then we
might expect that increasing the maximum lines beyond
the needed sizes actually increases the probability that ran-
domly initialized weights encode the correct program. We
built a simplified theoretical model of randomly initialized
program architectures (Appendix Sec. D). Using this model
we calculated the probability of a random network contain-
ing the correct program (Fig. 3). Across a range of differ-
ent ground-truth program lengths, this probability saturates
around a few tens of lines of code. In agreement with this
analysis, we empirically found L = 30 max lines of code
worked well on both of our domains.

Regularizing program length. Unsurprisingly, over-
parametrizing by increasing the max program size generates
excessively long programs. Because length is a proxy for
complexity, these programs might also tend to be more over-
fit, and also harder for humans to understand and interpret.

To combat the code explosion caused by overparametriza-
tion, we incorporate an additional term in our loss which
penalizes the average program length. Calculating program
length from our parametrization of α is straightforward to
do in linear time using dynamic programming, and is also a
smooth, differentiable function of α’s components. Hence
we can simply add the length-penalizing term to our loss.

In practice we train ROAP without regularization for the first
half of its training process–to encourage exploration–and
then turn on this regularizer halfway through to compress
and optimize the programs (Fig. 4).
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Figure 4. Regularizing program length halfway through training
refactors the programs to be shorter (orange) without sacrificing
accuracy (blue). Top: CIFAR-MATH. Bottom: 3D graphics.

Min-sampling. The policy acts as a search heuristic that
stochastically proposes programs. Running the policy mul-
tiple times per task and taking the sampled program with
the minimum loss allows trading more compute for lower
loss, a trick we call ‘Min-sampling’. This is conceptually
related to importance reweighting of samples from neural
recognition models (Burda et al., 2015).

4. Experiments
4.1. CIFAR-MATH

The classic warmup problem for neurosymbolic systems
is to train an MNIST classifier by supervising only on the
result of running an algorithm on that classifier’s outputs.
For example, DeepProbLog (Manhaeve et al., 2018) and
Scallop (Huang et al., 2021) both train a digit classifier
given examples of handwritten digits being added together:
Given examples like + →11, together with the logic
of addition, these systems reason backward through the
addition operator to train a neural network MNIST classifier.

CIFAR-MATH makes this warmup domain harder along
several dimensions. First, we introduce program synthe-
sis by not telling the system what arithmetic expression
is executing on the input images: this system must infer
and synthesize the correct symbolic equation. Second, we
consider more complex equations with several arithmetic
operators. Last, we switch from MNIST to CIFAR-10, and

do not tell the system that there are only 10 digits. Thus the
system has a harder reasoning challenge, because it has to
reason backward through more complex expressions; a new
induction challenge, because the expressions are hidden;
and a nontrivial perception challenge, because CIFAR-10 is
more visually complex than MNIST.

Following Fig. 1, each task has a different hidden equation
(Fig. 1 illustrates x + yz ). The inputs to the equation are
presented as CIFAR-10 images. Each of the ten CIFAR-10
categories (dog, boat, frog, ...) is mapped to a different digit
from 0–9, but this mapping is never given to the system.
Architectures α are built from a Domain Specific Language
containing addition, multiplication, and subtraction. The
shared continuous parameters θ are the weights of a CNN
that maps a CIFAR-10 image to a scalar.

We are interested in a variety of research questions, and
compute evaluation metrics to help us answer each of them:

• Can we synthesize the correct program? Because CIFAR-
MATH comes with ground truth hidden programs, we
check if the synthesized programs generate the same out-
puts on random inputs.

• Do we successfully learn a neural perception module,
equivalently did the CNN learn a CIFAR-10 classifier
as a side effect of the overall training procedure? To
evaluate this we snap the CNN outputs to the nearest
integer and report how often this yields the correct integer.
For example, if frogs correspond to the number 3, then
correctly classifying a frog means predicting a number in
the range [2.5, 3.5).

• To understand if the learned programs generalize out of
sample, we designate one task to be trained only on small
numbers (0–5), and then check if the synthesized neu-
rosymbolic program extrapolates to larger numbers (6–9;
multitasking makes it see these numbers on other tasks).

Tbl. 1 shows the metrics relating to the above questions
for our system as well as ablations and baselines. We use
a REINFORCE baseline, which uses the score function
estimator instead of Gumbel-Softmax; NEAR (Shah et al.,
2020), which uses A∗ to search the space of neurosymbolic
programs, and does not perform multitasking or amortized
inference; dPads (Cui & Zhu, 2021), which improves upon
NEAR; Terpret (Gaunt et al., 2016), which directly op-
timizes the parameters of α, and does not perform multi-
tasking or amortized inference ; and HOUDINI (Valkov
et al., 2018), which solves tasks sequentially via enumera-
tion while sharing neural network parameters across tasks.

Overall, we find that the full model can jointly learn to
ground its visual input into discrete symbols (numbers 0–9),
and then transform those discrete symbols using symbolic
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Table 1. Experimental Results on CIFAR-MATH. min-sampling: 3 samples/gradient step

Program-Acc Symbolic-Acc Test-Symbolic-Acc Loss Test-Loss OOD-Loss

ROAP (ours) 91.8% 82.6% 48.7% 0.005 0.11 0.07
+ min-sampling 99.8% 100% 69.4% 2.4e-4 0.11 0.05

+ min-sampling; contiguous-image 99.2% 100% 72.2% 7.3e-4 0.12 0.04
w./o. program 0.0% 4.2% 4.7% 1.3e-5 0.11 0.52

w./o. amortized inference 28.4% 49.5% 27.9% 0.022 0.16 0.15
w./o. gumbel-softmax 21.0% 1.8% 0.9% 0.007 0.14 2.07

w./ Syntax-Tree parametrization 69.0% 43.0% 28.1% 0.013 0.14 0.22
w./ max lines=10 11.6% 9.9% 6.9% 0.027 0.14 2.12

REINFORCE 0.2% 0.0% 0.0% 0.59 0.65 0.64
Terpret 0.9% 4.0% 3.4% 6.4e19 5.9e19 N/A

Terpret + multitasking 7.4% 11.1% 8.4% 7.6 12.8 0.74
NEAR 0.8% 8.3% 6.9% 0.059 0.18 0.93
dPads 2.0% 9.6% 9.2% 0.36 0.36 0.96

HOUDINI 17.4% 13.1% 9.4% 0.015 0.09 0.60

equations that the system itself infers. None of the base-
line neurosymbolic synthesis methods meet that criteria.2

We also find that a symbolic program aids out-of-sample
generalization, as can be seen by comparing with the ‘w/o
program’ baseline, which replaces the program architec-
ture with a small neural network. This suggests ROAP has
learned an appropriate division of labor between its CNN
and its symbolic programs, with the CNN handling percep-
tion (but not reasoning) while the symbolic programs handle
reasoning, thus enabling it to extrapolate out-of-distribution.

We additionally verified that ROAP does not need the image
to be split into three separate images showing each digit.
When the input is presented as a single contiguous image,
our model’s performance is essentially unchanged (Tbl. 1,
‘contiguous-image’).

Why does the model learn the ‘right’ latent symbols? A
single CIFAR-MATH problem is ill-posed: it is not clear
what latent symbols the neural network should output, be-
cause they are reprocessed by a (latent) program. Our exper-
iments establish however that the system readily converges
on the ‘right’ symbol grounding by mapping each CIFAR-
10 image category to its corresponding digit. Intuitively, this
happens because multitasking introduces extra constraints
on the function learned by the neural component, which has
to serve a variety of downstream symbolic computations.

If this story is true, then the ability of the system to converge
on a good symbol grounding hinges on having a sufficiently
constrained optimization problem. Extra tasks impose extra

2We also tried Scallop (Huang et al., 2021), a leading neural
logic programming system, but its differentiable-top-k-proofs in-
ference method did not terminate on CIFAR-MATH problems. We
suspect this is because it has to build a massive proof tree when
the arithmetic equation is unknown.
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Figure 5. Effects of constraints on symbol grounding. Both having
more tasks, and having more input-outputs per task, introduced
added constraints. Heatmap shows max Symbolic-Acc over 5 runs,
and should be approximately interpreted as whether or not it has a
good chance of converging correctly in 5 runs.

constraints, but so does having more input-output examples
for each task. We therefore study whether either of those
constraints suffice for recovering the correct symbol ground-
ing. Fig. 5 shows success in recovering the correct symbolic
basis as a function of the constraints imposed on the opti-
mization problem, both by multitasking and input-outputs
per task. We see a phase-transition like structure where,
once the total number of constraints passes a tipping point,
the system ‘snaps’ into the expected symbolic basis. This
shows the importance of constraints, and also that there is
a tradeoff between the number of tasks, and the number of
examples per task.
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Table 2. 2D results. (NEAR’s pathological behavior on these problems is to loop forever because it can fit a shape arbitrarily well
with increasingly long partially completed programs, thus it never terminates with a completed program. HOUDINI’s enumeration is
inapplicable due to continuous parameters in affine transforms)

Method Chamfer Distance
Name Train-mode Test-beam-size No-refinement Test-time-refinement

CSG-Net Supervised+RL 10 1.14 0.41
CSG-NETSTACK Supervised+RL 10 1.02 0.34

PLAD LEST+ST+WS 10 0.811 -
UCSGNet Unsupervised 1 0.32 -

REINFORCE RL 1 inf -
NEAR Unsupervised 1000 N/A Pathological behavior

HOUDINI Unsupervised - N/A N/A
Terpret Unsupervised 1 N/A 4.76±2.22

ROAP (ours) Unsupervised 1 0.21 -

4.2. Graphics Program Synthesis

We use ROAP to synthesize neurosymbolic graphics pro-
grams. We consider the problem of reconstruction, which
means inferring the shape of an object given a par-
tial/occluded observation. The graphics programs start with
basic parts, like boxes and balls, which are transformed
and combined to generate 3D geometry. What makes these
graphics programs neurosymbolic is that, instead of hard-
coding these basic parts, we allow the system to learn its
own part library. Each learned part is a simple shape that
can be viewed as the output of a (tiny and unusual) neural
network, whose parameters comprise θ (Appendix Sec. C)

Our Domain Specific Language for graphics programs in-
cludes the ability to intersect and union shapes; reflect
shapes over principal axes; a for loop that repeatedly trans-
lates its loop body; and affine transformations upon basic
parts. Each graphics program is a function from a point
in space (R3) to a boolean indicating whether that point is
inside or outside of the object.

We first test on reconstructing 2D silhouettes of furniture
(Fig. 6), which a series of recent graphics program synthesis
works evaluate on (Jones et al., 2022; Sharma et al., 2022;
Kania et al., 2020; Sharma et al., 2018); see Appendix B.2.
We assess reconstruction accuracy via Chamfer distance
between the ground truth shape and the output of the syn-
thesized program. Tbl. 2 shows that ROAP achieves higher
reconstruction accuracy compared to these comparable re-
cent works.

Next we evaluate on 3D models. Because ROAP does not
supervise on ground-truth programs, we can apply it to
datasets not designed for program synthesizers, and so we
choose the canonical ShapeNet dataset (Chang et al., 2015);
see Appendix C.2. Our goal is to study the qualitative
behavior of our system and contrast with other general-
purpose program synthesizers, not to set a new state-of-
the-art for ShapeNet. ShapeNet has received over 7 years

Figure 6. Qualitative results of 2D furniture silhouettes. Top, input
silhouette. Middle, reconstruction. Bottom, parts used.

Table 3. Experimental Results on 3D

Full Crop-Plane

ROAP (ours) 1.7 1.8

w./o. program 1.2 2.0
w./o. amortized inference N/A N/A

w./o. gumbel-softmax 9.5 8.4
w./ Syntax-Tree 2.0 7.1

w./ depth=10 8.7 2.7
w./ depth=3 2.7 13.1

Figure 7. Neural part learning for 3D
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of attention from the deep learning and computer vision
communities, who have built sophisticated yet specialized
3D reconstruction networks and training regimes (Genova
et al. (2020) is representative in its sophistication).

Each reconstruction task is specified by a partial observation
of a voxel field, and the synthesized program describes how
to generate the underlying complete 3D shape. We consider
corrupting the input voxel field by cropping out a random
half-plane (Fig. 8). Fig. 1 diagrams how ROAP represents
shapes as programs that algebraically combine basic parts.
Fig. 7 illustrates example learned parts: Rather than prepro-
gram boxes, cylinders, etc., the system learns from the data
which primitives are most suitable. It learned, for example,
a boxy cuboid with rounded corners for modeling chair/sofa
seats (yellow), and an elongated cuboid with a subtly curved
top for modeling backs and headrests (red). This data-driven
discovery of basic symbolic abstractions was done without
supervising on programs or part decompositions.

Last, we again quantify reconstruction quality via Cham-
fer distance, and compare against ablations of our system
(Tbl. 3). The most important ablation of our system is ‘w/o
program’. This replaces the program with a neural network,
essentially modeling an occupancy network (Mescheder

et al., 2019), which is a foundational deep learning architec-
ture for 3D reconstruction. Given a complete observation
of the shape, a pure neural network is superior at recon-
struction (‘Full’ in Tbl. 3). But given a partial observation,
the neurosymbolic program comes out ahead (‘Crop-Plane’
in Tbl. 3). This is because the symbolic program structure
has an inductive bias primed to recognize symmetries and
repeated parts. Hence this high-level symbolic prior helps
impute missing observations.

5. Related Work
Neurosymbolic programming is a growing area that seeks
to engineer learning and inference methods for hybrid pro-
gram/neural architectures (Chaudhuri et al., 2021), and our
work is a special case of this broad framework. Specifi-
cally, we tackle inductive program synthesis (Gulwani et al.,
2017)–synthesizing programs from input-output examples–
but where the inputs are continuous and must be prepro-
cessed by neural networks into symbolic form. Prior works
in this setting assume a hand-engineered inventory of basic
symbols (Ellis et al., 2018), while others backpropagate
through differentiable programs to jointly train network
weights and program structure (Gaunt et al., 2017). Mul-

Figure 8. Results on 3D where the system inputs a voxel field with a random subset cropped out (left models), from which it synthesizes a
program (right models) that approximates the ground-truth shape (middle point cloud). Our model can be trained to complete partial
geometry with a variety of different subsets taken out. Cropping out more of the input voxels makes the problem harder. Tbl. 3 reports
quantitative results contrasting the easiest regime (full voxel inputs) vs the hardest regime (an entire random half plane cropped).
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titasking is a known strategy for this setting (Valkov et al.,
2018). Training a neural network to help guide search for
discrete programs (amortized inference) is standard (Shi
et al., 2021; Chen et al., 2018), and we extend that idea to
continuous relaxations of program spaces.

The difficulties of gradient descent over relaxed program
spaces is well known, to the extent that it has been dubbed
the so-called ‘terpret problem’ (Gaunt et al., 2016). Un-
fortunately, such an approach is the most straightforward
way of training neurosymbolic programs. From a technical
perspective, our work hopes to make progress on the ‘terpret
problem’, thereby unlocking scalable and reliable training
of this class of neurosymbolic programs.

Some of our core tricks have debuted in prior neurosymbolic
program synthesizers: Terpret noticed overparametriza-
tion helps (Gaunt et al., 2016), Memoized Wake-Sleep de-
ployed amortized inference (Hewitt & Tenenbaum, 2019),
and HOUDINI shares neural network parameters across
tasks (Valkov et al., 2018). Our technical contribution is pro-
viding the mathematical and algorithmic framework which
allows these tricks, and more, to be combined into the same
end-to-end learnable system. For example, we showed that
the reparametrization trick (Jang et al., 2016) made amortiza-
tion compatible with relaxation and gradient-guided search.

More fundamentally, our efforts connect to the body of work
on the ‘symbol grounding problem’ (Harnad, 1990): How
does a system learn to ‘ground’ abstract symbols (e.g., num-
bers, parts) in terms of their high-dimensional perceptual
counterparts (e.g., images of digits)? This problem is es-
pecially difficult absent strong supervision on the meaning
of each abstract symbol (Chang et al., 2020), and ROAP
considers a distantly supervised setting. Prior works con-
sider a variety of orthogonal techniques to address symbol
grounding (Topan et al., 2021), including scaffolding with
natural language (Andreas et al., 2016; Mao et al., 2021).

6. Conclusion
Our goal is to make progress on basic neurosymbolic prob-
lems: starting from perception, and absent symbol-level
supervision, how can we discover basic symbolic abstrac-
tions together with the symbolic programs which manipulate
them? Although our experiments confirm that ROAP might
be on the right track for solving these problems, our method
has important limitations. ROAP cannot operate without
a reasonably-sized training corpus of programming tasks,
although the fact that it does not need to supervise on source
code helps address this limitation. Fundamentally, ROAP
assumes end-to-end gradient descent is the right approach,
which means that program execution must be relaxed and
differentiated. It is not clear that differentiable program
induction can handle sophisticated programming constructs,

such as data structures and recursion (Feser et al., 2017), at
least in its current form. Thus we especially hope ROAP
helps spur more fundamental progress on differentiable pro-
gram relaxation techniques.

Acknowledgements. We gratefully acknowledge the sup-
port of a Research Scholar gift from Google.
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A. CIFAR-MATH Experimental Details
A.1. Experimental Setup

Neural network. We use an 18-layer ResNet backbone (He et al., 2016) as the image encoder with an MLP decoder,
whose parameters collectively comprise θ.

Program denotation. Fig. 9 specifies how we execute program architectures α in this domain using a simple dynamic
program.

Dataset. We generate 500 arithmetic tasks with 3 input variables, containing up to 3 operators. For each arithmetic task
we have 1e6 I/O pairs for each task for training and 1000 I/O pairs for each task for testing.

Training. We train models using the Adam (Kingma & Ba, 2014) optimizer with a learning rate equal to 3e-4 and ϵ =1e-5
for 20 epochs. The program length regularizer is not applied until halfway through training with a coefficient of λ =1e-4,
which is multiplied into the program length before it is added to the rest of the loss. The temperature for gumbel softmax is
set to 1 in the beginning and changed to 3 from epoch 15 to minimize the error gap from the continuous approximations of
programs near the end of training.

JαKθ(x ) = Execθ(α, x ,L+V ) execute program and extract output on line L+V

Execθ(α, x , l) = CNNθ(xl), whenever l ≤ V load variables as first lines of code. We have V variables

Execθ(α, x , l) =
∑
o

αO
lo × Fo

x ,
∑

1≤a<l

αL
la × Execθ(α, x , a),

∑
1≤b<l

αR
lb × Execθ(α, x , b)

 , whenever l > V

where α is a tuple of (αO , αL, αR)

F1(x ,A,B) = A+ B add

F2(x ,A,B) = A− B subtraction

F3(x ,A,B) = A× B multiplication

F4(x ,A,B) = A no-op/skip connection

Figure 9. Differentiable execution model for a program sketch containing L lines of code. α parametrizes the program via a triple of
2-dimensional arrays (αO , αL, αR) containing values from 0-1. If αO

lo = 1, then line l of the program computes its value by executing
operator o. If αL

la = 1, then line l of the program gets its left argument for the operator from line a . If αR
lb = 1, then line l of the program

gets its rights argument for the operator from line b. The first V lines of the program evaluate to input variables, and we assume that there
are V such variables and L lines of code that follow.

B. 2D Reconstruction Experimental Details
B.1. Methods

B.1.1. CSG, FLIP-UNION, AND FOR-LOOP OPERATIONS

We now specify the denotation of graphics programs. Recall that every graphics program is a function that takes a point
in space (R3) to 0/1 depending on if that point is outside or inside the object. In the relaxed semantics, we think of the
denotation as producing a number in the range [0, 1]. We refer to such numbers in [0, 1] as ‘occupancy values’.

In general, the denotations of the graphics operations follows straightforwardly from their mathematical definitions. For
example, the union operator is represented as the maximum of its argument’s denotations, i.e., o = max(oleft, oright).
Specifically, the occupancy function of any shape that is a union of two parts is defined as J

⋃
(zleft, zright)K(p⃗) =

max(JzleftK(p⃗), JzrightK(p⃗)). The intersection operator is represented as the minimum of the occupancy values, i.e.,
o = min(oleft, oright), and the difference operator is represented as o = max(oleft − oright, 0).
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The flip-union and for-loop operations are implemented as unions of multiple sub-components. The occupancy values of the
sub-components are determined by applying transformations to the coordinates that align with their semantics. Specifically,
the flip-union operation is defined as:

Jflip-unionθf (z )K(p⃗) = max(Jz K(p⃗), Jz K(flipθf (p⃗))),

where θf ∈ R3 defines a line by θTf [p⃗; 1] = 0 in the 2D case. Flipping a point against this line, i.e., flipθf (p⃗) can be
implemented using a simple affine transformation. Let θf = [a, b, c], then

flip(p⃗) =
1

a2 + b2

[
b2 − a2 −2ab 2ac
−2ab a2 − b2 2bc

]
p⃗.

The for-loop operation is defined as

Jfor-loopθd ,C (z )K(p⃗) = max({Jz K(p⃗ − c × θd) : c ∈ {0, 1, · · · ,C − 1}}),

which repeats the part Jz K for C times by moving it in θd ∈ R2 direction for c times.

B.1.2. PROGRAM SKETCH

The generation program is a union of three components: a simple component, a symmetry component, and a repeated
component. The simple component, denoted as JzsimK, comprises of various CSG operations. The symmetry component,
Jflip-unionθf (zsym)K, is implemented using the flip-union operator. The repeated component, Jfor-loopθd ,C (zrepeat)K, is
implemented using the for-loop operator. All sub-components JzsimK, JzsymK, and JzrepeatK, involve multiple CSG operations
on simple primitive shapes such as squares and circles, using the straight-line-coding formulation. In addition, we incorporate
gate parameters θαsym and θαrepeat to control which components are included as

Jshape-programK(p⃗) = max(JzsimK(p⃗), αsym × Jflip-unionθf (zsym)K(p⃗), αrepeat × Jfor-loopθd ,C (zrepeat)K)

αsym = 1(θαsym >= 0)

αrepeat = 1(θαrepeat >= 0).

B.1.3. BALANCED TRAINING LOSS

To prevent models from becoming stuck in sub-optimal local optimums that fit only a portion of the training data, we employ
a balanced training loss that adjusts the weights of samples based on the model’s performance on them. Specifically, the loss
is designed to as

L(θ, ϕ) = Et∼T

weight(t ; θ, ϕ)
∑

(x ,y)∈Dt

Loss(x , y ; θ, ϕ)

 .

We use the chamfer distance to measure the performances of models, cd(t ; θ, ϕ), and adjusts the weights of samples
accordingly: weight(t ; θ, ϕ) = 1 − max

(
1− cd(t; θ,ϕ)

threshold , 0
)

. In practice, we set the threshold to be 0.95 based on our
preliminary experimental results.

B.2. Experimental Setup

We utilize the same CNN encoder and MLP decoder as UCSGNet (Kania et al., 2020). The program sketch includes one
simple component, two symmetry components, and one repeated component. Each of their sub-components has 20 lines of
codes in addition to the 32 transformed primitive shapes, including 16 circles and 16 squares. The maximum count of the
for-loop operator is 3. We use the same dataset as UCSGNet (Kania et al., 2020) which consists of 8000 CAD shapes in
three categories, chair, desk, and lamps (Sharma et al., 2018).

B.3. More Experimental Results

More reconstruction results are visualized in Figure 10.
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Figure 10. 2D Results
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C. 3D Reconstruction
C.1. Method

C.1.1. QUADRATIC PRIMITIVE SHAPES

Our program’s expressive capacity is enhanced by the integration of curved primitive shapes, defined using a combination of
two quadratic functions. The first function dictates the surface geometry, while the second performs a warp transformation.
The signed distance function that defines the surface geometry is presented as follows:

Dθg (p⃗) = max(θTg [p2
x , p

2
y , p

2
z , |px |, |py |, |pz |]− 1, 2|px | − 1, 2|py | − 1, 2|pz | − 1).

This formulation ensures that the primitive shapes do not exceed the dimensions of a 1× 1× 1 box by utilizing the last
three linear surfaces. Additionally, the use of absolute value functions guarantees symmetry across the x, y, and z planes.
This formulation not only allows for the representation of basic shapes such as boxes and spheres, but also enables the
representation of more complex, curved primitive shapes with greater representation power.

Similar to affine transformations, quadratic warp transformations fθw can be represented using a coordinate mapping function,
as demonstrated below:

fθw (p⃗)x =
px − tx

sx
fθw (p⃗)y = py

fθw (p⃗)z = pz ,

where

θw = [θs ; θt ; θα]

αx = 1(θα >= 0)

sx = αx · (θTs [py , pz , p
2
y , p

2
z , pypz ]) + 1

tx = αx · (θTt [py , pz , p
2
y , p

2
z , pypz ]).

The warp transformation allows for the representation of irregular shapes, such as the mattock shape depicted in Figure 1, by
applying quadratic transformations to the coordinate x based on the coordinates y and z . The parameter αx serves as a gate
function that controls the degree of transformation. Note that, due to the symmetry properties of quadratic surfaces, the
transformation of x is equivalent to transforming y and z .

C.1.2. SHAPE LIBRARY

To enhance the efficiency of primitive learning and grounding, we incorporate a shape library that is shared across tasks.
The library comprises 128 warp transformations and 128 quadratic surface formulations, resulting in a total of 16,384
primitive shapes. The shape library retrieval mechanism is designed similarly to vector quantization. In particular, the shape
library include parameters Θw ∈ R128×|θw | for warp transformations and Θg ∈ R128×|θg | for quadratic surfaces. For each
query q⃗ ∈ R|θg |+|θw |, it will return a primitive shape with the warp transformation parameter Θw [argmaxΘw q⃗ [: |θw |]]
and the quadratic surface parameter Θg [argmaxΘg q⃗ [−|θg | :]]. To enable training via gradient descent, we implement a
probabilistic relaxation of the retrieval mechanism:

αw = (gumbel-)softmax(Θw q⃗ [: |θw |])
θw = αT

wΘw

αg = (gumbel-)softmax(Θp q⃗ [−|θg | :])
θg = αT

g Θg .

The implicit function of the softly retrieved primitive shape is then Dθg (f
−1
θw

(p⃗)).
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C.1.3. CSG AND FLIP-UNION OPERATIONS

The CSG operations are defined in the same way as in the 2D case as outlined in Appendix B.1.1. The flip-union operation
is an extension of its 2D counterpart, with the added dimension of flipping points against a plane defined by θf [p⃗; 1] = 0.
In practice, we set θf [−1] = 0 to ensure that the plane passes through the origin.

C.1.4. PROGRAM SKETCH

The shape generation program is a symmetry of a sub-component that involves multiple CSG operations on learned primitives
retrieved from a shared shape library. The CSG operations are formulated as straight-line coding.

C.2. Experimental Setup

We utilize the same 3D-CNN encoder and MLP decoder as UCSGNet (Kania et al., 2020). The program sketch is a symmetry
of a sub-component that has 20 lines of code in addition to the 128 learned primitive shapes, retrieved from the shared shape
library. We use the preprocessed dataset ShapeNet provided by (Chen et al., 2020). It includes 643 volumes of voxelized
shapes and samples 16384 points as a ground truth with a higher probability of sampling near the surface for training. In the
7/8 voxelized input setting, we randomly crop one-octant of the voxels by setting their values to zero. In the 1/2 voxelized
input setting, we randomly sample planes as a, b, c ∼ uniform(0, 1) and setting half of the voxels to zero, i.e., those voxels
with coordinates p⃗ such that apx + bpy + cpz > 0.

D. Theoretical Setting
We demonstrate the advantages of using over-parameterization in a simplified setting. Specifically, we consider a program
synthesis algorithm that utilizes random search, and we assume that all programs are distinct and that operators take only
one argument. Our goal is to find a program in the form of p = oL(oL−1(· · · (o1(x )))), where L ≥ 1 is the length of the
program, ol ∈ O denotes operators, and x is the input. There is no other program p′ ∈ P such that ∀ x , p(x ) == p′(x ).

We represent the program sketch as a straight-line code with length L′, as shown in Figure 2. Each line randomly selects one
operator from the operator space O′ and its argument from previous lines. We allow the program sketch to use the identity
operator, resulting in O′ = O

⋃
{identity}.

Due to the formulation of straight-line codes and the usage of the identity operator, there are multiple possible assignments of
program parameters for the correct program. We calculate the exact probability of finding the correct program by randomly
initializing the program assignment of the program sketch using dynamic programming. We set |O| = 3 as the other
experiments and show the probabilities of randomly initializing to a correct program for different correct program lengths L
and program sketch lengths L′ in Figure 3.
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