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Abstract
Multi-step learning applies lookahead over mul-
tiple time steps and has proved valuable in pol-
icy evaluation settings. However, in the optimal
control case, the impact of multi-step learning
has been relatively limited despite a number of
prior efforts. Fundamentally, this might be be-
cause multi-step policy improvements require op-
erations that cannot be approximated by stochastic
samples, hence hindering the widespread adop-
tion of such methods in practice. To address such
limitations, we introduce doubly multi-step off-
policy VI (DoMo-VI), a novel oracle algorithm
that combines multi-step policy improvements
and policy evaluations. DoMo-VI enjoys guaran-
teed convergence speed-up to the optimal policy
and is applicable in general off-policy learning
settings. We then propose doubly multi-step off-
policy actor-critic (DoMo-AC), a practical instan-
tiation of the DoMo-VI algorithm. DoMo-AC
introduces a bias-variance trade-off that ensures
improved policy gradient estimates. When com-
bined with the IMPALA architecture, DoMo-AC
has showed improvements over the baseline algo-
rithm on Atari-57 game benchmarks.

1. Introduction
Off-policy learning plays a central role in modern reinforce-
ment learning (RL), where the algorithm learns from off-
policy data such as exploratory actions, expert demonstra-
tions and previous experiences. Off-policy learning consists
of two critical components: off-policy evaluation, where
the aim is to approximate the value function of a target
policy; and off-policy control, where the aim is to approxi-
mate the optimal value function. Designing good evaluation
and control algorithms are crucial to high-performing RL
systems.
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In the meantime, multi-step learning has provided a robust
and consistent improvement to policy evaluation. Unlike
one-step bootstrapping methods such as TD(0), multi-step
learning bootstraps from predictions across multiple time
steps along the trajectory, usually allowing for a much faster
propagation of reward information across time. Empirically,
this often helps the algorithm converge faster to the target
value. In off-policy learning, notable examples include
the Retrace and V-trace algorithms (Munos et al., 2016;
Espeholt et al., 2018), which reduce to the celebrated TD(λ)
algorithm in the on-policy case (Sutton and Barto, 1998).

In the control case, the most common approach is to find
an improved policy by being greedy with respect to the cur-
rent value function (Sutton and Barto, 1998). The greedy
improvement effectively looks ahead for a single time step,
and intuitively should also benefit from multi-step learning
as TD(0). On the theory front, prior work has extended the
one-step greedy improvement to the multi-step case (Efroni
et al., 2018; Tomar et al., 2020). However, a fundamental
challenge is that since multi-step control consists of solv-
ing a optimal control problem in the inner loop (Efroni
et al., 2018), it is not straightforward to combine such an
approach with sample-based learning and incremental learn-
ing. As a result, this hinders the widespread adoption of
multi-step learning, as it cannot be directly applied to policy
improvement and optimal control. In this work, we aim to
address the key question: how to make multi-step off-policy
learning practical and theoretically sound for the control
case? To this end, we make a few theoretical and practical
contributions.

Doubly multi-step off-policy value iteration (DoMo-VI).
We introduce DoMo-VI, a multi-step learning algorithm
consisting of multi-step policy evaluation and multi-step im-
provement (hence the name doubly, Section 3). DoMo-VI is
compatible with using off-policy data, provably converges
to the optimal value function with accelerated convergence
rate, thanks to the application of multi-step learning to both
the policy evaluation and improvement steps. To our knowl-
edge, this is the first set of theoretical results on how multi-
step control speeds up convergence in the off-policy setting.
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Doubly multi-step off-policy actor-critic (DoMo-AC).
We introduce the DoMo-AC algorithm as a practical instan-
tiation of DoMo-VI (Section 4). The algorithm is designed
to allow for a bias-variance trade-off in constructing policy
gradient estimates from off-policy data. When implemented
with the distributed learning architecture IMPALA, (Espe-
holt et al., 2018), DoMo-AC achieves stable performance
improvements over baseline methods. This provides evi-
dence on multi-step control in large-scale settings.

2. Background
Consider a Markov decision process (MDP) represented as
the tuple (X ,A, PR, P, γ) where X is a finite state space,A
the finite action space, PR : X ×A → P(R) the reward ker-
nel, P : X ×A → P(X ) the transition kernel and γ ∈ [0, 1)
the discount factor. For policy evaluation, the aim is to com-
pute a value function V π(x) := Eπ [

∑∞
t=0 γ

tRt | X0 = x]
for a target policy π; for optimal control, the aim is to find
the optimal policy π∗ = arg maxπ∈Π V

π from the set of all
Markovian policies Π (Puterman, 1990).

Notation. For careful readers, we provide a more precise
definition of arg maxπ∈Π V

π. Since X is finite, V π can
be regarded as a |X |-dimensional vector. We equip R|X |
with the partial ordering induced by the non-negative or-
thant [0,∞)|X | as in Boyd et al. (2004). This ensures the
maximization is well defined.

2.1. Off-policy evaluation

In off-policy evaluation, the aim is to compute approxima-
tions to a target value function V π given off-policy data
generated under a behavior policy µ : X → P(A), which
generally differs from the target policy π. As a standard as-
sumption, we require the behavior policy µ to have full sup-
port over the action space: ∀(x, a) ∈ X ×A, µ(a|x) > 0.

One general approach to off-policy evaluation is importance
sampling (IS) (Precup, 2000; Precup et al., 2001). Define
step-wise IS ratio ρt := π(At|Xt)/µ(At|Xt) and the trace
coefficient ct = min(c̄, ρt) with threshold c̄ ≥ 0. Let
c0:t := c0...ct be the product of traces. The V-trace operator
is defined as

Rπ,µc̄ V (x) := V (x) + Eµ

[ ∞∑
t=0

γtc0:t−1ρtδt

]
, (1)

with TD error δt := Rt + γV (Xt+1) − V (Xt). The op-
erator Rπ,µc̄ is η-contractive with some η ∈ [0, γ] and
has V π as the unique fixed point. The threshold c̄ de-
termines the effective lookahead horizon for the operator.
At one extreme c̄ = 0, V-trace looks ahead for a single
time step and reduces to the Bellman operator T πV (x) :=
Eπ [R0 + γV (X1)| X0 = x], for which η = γ, and the con-
traction is slow. At another extreme c̄ =∞, V-trace looks

ahead until the end of the trajectory and reduces to the
IS evaluation in expectation Rπ,µc̄ V (x) = V π(x). In this
case, the contraction is fast η = 0 but stochastic approx-
imations to the V-trace target can have high variance. In
practice, it is common to apply c̄ = 1 to achieve a better
contraction-variance trade-off (Espeholt et al., 2018; Munos
et al., 2016).

2.2. Optimal control by value iteration

Value iteration (VI) is one primary approach for finding
the optimal policy π∗. VI is a recursion on the policy and
value function pair (πi+1, Vi)

∞
i=0, which include a policy

improvement step and a policy evaluation step (Puterman,
1990):

πi+1(·|x) = arg max
π∈Π
T πVi(x), (policy improvement)

Vi+1 = T πi+1Vi. (policy evaluation)

In the policy improvement step, πi+1 extracts the greedy
policy at state x based on the one-step lookahead objec-
tive arg maxa E [R0 + γV (X1) | X0 = x,A0 = a]. In the
policy evaluation step, Vi+1 = T πi+1Vi ≈ V πi+1 approxi-
mates the value function of the improved policy πi+1.

A potential drawback of VI is that it carries out only shal-
low policy improvement and policy evaluation. The pol-
icy improvement step looks ahead for a single time step
R0 + γV (X1), which may result in slow improvement
(Efroni et al., 2018; Tomar et al., 2020). For policy evalua-
tion, one single application of the Bellman operator T πi+1

might not be accurate enough due to slow contraction of the
operator.

3. Doubly multi-step off-policy VI (DoMo-VI)
To alleviate the shallow policy improvement and evaluation
of VI, we propose the following DoMo-VI recursions

πi+1(·|x) = arg max
π∈Π
Rπ,µc̄ Vi(x),

Vi+1 = Rπi+1,µ
c̄ Vi. (2)

By setting c̄ = 0 such that V-trace reduces to the one-step
Bellman operator, DoMo-VI reduces to VI. When c̄ > 0, the
improvement objectiveRπ,µc̄ Vi effectively looks ahead mul-
tiple steps starting from x, resulting in a stronger improve-
ment when the maximization problem can be solved exactly.
Indeed, at the extreme when c̄ =∞, the improvement objec-
tive becomes the value functionRπ,µc̄ Vi = arg maxπ∈Π V

π

and the improvement step returns the optimal policy π∗.

One subtle technical question is whether the above maxi-
mization is well defined, i.e., whether there exists a single
Markov policy π which achieves the maximum. Fortunately,
this is indeed the case.
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Lemma 1. (Optimal Markov policy) For any real-valued
function V over X , a scalar c̄, and a behavior policy µ, there
exists a Markov policy π such that π = arg maxpRp,µc̄ V .

Lemma 1 implies that we can obtain a single Markov policy
that maximizes the improvement objectiveRπ,µc̄ simultane-
ously across all states x. In practice, this means it is feasible
to find the optimally improved policy according to the im-
provement objective Rπ,µc̄ Vi. Such an improvement step
can be carried out by a policy optimization subroutine. In
general, when computing the exact optimal solution is too
expensive, the optimization subroutine can be replaced by
incremental updates, such as the policy gradient algorithm.
We will discuss such a practical approach in Section 4.

3.1. Convergence of DoMo-VI

We now show that DoMo-VI converges to the optimal policy
π∗ at an accelerated convergence rate.

Theorem 2. (Convergence rate to optimality) Assume
that expected rewards take values in [−R̄, R̄], and V0 is
bounded by 1/(1−γ). Then, there exist a scalar η∗ ∈ [0, γ]
and a sequence of scalars (ηj)

∞
j=1 in [0, γ] such that DoMo-

VI (Eqn (2)) generates a sequence of Markov policies
(πi)

∞
i=1 with value functions satisfying the following guar-

antee:

‖V πi+1 − V ∗‖∞ ≤ max

(η∗)
i
,

i∏
j=1

ηj

 4R̄

(1− γ)2
.

The above result shows that DoMo-VI generates policy se-
quence πi whose performance V πi converges to the optimal
performance V ∗. The convergence rate depends on η∗ and
(ηj)

∞
j=1. It is useful to examine the explicit form of the

contraction rate (Espeholt et al., 2018). Let us consider only
η∗ for simplicity. It holds that

η∗ = Eµ

[ ∞∑
t=1

γtc0:t−2 (1− ct−1)

]
= γ (1− Eµ[c0]) + γ2 (Eµ[c0]− Eµ[c0c1]) + ...

When c̄ = 0, the above result recovers the convergence rate
of one-step VI, which is γi. When c̄ is large and there is little
truncation on the IS ratio π∗(a|x)/µ(a|x), the contraction
rate is small η∗ ≈ 0 and the convergence to optimality takes
place in one iteration. For intermediate values of c̄, since
η∗ ≤ γ and ηi ≤ γ, we expect a speed up to the convergence
rate of VI.

The accelerated convergence rate comes at a cost, as much
of the computational complexity is hidden under the policy
improvement step arg maxπ∈ΠRπ,µc̄ V . Since c̄ determines
the lookahead horizon of the V-trace operator, it also de-
termines how difficult to solve the inner loop optimization
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Figure 1. Comparing DoMo-VI with multi-step policy evaluation
only (similar to (Espeholt et al., 2018; Munos et al., 2016)), multi-
step policy optimization (similar to (Efroni et al., 2018)) and one-
step baseline VI. The y-axis shows the value error ‖V πi − V ∗‖
on tabular MDPs. DoMo-VI combines the strengths of both multi-
step policy evaluation and optimization, and achieves the fastest
convergence rate among all baselines. Results are averaged across
100 runs on tabular MDPs. See Appendix B for details.

problem exactly. When c̄ = ∞ and η∗ = 0, the policy
improvement step effectively reduces to solving the control
problem itself arg maxπ∈Π V

π. In practice, c̄ mediates a
trade-off between the inner loop complexity of multi-step
policy improvement and outer loop convergence rate. As we
will show empirically, approximately optimizing the policy
improvement objective suffices to speed up convergence
(Section 6)

3.2. Understanding DoMo-VI

Next we discuss algorithms that interpolate VI and DoMo-
VI. This helps decompose the performance improvement
of DoMo-VI, and sheds light on the design choice of the
algorithm. In Table 1, we make a list of algorithms that
interpolate VI and DoMo-VI, as well as a number of highly
related algorithms in prior literature.

Multi-step policy evaluation. Starting with VI, let us
first seek to remedy shallow policy evaluation in VI. We
can replace the one-step operator T π by the V-trace oper-
ator Rπ,µc̄ for policy evaluation, resulting in the following
recursion of multi-step policy evaluation,

πi+1(·|x) = arg max
π∈Π
T πVi(x), Vi+1 = Rπi+1,µ

c̄ Vi.

(multi-step policy evaluation)

Such a recursion bears close connections to algorithms such
as Q(λ), Retrace and Peng’s Q(λ) in the control case (Haru-
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Table 1. A list of algorithms that can be decomposed into a policy improvement (PI) step and a policy evaluation (PE) step. The
convergence rate measures how fast V πi converges to the optimal value function V ∗. Concretely, if an algorithm’s performance is
bounded as ‖V πi − V ∗‖∞ ≤ ηiC for some constant C. Here, η ∈ [0, 1] is the convergence rate. The list of algorithms include (1)
multi-step PE, which closely relates to Q(λ), Retrace and Peng’s Q(λ) in the control case (Harutyunyan et al., 2016; Munos et al., 2016;
Peng and Williams, 1994; Kozuno et al., 2021); (2) multi-step PI, which relates to λ-VI in the on-policy case (Efroni et al., 2018); (3)
one-step baseline VI, and (4) λ-policy iteration (Efroni et al., 2018), which requires a PE oracle.

Algorithm Policy improvement Policy evaluation Convergence rate

DOMO-VI πi+1(·|x) = arg maxπ∈ΠRπ,µc̄ Vi(x) Vi+1 = Rπi+1,µ
c̄ Vi η∗ ∈ [0, γ]

MULTI-STEP PE ONLY πi+1(·|x) = arg maxπ∈Π T πVi(x) Vi+1 = Rπi+1,µ
c̄ Vi NA

MULTI-STEP PI ONLY πi+1(·|x) = arg maxπ∈ΠRπ,µc̄ Vi(x) Vi+1 = T πi+1Vi NA
VALUE ITERATION πi+1(·|x) = arg maxπ∈Π T πVi(x) Vi+1 = T πi+1Vi γ

λ-POLICY ITERATION πi+1(·|x) = arg maxπ∈Π T πλ Vi(x) Vi+1 = V πi+1 γ(1−λ)
1−γλ

tyunyan et al., 2016; Munos et al., 2016; Kozuno et al.,
2021). The aim of such algorithm is to improve the conver-
gence speed of the policy evaluation step. In the extreme
when c̄ =∞, the evaluation is exact Vi+1 = V πi+1 and the
above recursion is equivalent to policy iteration (PI), which
empirically at a much faster rate than VI to the optimal
policy (Puterman, 1990; Scherrer et al., 2012).

Multi-step policy improvement. Next, we can replace
the one-step operator T π by the V-trace operatorRπ,µc̄ for
policy improvement. This leads to the following recursion
of multi-step policy improvement,

πi+1(·|x) = arg max
π∈Π
Rπ,µc̄ Vi(x), Vi+1 = T πi+1Vi.

(multi-step policy improvement)

In the on-policy case π = µ and ct = λ ∈ [0, 1], the V-
trace operator is equivalent to the on-policy TD(λ) operator
Rπ,µc̄ = T πλ . As a result, the above recursion recovers the
multi-step greedy algorithm λ-VI proposed in (Efroni et al.,
2018; Tomar et al., 2020).

Finally, DoMo-VI can be understood as combining the
strengths of both multi-step policy evaluation and multi-
step policy improvement. In a tabular setting, we make a
comparison between DoMo-VI and multiple algorithmic
variants discussed above (see Figure 1). Multi-step evalua-
tion takes up most performance improvements from baseline
VI, speeding up the convergence of V πi to V ∗. Perhaps sur-
prisingly, multi-step policy optimization provides an initial
speed up, but ultimately falls short even compared to the
baseline. DoMo-VI seems to combine the strength of both
variants, leading to consistent speed-up throughout.

4. Doubly multi-step off-policy actor-critic
(DoMo-AC)

Now, we present the core practical algorithm DoMo-AC.
Starting with DoMo-VI in Eqn (2), note that in general

it is computationally expensive to exactly solve the maxi-
mization problem that defines the policy improvement step
arg maxπ∈ΠRπ,µc̄ Vi(x). Instead, it is more tractable to take
a single gradient step from the current policy iterate. When
the policy is parameterized πθ, the update in the parameter
space at state x is

θi+1 = θi + β∇θiR
πi,µ
c̄ Vi(x), (3)

where β > 0 is the learning rate. Note that going from θi to
θi+1, the policy locally increases the policy improvement
objectiveRπi,µc̄ Vi(x). For general parameterization where
θ ∈ Rd is a vector in some d-dimensional Euclidean space,
policies at different states share parameters. The policy up-
date requires averaging gradient updates under a weighting
distribution over state x ∼ b. The combined recursion is
hence

θi+1 = θi + βEx∼b
[
∇θiR

πθi ,µ
c̄ Vi(x)

]
, Vi+1 = Rπθi ,µc̄ Vi.

We can interpret the above recursion as an an actor-critic
algorithm, where the value function Vi serves as the critic.
Intriguingly, when c̄ = 0, the policy update reduces to

θi+1 = θi + βE [(R0 + γV (x′))∇θi log πθi(a|x)] ,

where the expecation is under x ∼ b, a ∼ πθi(·|x), x′ ∼
P (·|x, a). This bears close resemblance to practical policy
gradient updates adopted in high-performing policy-based
deep RL agents (Wang et al., 2016; Mnih et al., 2016; Schul-
man et al., 2017; Espeholt et al., 2018).

To derive properties for the gradient update, we assume a
smoothly differentiable parameterization of the policy.
Assumption 3. (Smooth policy) The policy πθ(a|x) is dif-
ferentiable with respect to θ and

∥∥∥∂πθ(a|x)
∂θ

∥∥∥
∞
≤ G for

some constant G ≥ 0 and for all (x, a) ∈ X ×A.

4.1. Approximation to policy gradient update

At the extreme when c̄ =∞,Rπθi ,µc̄ Vi(x) ≈ V πθi (x) and
the policy update reduces to an exact policy gradient update
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averaged over state distribution x ∼ b,

θi+1 = θi + βEx∼b [∇θiV πθi (x)] .

Such an update is potentially desirable because it locally im-
proves the average value function objective Ex∼b [V πθ (x)].
In general when c̄ is finite, the update may not locally im-
prove the value function objective since ∇θiR

πθi ,µ
c̄ Vi(x)

differs from the policy gradient direction ∇θiV πθi (x). To
clarify the effect of c̄ on how well ∇θiR

πθi ,µ
c̄ Vi(x) carries

out local improvement, we characterize its difference from
the exact policy gradient.

Theorem 4. (Approximating policy gradient) Recall η to
be the contraction rate of the V-trace operator Rπθ,µc̄ . Let
θj be any scalar component of parameter θ ∈ Rd and recall
V ∈ RX to be a value function vector. Then ∇θjV πθ ∈
RX is a policy gradient vector over state for parameter θj .
Assume V = V πθ , then∥∥∇θjRπθ,µc̄ V −∇θjV πθ

∥∥
∞ ≤ η

∥∥∇θjV πθ∥∥∞ .

We offer some interpretations of the above result. Note that
even if the value function is perfectly evaluated V = V πθ ,
there is an irreducible error as characterized by the error
bound. To see why, recall the exact policy gradient as

∇θV πθ (x) = Eπθ

[ ∞∑
t=0

γt
∑
a

Qπθ (Xt, a)∇θπθ(a|Xt)

]
.

Let c̄ = 0 and V = V πθ , the approximate gradient is

∇θRπθ,µc̄ V (x) =
∑
a

Qπθ (x, a)∇θπθ(a|x),

which corresponds to the term at t = 0 of the exact policy
gradient. hence, we can indeed interpret the truncation
threshold c̄ as determining the lookahead horizon when
calculating the policy gradient estimates, which become
more accurate when c̄ increases. This effect is reflected by
the contraction rate η in the error bound.

Though a large value of c̄ decreases the bias of the gradient
estimate against the true policy gradient, it can also lead
to high variance in the stochastic gradient estimates. We
will examine such a bias-variance trade-off numerically in
Section 6.

4.2. Low-variance unbiased gradient estimate

In general, it is challenging to compute the gradient update
exactly. Instead, it is more computationally desirable to con-
struct unbiased gradient estimate with stochastic samples.
To this end, we recall that since the V-trace back-up target
Rπθ,µc̄ V can be approximated by off-policy stochastic esti-
mates in an unbiased way, this naturally leads to an unbiased
estimate to∇θRπθ,µc̄ V .

Algorithm 1 Doubly multi-step off-policy actor-critic
(DoMo-AC)

Policy parameter θ0, critic parameter φ0 and target pa-
rameter φ−0 .
for i = 0, 1, 2... do

Collect data. Collect trajectories (Xt, At, Rt)
T−1
t=0 of

length T under behavior policy µ.
Actor update. Update policy πθi based on Eqn (6).
Critic update. Update critic Vφi based on Eqn (7).
and update target network.

end for
Output the final policy.

Theorem 5. (Unbiased gradient estimate) Assume trajec-
tories (Xt, At, Rt)

∞
t=0 ∼ µ reach a terminal state within

H <∞ steps almost surely. Let X0 = x be the initial state,
the unbiased V-trace back-up target estimate is

R̂πθ,µc̄ V (x) := V (x) +

∞∑
t=0

γtc0:t−1ρtδt. (4)

Further, R̂πθ,µc̄ V (x) is differentiable and∇θR̂πθ,µc̄ V (x) is
an unbiased estimate to∇θRπθ,µc̄ V (x).

Intriguingly, the naive estimate based on Eqn (4) turns out
to have low variance. To see this, consider the special case
when c̄ =∞ and the trace coefficient is effectively the step-
wise IS ratio ct = ρt. In this case, the gradient estimate
evaluates to

∇θR̂πθ,µc̄ V (x) =

∞∑
t=0

γtρ0:tÂt∇θ log πθ(At|Xt), (5)

where Ât = Rt + γV̂ (Xt+1) − V (Xt) is the advantage
estimate. Here, the built-in variance reduction technique is
the subtraction of value function V (Xt) as a baseline when
computing advantage estimate Ât, which is most commonly
used in policy gradient estimate (Sutton et al., 2000; Weaver
and Tao, 2013). Secondly, the value estimate V̂ (Xt) turns
out to be the doubly-robust value function estimate (Jiang
and Li, 2016; Thomas and Brunskill, 2016), which writes
recursively as

V̂ (Xt) = V (Xt) + ρt

(
Rt + γV̂ (Xt+1)− V (Xt)

)
.

The doubly-robust estimation technique has also been
known to reduce variance in off-policy learning (Jiang and
Li, 2016; Thomas and Brunskill, 2016). For general val-
ues of the trace coefficient ct, we should expect a similar
variance reduction effect.

4.3. Implementation with function approximation

Finally, we spell out the algorithm with both a parameterized
policy πθ and a parameterized critic Vφ. Given a trajectory
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(Xt, At, Rt)
T−1
t=0 of length T , sampled under the behavior

policy µ, the policy is updated via the DoMo-AC gradient
estimate

θi+1 = θi + β
1

T

T−1∑
t=0

∇θiR̂
πθi ,µ
c̄ Vφi(Xt). (6)

Meanwhile, the critic is updated using gradient descent on
the least square loss function

φi+1 = φi − β
1

T

T−1∑
t=0

∇φi (Vtarget(Xt)− Vφi(Xt))
2
, (7)

where Vtarget(Xt) = R̂
πθi+1

,µ

c̄ Vφ−
i

(Xt) is the back-up target
computed via the target network φ−i . The target network is
slowly updated towards the main network φ−i = (1−τ)φ−i +
τφi (Lillicrap et al., 2015). In practical implementations,
it is more common to carry out the above gradient updates
simultaneously. See Algorithm 1 for full algorithm.

5. Discussion
We provide discussions on a few lines of related work and
natural extensions of our current method.

λ-policy iteration (λ-PI). Another important variant of
multi-step policy improvement algorithm is λ-PI (Efroni
et al., 2018), which in our notations can be expressed as

πi+1(·|x) = arg max
π∈Π
T πλ Vi(x), Vi+1 = V πi+1 ,

where T πλ is the on-policy TD(λ) operator. This algorithm
achieves a convergence rate of γ(1−λ)

1−λγ to the optimal value
function, which significantly speeds up one-step VI when
λ is close to 1. One primary bottleneck of λ-PI is that it
requires a policy evaluation oracle, setting the value function
estimate Vi+1 to be the exact value function V πi+1 . Such
a critic is in general not accessible in practice. DoMo-VI
removes such a limitation and replaces the oracle by a multi-
step evaluation operator Vi+1 = Rπi+1,µ

c̄ Vi, which can be
practically implemented. Another major difference between
DoMo-VI and λ-PI is that the latter requires on-policy data
when doing policy improvement.

Off-policy corrections are important for multi-step pol-
icy improvement. DoMo-VI can be extended to evalu-
ation operators Rπ,µc̄ beyond V-trace, such as the value
function variant of Q(λ) (Harutyunyan et al., 2016), where
the trace coefficient ct = λ. This closely resembles TD(λ)
with the main difference being that the data is off-policy.
The tree-backup trace ct = π(At|Xt) can be understood as
a special case of V-trace (Precup et al., 2001) since ct ≤ ρt.
A primary bottleneck of tree-backup is that it cuts traces

quickly and is not efficient when near on-policy (Munos
et al., 2016). Another alternative is the value function equiv-
alent of Peng’s Q(λ) operator (Peng and Williams, 1994),
which can be understood as geometrically weighted sum of
n-step TD(n) operators. Unlike V-trace and Q(λ), which
carry out off-policy corrections, Peng’s Q(λ) does not have
the target value function as the fixed point. Nevertheless,
Peng’s Q(λ) has displayed practical benefits over methods
based on proper off-policy corrections, thanks to its signif-
icant improvement in the contraction rate (though to the
biased fixed point) (Kozuno et al., 2021).

However, we can verify that whenRπ,µc̄ is the Peng’s Q(λ)
operator, arg maxπ∈ΠRπ,µc̄ V (x) corresponds to the one-
step greedy policy. This means uncorrected algorithms such
as Peng’s Q(λ) cannot entail multi-step policy improvement.

Multiple applications of evaluation operator. We can
consider a more general form of the DoMo-AC gradient
update, by differenting through multiple applications of the
evaluation operator

θi+1 = θi + Ex∼b
[
∇θi

(
Rπθi ,µc̄

)m
Vi(x)

]
,

for m ≥ 1.Increasing m has a similar effect as increasing
c̄ as both lengthen the effective lookahead horizon. Intrigu-
ingly, when we take Rπ,µc̄ to be the Q(λ) operator with
λ = 1, the policy improvement objective

(
Rπθi ,µc̄

)m
Vi(x)

closely resembles the Taylor expansion policy optimization
objective proposed in (Tang et al., 2020). A notable differ-
ence is that Tang et al. (2020) considered the special case
where Vi = V µ as the origin of the expansion, while here
Vi does not have to be the value function for any specific
policy.

6. Experiments
We seek to answer the following questions: (Q1) Does multi-
step improvement entail faster convergence to the optimal
policy in tabular settings (Theorem 2)? (Q2) Does DoMo-
AC introduce a bias-variance trade-off to estimating PG
(Theorem 4)? (Q3) Does DoMo-AC improve state-of-the-
art policy based agents in large-scale settings?

6.1. Tabular experiments

To answer Q1, we start by empirically validating the speed-
up of the convergence guarantee (predicted by Theorem 2)
entailed by DoMo-VI and DoMo-AC. We mainly compare
three baselines: (1) one-step baseline VI (green), which
consists of one-step policy improvement and evaluation
Vi+1 = T πi+1Vi where πi+1 is one-step greedy; (2) multi-
step policy evaluation (brown), which improves over VI
with multi-step evaluation Vi+1 = Rπi+1

c̄ Vi for c̄ = 1; (3)
finally, the multi-step policy improvement algorithm where
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Figure 2. Evaluating the impact of approximate optimization of
the policy improvement objective arg maxπ∈ΠRπ,µc̄ V (x). The
y-axis shows the value error ‖V πi − V ∗‖ on tabular MDPs.
Throughout, we parameterize softmax policy and optimize the
improvement objective with gradient ascent. Varying the num-
ber of gradient ascent steps, we see that as the number of steps
increases, the improvement to convergence speed becomes more
profound.

the policy πi = πθi is improved via N gradient ascents with
approximate gradient ∇θiR

πi,µ
c̄ across all states. Formally,

for ∀1 ≤ j ≤ N ,

θ
(j+1)
i+1 = θ

(j)
i+1 + η

1

|X |

|X |∑
x=1

∇
θ
(j)
i
R
π
θ
(j)
i

,µ

c̄ V (xi),

where we let θi+1 = θ
(N)
i+1 as the final iterate of the gradient

update. The value function is then updated via multi-step
evaluation Vi+1 = Rπi+1

c̄ Vi. To study the impact of the
degree of optimization, we consider N ∈ {1, 10, 100} (pur-
ple, blue and red). By increasing N , the policy iterate πθi+1

gets closer to the optimal policy arg maxπi R
π,µ
c̄ Vi(x). All

results are averaged over 100 randomly generated MDPs.
See Appendix B for experimental details.

Figure 2 shows the error ‖V πi − V ∗‖2 as a function of iter-
ation i. As expected, multi-step policy evaluation provides
a major improvement over the VI baseline in accelerating
the convergence. On top of that, as N increases, multi-step
policy improvement exhibits further performance improve-
ments. This confirms the benefits of combining multi-step
evaluation and improvement in the tabular settings where
exact gradient computations are available.

Stochastic gradient estimates in tabular settings. To
answer Q2, note that in DoMo-AC we use the stochas-
tic update ∇θR̂πθ,µc̄ V (x) to update the policy parameter
θ. As discussed in Section 4, the choice of c̄ mediates a

trade-off between bias and variance, on the approximation
of ∇θR̂πθ,µc̄ V (x) to the true policy gradient∇θV πθ (x).

In Figure 5, we examine such a bias-variance trade-off nu-
merically. On a set of randomly generated MDPs, we cal-
culate ∇θR̂πθ,µc̄ V (x) based on a fixed number of trajecto-
ries generated under behavior policy µ. We then estimate
the bias, variance and squared error of the policy gradient
estimate against the ground truth ∇θV πθ (x). The results
show that, as expected, when c̄ increases from 0 to 10, the
bias generally decreases, whereas the variance increases
rapidly. This leads to an optimal middle ground (in this
case log c̄ ≈ 0 and c̄ ≈ 1) at which ∇θR̂πθ,µc̄ V (x) obtains
the lowest squared error among this class of stochastic gra-
dient estimates. Naturally, this trade-off will significantly
impact the agent performance in large-scale settings, which
we investigate next.

6.2. Deep RL experiments

To investigate the practical performance of DoMo-AC gra-
dient update, we test different algorithmic variants with
distributed actor-critic over architecture the Atari-57 games
(Bellemare et al., 2013).

Our implementation is based on the IMPALA architecture
(Espeholt et al., 2018), an actor-critic algorithm with dis-
tributed actors and a centralized learner. The actors collect
partial trajectories with the behavior policy µ and send to
the learner with target policy πθ. Due to the latency of
the actor-learner communication, the behavior policy uses a
slightly stale copy of the policy parameter µ = πθold , leading
to inherent off-policyness during training πθ 6= µ. By de-
fault, the learner maintains a policy network πθ and a value
network Vφ. Across all algorithmic variants we consider, the
value networks are updated with the V-trace back-up targets
(Espeholt et al., 2018) while we test different variants of ac-
tor updates. All algorithmic variants share hyper-parameters
wherever possible. See Appendix for further experiment
details.

We compare a few algorithmic variants defined by different
choices of the off-policy evaluation operators Rπθ,µc̄ . For
the multi-step variant, we choose V-trace with the trace
coefficient threshold c̄ as a tunable hyper-parameter. We
find that c̄ in between 0.3 and 0.5 works the best in practice
and will report the ablation results; for the one-step variant,
we use the one-step operator T π , which can be understood
as the special case c̄ = 0. The baseline algorithm IMPALA
(Espeholt et al., 2018) is closely related to the one-step
variant, but with slightly different implementation details.
We discuss such differences in Appendix B.

In Figure 3, we show the training performance curves of all
algorithms. Each curve is an average over 5 runs, with each
run computed as either the mean or median human normal-
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Figure 3. Comparing actor-critic algorithmic variants based on the IMPALA architecture (Espeholt et al., 2018). We compare the
DoMo-AC algorithm (Algorithm 1) instantiated with V-trace operatorRπ,µc̄ with c̄ = 0.5; the one-step algorithmRπ,µc̄ = T π , which
also be understood as the special case c̄ = 0; and the IMPALA baseline. We report the evaluated median and mean human normalized
scores over 57 Atari games, averaged across 5 seeds. Overall, the DoMo-AC algorithm outperforms the one-step variant and the IMPALA
baseline.

ized scores across 57 games. We find that the DoMo-AC
implementation with V-trace c̄ = 0.5 provides statistically
significant improvements over one-step trace and IMPALA,
implying the potential benefits of introducing multi-step
gradient estimate.

Alternative off-policy evaluation operators. Besides V-
trace, other alternative trace coefficients such as tree-backup
ct = π(At|Xt) (Precup et al., 2001) and Q(λ) ct = λ ∈
[0, 1] (Harutyunyan et al., 2016) all define valid off-policy
evaluation operators (Munos et al., 2016). We carry out
a comparison with all such alternatives in Figure 4 in Ap-
pendix B, where we show that V-trace obtains overall the
best empirical performance.

Ablation on the trace coefficient threshold c̄. We next
assess how sensitive the performance is to the trace coeffi-
cient threshold c̄. We carry out experiments with c̄ taking
values in the range [0, 1] and graph the results in Figure 6
(Appendix B). Going from c̄ = 0 to c̄ = 1, we find the best
performance is obtained at the range c̄ = 0.3 ∼ 0.5. The
fact that c̄ > 0 obtains the best performance demonstrates
the practical utility of multi-step policy gradient estimate,
compatible with the previous results. However, as c̄ in-
creases, the multi-step gradient estimate accumulates higher
variance. Indeed, in the limit c̄→∞, we have ct → ρt and
step-wise IS ratios can induce high variance to the overall
estimates, which degrades the overall performance of the
algorithm.

Intriguingly, here the optimal value of c̄ ∈ [0.3, 0.5] is no-
ticeably lower than the typical value of the trace threshold
applied in value-based learning (e.g., Retrace and V-trace
all adopt c̄ = 1 in their implementations by default (Munos
et al., 2016; Espeholt et al., 2018)). We speculate this might
be because policy-based algorithms are generally more sus-
ceptible to high variance than value-based algorithms, and
hence enjoy better performance when the estimates are of
low variance.

7. Conclusion
We have proposed DoMo-VI, an extension of the classic VI
algorithm which combines multi-step policy improvement
with policy evaluation. Contrast to prior work, DoMo-VI
enjoys theoretical speed-up to the optimal policy and is
applicable in general off-policy settings. As a practical in-
stantiation of the oracle algorithm, we propose DoMo-AC.
DoMo-AC achieves the effect of multi-step improvement by
applying a policy gradient estimator with a novel bias and
variance trade-off. Compared to the baseline actor-critic
algorithm, DoMo-AC generally enjoys more accurate ap-
proximation to the ground truth policy gradient. Implement-
ing DoMo-AC with the IMPALA architecture, we observe a
modest improvement from the baseline over the Atari game
benchmarks. Possible future directions include adaptive
methods for choosing the trace coefficient c̄, and extensions
of ideas of DoMo-VI more directly to value-based agents
such as DQN.
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APPENDICES: DoMo-AC: Doubly Multi-step Off-policy Actor-Critic Algorithm

A. Proof of theoretical results
In this appendix, we provide missing proofs in the main paper. We begin with introducing some notations used in the proofs.

We denote an identity operator by I , which maps any real-valued function to itself. Its domain will be clear from contexts.
For any Markov policy π, let Ππ denote an operator that maps any bounded real-valued function Q over X × A to a
real-valued function ΠπQ over X defined by

(ΠπQ) (x) =
∑
a∈A

π(a|x)Q(x, a) at every x ∈ X .

For a scalar c̄ ∈ (0,∞), and a behavior policy µ, a similar operator Ππ,µ
c̄ maps Q to a real-valued function Ππ,µ

c̄ Q over X
defined by 1

(Ππ,µ
c̄ Q) (x) =

∑
a∈A

µ(a|x) min

{
c̄,
π(a|x)

µ(a|x)

}
Q(x, a) at every x ∈ X .

Abusing notations, let P denote an operator that maps any bounded real-valued function V over X to a real-valued function
PV over X ×A defined by

(PV ) (x, a) =
∑
y∈X

P (y|x, a)V (y) at every (x, a) ∈ X ×A

Its conjugate with the Ππ and Ππ,µ
c̄ operators are denoted by Pπ := ΠπP and P cµ∧π := Ππ,µ

c̄ P , respectively. With these
operators, the V-trace operator can be rewritten as follows:

Rπ,µc̄ V = V +
(
I − γP c̄µ∧π

)−1
(Ππr + γPπV − V ) =

(
I − γP c̄µ∧π

)−1 (
Ππr + γ(Pπ − P c̄µ∧π)V

)
,

where (I − γP c̄µ∧π)
−1

:=
∑∞
t=0 γ

t (P c̄µ∧π)
t. As the notation implies, it holds that (I − γP c̄µ∧π) (I − γP c̄µ∧π)

−1
=

(I − γP c̄µ∧π)
−1

(I − γP c̄µ∧π) = I .

An operator, say O, is said to be monotonic if Of ≥ Og for any pair of functions f and g such that f ≥ g. All operators
introduce above are monotonic.

A.1. Proof of Lemma 1 (Optimal Markov Policy)

Lemma 1 states that there exists a Markov policy π such that

max
p∈Π

(Rp,µc̄ V (x)) = Rπ,µc̄ V (x) for all x ∈ X ,

where Π is the set of all Markov policies. As p on the left hand side may depend on x ∈ X , the existence of π is non-trivial.

For a fixed V and µ, let πx be a policy such that πx := arg maxp∈Π (Rp,µc̄ V (x)) . Note that it is dependent on x, and there
may be multiple policies that maximize the right hand side. If it is not unique, pick up one arbitrarily. Furthermore, let π be
a Markov policy such that π(·|x) := πx(·|x) for all x ∈ X . By definition, for any Markov policy π and any state x ∈ X ,

Rπ,µc̄ V (x)

≤ (I − γP cµ∧πx)
−1 (

Ππxr + γ
(
Pπx − P c̄µ∧πx

)
V
)

(x)

≤
(
Ππxr + γ

(
Pπx − P c̄µ∧πx

)
V
)

(x) + γP cµ∧πx (I − γP cµ∧πx)
−1 (

Ππxr + γ
(
Pπx − P c̄µ∧πx

)
V
)

(x)

=
(
Ππr + γ

(
Pπ − P c̄µ∧π

)
V
)

(x) + γP cµ∧π (I − γP cµ∧πx)
−1 (

Ππxr + γ
(
Pπx − P c̄µ∧πx

)
V
)

(x) ,

where the last line follows since π(·|x) = πx(·|x) by definition, and thus, Ππx,µ
c Q(x) = Ππ,µ

c Q(x) for any bounded
real-valued function Q over X ×A. Now, note that the second term is γP cµ∧πRπx,µc̄ V (x), and

P cµ∧πRπx,µc̄ (x) = Ey∼P (·|x,a),a∼µ(·|x)

[
min

{
c̄,
π(a|x)

µ(a|x)

}
Rπx,µc̄ V (y)

]
.

1Recall we assume that a behavior policy has the full support: µ(a|x) > 0 for all (x, a) ∈ X ×A.
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Therefore, applying the same argument toRπx,µc̄ V (y), we can conclude that

max
π∈Π

(Rπ,µc̄ V (x)) ≤ Rπ,µc̄ V (x).

A.2. Proof of Theorem 2 (Convergence Rate to Optimality)

We upper-bound ♥ and ♠ in the following equation:

V ∗ − V πi = V ∗ −Rπi,µc̄ Vi−1︸ ︷︷ ︸
:=♥

+Rπi,µc̄ Vi−1 − V πi︸ ︷︷ ︸
:=♠

.

For brevity, we let Π∗ := Ππ∗
, P ∗ := Ππ∗

P , Π∗,µ := Ππ∗,µ
c̄ , P ∗,µ := Ππ∗,µ

c̄ P , R∗,µ := Rπ
∗,µ
c̄ , Πj := Π

πj ,µ
c̄ ,

Pj := Π
πj ,µ
c̄ P , andRj := Rπj ,µc̄ .

Upper-bound for ♥. By definition,RiVi−1 ≥ R∗,µVi−1, and V ∗ = R∗,µV ∗. Therefore,

♥ ≤ γ (I − γP ∗,µ)
−1

(P ∗ − P ∗,µ) (V ∗ − Vi−1) = γ (I − γP ∗,µ)
−1

(P ∗ − P ∗,µ) (V ∗ −Ri−1Vi−2) .

By induction on i, ♥ ≤ (Γ∗)i (V ∗ − V0), where Γ∗ := γ (I − γP ∗,µ)
−1

(P ∗ − P ∗,µ). As shown by Munos et al. (2016,
around Eqn (12) in Appendix C), Γ∗ is monotonic, and Γ∗e ≤ η∗e ≤ γe, where e is a constant function over X outputting 1
everywhere. Thus, ♥ ≤ (η∗)i ‖V ∗ − V0‖∞ e. As both V ∗ and V0 are bounded by 1/(1− γ), ‖V ∗ − V0‖∞ ≤ 2/(1− γ).

Upper-bound for ♠. It holds that V πi = RiV πi . Therefore,

♠ = γ (I − γPi)−1
(Pπi − Pi) (Vi−1 − V πi)

= γ (I − γPi)−1
(Pπi − Pi) (Vi−1 −RiVi−1 +♠)

= γ (I − γPπi)−1
(Pπi − Pi) (Vi−1 −RiVi−1) ,

where the last line follows since

♠− γ (I − γPi)−1
(Pπi − Pi)♠ = (I − γPi)−1

(I − γPi − γPπi + γPi)♠ = (I − γPi)−1
(I − γPπi)♠ .

By definition,

Vi−1 −RiVi−1 = Ri−1Vi−2 −RiVi−1

≤ Ri−1Vi−2 −Ri−1Vi−1

= γ (I − γPi−1)
−1

(Pπi−1 − Pi−1) (Vi−2 − Vi−1)

= γ (I − γPi−1)
−1

(Pπi−1 − Pi−1) (Vi−2 −Ri−1Vi−2) .

By induction, we deduce that Vi−1 −RiVi−1 ≤ Γi−1 · · ·Γ1 (V0 −R1V0), where Γj := γ (I − γPj)−1
(Pπj − Pj) . As

V0 −R1V0 = V0 − V π1 +R1V
π1 −R1V0

= V0 − V π1 + γ (I − γP1)
−1

(Pπ1 − P1) (V π1 − V0) ,

we conclude that

♠ ≤ γ (I − γPπi)−1
(Pπi − Pi) Γi−1 · · ·Γ1

(
V0 − V π1 + γ (I − γP1)

−1
(Pπ1 − P0) (V π1 − V0)

)
.

As shown by Munos et al. (2016), Pπi − Pi is monotonic, and (Pπi − Pi)e ≤ e, where e is a constant function over X
outputting 1 everywhere. Furthermore, Γj is monotonic, and there exists some scalar κj such that Γje ≤ κje ≤ γe. Thus,

♠ ≤ γκi−1 · · ·κ1

1− γ
(1 + κ1) ‖V π1 − V0‖∞ e ≤ γκi−1 · · ·κ1

1− γ
(1 + γ) ‖V π1 − V0‖∞ e .

Because both V π1 and V0 are bounded by 1/(1− γ), ‖V π1 − V0‖∞ ≤ 2/(1− γ).
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Combining Together. From those bounds and noting that γ(1 + γ)/(1− γ) + 1 ≤ 2/(1− γ), we conclude the proof.

A.3. Proof of Theorem 4

For notational simplicity, let V1 := Rπθ,µc̄ V . In the below, we consider the gradient with respect to the j-th component
of θ. Then ∇θjV1(x) is a vector of size R|X |. Now, let Rπθ ∈ R|X | be the vector of reward such that Rπθ (x) :=∑
a r(x, a)πθ(a|x). Plugging in the definition of the operatorRπθ,µc̄ we have

V1 = (I − γP cµ)
−1
Rπθ + (I − γP cµ)

−1
γ (Pπθ − P cµ)V.

Since V πθ is the fixed point of the operator, we can subtract both sides by V πθ . This produces

V1 − V πθ = (I − γP cµ)
−1
γ (Pπθ − P cµ) (V − V πθ ) .

When the trace cofficient c is smoothly differentiable in π, and under Assumption 3, we deduce that
(I − γP cµ)

−1
γ (Pπθ − P cµ) is differentiable in θi. Let g1 := ∇θjV1 ∈ R|X | and g := ∇θjV πθ ∈ R|X |. The gradi-

ent vector g1 satisfies the following recursive equation, with g0 := ∇θjV = 0 obtained by taking derivative of both sides
above w.r.t. θi,

g1 − g = ∇θi
[
(I − γP cµ)

−1
γ (Pπθ − P cµ)

]
(V − V πθ ) + (I − γP cµ)

−1
γ (Pπθ − P cµ) (g0 − g) .

When V = V πθ , the first term vanishes and note that the matrix (I − γP cµ)
−1
γ (Pπθ − P cµ) has operator norm upper

bounded by η ≤ γ (Munos et al., 2016). We hence deduce the following inequality which concludes the proof

‖g1 − g‖∞ ≤ η ‖g0‖∞ .

A.4. Proof of Theorem 5

By construction of the V-trace operator, it is straightforward to verify that the following

R̂πθ,µc̄ V (x) := V (x) +

∞∑
t=0

γtc0:t−1ρtδt

is an unbiased estimate to Rπθ,µc̄ V (x). Now, since we assume the trajectory is of finite length almost surely and since
the importance sampling ratio ρt ≤ maxx,a

πθ(a|x)
µ(a|x) is upper bounded, we can verify that we can apply the dominated

convergence theorem to the limiting sequence

1

δj

(
R̂
πθ+δj ,µ

c̄ V (x)− R̂πθ+δ,µc̄ V (x)

)
with ‖δj‖2 → 0, which implies Eµ

[
∇θR̂πθ,µc̄ V (x)

]
= ∇θRπθ,µc̄ V (x). and hence∇θR̂πθ,µc̄ V (x) is an unbiased gradient

estimate.

B. Experiment details and additional results
We present further experiment details and results.

B.1. Tabular experiments on VI

Figure 1. We compare DoMo-VI, multi-step policy evaluation, multi-step policy optimization and one-step baseline VI.
All experiments are carried out on tabular MDPs with |X | = 20 states |A| = 5 actions. The transition p(·|x, a) is generated
as Dirichlet random variable with parameter (α, ...α) ∈ RX for α = 0.01. The reward R0 is sampled from a standard
normal distribution and kept fixed. The discount factor γ = 0.9. For all multi-step variants, we set c̄ = 10.

We carry out recursions based on different algorithms and report the approximation error to the optimal value function
‖V πi − V ∗‖2. All results are repeated 100 times with randomly generated MDPs. For implementing DoMo-VI and
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multi-step policy optimization, we need to approximately solve the optimization problem arg maxπ∈ΠRπ,µc̄ V (x).. To
this end, we parameterize policy πθ(a|x) = softmax(θ(x, a)) and carry out gradient ascent on the objective below until
convergence.

L(θ) =
1

|X |

|X |∑
x=1

Rπθ,µc̄ V (x). (8)

Figure 2. We compare DoMo-AC, multi-step policy evaluation and one-step baseline VI. All experiments are carried out
using the same setup as above. Notably, DoMo-AC is an approximation to DoMo-VI in that the policy optimization stage
is not necessarily carried out in full. At iteration i, let πg be the current greedy policy with respect to Vi, we initialize a
softmax policy with parameter θ(1)

i+1 such that

θ
(1)
i+1(x, a) = log

(
πg(a|x) + 10−5

)
.

This is such that the softmax policy defined with θ(1)
i+1 is close to πi. This initialization is intended such that when there is no

gradient update, the performance of DoMo-AC is similar to the multi-step policy evaluation baseline (with one-step greedy).
We then carry out gradient updates on the objective L(θ

(j)
i+1) as defined in Eqn (8) for N steps. The final iterate θ(N)

i+1 is used
for defining the policy πi+1 at the next iteration. All results are repeated for 100 times across randomly generated MDPs.

B.2. Deep RL experiments

All evaluation environments are the entire suite of Atari games (Bellemare et al., 2013) consisting of 57 levels. Since
each level has a very different reward scale and difficulty, we report human-normalized scores for each level, calculated as
zi = (ri − oi)/(hi − oi), where hi, oi are performances of human and a random policy on level i respectively.

For all experiments, we report summarizing statistics of the human-normalized scores across all levels. For example, at any
point in training, the mean human-normalized score is the mean statistics across zi, 1 ≤ i ≤ 57.

Distributed training. Distributed algorithms have led to significant performance gains on challenging domains (Nair
et al., 2015; Mnih et al., 2016; Babaeizadeh et al., 2016; Barth-Maron et al., 2018; Horgan et al., 2018). Here, our focus
is on recent state-of-the-art algorithms. In general, distributed agents consist of one central learner, multiple actors and
optionally a replay buffer. The central learner maintains a parameter copy θ and updates parameters based on sampled data.
Multiple actors each maintaining a slighted delayed parameter copy θold and interact with the environment to generate partial
trajectories. Actors sync parameters from the learner periodically. In the actor-critic setting, the behavior policy is executed
using the delayed copy such that µ = πθold .

Details on the distributed architecture. The general policy-based distributed agent follows the architecture design of
IMPALA (Espeholt et al., 2018), i.e. a central GPU learner and N = 512 distributed CPU actors. The actors keep generating
data by executing their local copies of the policy µ, and sending data to the queue maintained by the learner. The parameters
are periodically synchronized between the actors and the learner, as discussed above.

The architecture details are the same as those in (Espeholt et al., 2018). For completeness, we present some important details
below, please refer to the original paper for other missing details. See the paper for further details.

The policy/value function networks are both trained by RMSProp optimizers (Tieleman et al., 2012) with learning rate
α = 5 · 10−4 and no momentum. To encourage exploration, the policy loss is augmented by an entropy regularization term
with coefficient ce = 0.01 and baseline loss with coefficient cv = 0.5, i.e. the full loss L = Lpolicy + cvLvalue + ceLentropy.
These single hyper-parameters are selected according to Appendix D of (Espeholt et al., 2018).

Actors send partial trajectories of length T = 20 to the learner. For robustness of the training, rewards Rt are clipped
between [−1, 1]. We adopt frame stacking and sticky actions as commonly practiced (Mnih et al., 2013). The discount factor
γ = 0.99 for calculating the baseline estimations.

V-trace value learning implementations. The targets for value learning Vtarget(Xt) in Algorithm 1 are computed via
V-trace. V-trace is a competitive baseline for correcting off-policy data (Espeholt et al., 2018). Given a partial trajectory
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Figure 4. Full results for the Atari game suites, and comparison across various baseline operators. We show the mean and median
performance of baseline algorithms across all 57 Atari games. Overall, we see that V-trace retains performance advantage compared to
other alternative off-policy evaluation operators when applied under the DoMo-AC framework.

(Xt, At, Rt)
T
t=1, let ρ̃t = min{ρ̄, ρt} be the truncated IS ratio. Let v(x) be the a certain value function baseline (e.g., we let

the baseline be computed by the value network v(x) = Vφ(x)). V-trace targets are calculated recursively for all 1 ≤ t ≤ T
backward in time:

Vtarget(Xt) = v(Xt) + ρ̃tδt + γct (Vtarget(Xt+1)− v(Xt)) , (9)

where ρ̃t = min(ρ̄, ρt) is a truncated IS ratio and ct = min(c̄, ρt) is the trace coefficient. When t = T , we initialize
Vtarget(Xt) = v(Xt). In practice, it is common to set ρ̄ <∞ to avoid explosion of the IS ratio; though this introduces extra
bias into the gradient estimate. The value function baseline is then trained to approximate these targets Vφ(x) ≈ v(x).
Following (Espeholt et al., 2018), we set ρ̄ = c̄ = 1.

Implementation details of DoMo-AC. We build the DoMo-AC gradient estimate on top of the V-trace recursive estimate
in Eqn (9). Note that we can think of Vtarget(Xt), as computed above, as a function of parameter θ as ct = min(ρt, c̄) where

ρt = πθ(At|Xt)/µ(At|Xt). We can understand Vtarget(Xt) as effectively the estimated back-up target R̂πθ,µc̄ v(Xt) and
compute the DoMo-AC gradient estimate by differentiating through Vtarget(Xt) via auto-diff. In calculating the back-up
targets for value learning, we use v(Xt) = Vφ(Xt); however, for estimating policy gradient, we find that the algorithm
works better with v(Xt) = Vtarget(Xt). We speculate that this is because policy gradient estimates would benefit from
a more accurate baseline, and the V-trace estimate Vtarget(Xt) provides a more accurate approximation to the true value
function compared to the baseline.

Alternative evaluation operators for deep RL experiments. All operators take the same form as the V-trace operator in
Eqn (1) but differ in the choice of trace coefficient ct. We consider a few alternatives: (1) By default, the V-trace operator
with Retrace trace ct = min(ρt, c̄) with c̄ = 0.5. We will examine the sensitivity to the threshold c̄ in ablation study; (2) The
one-step trace, ct = 0, which instantiates the actor-critic instantiation of the multi-step policy evaluation recursion. It turns
out that such an algorithm closely resembles the original IMPALA implementation; (3) Tree back-up trace ct = π(At|Xt);
(4) Q(λ) trace with ct = λ = 0.7. Finally, we also compare with the IMPALA baseline (Espeholt et al., 2018).

C. Discussion on truncated operators
In tabular experiments, though the back-up target ∇θRπθ,µc̄ V (x) is defined with an infinite horizon, it can be computed
analytically using matrix inverse and auto-diff. In large-scale experiments, gradients are computed based on sampled
trajectories. Since the partial trajectories are of length T , we can understand the practical algorithm as being derived from
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Figure 5. The bias-variance trade-off of the stochastic estimate∇θR̂πθ,µc̄ V (x) against the true policy gradient∇θV πθ (x) on a number
of randomly generated MDPs. As c̄ increases, the bias generally decreases but the variance increases. Overall, this leads to an optimal
middle ground for the choice of c̄. See Appendix B for more details on the experimental setups.

the equivalent off-policy evaluation operator takes the truncated form

Rπ,µT,c̄V (x) := V (x) + Eµ

[
T−1∑
t=0

γtc0:t−1ρtδt

]
. (10)

The truncated operator enjoys similar theoretical properties as the non-truncated operatorRπ,µc̄ , such as the fixed point V π

and accelerated contraction rate compared to the one-step operator.
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Figure 6. Ablation study on the effect of the trace coefficient threshold c̄ for the V-trace operator in DoMo-AC algorithm. Going from
c̄ = 0 to c̄ = 1, the evaluated performance throughout training first increases and then decreases. The best-performing value of c̄ seems to
be between 0.3 and 0.5, where the best bias-variance trade-off is obtained.
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