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Abstract

In reinforcement learning, the advantage function
is critical for policy improvement, but is often
extracted from a learned Q-function. A natural
question is: Why not learn the advantage func-
tion directly? In this work, we introduce VA-
learning, which directly learns advantage function
and value function using bootstrapping, without
explicit reference to Q-functions. VA-learning
learns off-policy and enjoys similar theoretical
guarantees as Q-learning. Thanks to the direct
learning of advantage function and value function,
VA-learning improves the sample efficiency over
Q-learning both in tabular implementations and
deep RL agents on Atari-57 games. We also iden-
tify a close connection between VA-learning and
the dueling architecture, which partially explains
why a simple architectural change to DQN agents
tends to improve performance.

1. Introduction
Developed just over three decades ago, Q-learning (Watkins,
1989; Watkins and Dayan, 1992) is one of the most fun-
damental algorithms of reinforcement learning (RL). Q-
learning progresses in an iterative fashion, updating the
current value predictions by bootstrapping from its own fu-
ture value predictions. In addition to its theoretical appeal,
the incremental nature of Q-learning is also compatible with
powerful deep learning machinery, which has fueled recent
breakthroughs in Atari games (Mnih et al., 2013).

Q-learning learns the Q-function Q(x, a), defined as the ex-
pected return obtained starting from certain state-action pair,
and executing an optimal policy. By splitting the Q-function
into a state-dependent value function V (x) and a residual
advantage functionA(x, a), we arrive at the commonly used
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decomposition

Q(x, a) = V (x) +A(x, a).

In many situations accurately approximating the advantage
function, which measures the relative performance between
actions, is the end goal of the algorithm. Instead of learning
advantage functions implicitly via Q-functions, a natural
question is whether it is possible to learn advantage func-
tions directly. Unfortunately, unlike Q-functions, the advan-
tage function does not obey a recursive equation (like the
Bellman equation for Q-functions) and cannot be learned as
a standalone object by bootstrapping from itself.

Our key remedy to resolving the above dilemma is learning
an extra value function at the same time. We introduce
VA-learning (Section 3), an algorithm that derives it name
from the fact that it directly learns a value function V and
an advantage function A. Importantly, the decomposition
Q = V + A does not constrain us from learning just the
target value functions. In fact, as we will explain in de-
tail, VA-learning derives its properties by learning a value
function adapted to the data collection policy. On a high
level, VA-learning is reminiscent of the dueling architecture
for Q-learning (Wang et al., 2015), which runs a vanilla Q-
learning algorithm with a parameterization that decomposes
Q-functions into value and advantage functions. While the
dueling architecture is purely empirically motivated, we
provide grounded theoretical guarantees to the performance
of VA-learning.

Besides theoretical guarantees, we also find that in prac-
tice VA-learning is generally more superior to vanilla Q-
learning, in both tabular and deep RL settings. A high level
explanation is that through the decomposition Q = V +A,
VA-learning explicitly allows for an extra degree of freedom
such that the learning takes place at different rate across
different components of the Q-function. Concretely, we
generally expect the V to be learned more quickly than A,
as the former is shared across all actions. In the case of boot-
strapped updates, this technique helps to increase the speed
at which the advantage function and target Q-function are
learned. We now highlight a few crucial detailed properties
enjoyed by VA-learning.

Theoretical guarantee as Q-learning. VA-learning en-
joys the same theoretical guarantee as Q-learning (Sec-
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tion 3). The implied Q-function of VA-learning Q = V +A
converges to the same target fixed point as Q-learning,
whereas V and A converge to properly defined value and
advantage function respectively.

Improved efficiency of tabular algorithms. Through the
decomposition Q = V +A, VA-learning effectively allows
the shared part of the Q-function to be learned quickly via
the V component, and more slowly via the A component.
When the learning targets are computed using bootstrapping,
the accelerated effect of such a decomposition becomes even
more profound, even in simple tabular MDPs (Section 3)

Large-scale value-based learning. VA-learning can also
be used as a component within large-scale RL agents (Sec-
tion 4). When implemented with function approximation,
we draw an intriguing connection between VA-learning and
the dueling architecture (Wang et al., 2015). On the Atari-57
game suite, VA-learning provides robust improvements over
the dueling and Q-learning baselines (Section 6).

2. Background
Consider a Markov decision process (MDP) represented as
the tuple (X ,A, PR, P, γ) where X is a finite state space,
A the finite action space, PR : X × A → P(R) the
reward kernel, P : X × A → P(X ) the transition ker-
nel and γ ∈ [0, 1) the discount factor. For any policy
π : X → P(A), important quantities include Q-function
Qπ(x, a) := Eπ [

∑∞
t=0 γ

trt | x0 = x,A0 = a], value func-
tion V π(x) :=

∑
a π(a|x)Qπ(x, a) and advantage function

Aπ(x, a) := Qπ(x, a)− V π(x).

In policy evaluation, the aim is to compute the target Q-
function Qπ for a fixed target policy π. The target Q-
function Qπ can be approximated by applying the recur-
sion Qt+1 = T πQt, where T π : RX×A → RX×A is the
Bellman evaluation operator. In control, the aim is to find
an optimal policy π⋆(·|x) := argmaxaQ

∗(x, a) with Q-
function Q⋆(x, a) := maxπ Q

π(x, a). It can be can be
approximated, by applying the recursion Qt+1 = T ⋆Qt,
with the Bellman control operator T ⋆.

In most applications, it is infeasible to compute the above
recursions exactly as they require analytic knowledge of the
transition and reward kernel. Instead, from a given state
x ∈ X , it is more common to access a sampled transition
(xt, at, rt, xt+1) tuple at step t ≥ 0,

at ∼ µ(·|xt), rt ∼ PR(·|xt, at), xt+1 ∼ P (·|xt, at),

where µ is the behavior policy, which for simplicity is as-
sumed fixed and has full coverage over the entire action
space µ(a|x) > 0,∀(x, a) ∈ X × A. Let (pt)∞t=0 and
(qt)

∞
t=0 be any number arrays, in the following, we also use

Algorithm 1 Tabular VA-learning
Initializations V0 ∈ RX and A0 ∈ RX×A; behavior
policy µ and learning rate sequence (αt)

∞
t=0.

for t = 0, 1, 2, . . . ,K do
Step 1. Sample transition (xt, at, rt, xt+1).
Step 2. Let Qt(xt, at) = Vt(xt) + At(xt, at). Com-
pute back-up target T̂ Qt(xt, at) based on Eqn (3) for
policy evaluation and Eqn (4) for control.
Step 3. Update the value and advantage iterates

Vt+1(xt)
αt← T̂ Qt(xt, at)− γAt(xt+1, µ),

At+1(xt, at)
αt← T̂ Qt(xt, at)− γAt(xt+1, µ)− Vt(xt).

end for
Output final Vt and at.

pt+1
αt← qt as shorthand notation for the incremental update

pt+1 = pt + αt(qt − pt) with learning rate αt.

Let (Qt)∞t=0 be a sequence of estimated Q-functions. First
we consider the update for the policy evaluation case, which
is commonly known as TD-learning,

Qt+1(xt, at)
αt← rt + γQt(xt+1, π), (1)

whereQt(x, π) :=
∑
a π(a|x)Qt(x, a). The back-up target

rt+γQt(xt+1, π) can be understood as a stochastic approx-
imation to the evaluation Bellman recursion back-up target
T πQt. In the control case, the Q-learning update is

Qt+1(xt, at)
αt← rt + γmax

a
Qt(xt+1, a). (2)

With a properly chosen learning rate scheme (αt)
∞
t=0 and

mild assumptions on the data process (Watkins and Dayan,
1992; Tsitsiklis, 1994; Jaakkola et al., 1994), TD-learning
and Q-learning converge almost surely to Qπ or Q⋆ respec-
tively.

3. VA-learning
We now introduce VA-learning, the central object of stufy
of the paper. At iteration t, VA-learning maintains a value
function estimate Vt(x) and advantage function estimate
At(x, a). Most importantly, unlike Q-learning, VA-learning
does not maintain a separate Q-function. To recover a Q-
function estimate, VA-learning combines the value and ad-
vantage function estimate as

Qt(x, a) := Vt(x) +At(x, a),∀(x, a) ∈ X ×A.

3.1. Policy evaluation and control

Throughout, we assume access to the transition tuple
(xt, at, rt, xt+1) at time t as in the TD-learning and Q-
learning case. To better highlight the difference between
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VA-learning and TD-learning (the difference is similar be-
tween VA-learning and Q-learning), we start by defining the
policy evaluation back-up target for TD-learning,

T̂ πQt(xt, at) := rt + γQt(xt+1, π). (3)

The policy evaluation recursion in Eqn (1) rewrites as
Qt+1(xt, at)

αt← T̂ πQt(xt, at). In contrast, policy eval-
uation VA-learning carries out the following recursion:

Vt+1(xt)
αt← T̂ πQt(xt, at)− γAt(xt+1, µ),

At+1(xt, at)
αt← T̂ πQt(xt, at)− γAt(xt+1, µ)− Vt(xt).

(Policy evaluation VA-learning)

where we similarly define At(x, µ) :=
∑
a µ(a|x)At(x, a).

Understanding the back-up targets. To better under-
stand the updates, note that the back-up targets for value
estimate Vt and advantage estimate At share the common
back-up target T̂ πQt(xt, at) − At(xt+1, µ). To better un-
derstand the back-up target, we rewrite it as the estimated
Bellman operator T̂ π applied to a transformed Q-function
Q̃t(xt, at),

T̂ πQt(xt, at)− γAt(xt+1, µ) = T̂ πQ̃t(xt, at),

Here, the transformed Q-function Q̃t(xt, at) = Vt(xt) +

Ãt(xt, at) has a special parameterization of its advantage
function

Ãt(xt, at) = At(xt, at)−At(xt, µ)

such that the advantage function has zero mean Ãt(xt, µ) =
0 under behavior policy µ. Intriguingly, such a transfor-
mation is reminiscent of though distinct from the dueling
architecture for DQN (Wang et al., 2015). We will draw
further connections between VA-learning and dueling in
Section 4.

We can interpret the value function estimate Vt+1(xt) as
learning the average of the common back-up targets, aver-
aged over all actions taken from state x. Meanwhile, the
advantage function estimateAt+1(xt, at) learns the residual
of the back-up target (after subtracting the baseline Vt(x)).
Intuitively, this hints at the fact that Vt, At indeed learn cer-
tain value functions and advantage functions respectively.
We will make the convergence behavior and fixed points of
VA-learning more clear shortly.

Control case. For the control case, we define the control
back-up target similar to Q-learning,

T̂ ⋆Qt(xt, at) := rt + γmax
a

Qt(xt+1, a). (4)

Figure 1. A simple scenario to illustrate the effectiveness of VA-
learning over Q-learning. There are two states x, y and from
state y there are two actions a, b. Assume there is a back-up
target Q̂(y, a), VA-learning will update the prediction for both
Q(y, a) and Q(y, b) thanks to the shared value function V (y). In
contrary, Q-learning only updates the prediction Q(y, a). The
accelerated learning of Q(y, b) helps accelerate learning Q(x, ·)
when bootstrapping from Q(y, ·).

Then control VA-learning carries out the recursion:

Vt+1(xt)
αt← T̂ ⋆Qt(xt, at)− γAt(xt+1, µ),

At+1(xt, at)
αt← T̂ ⋆Qt(xt, at)− γAt(xt+1, µ)− Vt(xt).

(Control VA-learning)

3.2. Why VA-learning can be more efficient

Before formally presenting the convergence behavior of
VA-learning, we provide intuitive explanations and numeri-
cal examples to show why VA-learning can be often more
efficient than TD-learning and Q-learning.

An illustrative example. Consider a fixed state y with two
actions a, b. Imagine so far only action a has been sampled
from state y, TD-learning or Q-learning would have updated
Q-function estimate Q(y, a), while the Q-function estimate
Q(y, b) has never been updated. Now, for any state x that
precedes state y, constructing the Q-learning back-up target
at state x may require bootstrapping from Q(y, b). Since
Q(y, b) is never updated before, such a back-up target for
state x is of low quality. Nevertheless, Q-learning can still
work by generating more data until the action b at state y is
sampled more time. However, the situation above implies
that propagating the correct information from y to x can
be slowed down by not having enough transitions (y, b)
sampled.

For VA-learning, when the action a is sampled at state y, the
back-up target for (y, a) will be split into back-up targets
for V (y) and A(y, a). This ensures both V (y) and A(y, a)
are updated to certain extent. Now, at the preceding state x,
when bootstrapping from (y, b) to construct its back-up
target, we effectively bootstrap from Q(y, b) = V (y) +
A(y, b). Although A(y, b) has not been updated before, the
bootstrap target can still utilize information contained in
the updated value function estimate V (y). This means the
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Figure 2. Comparing VA-learning (Section 3), Q-learning with
behavior dueling (Section 4), Q-learning with uniform dueling
(Wang et al., 2016) and regular Q-learning. We experiment on
tabular MDPs with fixed behavior policy µ = εu + (1 − ε)πdet

for some randomly sampled and fixed deterministic policy πdet,
uniform policy u and ε = 0.8. The performance evaluates the
greedy policy with learned Q-function. New algorithmic variants
significantly outperform prior methods.

VA-learning back-up target at state x is already potentially
more informative compared to its counterpart in Q-learning.

In summary, the potential benefits of VA-learning come
from the decomposition of Q-function into a value func-
tion and an advantage function. Since the value function is
shared across all actions, it can be learned faster by pool-
ing back-up targets across all actions. When used as boot-
strapped targets, the induced Q-function benefits from in-
formation contained in the value function, which in turn
accelerates the learning process.

To empirically validate the above claims, we examine the
performance of Q-learning and VA-learning under the pol-
icy evaluation case in tabular MDPs. We carry out recur-
sive updates based on a fixed number of trajectories under
behavior policy µ. We examine the error of the advantage
estimate

∥∥∥Ât −Aπ∥∥∥
2

at update iteration k, as the advantage
function error is also indicative of performance in the con-
trol case. VA-learning provides significant improvements
over Q-learning both in terms of convergence speed and
asymptotic accuracy. Detailed results are shown in Figure 5
(Appendix C).

Can VA-learning underperform Q-learning? VA-
learning is arguably not always more sample efficient than
Q-learning. The decomposition Q(x, a) = V (x)+A(x, a),
from which VA-learning is derived, assumes that it is useful

to share information (i.e., V (x)) across actions from the
same state x. When the Q-function gap from a common
state |Q(x, a)−Q(x, b)| is much larger than the gap be-
tween different states |V (x)− V (y)|, it is potentially better
to learn Q(x, a) and Q(x, b) separately rather than sharing
a common value function. Nevertheless, in many practical
scenarios, we should expect the utility in sharing values
across actions starting from a single state. VA-learning
should generally outperform Q-learning, as we show in the
following tabular and deep RL experiments.

3.3. Convergence of VA-learning

To understand the behavior of VA-learning more precisely,
we consider the expected recursive update that sample-based
VA-learning approximates, similar to how Q-learning ap-
proximates Bellman recursions. To facilitate the discussion,
we define the notation µQ ∈ RX for any Q ∈ RX×A as
µQ(x) :=

∑
a µ(a|x)Q(x, a). Abusing the notation a bit,

when the context is clear we also use µQ to denote a vector
in RX×A with the same value for all actions in a single state
µQ(x, a) := µQ(x).

We now introduce the VA recursion as a counterpart to the
Bellman recursion. For both policy evaluation or control,
the VA recursion takes a common form

Vt+1 = µT (Qt − µAt) ,
At+1 = T (Qt − µAt)− Vt,

(VA recursion)

with T = T π for policy evaluation and T = T ⋆ for control.
As we show later, VA-learning is the stochastic approxi-
mation to the VA recursion. As a result, the convergence
property of VA recursion obviously determines the behavior
of VA-learning. We now show that the VA recursion con-
verges to the target Q-function of interest for both policy
evaluation and control.
Theorem 1. (Convergence of VA recursion) For the policy
evaluation case, define V πµ (x) :=

∑
a µ(a|x)Qπ(x, a) and

Aπµ(x, a) := Qπ(x, a)−V πµ (x). Let Cπµ =
∥∥V0 − V πµ ∥∥∞+∥∥A0 −Aπµ

∥∥
∞ be the initial approximation error. The value

and advantage estimates converge geometrically∥∥At −Aπµ∥∥∞ ≤ γt−1(1 + γ)Cπµ ,∥∥Vt − V πµ ∥∥∞ ≤ γtCπµ , (policy evaluation)

which also implies ∥Qt −Qπ∥∞ = O(γt). For the con-
trol case, we define V ⋆µ (x) :=

∑
a µ(a|x)Q⋆(x, a) and

A⋆µ(x, a) := Q⋆(x, a)− V ⋆µ (x). Let C⋆µ =
∥∥V0 − V ⋆µ ∥∥∞ +∥∥A0 −A⋆µ

∥∥
∞ be the initial approximation error. The value

and advantage estimates converge geometrically∥∥At −A⋆µ∥∥∞ ≤ γt−1(1 + γ)C⋆µ,∥∥Vt − V ⋆µ ∥∥∞ ≤ γtC⋆µ, (optimal control)

which also implies ∥Qt −Q⋆∥∞ = O(γt).
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Proof. We show a proof sketch for the policy evaluation
case, similar result holds for the control case. Define Q̃t =
Qt − µAt. From the definition of VA recursion, a few cal-
culations show Q̃k+1 = T πQ̃t. This implies Q̃t converges
to Qπ at a geometric rate. Next, since Vt+1 = µT πQ̃t,
we have Vt → V πµ . Finally, At+1 = T πQ̃t − Vt implies
At → Qπ − V πµ .

Intriguingly in general, the converged value function and
advantage function differs from the target functions V πµ ̸=
V π, Aπµ ̸= Aπ (similarly for the control case). The con-
verged value function V πµ be understood as the value func-
tion obtained by following µ in the first time step and π
(resp. π∗ for control). Intuitively, this is because the value
updates aggregate across all actions according to µ without
off-policy corrections. Nevertheless, the Q-function esti-
mate constructed from the value and advantage estimate
Qt(x, a) = Vt(x) + At(x, a) does converge to the target
Q-function (resp., Q⋆ for control).

Convergence of VA-learning from VA recursion. Since
VA-learning is the stochastic approximation to the VA re-
cursion, the convergent behavior of VA recursion implies
that VA-learning should converge too. Indeed, by borrowing
the arguments from how TD-learning and Q-learning con-
verge as a result of the convergence of Bellman recursion
(Watkins, 1989; Watkins and Dayan, 1992; Jaakkola et al.,
1993; Tsitsiklis, 1994), we can show VA-learning converges
to the target fixed points above given regular assumptions on
the data process and learning rate. We provide the detailed
results in Appendix B.

3.4. VA-learning with function approximation

VA-learning is readily compatible with function approx-
imations. In general, consider parameterizing the value
function Vθ and advantage function Aϕ with parameters θ
and ϕ. The Q-function can be computed as Qθ,ϕ(x, a) :=
Vθ(x) +Aϕ(x, a). Let θ−, ϕ− be the target network param-
eter (Mnih et al., 2013) which is slowly updated towards θ
and ϕ. Henceforth, we will focus on the policy evaluation
case, similar discussions hold for the control case. Given
a transition tuple (xt, at, rt, xt+1), we can construct the
back-up value and advantage target based on the tabular
VA-learning update,

V̂ (xt) = Q̂π(xt, at)− γAϕ−(xt+1, µ),

Â(xt, at) = Q̂π(xt, at)− γAϕ−(xt+1, µ)− Vθ−(xt),
(5)

where recall that Q̂π(xt, at) = rt+γQθ−,ϕ−(xt+1, π). The
VA-learning update rule can be implemented by minimizing

Algorithm 2 VA-learning with function approximation
Parameterize value and advantage function Qθ,ϕ(x, a) =
Vθ(x) +Aϕ(x, a). Target network (θ−, ϕ−).
for t = 1, 2... do

Step 1. Sample transition (xt, at, rt, xt+1).
Step 2. Learn average behavior policy

ψ ← ψ + η∇ψ logµψ(at|xt).

Step 3. Compute targets V̂ (xt), Â(xt, at) based on
Eqn (5), and update online network parameter using
gradient based on VA-learning loss function in Eqn (6):

(θ, ϕ)← (θ, ϕ)− η∇(θ,ϕ)LVA(θ, ϕ).

end for
Output the final Q-function Qθ,ϕ.

the least square loss function LVA(θ, ϕ) defined as

1

2

(
Vθ(xt)− V̂ (xt)

)2
+

1

2

(
Aϕ(xt, at)− Â(xt, at)

)2
.

(6)

When the behavior policy is unknown and we only have
access to samples (xt, at), in order to calculate the back-
up target defined in Eqn (5), we need a policy µψ
that keeps track of the average behavior µψ(a|x) ≈
E [I [xt = a] | xt = x]. This can be achieved by maxi-
mizing the likelihood logµψ(a|x) on observed transitions
(xt, at). The full VA-learning algorithm with function ap-
proximation is shown in Algorithm 2.

4. Behavior dueling architecture
Thus far, we have showed that the VA-learning advantage
function estimate At converges to Aπµ for policy evalua-
tion (resp. A⋆µ for control). By definition, such advantage
functions satisfy the following zero-mean property

Aπµ(x, µ) :=
∑
a

µ(a|x)Aπµ(x, a) = 0

A∗
µ(x, µ) :=

∑
a

µ(a|x)A⋆µ(x, a) = 0.
(7)

At any finite iteration t, the estimate At does not neces-
sarily satisfy the above property. Since we know the zero-
mean property that the converged value of At satisfies, it
is tempting to enforce such a property as a constraint on
At, which does not change the fixed point of the update.
In the function approximation case, such a zero-mean con-
straint might be a useful inductive bias for parameterizing
the advantage function. For example, we let fϕ(x, a) be
an unconstrained function, and define its average over ac-
tions fϕ(x, µ) :=

∑
a µ(a|x)fϕ(x, a). We parameterize the
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zero-mean advantage function as follows

Aϕ(x, a) := fϕ(x, a)− fϕ(x, µ), (8)

such that Aϕ(x, µ) :=
∑
a µ(a|x)Aϕ(x, a) = 0. We call

the above parameterization behavior dueling due to its close
connections to the dueling architecture (Wang et al., 2015)
and the fact that we parameterize the advantage to be zero-
mean under the behavior policy. The regular dueling archi-
tecture is a special case when µ is uniform. The full-fledged
Q-learning with behavior dueling algorithm is shown in
Algorithm 2.

4.1. Connections between VA-learning and Q-learning
with behavior dueling

Our key insight is that VA-learning bears close conceptual
connections to regular TD-learning (or Q-learning) with
behavior dueling parameterization. With behavior dueling,
TD-learning or Q-learning might benefit from the value
sharing parameteirzation and the inductive bias for learning
advantage functions. To better see the connections, note that
the TD-learning algorithm minimizes the least square loss
function with respect to the parameterized Q-function Qθ,ϕ:

LQL(θ, ϕ) =
1

2

(
Qθ,ϕ(xt, at)− Q̂π(xt, at)

)2
, (9)

where Q̂π(xt, at) = rt + γQθ−,ϕ−(xt+1, π) is the one-
step back-up target. With behavior dueling, Qθ,ϕ(x, a) =
Vθ(x)+Aϕ(x, a) and Aϕ(x, a) = fϕ(x, a)−fϕ(x, µ). We
examine the gradient of Q-learning loss function LQL(θ, ϕ)
with respect to the value parameter∇θLQL(θ, ϕ) is(

Vθ(xt)−
(
Q̂π(xt, at)−Aϕ(xt, at)

))
∇θVθ(xt).

We can interpret the gradient for value parameter θ as updat-
ing the value function Vθ so as to better fit the value function
target Q̂π(xt, at)− Aϕ(xt, at). This echos with the value
updates in VA-learning that which aim to fit a value function
target (see Section 3).

Regarding the advantage updates, there is a subtle differ-
ence between the advantage updates of VA-learning vs. be-
havior dueling. In a nutshell, this is because VA-learning
carries out separate updates for each advantage function
A(x, a). In contrast, behavior dueling couples advantage
updates for different actions due to the parameterization
A(x, a) = f(x, a)−f(x, µ); as a result, when action a ̸= b
is taken, the advantage function f(x, b) is updated as well.
Despite the difference, both updates bear the interpretations
of fitting the advantage components of the Q-function. Such
interpretations imply that the motivational example (Sec-
tion 3.2) which illustrates that the benefits of VA-learning
should intuitively apply to behavior dueling as well, as we
will verify empirically. We present a more complete discus-
sion of such connections between VA-learning and behavior
dueling in Appendix D.

Algorithm 3 Q-learning with behavior dueling
Behavior dueling Qθ,ϕ(x, a) = Vθ(x) + Aϕ(x, a) with
parameterization Aϕ(x, a) = fϕ(x, a)− fϕ(x, µψ). Tar-
get network (θ−, ϕ−).
for t = 1, 2... do

Step 1. Sample transition (xt, at, rt, xt+1).
Step 2. Learn average behavior policy

ψ ← ψ + η∇ψ logµψ(at|xt).

Step 3. Compute back-up target

Q̂π(xt, at) = rt + γQθ−,ϕ−(xt+1, π).

and update online network parameter using gradient
based on Eqn (9): (θ, ϕ)← (θ, ϕ)−η∇(θ,ϕ)LQL(θ, ϕ).

end for
Output the final Q-function Qθ,ϕ.

4.2. Why behavior dueling is better than dueling

We can understand the dueling architecture (Wang et al.,
2015) as a special case of behavior dueling assuming µ is
uniform. Such an implicit assumption can be useful when µ
is indeed close to uniform, so that there is no need to param-
eterize an additional behavior policy µψ to learn. However,
when the behavior policy deviates from the uniform policy,
learning µψ ≈ µ seems critical to improved performance.
In a few practical setups, we usually find behavior dueling
to outperform uniform dueling, as we will demonstrate in
both tabular and some large-scale deep RL settings.

In light of the discussion in Section 3.2, both behavior and
uniform dueling entail sharing information across actions,
so why does the former perform better? We hypothesize
that this is because behavior dueling entails a better value
sharing between actions, as it is adapted to the behavior
policy. Consider the dueling parameterization Aν(x, a) =
f(x, a)− f(x, ν) with distribution ν. We are interested in
minmizing unshared information Aµ(x, a) across actions,
as characterized by the squared norm

min
ν

∑
a

µ(a|x)Aν(x, a)2

In general, the minimizing distribution is ν = µ, i.e., the
behavior policy. Since behavior dueling at ν = µ mini-
mizes the unshared components of Q-functions, it can be
interpreted as maximizing the shared components, leading
to faster downstream learning. We provide a more precise
argument in Appendix D with experiment ablations.

5. Discussion of prior work
We discuss the relation between VA-learning and a few lines
of related work in RL.
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Advantage learning. Despite the similarity in names, VA-
learning differs from advantage learning (Baird III, 1993;
Baird, 1995) in critical ways. In a nutshell, VA-learning still
aims to learn the original Q-function Qπ (or Q∗ in the con-
trol case), whereas advantage learning learns to increase the
value gaps between actions. Specifically, given a transition
(xt, at, rt, xt+1), advantage learning for optimal control can
be understood as the following back-up target for Qt(xt, at)
(Bellemare et al., 2016; Kozuno et al., 2019)

T̂ πQt(xt, at) + β

(
Qt(xt, at)−

∑
a

π(at|xt)Qt(xt, at)

)
where π is the greedy policy for the control case. The
above back-up operation is gap-increasing, in that it enlarges
the difference between converged Q-functions at different
actions. For example, in the policy evaluation case the
Q-function converges to V π + 1

1−βA
π. As β → 1, the

Q-function gap between actions increases.

Compared to gap-increasing operators, a subtle technical
difference is that VA-learning constructs the back-up target
by subtracting the average Q-function under behavior policy
µ instead of target policy π; and at the next state xt+1,
instead of the current state xt. This ensures that VA-learning
still retains Qπ as the fixed point. An interesting future
direction would be to combine VA-learning with the gap-
increasing learning.

Direct advantage learning. With a similar motivation
as VA-learning, Pan et al. (2021) proposed to learn advan-
tage functions directly from Monte-Carlo returns, based on
the variance-minimization property of advantage function.
Their approach is thus far constrained to the on-policy case,
and does not allow for bootstrapping out-of-the-box. An
interesting direction would be to study the combination of
such an approach with VA-learning.

RL with over-parameterized linear function approxima-
tion. The tabular dueling parameterization can be under-
stood as a special case of over-parameterized linear func-
tion approximation (Sutton and Barto, 1998). Here, over-
parameterized refers to the fact that dueling introduces an
extra degree of freedom to learning Q-functions. We have
demonstrated empirically that this extra degree of freedom
allows for value sharing across actions, and usually helps
speed up convergence. Interesting open questions include
the study of off-policy stability of dueling parameterization.

6. Experiments
We start with experiments on tabular MDPs, to understand
the improved sample efficiency of VA-learning over Q-
learning. Then we evaluate the impacts of VA-learning
and behavior dueling in deep RL settings.
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Figure 3. Comparing different algorithmic variants in tabular
MDPs with fixed behavior policy µ = εu+ (1− ε)πdet for some
randomly sampled and fixed deterministic policy πdet, uniform
policy u and varying degree of ε (x-axis). As ε → 1 and µ ap-
proaches uniform, Q-learning with dueling architecture catches up
in performance with behavior dueling and VA-learning.

6.1. Tabular MDP experiments

In Figure 3, we compare four algorithmic variants with be-
havior policy µ defined as µ = εu+(1− ε)πdet on a family
of randomly generated tabular MDPs. Here, πdet is a ran-
domly sampled deterministic policy, u is the uniform policy
and ε ∈ [0, 1] is the mixing coefficient. We calculate the
final performance of each algorithm until convergence, and
show the mean and standard deviation across 20 indepen-
dent runs. See Appendix C for more details on the MDP
details.

For a wide range of values of ε, VA-learning and Q-learning
with behavior dueling outperform other baselines signifi-
cantly. The performance gap seems the most profound when
ε ≈ 0 as µ deviates the most from uniform. In this case, we
speculate that since the behavior dueling architecture makes
an inaccurate implicit assumption on the behavior policy,
Q-learning with uniform dueling perform poorly as regular
Q-learning. As ε increases, the performance gap decreases.
When ε → 1 and µ is close to a uniform policy, uniform
dueling catches up with the two new algorithms. However,
there is still a statistically significant gap between regular Q-
learning and other algorithms, implying a consistent benefit
of VA-learning and its derived Q-learning variants (behavior
dueling) over regular Q-learning.

6.2. Deep reinforcement learning experiments

We now evaluate the effects of VA-learning and its variants
in large-scale deep RL environments. We use the DQN
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Figure 4. Comparing algorithmic variants implemented with full
Atari action set. VA-learning and behavior dueling are signif-
icantly better than the uniform dueling architecture, which fur-
ther improves over the n-step Q-learning baseline. Compared to
the standard Atari setup in Figure 6(b), the performance of VA-
learning and behavior dueling does not degrade.

agent (Mnih et al., 2013) as the baseline agent and use the
Atari 57 game suite as the test bed (Bellemare et al., 2013).
Throughout, we report the interquartile mean (IQM) score
across multiple random seeds for all algorithmic variants
that train for 200M frames (Agarwal et al., 2021). We com-
pare VA-learning, behavior dueling, dueling (Wang et al.,
2015) and baseline Q-learning. All variants share the same
architecture and hyper-parameters wherever possible.

The behavior policy µ is ε-greedy with respect to the Q-
function network Qθ,ϕ. Since both the exploration rate ε
and Q-functionQθ,ϕ slowly changes over time, the behavior
policy µ changes too. VA-learning and behavior dueling
trains an additional average behavior policy µψ(a|x) to ap-
proximate the average behavior policy across the entire
training history. By default, to improve performance, the
baseline Q-learning agent implements n-step bootstrapping
and computes back-up targets based on partial trajectories
of length n. VA-learning can be easily adapted accordingly,
see Appendix C for more details.

Network architecture. The baseline DQN agent network
consists of a torso convolutional network which processes
the input image x into an embedding g(x), and a head
MLP network which takes the embedding and outputs the
Q-function Qθ(g(x), a). The dueling architecture param-
eterizes a separate value head network Vθ (g(x)) and ad-
vantage head network Aϕ(g(x), a). In behavior dueling
and VA-learning, the behavior policy is parameterized as a
policy head network that outputs a distribution over actions

µψ (a|g(x)). Throughout experiments, we design the policy
head to share the same torso as the other value heads, but its
gradient does not update the torso parameters. This design
choice ensures that the loss function for learning average be-
havior policy does not shape the embedding. Hence, any re-
sulting empirical gains can be more convincingly attributed
to the improvements of VA-learning over Q-learning. See
Appendix C for more comprehensive details.

Full action set Atari. We focus on a variant of the Atari
game suite with full action set, where the agent has access
to a total of |A| = 18 actions including potentially many
actions with no effect. Thus far by default, agents are trained
with the restricted action set which makes learning easier
(e.g., for Pong the reduced action set has |A| = 3 actions).

In Figure 4, we compare DQN agent variants with the
full action set. Almost all algorithms can reach a simi-
lar asymptotic performance as with the restricted action set
(Figure 6(b)) but the learning speed is generally slowed
down. VA-learning and behavior dueling are the least im-
pacted by the increased action set. The dueling architecture
slows down more significantly, with the performance mar-
gins against VA-learning enlarged over time. As discussed
in Section 4, the dueling architecture can be understood as
imposing an implicit uniform assumption on the behavior
policy. When the action space is large, such an assumption
is more easily violated as the agent is much more likely to
take certain actions than others over time. Such a compari-
son highlights the practical importance of using the behavior
policy to carry out the average of advantage function, which
is the design principle of VA-learning.

For the restricted Atari game setting where for each game
only a small subset of full action sets is provided to the
agent, we observe that behavior dueling and VA-learning
also deliver improvements over dueling and Q-learning base-
lines. See Appendix C for more results and ablation study
in the deep RL setting.

7. Conclusion
In this work, we have developed VA-learning as an alter-
native value-based RL algorithm to the classic Q-learning.
We have discussed a few important theoretical aspects of
VA-learning, and how it can be implemented with function
approximations. With the extra degree of freedom in place,
VA-learning aims to learn a value function and advantage
function that is adapted to the behavior policy. Compared to
Q-learning, VA-learning makes more efficient use of finite
samples and enjoys better empirical performance in both
tabular and deep RL settings. VA-learning also inspires
the behavior dueling architecture, which generalizes duel-
ing as a special case, and potentially explains why such a
seemingly simple architecture change helps improve DQN.
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Hsiao-Ru Pan, Nico Gürtler, Alexander Neitz, and Bernhard
Schölkopf. Direct advantage estimation. arXiv preprint
arXiv:2109.06093, 2021.

John Quan and Georg Ostrovski. DQN Zoo: Reference
implementations of DQN-based agents. URL http:
//github.com/deepmind/dqn_zoo.

Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. MIT Press, 1998.

John N. Tsitsiklis. Asynchronous stochastic approximation
and Q-learning. Machine learning, 16(3):185–202, 1994.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep re-
inforcement learning with double Q-learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt,
Marc Lanctot, and Nando De Freitas. Dueling network
architectures for deep reinforcement learning. In Pro-
ceedings of the International Conference on Machine
Learning, 2015.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih,
Remi Munos, Koray Kavukcuoglu, and Nando de Freitas.
Sample efficient actor-critic with experience replay. In
Proceedings of the International Conference on Learning
Representations, 2016.

Christopher J. C. H. Watkins. Learning from delayed re-
wards. 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

9

http://github.com/deepmind/dqn_zoo
http://github.com/deepmind/dqn_zoo


VA-learning as a more efficient alternative to Q-learning

APPENDICES: VA-learning as a more efficient alternative to Q-learning

A. Proof of theoretical results
Taking policy evaluation as an example, we first show that the VA-learning update

Vt+1(xt)
αt← T̂ πQt(X,A)−At(xt+1, µ),

At+1(xt, at)
αt← T̂ πQt(X,A)−At(xt+1, µ)− Vt(xt).

is reduced to the above VA recursion in expectation,

Vt+1 = µT π (Qt − µAt) ,
At+1 = T π (Qt − µAt)− Vt.

We first consider the value function update. Conditional on the initial state X , we take an expectation over the random
variables

at ∼ µ(·|xt), rt ∼ PR(·|xt, at), xt+1 ∼ P (·|xt, at).

This leads to

E
[
T̂ πQt(xt, at)−At(xt+1, µ)

∣∣∣ xt] =∑
a

µ(a|xt)T πQ̃t(xt, a),

where Q̃t := Qt − µAt. In our notation, this is equivalent to µT π(X). This means the value function update in expectation
is indeed Vt+1(x) =

∑
a µ(a|x)T πQ̃t(x, a). With the same set of argument, we can show the case for the advantage

function update too.

Theorem 1. (Convergence of VA recursion) For the policy evaluation case, define V πµ (x) :=
∑
a µ(a|x)Qπ(x, a) and

Aπµ(x, a) := Qπ(x, a) − V πµ (x). Let Cπµ =
∥∥V0 − V πµ ∥∥∞ +

∥∥A0 −Aπµ
∥∥
∞ be the initial approximation error. The value

and advantage estimates converge geometrically∥∥At −Aπµ∥∥∞ ≤ γt−1(1 + γ)Cπµ ,∥∥Vt − V πµ ∥∥∞ ≤ γtCπµ , (policy evaluation)

which also implies ∥Qt −Qπ∥∞ = O(γt). For the control case, we define V ⋆µ (x) :=
∑
a µ(a|x)Q⋆(x, a) and A⋆µ(x, a) :=

Q⋆(x, a)− V ⋆µ (x). Let C⋆µ =
∥∥V0 − V ⋆µ ∥∥∞ +

∥∥A0 −A⋆µ
∥∥
∞ be the initial approximation error. The value and advantage

estimates converge geometrically ∥∥At −A⋆µ∥∥∞ ≤ γt−1(1 + γ)C⋆µ,∥∥Vt − V ⋆µ ∥∥∞ ≤ γtC⋆µ, (optimal control)

which also implies ∥Qt −Q⋆∥∞ = O(γt).

Proof. We first examine the policy evaluation case. Define Q̃t = Qt − µAt. From the definition of VA recursion, we have

Q̃k+1 = Vt+1 +At+1 − µAt+1

= µT π(Qt − µAt) + T π(Qt − µAt)− Vt − µ (T π(Qt − µAt))
= T π(Qt − µAt)

= T πQ̃t.

The above equality implies Q̃t converges to Qπ at a geometric rate, since the operator T π has Qπ as the unique fixed point
and is γ-contractive. Formally, we have∥∥∥Q̃t −Qπ∥∥∥

∞
≤ γt

∥∥∥Q̃0 −Qπ
∥∥∥
∞
≤(a) γ

t
(∥∥A0 −Aπµ

∥∥
∞ +

∥∥V0 − V πµ ∥∥∞)︸ ︷︷ ︸
=:Cπ

µ

.
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Here, (a) follows from the application of triangle inequality and the fact that Qπ = Aπµ + V πµ . Now, we can write∥∥Vt − V πµ ∥∥∞ =
∥∥∥µT πQ̃k−1 − V πµ

∥∥∥
∞

=
∥∥∥µQ̃k − V πµ ∥∥∥∞ ≤ γtCπµ .

Finally, we consider the advantage function.∥∥At −Aπµ∥∥∞ =
∥∥∥T πQ̃k−1 − Vt −Aπµ

∥∥∥
∞

=
∥∥∥Q̃t − Vk−1 −Aπµ

∥∥∥
∞

≤(a)

∥∥∥Q̃t −Qπ∥∥∥
∞

+
∥∥Vk−1 − V πµ

∥∥
∞

≤ γt−1(1 + γ)Cπµ ,

where (a) follows from the application of triangle inequality. This concludes the proof for policy evaluation. For optimal
control, the same set of argument applies thanks to the fact that T is γ-contractive with Q⋆ as the unique fixed point.

B. Convergence of VA-learning
We now present results on the convergence of VA-learning under stochastic approximations. Recall that upon observing the
sample (xt, at, rt, xt+1), VA-learning carries out the following update ,

Vt+1(xt)
αt← T̂ Qt(X,A)−At(xt+1, µ),

At+1(xt, at)
αt← T̂ Qt(X,A)−At(xt+1, µ)− Vt(xt),

where T̂ Qt(X,A) is the one-sample stochastic approximation to T Qt(X,A) for optimal control and T πQt(X,A) for
policy evaluation. We consider a more restrictive setup, where from each state x, we sample actionAx ∼ µ(·|x), and observe
the corresponding immediate reward Rx ∼ PR(·|x,A) and next state transition Xx ∼ P (·|x,A), where the subscripts are
meant to distinguish between samples from different state x ∈ X . The update is carried out across all states simultaneously,
∀x ∈ X ,

Vt+1(xt)
αt← T̂ Qt(xt, at)−At(xt+1, a

µ
x),

At+1(xt, at)
αt← T̂ Qt(xt, at)−At(xt+1, a

µ
x)− Vt(xt).

(10)

The formal results are stated as follows.

Theorem 2. (Convergence of VA-learning) Under the assumption
∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t ≤ C <∞ where C is

some finite constant, then the above update in Eqn (10) leads to almost sure convergence of the iterates. Concretely,

Vt(x)→ V πµ , At(x)→ Aπµ,∀(x, a) ∈ X ×A

almost surely for policy evaluation and

Vt(x)→ V ⋆µ , At(x, a)→ A⋆µ,∀(x, a) ∈ X ×A

for optimal control.

The proof is a straightforward extension of classic proof technique to show the stochastic approximation convergence of
Q-learning and TD-learning (Watkins and Dayan, 1992).

C. Experiment details and extra results
We provide further details on the tabular and deep RL experiments in the main paper.

C.1. Tabular experiments

All tabular experiments in the paper are carried out on randomly generated MDPs with |X | = 20 states, |A| = 5 actions
and discount factor γ = 0.99. The transition matrix p(·|x, a) is generated from a Dirichlet distribution with parameter
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Figure 5. (a) Comparing VA-learning (Section 3) with Q-learning for tabular policy evaluation. We evaluate a target policy π formed as a
convex combination of a deterministic policy and uniform policy, using a fixed number of trajectories data collected under uniform policy.
The y-axis shows the approximation error to the advantage

∥∥∥Ât −Aπ
∥∥∥
2

at each iteration k. Given any data budget, VA-learning obtains
more accurate approximations to the advantage function compared to Q-learning. (b) The same setup as before. The y-axis shows the
approximation error to the Q-function

∥∥∥Q̂t −Qπ
∥∥∥
2

at each iteration k. Given any data budget, VA-learning obtains a slightly faster rate
of approximating the Q-function compared to Q-learning.

(α, α...α) for α = 0.5. For the control case, the behavior policy is fixed and constructed as µ = εu + (1 − ε)πdet for
some randomly sampled and fixed deterministic policy πdet, uniform policy u and ε ∈ [0, 1]. By adjusting ε, we can assess
different algorithms’ robustness to the level of stochasticity in the behavior policy. In the policy evaluation case, µ is set to
be uniform and equivalently ε = 1. The trajectories are collected starting from the same state x = 0 and under behavior
policy µ. Trajectories are truncated at length T = int

(
2

1−γ

)
where int(x) denotes the closest integer to x. By default,

N = 20 are collected for each experiment.

In the control case, the performance is calculated as Qπt where πt is the greedy policy with learned Q-function Qt. Recall
that for VA-learning, Qt(X,A) = Vt(x) +At(x, a). In plots, we show the average value of Qπt uniformly across all states.
In the policy evaluation case, we calculate ∥Qt −Qπ∥2 where π is the randomly chosen deterministic policy.

Figure 2, we demonstrate how VA-learning improves over Q-learning in the policy evaluation case, by measuring the
advantage estimation error

∥∥∥Ât −Aπ∥∥∥
2

over time. For VA-learning, Ât = At; for Q-learning, Ât = Qt − πQt.

Gradient descent updates. Throughout tabular experiments, we implement updates as gradient descents on a certain
properly defined loss functions. We always adopt tabular parameterizations of Qt, Vt and at. For Q-learning, the loss
function is implemented as in LQL; for the dueling architecture, the loss function is the same as Q-learning but with dueling
parametrization on Qt(X,A); for VA-learning, the loss function is implemented as in LVA. At each update, the gradient is
averaged across all collected trajectories so as to avoid additional randomness in the update. The learning rate is set as a
constant αt = 0.1. The target parameter is copied to be the online parameter every τ = 10 updates.

Extra results on Q-function error. As complementary results to Figure 2, we demonstrate how VA-learning improves
over Q-learning in the policy evaluation case in Figure 5(b). We measure the Q-function estimation error

∥∥∥Q̂t −Qπ∥∥∥
2

over

time. For VA-learning, Q̂t = At + Vt; for Q-learning, Q̂t = Qt. Notably, VA-learning achieves a slightly faster decaying
rate of the approximation error compared to Q-learning.
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C.2. Deep RL experiment details

All the deep RL experiments use the DQN agent (Mnih et al., 2013) as the baseline agent and use the Atari 57 game suite
as the test bed (Bellemare et al., 2013). To improve the performance, we apply double Q-learning (Van Hasselt et al.,
2016) and n-step bootstrapping in general. Throughout, we use n = 5; if n is smaller, overall DQN does not benefit fully
from multi-step bootstrapping; if n is larger, the performance can suffer due to lack of off-policy corrections. The agent
adopts most architecture and hyper-parameters as reported in (Mnih et al., 2013). Our agents are all based on the reference
implementation in (Quan and Ostrovski).

We report the interquartile mean (IQM) score across multiple random seeds for all algorithmic variants that train for 200M
frames (Agarwal et al., 2021). See the reference for specific procedures for calculating the IQM score and the bootstrapped
confidence intervals.

Multi-step bootstrapping, n-step Q-learning and VA-learning. Multi-step bootstrapping usually improves practical
performance of deep RL algorithms (Hessel et al., 2018). In n-step Q-learning, the agent samples a partial trajectory
(X0:t, A0:t−1, R0:t−1) starting from state-action pair (xt, at), and constructs the policy evaluation back-up target with target
policy π,

T̂ πQt(xt, at) =
n−1∑
t=0

γtrt + γnQt(xn, π)

For control, the back-up target is

T̂ πQt(xt, at) =
n−1∑
t=0

γtrt + γnmax
a

Qt(xn, a).

Finally, n-step Q-learning carries out the update Qt+1(xt, at)
αt= T̂ πQt(xt, at). VA-learning can adapt to n-step bootstrap-

ping as follows:

Vt+1(x0)
αt= T̂ πQt(xt, at)−At(xn, µ)

At+1(xt, at)
αt= T̂ πQt(xt, at)−At(xn, µ)− Vt(x0).

When n = 1, the above recovers the VA-learning introduced in the paper as a special case.

Details on network architecture. We use the standard DQN architecture specified in (Mnih et al., 2013). As described
in the main paper, given 4 stacked frames from the Atari game as input state x, the torso convolutional neural network
processes the image into an embedding g(x). The DQN agent parameterizes a value head, which is a MLP that takes g(x)
and produces |A| scalar outputs, each corresponding to a Q-function prediction Qθ(g(x), a). The dueling architecture,
behavior dueling and VA-learning all parameterize a separate value head with one scalar output Vθ (g(x)), and an advantage
head with |A| scalar outputs Aϕ (g(x), a). VA-learning and behavior dueling further parameterize a policy head network
µψ (g(x), a) that outputs a probability distribution over actions. The overall Q-function is then produced as

Qθ,ϕ (g(x), a) = Vθ (g(x)) +Aϕ(x, a)−
∑
a

µψ (g(x), a)Aϕ (g(x), a) .

The torso parameters g are trained with the Q-learning or VA-learning loss function. We put a stop gradient on the torso
embedding g(x) when calculating the learned behavior policy distribution, such that the behavior learning loss function
does not impact g.

Tuning learning rate. Learning rate is the only hyper-parameter we tune across DQN agent variants. All agents use the
RMSProp optimizer (Hinton and Tieleman, 2012). By default, one-step DQN agent uses the learning rate β = 2.5 · 10−4.
When using n-step Q-learning with n = 5, we find the learning rate is best set smaller to be at 5 · 10−5. When doing
VA-learning, behavior dueling and uniform dueling, we find it improves performance further by reducing the learning rate
more, to 1.5 · 10−5. All learning rates are found by grid search: we start with the default learning rate β of DQN, and
experiment on a subset of games whether setting learning rates at 1

3β or 3β improves the performance. We keep iterating
until changing the learning rate does not improve performance anymore.
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Using online network in VA-learning. In theory, the VA-learning loss function

LVA(θ, ϕ) =
1

2

(
Vθ(xt)− V̂ (xt)

)2
+

1

2

(
Aϕ(xt, at)− Â(xt, at)

)2
,

where the back-up targets

V̂ (xt) = Q̂π(xt, at)−Aϕ−(xt+1, µ),

Â(X,A) = Q̂π(xt, at)−Aϕ−(xt, µ)− Vθ−(xt),

are computed from the target network. In deep RL implementations, we find it is important to use online network as the
baseline when calculating the back-up target for the advantage function. Effectively, the back-up targets are

V̂ (xt) = Q̂π(xt, at)−Aϕ−(xt+1, µ),

Â(xt, at) = Q̂π(xt, at)−Aϕ−(xt, µ)− Vθ(x).

Such a subtle change in implementation brings VA-learning and behavior dueling more similar in practice.

Huber loss. In practice, instead of optimizing the least square loss x2 function, prior work has identified that optimizing
the Huber loss is a more robust alternative (Quan and Ostrovski)

huber(x) = x2I [|x| ≤ τ ] + |x| I [|x| > τ ] ,

where by default τ = 1. As a result, the implemented VA-learning loss function is

LVA(θ, ϕ) =
1

2
huber

(
Vθ(xt)− V̂ (xt)

)
+

1

2
huber

(
Aϕ(xt, at)− Â(xt, at)

)
,

while the implemented Q-learning loss function is

LQL(θ, ϕ) =
1

2
huber

(
Qθ,ϕ(xt, at)− Q̂π(xt, at)

)
.

In light of this, the equivalence between VA-learning and behavior dueling no longer holds, creating a potentially bigger
discrepancy in large-scale settings.

C.3. Deep RL experiments extra results

Robustness to off-policyness. We assess the robustness of various algorithmic variants to the level of off-policyness
present in the replay. In DQN agents, the behavior policy µ is ε-greedy with the rate of exploration ε decays from 1 to
εf over training. By default εf = 0.01. To increase the level of off-policyness overall in training, we set εf = 0.5. In
Figure 6(a), we see that VA-learning and behavior dueling both achieve significant performance gains over dueling, whereas
the latter improves upon baseline Q-learning. This shows that VA-learning and behavior dueling are more robust to changes
in data distribution which deviates from the standard setting, and is hence more robust in general.

Results for restricted action set. In Figure 6(b), we compare the performance of different DQN agent variants in the
standard Atari game setup. Compatible with observations made in prior work (Wang et al., 2015), the dueling architecture
achieves significant improvement over the n-step Q-learning baseline. Although n-step Q-learning learns faster initially,
other algorithmic variants catch up as the training progresses and obtains higher asymptotic performance.

VA-learning and behavior dueling achieve additional, albeit marginal, performance improvements over the dueling architec-
ture. This is a sign that explicitly learning the behavior policy, rather than implicitly assuming it to be uniform, is potentially
valuable. We carry out an ablation study that shows how VA-learning and behavior dueling are more robust than dueling and
baseline Q-learning in a number of deep RL setups.

Per-game results. In Table 1, we show the per-game result for the full action Atari game setting. Compatible with Figure 4,
the improvement of VA-learning and behavior dueling over dueling and n-step Q-learning is statistically significant in most
cases.
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(a) Effect of off-policyness
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(b) Restricted action set

Figure 6. (a) Comparing algorithmic variants implemented with the DQN architecture in the standard Atari setup. The behavior policy is
ε-greedy to carry out exploration. The ε decays from 1 to εf . By default, εf = 0.01. Here, we set εf = 0.5 so that there is a large degree
of off-policyness throughout training. VA-learning and behavior dueling achieves significant improvements compared to dueling and
baseline Q-learning. (b) Comparing algorithmic variants implemented with the DQN architecture. The baseline agent is n-step Q-learning.
We further compare with the dueling architecture (Wang et al., 2015), the behavior dueling and VA-learning. All agents are evaluated on
Atari 57 games and IQM scores (Agarwal et al., 2021) are shown across 3 seeds. Behavior dueling and VA-learning obtain marginal
advantage over dueling.

D. Connections between behavior dueling and VA-learning
We provide an in-depth discussion on the connection between behavior dueling and VA-learning in this section. Recall that
in VA-learning, the value function Vθ and advantage function Aϕ are updated by minimizing the squared losses

1

2

(
Vθ(xt)− V̂ (xt)

)2
+

1

2

(
Aϕ(xt, at)− Â(xt, at)

)2
.

as shown in Eqn (6). In behavior dueling, the Q-function is parameterized as Qθ,ϕ(x, a) = Vθ(x) +Aϕ(x, a)−Aϕ(x, µ).
The parameters are jointly updated with gradient descents on the loss function

LQL(θ, ϕ) =
1

2

(
Qθ,ϕ(xt, at)− Q̂π(xt, at)

)2
(11)

as in Eqn (9). The gradients with respect to θ and ϕ correspond to the updates for the value function and advantage function
components of the Q-function. We examine the value gradient and advantage gradient in detail below. Our main findings
are:

• Value gradients are equal in expectation for both VA-learning and behavior dueling, i.e.,

Eµ [∇θLQL(θ, ϕ) | xt] = Eµ [∇θLVA(θ, ϕ) | xt] .

• There are subtle differences between advantage gradients differ for VA-learning and behavior dueling. Both updates bear
the interpretation of fitting certain advantage function components.

D.1. Value gradient

We show that the value gradient of VA-learning and TD-learning with behavior dueling are equal in expectation. Similar
conclusions apply for Q-learning.
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Lemma 3. When the target network is the same as the online network θ− = θ, ϕ− = ϕ, then in expectation, the VA-learning
value gradient is the same as the gradient of TD-learning with behavior dueling

Eµ [∇θLQL(θ, ϕ) | xt] = Eµ [∇θLVA(θ, ϕ) | xt] ,

where the expectation is over the action at ∼ µ(·|xt).

Proof. For simplicity, all our derivations below assume θ− = θ, ϕ− = ϕ. We can write for behavior dueling

∇θLQL(θ, ϕ) =
(
Vθ(xt) +Aϕ(xt, at)− Q̂π(xt, at)

)
∇θVθ(xt).

Now, taking expectation over the actions at ∼ µ(·|xt) and note that Aϕ(xt, µ) = 0 due to the behavior dueling parameteri-
zation, we have

E [LQL(θ, ϕ) | xt] = E
[(
Vθ(xt)− Q̂π(xt, at)

)
∇θVθ(xt)

∣∣∣ xt] ,
where Q̂π(xt, at) = rt+ γV (xt+1) + γA(xt+1, π)− γA(xt+1, µ). Examining the value gradient for the VA-learning case,
we have

∇θLVA(θ, ϕ) =
(
Vθ(xt)− V̂ π(xt)

)
∇θVθ(xt).

But note that V̂ π(xt) = rt + γV (xt+1) + γA(xt+1, π)− γA(xt+1, µ) by definition. This means

E [∇θLVA(θ, ϕ) | xt] = E [∇θLQL(θ, ϕ) | xt]

and hence the proof is concluded.

The above equivalence implies that both VA-learning and behavior dueling carry out value updates that fit the value function
targets V̂ π(xt).

D.2. Advantage gradient

For ease of presentation, we assume a tabular parameterization for the advantage function. For VA-learning, we consider the
gradient ∇A(x,a) for a fixed state-action pair (x, a). We can derive

E
[
∇A(x,a)LVA(θ, ϕ)

∣∣ xt = x
]
= µ(a|x) (V (x)− T πQ(x, a))

To obtain a better intuition for the above update, note that since V (x) is meant to fit the average back-up target T πQ(x, a),
the difference V (x)− T πQ(x, a) can be understood as the residual learning target. The multiplier µ(a|x) represents the
magnitude of the update, thanks to the sampling behavior distribution.

On the other hand, for behavior dueling with Q-learning, recall that we use the parameterization A(x, a) = f(x, a)−f(x, µ)
and we start by considering the gradient of∇f(x,a)

E
[
∇f(x,a)LQL(θ, ϕ)

∣∣ xt = x
]
= µ(a|x)

[
(Q(x, a)− T πQ(x, a))−

∑
b

µ(b|x) (Q(x, b)− T πQ(x, b))

]

As before, the multiplier µ(a|x) is a result of the sampling distribution. The gradient can be understood as the difference
between the TD error δ(x, a) = Q(x, a) − T πQ(x, a) and the average TD error

∑
b µ(b|x)δ(x, a). Therefore, we can

also understand the gradient to f as the residual learning target. In general, however, the advantage gradient update for
VA-learning and behavior dueling differ.
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D.3. Why behavior dueling is better than dueling

Following the discussion in the main paper, we consider a parameterizationAν(x, a) = f(x, a)−f(x, ν) with distribution ν.
The notation Aν is meant to emphasize that the advantage function depends on the distribution ν. Since A(x, a) represents
the unshared commonents of different Q-functions, we might be interested in minimizing such unshared information.
Consider the squared norm as such an objective to minimize

min
ν

∑
a

µ(a|x)Aν(x, a)2.

Lemma 4. Across all possible parameterizations with function f , the unique minimizer to the weighted squared norm is
ν = µ. Formally,

µ = argmin
ν

max
f

∑
a

µ(a|x)Aν(x, a)2

Proof. We can rewrite the squared norm objective as∑
a

µ(a|x)Aν(x, a)2 = Ea∼µ(·|x)
[
(f(x, a)− f(x, ν))2

]
≥(a) Va∼µ(·|x) [f(x, a)] .

The equality at (a) is achieved when f(x, ν) = Ea∼µ(·|x) [f(x, a)] = f(x, µ). This for any fixed f , the minimizing
distribution ν is such that f(x, ν) = f(x, µ). For a specific f , the minimizing distribution ν might not be unique. However,
it is straightforward to see that across all possible distributions ν = µ is the unique minimizer.

Since the behavior dueling at ν = µ minimizes the weighted squared norm of the advantage function, it can be understood
as minimizing the unshared information across actions and hence maximizing the shared components.

On tabular experiments, we validate such a theoretical insight in Figure 7. Across 20 randomly generated MDPs, we run
Q-learning with behavior dueling vs. dueling. At iteration t, let A(x, a) = f(x, a)− f(x, ν) be the advantage function of
the dueling algorithms (ν = u where u is uniform for dueling; and ν = µ for behavior dueling). We measure three quantities
over time: (1) for dueling, we compute (f(x, a)− f(x, ν))2 (red); (2) for dueling, we also compute (f(x, a)− f(x, µ))2

(blue) and (3) for behavior dueling, we compute (f(x, a)− f(x, µ))2 (brown). All statistics are averaged over training
samples, generated under the behavior policy. Comparing (2) and (3), we empirically verify that indeed, the behavior dueling
parameterization obtains lower weighted advantage norm compared to the uniform dueling.
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Figure 7. We compare the squared advantage norm over training iterations, across 20 randomly generated MDPs, between behavior
dueling and uniform dueling. the behavior dueling parameterization indeed obtains a lower squared norm for the advantage function
compared to uniform dueling, as suggested by the theoretical arguments above.
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Table 1. Per-game result in the full action set setting. We report the mean ± standard error of scores averaged across the last 5M frames.
For each game, we highlight the method with statistically highest mean scores (multiple methods are highlighted if their confidence
internval overlap). Though VA-learning, behavior dueling and uniform dueling do not improve over n-step Q-learning in every game, the
improvement is statistically significant in most cases. This is also compatible with the aggregate results shown in Figure 4.

Game VA-learning Behavior dueling Dueling n-step Q-learning

ALIEN 0.82± 0.10 0.50± 0.09 1.00± 0.04 1.47± 0.14
AMIDAR 1.31± 0.03 1.03± 0.11 1.22± 0.09 0.93± 0.04
ASSAULT 5.61± 0.28 5.51± 0.19 4.44± 0.08 4.50± 0.12
ASTERIX 2.11± 0.14 2.42± 0.12 1.52± 0.08 1.92± 0.05
ASTEROIDS 0.12± 0.01 0.10± 0.01 0.04± 0.00 0.03± 0.00
ATLANTIS 51.38± 0.37 53.78± 0.93 52.92± 1.29 49.79± 0.63
BANK HEIST 1.66± 0.10 1.43± 0.03 1.44± 0.03 1.24± 0.04
BATTLE ZONE 1.36± 0.07 1.15± 0.06 1.10± 0.02 1.18± 0.02
BEAM RIDER 0.95± 0.04 0.85± 0.03 0.78± 0.03 0.81± 0.02
BERZERK 0.54± 0.11 0.50± 0.10 0.86± 0.06 0.54± 0.01
BOWLING 0.18± 0.06 0.29± 0.01 0.10± 0.03 0.16± 0.06
BOXING 8.20± 0.01 8.24± 0.01 8.20± 0.01 8.11± 0.01
BREAKOUT 11.73± 0.16 10.94± 0.28 12.41± 0.10 12.53± 0.35
CENTIPEDE 0.19± 0.00 0.22± 0.01 0.12± 0.01 0.07± 0.02
CHOPPER COMMAND 1.39± 0.02 1.43± 0.08 1.05± 0.03 0.84± 0.02
CRAZY CLIMBER 4.96± 0.06 4.77± 0.09 4.98± 0.06 5.27± 0.06
DEFENDER 3.52± 0.10 3.56± 0.11 2.85± 0.05 1.90± 0.08
DEMON ATTACK 47.18± 2.93 51.03± 4.26 6.37± 0.21 24.23± 1.97
DOUBLE DUNK 18.60± 0.10 18.50± 0.15 17.96± 0.09 17.41± 0.30
ENDURO 1.87± 0.06 1.90± 0.07 2.22± 0.05 1.48± 0.06
FISHING DERBY 2.64± 0.05 2.78± 0.01 2.73± 0.03 2.62± 0.01
FREEWAY 1.10± 0.00 1.10± 0.00 1.11± 0.00 1.13± 0.00
FROSTBITE 0.49± 0.22 1.08± 0.09 1.03± 0.07 0.43± 0.19
GOPHER 6.02± 0.22 6.13± 0.21 5.89± 0.30 9.76± 0.53
GRAVITAR 0.31± 0.05 0.17± 0.00 0.14± 0.02 0.19± 0.03
HERO 1.24± 0.01 1.20± 0.00 0.58± 0.08 0.48± 0.03
ICE HOCKEY 1.35± 0.03 1.42± 0.02 0.92± 0.04 1.14± 0.04
JAMESBOND 35.55± 7.21 25.31± 6.93 11.81± 1.41 16.96± 1.17
KANGAROO 4.27± 0.12 4.43± 0.06 4.49± 0.03 3.77± 0.07
KRULL 7.88± 0.08 8.61± 0.23 8.30± 0.06 7.70± 0.20
MONTEZUMA REVENGE 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
MS PACMAN 0.64± 0.01 0.53± 0.01 0.58± 0.04 0.67± 0.02
NAME THIS GAME 1.81± 0.04 1.81± 0.04 1.72± 0.01 1.32± 0.02
PHOENIX 10.00± 0.42 10.39± 0.73 4.02± 0.32 2.82± 0.15
PITFALL 0.03± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00
PONG 1.16± 0.00 1.15± 0.00 1.17± 0.00 1.17± 0.00
PRIVATE EYE 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
QBERT 1.51± 0.04 1.42± 0.04 1.46± 0.04 1.59± 0.06
RIVERRAID 1.12± 0.03 1.17± 0.05 1.20± 0.05 1.18± 0.02
ROAD RUNNER 7.81± 0.07 7.87± 0.05 7.38± 0.03 7.34± 0.21
ROBOTANK 5.97± 0.13 6.02± 0.04 4.02± 0.24 6.61± 0.13
SEAQUEST 0.05± 0.00 0.03± 0.00 0.04± 0.00 0.43± 0.04
SKIING 0.73± 0.02 0.66± 0.03 0.69± 0.00 −0.51± 0.11
SOLARIS 0.01± 0.00 −0.01± 0.01 0.07± 0.01 0.09± 0.02
SPACE INVADERS 2.52± 0.06 1.64± 0.02 2.68± 0.11 2.84± 0.37
STAR GUNNER 8.88± 0.71 10.63± 0.27 7.53± 0.10 7.15± 0.14
SURROUND 0.33± 0.05 0.65± 0.10 0.72± 0.04 0.43± 0.03
TENNIS 1.52± 0.01 1.53± 0.00 1.43± 0.05 1.19± 0.11
TIME PILOT 11.65± 0.36 9.07± 0.51 6.42± 0.22 6.00± 0.18
TUTANKHAM 1.43± 0.07 1.25± 0.06 1.33± 0.05 0.50± 0.05
UP N DOWN 6.40± 0.36 7.62± 0.28 6.32± 0.32 1.15± 0.05
VENTURE 0.00± 0.00 0.06± 0.03 0.16± 0.08 0.79± 0.05
VIDEO PINBALL 345.32± 27.56 194.08± 19.95 149.51± 48.98 417.23± 26.12
WIZARD OF WOR 4.33± 0.34 3.99± 0.10 2.70± 0.09 0.75± 0.02
YARS REVENGE 0.80± 0.02 0.57± 0.21 1.00± 0.02 1.11± 0.02
ZAXXON 2.92± 0.06 3.16± 0.09 2.57± 0.13 1.43± 0.05
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