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Abstract
The use of deep neural networks in real-world ap-
plications require well-calibrated networks with
confidence scores that accurately reflect the ac-
tual probability. However, it has been found that
these networks often provide over-confident pre-
dictions, which leads to poor calibration. Recent
efforts have sought to address this issue by fo-
cal loss to reduce over-confidence, but this ap-
proach can also lead to under-confident predic-
tions. While different variants of focal loss have
been explored, it is difficult to find a balance be-
tween over-confidence and under-confidence. In
our work, we propose a new loss function by
focusing on dual logits. Our method not only
considers the ground truth logit, but also take
into account the highest logit ranked after the
ground truth logit. By maximizing the gap be-
tween these two logits, our proposed dual focal
loss can achieve a better balance between over-
confidence and under-confidence. We provide
theoretical evidence to support our approach and
demonstrate its effectiveness through evaluations
on multiple models and datasets, where it achieves
state-of-the-art performance. Code is available at
https://github.com/Linwei94/DualFocalLoss

1. Introduction
It is well-established that Deep Neural Networks (DNNs)
have achieved exceptional results in computer vision tasks,
such as image classification (He et al., 2016; Zagoruyko &
Komodakis, 2016), object detection (He et al., 2017; Tian
et al., 2019), and semantic segmentation (Long et al., 2015;
Cheng et al., 2021). The focus has primarily been on achiev-
ing accurate predictions for state-of-the-art performance.
However, the reliability of the predicted confidence scores,
also known as uncertainty, is just as important when de-
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ploying models in real-world applications. Despite their
high accuracy, most DNNs struggle to accurately reflect the
actual probabilities of their predictions through their confi-
dence scores. For instance, if a DNN assigns a confidence
score of 0.8 to a set of predictions, it should be correct 80%
of the time. However, DNNs tend to overestimate the ac-
tual probability of correct predictions, making it difficult
for downstream components to rely on them. Therefore,
calibrating the uncertainty of DNNs can be crucial for their
successful deployment in real-world applications.

In recent years, there has been increasing attention on un-
derstanding the causes of poor calibration in deep neural
networks (DNNs) and finding ways to improve it. One
main focus has been on the role of the loss function, as it
has been shown to have a strong influence on calibration.
Prior work has proposed various techniques to improve
calibration by adding a calibration regularization term to
the cross-entropy loss, such as Maximum Mean Calibra-
tion Error (MMCE) (Kumar et al., 2018), AvUC (Krishnan
& Tickoo, 2020), Soft Calibration Objective (Karandikar
et al., 2021) and Meta Calibration (Bohdal et al., 2021),
and others have proposed alternatives like Brier loss (Hui
& Belkin, 2020). It has also been shown that replacing
Cross-Entropy (CE) loss with Focal Loss (FL) can improve
calibration performance (Mukhoti et al., 2020). The in-
verse focal loss has also been proposed to preserve sample
hardness information, which benefits post-hoc calibration
methods (Wang et al., 2021). Although variants of focal loss
are proposed to improve calibration performance by allevi-
ating the over-confidence problems, there exist trade-offs
between over-confidence and under-confidence in loss func-
tion design, which existing techniques cannot tackle. For
example, focal loss achieves better calibration error through
guiding networks to provide predictions with higher entropy,
which leads to under-confidence. On the contrary, inverse
focal loss aims at preserving the sample hardness while ag-
gravating the over-confidence issue. Neither over-confident
nor under-confident predictions are feasible for downstream
components, which motivates us to explore this trade-off
through the lens of loss function design.

Current loss functions for calibrating DNNs typically rely
on a single logit corresponding to the ground truth label,
while the impact of other logits on calibration has yet to
be thoroughly studied. This can make it difficult for the
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loss function to identify and address over-confidence and
under-confidence scenarios. This paper introduces a new
loss function called Dual Focal Loss (DFL), which takes
into account the logit corresponding to the ground truth
label and the largest logit ranked after it. By maximising
the gap between these dual logits, DFL aims to find a bet-
ter balance between over-confidence and under-confidence
automatically. To demonstrate the effectiveness of DFL,
we provide theoretical evidence of its ability to improve
calibration through instance-wise conditional risk analysis.
By analysing over-confidence and under-confidence regions
using the proposed dual logits, we show that DFL can signif-
icantly reduce the size of the under-confidence region while
preserving the advantages of FL in over-confidence scenar-
ios, resulting in improved overall calibration performance.

Our main contributions in this work can be summarized as
follows: (1) We propose a new formulation of focal loss for
calibration that uses dual logits. (2) We provide theoretical
analysis to support the superiority of the proposed Dual
Focal Loss (DFL). (3) We perform extensive evaluations
on multiple datasets and models, and our proposed DFL
achieves state-of-the-art calibration performance.

2. Related Work
Many techniques have been proposed in recent years to
address the network miscalibration problem. These meth-
ods can be divided into three categories. The first category
is post-hoc calibration techniques that adjust model pre-
dictions after training by optimizing additional parameters
on a held-out validation set. These methods include Platt
Scaling (Platt et al., 1999), which learns parameters to per-
form a linear transformation on the original prediction log-
its, Isotonic Regression (Zadrozny & Elkan, 2002), which
learns piece-wise functions to transform the original predic-
tion logits, Histogram Binning (Zadrozny & Elkan, 2001),
which obtains calibrated probability estimates from deci-
sion trees and naive Bayesian classifiers, Bayesian Binning
into Quantiles (BBQ) (Naeini et al., 2015), an extension
of histogram binning with Bayesian model averaging, Beta
calibration (Kull et al., 2017), which is proposed for binary
classification and generalized to multi-classification with
Dirichlet distributions by Kull et al. (2019). Temperature
scaling (Guo et al., 2017) is a widely used post-hoc calibra-
tion method, which maximizes the temperature parameter in
the SoftMax function on held-out negative log-likelihood. In
this work, we report the calibration performance on multiple
metrics together with the post-temperature scaling results.

The second category of calibration methods is those related
to regularization. Regularization techniques are generally
found to be effective for calibrating DNNs. Data augmen-
tation methods, such as Mixup (Thulasidasan et al., 2019)
and AugMix (Hendrycks et al., 2019), train DNNs on mixed

samples and have been found to reduce the tendency to
make over-confident predictions. Model ensemble tech-
niques, where multiple DNNs are trained individually and
their predictions are averaged, successfully improve both the
accuracy and predictive uncertainty of a single DNN. This is
because ensemble methods can reduce the over-confidence
in predictions by aggregating the outputs of multiple models.
The effect of ensemble methods on calibration has been ex-
tensively studied by Lakshminarayanan et al. (2017); Zhang
et al. (2020); Rahaman et al. (2021). Batch Ensemble (Wen
et al., 2020) provides an efficient way to train a calibrated
network. Label smoothing (Müller et al., 2019) is a tech-
nique that implicitly calibrates DNNs by replacing one-hot
encoded labels with softened targets, encouraging networks
to produce more uncertain predictions and thereby reducing
over-confidence. Weight decay, which regularizes networks
by penalizing weights based on their L2 norm, is also shown
to be effective for confidence calibration (Guo et al., 2017).
(Tao et al., 2023) propose a novel regularization method
to improve calibration by searching a combination of best-
fitting block predecessors.

The third category of calibration methods is those that mod-
ify the training loss to improve calibration. These methods
include adding a differentiable auxiliary surrogate loss for
expected calibration error, such as in (Karandikar et al.,
2021; Kumar et al., 2018; Krishnan & Tickoo, 2020; Bohdal
et al., 2021), or replacing the training loss with other loss
functions such as mean square error loss (Hui & Belkin,
2020), inverse focal loss (Wang et al., 2021) and focal
loss (Gupta et al., 2020). Among these methods, focal
loss (Gupta et al., 2020), which adds a modulating term to
the cross-entropy loss to focus learning on hard examples,
is a simple and efficient way to train a calibrated model.

Expected Calibration Error (ECE) (Guo et al., 2017) is a
widely accepted metric in the literature. However, recent
works (Nixon et al., 2019; Kumar et al., 2019; Roelofs
et al., 2022) point out the limitations of ECE, such as its
sensitivity to bin size. For a fair comparison, we report the
results in terms of four calibration metrics, i.e., ECE, Maxi-
mum Calibration Error (MCE) (Guo et al., 2017), Adaptive-
ECE (Ding et al., 2020) and classwise-ECE (Kull et al.,
2019) and also provide reliability diagrams (Niculescu-
Mizil & Caruana, 2005) for visual comparison.

3. Methodology
3.1. Problem Formulation

Considering a classification task with X as the input space
and Y as the label space, the classifier q maps x ∈ X to a
probability distribution p̂ on K classes and k = argmaxi p̂i
denotes the index of the predicted label. The ground-truth
y ∈ Y and predicted labels ŷ ∈ Y are formulated in one-hot
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format where ygt = 1 and ŷk = 1. Then, the associated
confidence score of the predicted label is p̂k.

Classification Calibration The network is said to be per-
fectly calibrated if the predicted confidence p̂ presents the
true probability that the classification is correct. Formally,
the perfectly calibrated network satisfies P(ŷ = y|p̂ = p) =
p for all p ∈ [0, 1] (Guo et al., 2017). Given the confidence
score and the probability of correctness, the Expected Cali-
bration Error (ECE) is defined as Ep̂[|P(ŷ = y|p̂)− p̂|]. In
practice, since the calibration error cannot be derived due
to the finite samples in the datasets, an approximation of
ECE is introduced in (Guo et al., 2017). Specifically, all
the samples are grouped into M bins {Bm}Mm=1 with the
same interval according to their confidence scores, where
Bm contains all the samples with their confidence scores
p̂k ∈ [mM , m+1

M ). For each bin Bm, the average confidence
is computed as Cm = 1

|Bm|
∑

i∈Bm
p̂ik and the bin accuracy

is computed as Am = 1
|Bm|

∑
i inBm

1(ŷik = yik) where 1
is the indicator function. Then the ECE can be approximated
as the expected absolute difference between bin accuracy
and average confidence as

ECE =

M∑
m=1

|Bm|
N

|Am − Cm|, (1)

where N denotes the number of samples. Besides the esti-
mated ECE in Eq. 1, there exist ECE variants to measure
this error. For example, AdaECE (Nguyen & O’Connor,
2015) group samples into the bins Bm with equal number
of samples where |Bm| = |Bn|, and ClasswiseECE (Kull
et al., 2019) approximates the ECE over K classes.

Temperature Scaling A popular technique to tackle the clas-
sification calibration is temperature scaling, which adjusts
the sharpness of output probability distribution via the tem-
perature in the SoftMax function as p̂i =

exp(ĝi/T )∑K
k=1 exp(ĝk/T )

,
where ĝ denotes the logits before SoftMax function. The
model calibration performance can be improved by tuning
T on a hold-out validation set.

3.2. Dual Focal Loss for Calibration

Focal loss is originally introduced to tackle the foreground
and background imbalance in object detection by assigning
larger weights to hard samples and smaller weights to easy
samples. Formally, the focal loss is defined as

LFL(x, y) = −
K∑
i=1

yi(1− qi(x))
γ log qi(x), (2)

where γ is the pre-defined hyperparameter and q denotes
the score function. It is easy to see that the focal loss with
γ = 0 is equivalent to the cross-entropy loss LCE(x, y) =

−
∑K

i=1 yilog qi(x). It was shown that the models opti-

mized by focal loss perform better calibration than cross-
entropy loss in prior work (Mukhoti et al., 2020). They
mainly attributed the improvement to the fact that focal
loss has the effect of adding a maximum-entropy regular-
izer as LFL ≥ KL(y||p̂) − γH(p̂) where H denotes the
entropy of prediction p̂. With this regularizer, the predicted
distribution is optimized to have higher entropy to tackle
over-confidence with cross-entropy loss. However, there
exists a major concern about using focal loss in calibration.
The focal loss could suffer from under-confidence since
it penalizes the all the output probability logits to a low
level (Charoenphakdee et al., 2021), and predictions are
optimized to form a tight probability distribution without
distinction, which leads to the loss of the sample hardness
information (Wang et al., 2021). Although the conserva-
tive predictions guided by the focal loss have a smaller
ECE, the lower confidence scores may not accurately re-
flect the actual probability. An inverse version of focal
loss is proposed to preserve the hardness. However, it ag-
gravates the over-confidence issue in DNNs (Wang et al.,
2021). Thus, a trade-off exists between over-confidence and
under-confidence in the loss function design for calibration.
For a better trade-off, we take the focal loss as a strong
baseline and propose to modify it to achieve two objectives:
1). Alleviate the under-confidence issue in focal loss and
encourage the networks to provide courageous but accurate
confidence scores; 2). Preserve the superiority of focal loss
in the over-confidence scenario.

We mainly attribute the failure cases of previous work to
the fact that only qgt(x) is involved in the computation,
where gt denotes the index of the ground truth label. For
example, cross-entropy loss forces qgt(x) to be close to 1
and focal loss forces qgt(x) to be low confidence. However,
there are no direct connections between qgt(x) and other
logits qi(x), i ̸= gt to indicate the scenario of over/under-
confidence in the loss function. For example, if the ground
truth class probability qgt(x) is fixed at 0.5, a loss function
will provide the same loss regardless of whether the remain-
ing confidence is evenly distributed among the other logits,
or if one logit is equal to 0.49. Thus, we argue that qgt(x)
is not enough for the loss function in calibration. In this
work, we propose reformulating Eq. 2 by considering dual
logits to tackle the abovementioned issues. Formally, the
dual focal loss for calibration is defined as

LDFL = −
K∑
i=1

yi(1− qi(x) + qj(x))
γ log qi(x),

where qj(x) = max
i

{qi(x)|qi(x) < qgt(x)}.
(3)

The major difference between FL and DFL lies in the in-
volvement of qj(x), which denotes the maximum value in
the descending order q1:K(x) after qgt(x). Intuitively, Eq.
3 inherits the form in focal loss to prevent over-confidence
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while aiming at maximizing the gap between dual logits
qgt(x) and qj(x) to encourage the networks to enlarge their
confidence scores if possible. With the proposed dual logits
in Eq. 3, a better trade-off between over/under-confidence
can be achieved, and the calibration performance can be
further improved, which is empirically verified in Sec. 5
and theoretically analyzed in Sec. 4.

4. Theoretical Evidence
In this section, we provide theoretical evidence that our pro-
posed DFL can be more effective for confidence calibration
than FL. We first examine the instance-wise conditional risk
to reveal the relationship between the risk minimizer and
the actual class-posterior probability. We then demonstrate
that DFL is a classification-calibrated loss. Finally, we high-
light the superiority of DFL by showing that it significantly
reduces the under-confident region compared to FL.

4.1. Instance-wise Conditional Risk

Following (Bartlett et al., 2006; Tewari & Bartlett, 2007),
we first define the instance-wise conditional risk R for both
FL and DFL in Eqs. 2 and 3 as

RFL = −
K∑
i=1

ηi(x)(1− qi(x))
γ log qi(x),

RDFL = −
K∑
i=1

ηi(x)(1− qi(x) + qj(x))
γ log qi(x),

(4)

where x denotes the data point, and η denotes the actual
class-posterior probability, which corresponds to the well-
calibrated confidence score of the classifier. Thus, R de-
notes the expected penalty for a data point x with q as the
score function. Through exploring the instance-wise con-
ditional risk R, the relationship between q and η can be
derived to indicate the influence of loss function on classi-
fication calibration. The instance-wise conditional risk of
focal loss has been well-studied in (Charoenphakdee et al.,
2021). In this work, we generalize the results to our pro-
posed DFL and highlight its superiority over FL via theoret-
ical evidence. We omit the usage of x for brevity. Formally,
we consider a general form of dual focal loss where we use
f(qi) to represent qj(x) in Eq. 3 and the optimization of
RDFL can be formulated as

min
q

−
K∑
i=1

ηi(1− qi + f(qi))
γ log qi,

subject to
K∑
i=1

qi = 1.

(5)

To tackle the constrained optimization in Eq. 5, we consider
the following Lagrangian equation:

L(q, λ) = −
K∑
i=1

ηi(1− qi + f(qi))
γ log qi + λ

( K∑
i=1

qi − 1
)
,

(6)
where λ is the Lagrangian multiplier for the constraint.
Through taking the derivatives with respect to qi, λ can
be solved at the optimal q∗ as

∂

∂qi
L(q, λ)

∣∣∣
q=q∗

= 0,

(1− ∂f

∂q∗i
)ηiγ(1− q∗i + f(q∗i ))

γ−1 log q∗i

− ηi
(1− q∗i + f(q∗i ))

γ

q∗i
+ λ = 0,

λ =
ηi
q∗i

(
(
∂f

∂q∗i
− 1)γ(1− q∗i + f(q∗i ))

γ−1q∗i log q∗i

+ (1− q∗i + f(q∗i ))
γ
)
.

(7)

With Eq. 7, ηi can be written as a function of λ and q∗i .
For simplicity, we let ϕ(vi) = (1− vi + f(vi))

γ + ( ∂f
∂vi

−
1)γ(1− vi + f(vi))

γ−1vi log vi. And ηi can be solved as
ηi =

λq∗i
ϕ(q∗i )

. Since ηi follows the probability distribution, λ
can be rewritten as a function of q∗i as

K∑
i

ηi = 1 = λ

K∑
i

q∗i
ϕ(q∗i )

,

λ =
1∑K

i
q∗i

ϕ(q∗i )

.

(8)

Similarly, with derived λ in Eq. 8, ηi can be rewritten as a
function of q∗i as

ηi =

q∗i
ϕ(q∗i )∑K
k

q∗k
ϕ(q∗k)

. (9)

4.2. Over-confidence and Under-confidence

We discuss the over-confident and under-confident scenarios
of the risk minimizer q∗ for DFL. Formally, η-over/under-
confident (ηOC/ηUC) at data point x is defined as

max
i

q∗i (x)−max
i

ηi(x) > 0, q∗i is ηOC,

max
i

q∗i (x)−max
i

ηi(x) < 0, q∗i is ηUC.
(10)

However, Eq. 10 cannot be directly simplified via Eq. 9
since it is unknown whether the max-index of q∗ and η are
identical. Thus, we first show that our proposed DFL is
classification-calibrated to remove max in Eq. 10.
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Figure 1. An illustration of function ϕ in FL and DFL. The
over-confident regions of both FL and DFL start from 0.0 to the
maximum point vm. The under-confident region of FL starts from
v′ to 1.0 while DFL starts from vuc to 1.0.

Theorem 1. For any γ > 0, LDFL is classification-
calibrated and has the strictly order-preserving property.

The detailed proof is provided in the supplementary material.
Theorem 1 indicates that the risk minimizer preserves the or-
der of true class-posterior probability as q∗a(x) < q∗b (x) ⇒
ηa(x) < ηb(x). In other words, the max-index of q∗ and η
are identical. Together with Eq. 9, ηUC of q∗ in Eq. 10 can
be reformulated as

q∗m(x)− ηm(x) < 0

K∑
i

q∗i (x)

ϕ(q∗i (x))
<

1

ϕ(q∗m(x))
,

(11)

where m = argmaxi q
∗
i (x). Ineq. 11 holds if ϕ(q∗m(x)) ≤

ϕ(q∗i (x)) for all i ∈ [1,K] and the scenario of ηOC can
be explored through flipping the sign of above inequalities.
Thus, the monotonicity of function ϕ plays an important
role in ηOC/ηUC. We then explore the properties of ϕ with
DFL. In our proposed DFL, the function f(vi) maps vi to
the second maximum value vj in the descending order v1:K
after vgt, which is defined as

f(vi) = vj ,

where vj = max
i

{vi|vi < vgt}.
(12)

For simplicity, we denote vj = C. To explore the influence
of introduced f(vi) in ηOC/ηUC, we explore the properties
of function ϕ in the following Lemma and the detailed proof
is provided in the supplementary material.
Lemma 1. For the scenario where i ̸= j, ϕ(0) = (1 +
C)γ and ϕ(1) = Cγ . There exist a unique vm ∈ (0, 1)

such that ∂ϕ
∂vi

= 0 at vm, ∂ϕ
∂vi

> 0 for v ∈ [0, vm) and
∂ϕ
∂vi

< 0 for v ∈ (vm, 1]. For the scenario where i = j,
∂ϕ
∂vi

= 0 and ϕ(vj) = 1.

With the explored properties of function ϕ, it is easy to see
that ϕ is an increasing function in [0, vm) and decreasing
function in (vm, 1]. Then we have

min
vi∈(0,vm)

ϕ(vi) =

{
ϕ(0) = (1 + C)γ , i ̸= j

1, i = j
(13)

According to Eq. 13, we can find a unique v′ in (vm, 1]
where ϕ(v′) = (1 + C)γ such that minvi∈(0,v′] ϕ = ϕ(v′)
for i ̸= j. However, due to the involvement of f(vj), the
ηUC scenario where ϕ(q∗m(x)) ≤ ϕ(q∗j (x)) does not hold
for [v′, 1) since ϕ(v′) = (1+C)γ ≥ 1 = ϕ(vj). Thus, with
DFL, the ηUC scenario holds for [vuc, 1) where ϕ(vuc) = 1.
Similarly, ηOC scenario holds for (0, vm]. Compared with
FL, with the assumption of the same γ in both DFL and
FL, the values of vm and v′ in FL are close to those in
DFL, respectively, in practice. For illustration, we visualize
function ϕ for both FL and DFL with γ = 1 and q∗j = 0.3.
As shown in Figure 1, x axis denotes q∗m(x) and y axis
denotes ϕ(q∗m(x)) in Eq. 11. Thus, both FL and DFL show
similar ηOC in range (0, vm], however, the region sizes of
ηUC in FL and DFL are different. Specifically, the ηUC
scenario holds for [v′, 1) in FL and for [vuc, 1) in DFL so
that the ηUC region size is reduced by ϕ−1(1)− ϕ−1((1 +
C)γ) in DFL. Thus, our proposed DFL can alleviate the
under-confident problem of traditional FL in classification
calibration. We empirically verify the effectiveness of this
better trade-off in Sec. 5.3.

5. Experiments
We evaluate our methods on multiple DNNs, including
ResNet-50, ResNet-110 (He et al., 2016), Wide-ResNet-
26-10 (Zagoruyko & Komodakis, 2016) and DenseNet-
121 (Huang et al., 2017). Our experiments are conducted
on CIFAR-10/100 (Krizhevsky et al., 2009) and Tiny-
ImageNet (Deng et al., 2009) for calibration performance.
The SVHN dataset, a dataset of street view house numbers
and the CIFAR-10-C dataset, a corrupted version of the
CIFAR-10 dataset are used as Out-of-Distribution (OoD)
datasets for evaluating the robustness of models. The details
about datasets can be found in the appendix.

Baselines We compare DFL with multiple approaches,
including training with weight decay at 5× 10−4 (we find
that weight decay at 5 × 10−4 performs the best), Brier
Loss (Brier et al., 1950), MMCE loss (Kumar et al., 2018),
label smoothing (Szegedy et al., 2016) with a smoothing fac-
tor αLS = 0.05, inverse focal loss (Wang et al., 2021) with γ
fine-tuned on the split validation set, and focal loss (Mukhoti
et al., 2020).
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Dataset Model Weight Decay Brier Loss MMCE Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Brier et al., 1950) (Kumar et al., 2018) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 17.52 3.42(2.1) 6.52 3.64(1.1) 15.32 2.38(1.8) 7.81 4.01(1.1) 17.88 2.98(2.3) 4.5 2.0(1.1) 1.08 1.08(1.0)
ResNet-110 19.05 4.43(2.3) 7.88 4.65(1.2) 19.14 3.86(2.3) 11.02 5.89(1.1) 19.47 4.52(2.6) 8.56 4.12(1.2) 2.90 2.90(1.0)

Wide-ResNet-26-10 15.33 2.88(2.2) 4.31 2.7(1.1) 13.17 4.37(1.9) 4.84 4.84(1.0) 16.9 2.28(2.5) 3.03 1.64(1.1) 1.79 1.79(1.0)
DenseNet-121 20.98 4.27(2.3) 5.17 2.29(1.1) 19.13 3.06(2.1) 12.89 7.52(1.2) 19.42 2.82(2.3) 3.73 1.31(1.1) 1.81 1.81(1.0)

CIFAR-10

ResNet-50 4.35 1.35(2.5) 1.82 1.08(1.1) 4.56 1.19(2.6) 2.96 1.67(0.9) 4.41 1.32(2.8) 1.55 0.95(1.1) 0.46 0.46(1.0)
ResNet-110 4.41 1.09(2.8) 2.56 1.25(1.2) 5.08 1.42(2.8) 2.09 2.09(1.0) 4.34 0.89(2.9) 1.87 1.07(1.1) 0.98 0.98(1.0)

Wide-ResNet-26-10 3.23 0.92(2.2) 1.25 1.25(1.0) 3.29 0.86(2.2) 4.26 1.84(0.8) 3.68 0.99(2.7) 1.56 0.84(0.9) 0.81 0.81(1.0)
DenseNet-121 4.52 1.31(2.4) 1.53 1.53(1.0) 5.1 1.61(2.5) 1.88 1.82(0.9) 4.61 1.07(2.8) 1.22 1.22(1.0) 0.57 0.57(1.0)

Tiny-ImageNet ResNet-50 15.32 5.48(1.4) 4.44 4.13(0.9) 13.01 5.55(1.3) 15.23 6.51(0.7) 11.51 6.71(1.3) 1.76 1.76(1.0) 1.50 1.50(1.0)

NLP 20 Newsgroups Global Pooling CNN 17.92 2.39(2.3) 15.48 6.78(2.1) 13.58 3.22(1.9) 4.79 2.54(1.1) 16.72 2.51(2.1) 6.92 2.19(1.1) 1.79 1.79(1.0)

Table 1. ECE before and after temperature scaling. ECE is measured as a percentage, with lower values indicating better calibration.
In the experiments, ECE is evaluated for different methods, both before (pre) and after (post) temperature scaling. The results are
calculated with number of bins set as 15. The optimal temperature value, determined on the validation set, is included in brackets.
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Figure 2. Reliability Diagram of Different Methods before Temperature Scaling.

Training Setup Our training setup follows the prior
work (Mukhoti et al., 2020). We implement our algorithm
based on the public code provided by Mukhoti et al. (2020)
and use pre-trained weights provided by Mukhoti et al.
(2020) for some of the results. We train CIFAR-10/100
for 350 epochs, using 5000 images from the training set
for validation. The learning rate is set to 0.1 for the first
150 epochs, 0.01 for the following 100 epochs, and 0.001
for the remaining epochs. For Tiny-ImageNet, we train for
100 epochs, with the learning rate set to 0.1 for the first 40
epochs, 0.01 for the following 20 epochs, and 0.001 for the
remaining epochs. We use SGD with a weight decay of
5× 10−4 and a momentum of 0.9 for all experiments. The
training and testing batch sizes for all datasets are set to 128.
We conduct all experiments on a single Tesla V-100 GPU
with all random seeds set to 1. For results of temperature
scaling, the temperature parameter T is optimized through
grid search, with T ∈ [0, 0.1, 0.2, . . . , 10] on the validation
set, based on the best post-temperature-scaling ECE. The
exact temperature parameter is used for other metrics, such
as adaptive-ECE. Additional details on more experiment
results can be found in the appendix.

5.1. Calibration Performance

We report the ECE before and after temperature scaling,
along with the optimal temperatures, in Table 1. Our method
achieves state-of-the-art ECE in most cases, especially when

considering the pre-temperature-scaling results. Our re-
sults even substantially exceeded the most post-temperature-
scaling results of previous works. The fact that all optimal
temperatures for DFL are searched as 1 suggests that DFL
trains an innately calibrated model that can achieve good
calibration performance without the need for temperature
scaling. This is an important factor in developing accurate
and reliable models, which are efficient and require less
post-processing. The results on CIFAR-10 tend to have
better calibration performance when compared to datasets
with more labels (such as CIFAR-100 and Tiny-ImageNet)
across multiple models. However, it is worth noting that the
results on Tiny-ImageNet, which has 200 labels, are gen-
erally better than CIFAR-100, despite having more labels.
This suggests that the number of labels alone may not be
the only factor affecting the calibration performance of a
model, and other factors, such as dataset complexity and
model architecture, may also play a role. Regarding network
architecture, the ResNet-50 is the best calibrated among the
four DNNs (ResNet-50, ResNet-110, Wide-ResNet-26-10
and DenseNet-121) tested on both CIFAR-10 and CIFAR-
100 datasets. The ResNet-110 performs the worst among
the models, especially when trained with focal loss. The
Wide-ResNet is generally better calibrated than other DNNs,
which may be due to its implicit inner-model ensemble be-
tween channels. The Inverse Focal Loss method, however,
unlike the results reported in the prior work (Wang et al.,
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Figure 3. Bar plots with confidence intervals for ECE, AdaECE and Classwise-ECE, computed for ResNet-50 (first 3 figures) and
ResNet-110 (last 3 figures) on CIFAR-10.

Dataset Model Weight Decay Brier Loss MMCE Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Brier et al., 1950) (Kumar et al., 2018) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours

CIFAR-100

ResNet-50 23.3 23.39 23.2 23.43 22.23 23.22 22.67
ResNet-110 22.73 25.1 23.07 23.43 22.43 22.51 22.59

Wide-ResNet-26-10 20.7 20.59 20.73 21.19 20.85 20.11 19.91
DenseNet-121 24.52 23.75 24.0 24.05 24.55 22.67 22.4

CIFAR-10

ResNet-50 4.95 5.0 4.99 5.29 4.80 4.98 5.17
ResNet-110 4.89 5.48 5.4 5.52 4.66 5.42 5.02

Wide-ResNet-26-10 3.86 4.08 3.91 4.2 4.1 4.01 3.96
DenseNet-121 5.0 5.11 5.41 5.09 4.82 5.46 5.43

Tiny-ImageNet ResNet-50 49.81 53.2 51.31 47.12 55.19 49.06 48.63

20 Newsgroups Global Pooling CNN 26.68 27.23 27.06 26.03 29.26 27.98 28.73

Table 2. Classification error (%) on test set for different methods.

2021), performs the worst among methods and achieves
even higher ECE than the model trained with cross entropy
(the Weight Decay column) and the best post-temperature
scaling results in only one case, the ResNet-110 on CIFAR-
10. This suggests that a loss designed in the opposite direc-
tion of this regularization might increase the room for poten-
tial improvement by post-hoc calibration, but it makes the
model harder to calibrate. Note that we employee the FLSD-
53 strategy for focal loss (Mukhoti et al., 2020) to adap-
tively adjust the gamma sample-wisely, with γfocal = 5 for
p̂ ∈ [0, 0.2) and γfocal = 3 for p̂ ∈ [0.2, 1). We also trained
a Global Pooling CNN (Lin et al., 2013) on the 20 News-
groups (Joachims, 1996). DFL can obtain better calibration
performance in terms of both pre- and post-temperature
scaling ECE on NLP tasks. Results of robustness on out-of-
distribution datasets can be found in the appendix.

Different Metrics The methods are evaluated on multiple
widely-accepted metrics to evaluate the calibration perfor-
mance across models. These metrics include Adaptive ECE,
Classwise-ECE, and MCE. Adaptive ECE is a metric that
measures the expected calibration error of a model, taking
into account the distribution of the data. Classwise-ECE is
a variant of ECE that measures the calibration error for each
class separately. MCE, on the other hand, is a measure of the
maximum calibration error over bins. In Figure 3, the results
of multiple methods with ResNet-50 and ResNet-110 on
the CIFAR-10 dataset are visualized. The figure shows that
DFL, is the only method that achieves innately calibrated

models and state-of-the-art calibration performance across
multiple metrics. Additionally, more results are reported in
the appendix of the paper, providing further evidence of the
effectiveness of our method for improving the calibration
performance.

Calibration over Training Figure 4a shows the ECE
on the test set for models trained with DFL, FL, and cross-
entropy loss over a number of training epochs. The ECE is
smoothed using an exponential moving average for better
visualization. The figure suggests that after the first few
warm-up epochs, where the predicted probability qj(x) is
unstable, the ECE of the DFL-trained models remains at a
lower level than the results of models trained using cross-
entropy loss and FL. The results shown in Figure 4a indicate
that when training models with a larger learning rate (0.1
from epoch 1 to 150), FL tends to produce less calibrated
models than models trained using cross-entropy loss. On
the other hand, models trained with DFL can train calibrated
models regardless of the learning rate used. This shows that
the DFL is more stable and consistent during the training
process than other methods.

Reliability Diagram Figure 2 shows the reliability di-
agrams for models trained using cross-entropy loss, label
smoothing, FL, and DFL on the CIFAR-10 dataset using
ResNet-50 architecture. The figure shows that the DFL re-
tains the best calibration performance over almost all bins.
This indicates that the predicted probabilities produced by
the model are accurate and reliable across different ranges
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Figure 4. (a) Test ECE with training. ECE is smoothed by Exponential Moving Average with smoothing factor equals to 0.5; (b)
Histograms of maximum logits. All logits are the model outputs before SoftMax layer; (c) Boxplot of qj(x). The outliers are not
shown in this plot. All results are produced by ResNet-50 trained with different methods on CIFAR-10.

of predicted probabilities. In contrast, the other methods
show a higher deviation from the diagonal line, indicating
that the models are less calibrated.

Classification Error In general, it is often the case that
models achieve better calibration performance at the cost
of accuracy. Surprisingly, table 2 presents the classification
error on the test set for all methods, and it shows that the
DFL improves the classification performance in almost all
cases compared to the focal loss. Additionally, the method
retains better calibration performance with no trade-off in
accuracy on all models trained on CIFAR-100 compared to
models trained using cross-entropy loss, which is listed as
the weight decay in the table. This suggests that the DFL
can improve the calibration of the model without sacrificing
its accuracy. This is a significant advantage as it allows for
developing accurate and well-calibrated models, which is
essential for real-world applications.

5.2. Comparison with AdaFocal Loss

AdaFocal (Ghosh et al., 2022) proposes an enhanced gamma
schedule strategy that selects gamma independently for each
training sample based on the model’s under/over-confidence
on the validation set. On the other hand, DFL focuses on
the dual logits to strike a balance between overconfidence
and under-confidence, which is independent of AdaFocal.
We compared the results under the same training setting
and found that DFL and AdaFocal are evenly matched. In
fact, we can combine the advantages of both techniques
by integrating AdaFocal and DFL, resulting in AdaDual-
Focal, to achieve improved calibration performance. We
conduct experiments on two datasets (cifar10 and cifar100)
and four models (Resnet50, Resnet110, Densenet121 and
Wide-Resnet), and results for AdaDualFocal demonstrate a
consistent enhancement in performance compared to either
AdaFocal or DFL. We report the ECE of different methods
in Table 3.

Dataset Method FLSD-53 AdaFocal DualFocal AdaDualFocal

CIFAR-10

Resnet50 1.55 0.66 0.46 0.43
Resnet110 1.87 0.71 0.98 0.69

Densenet121 1.56 0.64 0.81 0.5
WideResnet 1.22 0.62 0.57 0.54

CIFAR-100

Resnet50 4.5 1.36 1.08 1.07
Resnet110 8.56 1.4 2.9 1.14

Densenet121 3.03 1.95 1.79 1.8
WideResnet 3.73 1.73 1.81 1.63

Table 3. Comparison with AdaFocal Loss.

5.3. Balance between Regularization and Loss of
Sample Hardness Information

Although various regularization techniques can be utilized
to improve the calibration performance of DNNs, it always
leads to the loss of sample hardness, which could limit the
potential for calibration improvement (Wang et al., 2021).
We mainly attribute it to the sub-optimal solution where
the predicted confidences are constrained to a low value to
avoid high ECE, which suffers from under-confidence. As
analyzed in Sec 4, our proposed DFL can achieve better
trade-offs between ηOC and ηUC. To illustrate it, Figure 4b
shows the ranges of maximum logit outputs (model outputs
before softmax layer) of models as a measure of retained
hardness information. As shown in the figure, DFL can
be considered as a balance between the cross-entropy and
focal loss, which performs regularization while retaining the
hardness information of the samples. Figure 4c shows the
distribution of the predicted probabilities qj(x) for different
methods. The results shown in Figure 4c indicate that the
DFL pushes the qj(x) to a more extensive range and lower
median than the focal loss while also keeping it at a rela-
tively higher value compared to the cross-entropy method.
This suggests that the DFL can regularize the model while
retaining more of the hardness information of the samples.

5.4. Ablation Study

To further explore the effectiveness of the proposed DFL,
we conduct ablation study on the variants of qj in Eq. 3.
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Our proposed DFL aims at revealing the necessity of the
involvement of the dual logit in loss design for calibration
and focus on the gap between the confidence logit and dual
logit. We acknowledge the existence of various alterna-
tives, such as the involvement of more logits. However, we
contend that our approach is theoretically sound and can
be extended to scenarios where more logits are involved.
Specifically, we can replace C by the mean of different log-
its in Eq. 3. Thus, Lemma 1 still holds for the scenario with
more logits. For completeness, we conduct ablation studies
of different logits in dual focal loss including the 2nd and
3rd largest logits lower than the confidence logit, and the
mean of different logits. The experiments are conducted
with Resnet50 on CIFAR10 and we report the performance
in terms of ECE, after temperature scaling ECE(ECE(T)),
Adaptive- ECE and Classwise-ECE. As shown in the fol-
lowing table, with the replacement of other dual logits, our
method still outperforms the original focal loss (Mukhoti
et al., 2020) consistently across different metrics. For the
simplicity of theoretical analysis, we only use the maximum
logit after the the confidence logit (1st largest in the table)
in our proposed DFL.

Method Dual Logit ECE AdaECE

Focal loss +0.0 1.55 1.56

Focal Loss with fixed dual logit +0.1 1.15 1.52
+0.2 2.10 2.17

Dual Focal Loss at other logits

+2nd largest logit ranked after qgt 1.12 1.46
+3rd largest logit ranked after qgt 1.34 1.35

+mean(1st + 2nd) largest logit ranked after qgt 0.8 0.68
+mean(1st + 2nd + 3rd) largest logit ranked after qgt 0.61 0.5

+mean(all other logits lower than qgt 0.52 0.38

Dual Focal Loss (Ours) + largest lower than qgt 0.46 0.66

Table 4. Ablation Study. Variants of qj in Dual Focal Loss. Ex-
periments are conducted on the ResNet-50 on CIFAR-10.

6. Conclusion
In conclusion, DFL is a simple and effective method for im-
proving the calibration performance of DNNs. Our method
alleviates the under-confidence problem in the focal loss
by adding a dual focal term while preserving the hardness
information delivered by the output logits. We provide the-
oretical and practical evidence that DFL has reduced the
region size of ηUC and state-of-the-art performance on mul-
tiple models and datasets to support the superiority of DFL.
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A. Proof of Theorem 1

Note that ϕ(vi) = (1− vi + f(vi))
γ + ( ∂f

∂vi
− 1)γ(1− vi + f(vi))

γ−1vi log vi and ηi can be formulated as
q∗i

ϕ(q∗
i
)∑K

k

q∗
k

ϕ(q∗
k
)

in

Eq. 9. Now we simplify Eq. 9 through taking h(vi) =
vi

ϕ(vi)
and function h(v) can be formulated as

h(v) =
v

ϕ(v)
=

{
v

1−γv log v , i = j
v

(1−v+C)γ−γ(1−v+C)γ−1v log v , i ̸= j
(14)

With function h, Eq. 9 can be rewritten as

ηi =
h(q∗i )∑K
k h(q∗k)

. (15)

Considering the scenario i = j, we take the derivative of h(v) as

∂h

∂v
=

1

1− γv log v
− v(−γ log v − γ)

(1− γv log v)2

=
1− γv log v + γv log v + γv

(1− γv log v)2

=
1 + γv

(1− γv log v)2
> 0

(16)

Considering the scenario i ̸= j, we take the derivative of h(v) as

∂h

∂v
=

(1− v + C)γ − γ(1− v + C)γ−1v log v + 2γv(1− v + C)γ−1 + γv(1− v + C)γ−1 log v

[(1− v + C)γ − γ(1− v + C)γ−1v log v]2

− (γ − 1)γv2(1− v + C)γ−2 log v

[(1− v + C)γ − γ(1− v + C)γ−1v log v]2

=
(1− v + C)γ + 2γv(1− v + C)γ−1 − (γ − 1)γv2(1− v + C)γ−2 log v

[(1− v + C)γ − γ(1− v + C)γ−1v log v]2

(17)

If γ ≥ 1, it is easy to see that ∂h
∂v > 0. If γ ∈ [0, 1), we denote the denominator as t(v), which can be formulated as.

t(v) = (1− v + C)γ + 2γv(1− v + C)γ−1 − (γ − 1)γv2(1− v + C)γ−2 log v

= (1− v + C)γ−2
[
(1− v + C)2 + 2γv(1− v + C)− γ2v2 log v + γv2 log v

] (18)

Since (1− v + C)γ−2 ≥ 0 and −γ2v2 log v ≥ 0, we use function u(v) to cover the remaining terms as

u(v) = (1− v + C)2 + 2γv(1− v + C) + γv2 log v, (19)

To discover the sign of u(v), we compute the derivative and u(1) as

u(1) = C2 + 2γC ≥ 0,

∂u

∂v
= −2(1− v + C) + 2γ(1− v + C)− 2γv + 2γv log v + γv

= 2v − 2− 2C + 2γ + 2γC − 3γv + 2γv log v

(20)

Taking the advantage of the fact that

∂u

∂v
|v=0 = 2(γ − 1) + 2C(γ − 1) < 0,

∂u

∂v
|v=1 = −γ < 0,

∂2u

∂v2
= 2− γ + 2γ log v,

∂3u

∂v3
=

2γ

v
> 0,

(21)
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we can see ∂u
∂v is convex, which makes ∂u

∂v < 0 for all the v ∈ (0, 1). Thus, u(v) is a decreasing function. Together with
the fact that u(1) > 0, u(v) > 0 all the v ∈ (0, 1). Similarly, we can conclude that ∂h

∂v > 0 in all the scenarios, which
makes h a strictly increasing function. In other words, q∗a < q∗b ⇒ h(q∗a) < h(q∗b ). Since we have ηi =

h(q∗i )∑K
k h(q∗k)

, it is
easy to see that q∗a < q∗b ⇒ ηa < ηb. Thus, our proposed dual focal loss is strictly order-preserving, which is sufficient for
classification-calibration (Zhang, 2004).

B. Proof of Lemma 1
We explore the property of function ϕ via the its derivative as

∂ϕ

∂vi
= (−1 +

∂f

∂vi
)γ(1− vi + f(vi))

γ−1 +
∂2f

∂v2i
γ(1− vi + f(vi))

γ−1vi log vi

+ (−1 +
∂f

∂vi
)(

∂f

∂vi
− 1)γ(γ − 1)(1− vi + f(vi))

γ−2vi log vi

+ (
∂f

∂vi
− 1)γ(1− vi + f(vi))

γ−1 log vi + (
∂f

∂vi
− 1)γ(1− vi + f(vi))

γ−1

= γ(1− vi + f(vi))
γ−2

(
2(

∂f

∂vi
− 1)(1− vi + f(vi)) +

∂2f

∂v2i
(1− vi + f(vi))vi log vi

+ (
∂f

∂vi
− 1)2(γ − 1)vi log vi + (

∂f

∂vi
− 1)(1− vi + f(vi)) log vi

)
(22)

According to the definition in Eq. 3, for function f , it maps vi to the second maximum value vj in the ascending order v1:K
after vgt. Formally, the function f is defined as

f(vi) = vj = C

where vj = max
i

{vi|vi < vgt}
(23)

Thus, if i = j, ∂f
∂vi

= 1, otherwise, ∂f
∂vi

= 0. Eq. 22 can be simplified as

∂ϕ

∂vi
=

{
0, i = j

γ(1− vi + C)γ−2
(
− 2(1− vi + C) + (γ − 1)vi log vi − (1− vi + C) log vi

)
, i ̸= j

(24)

Now we consider the scenario where i ̸= j

∂ϕ

∂vi
= γ(1− vi + C)γ−2

(
2(vi − 1− C) + γvi log vi − vi log vi − (1 + C) log vi + vi log vi

)
= γ(1− vi + C)γ−2

(
2(vi − 1− C) + γvi log vi − (1 + C) log vi

) (25)

Since γ(1− vi + C)γ−2 > 0, we let s(v) = 2(v − 1− C) + γv log v − (1 + C) log v and explore its proprieties as

∂s

∂v
= 2 + γlogv + γ − 1 + C

v
,

∂2s

∂v2
=

γ

v
+

1 + C

v2

s(0) = ∞, s(1) = −2C,
∂s

∂v
|v=1 = 1 + γ − C

(26)

Since γ
v + 1+C

v2 > 0 for all v, s(v) is convex. Furthermore, according to the definition of vj , 0 ≤ C < 1. Thus, s(1) ≤ 0

and ∂s
∂v |v=1 > 0. Taking the advantage of intermediate value theorem, there exist v′ ∈ (0, 1) such that s(v)′ = 0 and v′ is

unique since s(v) is convex. Thus, ∂ϕ
∂vi

= 0 at v′i,
∂ϕ
∂vi

> 0 for v ∈ [0, v′i) and ∂ϕ
∂vi

< 0 for v ∈ (v′i, 1].
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C. Dataset Description
We evaluate the performance of our proposed Dual Focal Loss on multiple datasets, including CIFAR-10/100 (Krizhevsky
et al., 2009) and Tiny-ImageNet (Deng et al., 2009), to assess its calibration performance. Additionally, we include
evaluations of robustness to Out-of-Distribution (OoD) data using datasets such as SVHN (Goodfellow et al., 2013) and
CIFAR-10-C (Hendrycks & Dietterich, 2018). Below are the specific details of each dataset used in our evaluations:

CIFAR-10/100: The CIFAR-10 dataset includes 60, 000 32x32 color images, divided into 10 classes with 6, 000 images per
class. There are 50, 000 training images and 10, 000 test images. The CIFAR-100 dataset has 100 classes and 600 images
per class. For CIFAR-10/100, we use 5, 000 images from the training set for validation.

Tiny ImageNet: This dataset is a subset of ImageNet from the Large Scale Visual Recognition Challenge (ILSVRC) and
contains 100, 000 colored images of 200 classes, with 500 images per class. Each image is downsized to 64x64 pixels.

SVHN: The Street View House Numbers (SVHN) dataset is a real-world image dataset designed for developing machine
learning and object recognition algorithms. It contains over 600,000 images of house numbers taken from Google Street
View, each belonging to one of 10 classes. We evaluate the performance of the methods on this dataset by assessing its
ability to handle dataset shift, specifically by testing its performance on the testing set.

CIFAR-10-C: The CIFAR-10-C dataset is a version of the CIFAR-10 dataset that includes images corrupted with various
types of noise. The first 10,000 images in this dataset are test set images corrupted at severity level 1, while the last 10,000
images are test set images corrupted at severity level 5. In our experiments, we use the Gaussian Noise corruption with a
severity level of 5 to evaluate the robustness of the methods.

D. Comparison Methods
To evaluate the effectiveness of our proposed algorithm, we include several comparison methods in our experiments. The
details of these comparison methods are provided below:

Weight Decay: We train the model with the Cross-Entropy loss and multiple weight decay values, including 1 × 10−4,
5× 10−4, and 1× 10−3. We report the result of 5× 10−4, which has the best calibration performance.

Brier Loss (Brier et al., 1950): This is a square error loss calculated between the softmax logits and the one-hot labels.

MMCE Loss (Kumar et al., 2018): MMCE is a RKHS kernel-based trainable auxiliary loss used alongside the NLL loss to
improve calibration performance.

Label Smoothing(Szegedy et al., 2016): Label smoothing replaces the one-hot encoded label vector with a mixture of labels
and the uniform distribution. We follow the settings in(Mukhoti et al., 2020) and set the smoothing vector used in this work
to 0.05.

Inverse Focal Loss (Wang et al., 2021): The Inverse Focal Loss is an inverted version of the standard focal loss, which aims
to maximize the potential room for post-hoc calibration.

Focal Loss (Mukhoti et al., 2020): FLSD-53 is a simplification of the sample-dependent γ approach. Mukhoti et al.
(Mukhoti et al., 2020) introduce a schedule mechanism instead of the original fixed one. In particular, with γfocal = 5 for
p̂ ∈ [0, 0.2) and γfocal = 3 for p̂ ∈ [0.2, 1).

E. Performance on Different Metrics and Robustness on Dataset Shift
Adaptive-ECE is a measure of calibration performance that addresses the bias of equal-width binning scheme of ECE. It
adapts the bin-size to the number of samples and ensures that each bin is evenly distributed with samples. The formula for
Adaptive-ECE is as follows:

Adaptive-ECE =

B∑
i=1

|Bi|
N

|Ii − Ci| s.t. ∀i, j · |Bi| = |Bj | (27)

Table 5 shows that Adaptive-ECE has competitive performance with state-of-the-art results in almost all cases, with only
a 0.1% gap between Focal Loss on Tiny-ImageNet. Classwise-ECE is another measure of calibration performance that
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Dataset Model Weight Decay Brier Loss MMCE Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Brier et al., 1950) (Kumar et al., 2018) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 17.52 3.42(2.1) 6.52 3.64(1.1) 15.32 2.38(1.8) 7.81 4.01(1.1) 17.8 3.70(2.3) 4.5 2.0(1.1) 1.23 1.23(1.0)
ResNet-110 19.05 5.86(2.3) 7.73 4.53(1.2) 19.14 4.85(2.3) 11.12 8.59(1.1) 19.4 6.35(2.6) 8.55 3.96(1.2) 3.16 3.16(1.0)

Wide-ResNet-26-10 15.33 2.89(2.2) 4.22 2.81(1.1) 13.16 4.25(1.9) 5.1 5.1(1.0) 16.9 2.29(2.5) 2.75 1.6(1.1) 2.03 2.03(1.0)
DenseNet-121 20.98 5.09(2.3) 5.04 2.56(1.1) 19.13 3.07(2.1) 12.83 8.92(1.2) 19.4 2.82(2.3) 3.55 1.24(1.1) 1.63 1.63(1.0)

CIFAR-10

ResNet-50 4.33 2.14(2.5) 1.74 1.23(1.1) 4.55 2.16(2.6) 3.89 2.92(0.9) 4.38 2.15(1.5) 1.56 1.26(1.1) 0.66 0.66(1.0)
ResNet-110 4.4 1.99(2.8) 2.6 1.7(1.2) 5.06 2.52(2.8) 4.44 4.44(1.0) 4.33 2.66(2.9) 2.07 1.67(1.1) 1.23 1.23(1.0)

Wide-ResNet-26-10 3.23 1.69(2.2) 1.7 1.7(1.0) 3.29 1.6(2.2) 4.27 2.44(0.8) 3.67 2.06(2.7) 1.52 1.38(0.9) 1.42 1.42(1.0)
DenseNet-121 4.51 2.13(2.4) 2.03 2.03(1.0) 5.1 2.29(2.5) 4.42 3.33(0.9) 4.61 2.65(2.8) 1.42 1.42(1.0) 0.80 0.80(1.0)

Tiny-ImageNet ResNet-50 15.23 5.41(1.4) 4.37 4.07(0.9) 13.0 5.56(1.3) 15.28 6.29(0.7) 11.4 6.37(1.3) 1.42 1.42(1.0) 1.52 1.52(1.0)

Table 5. Adaptive ECE (%) evaluated for different methods. Both pre and post temperature scaling results are reported. Optimal
temperature is included in brackets. (calculated temperature on best ECE)

Dataset Model Weight Decay Brier Loss MMCE Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Brier et al., 1950) (Kumar et al., 2018) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 0.38 0.22(2.1) 0.22 0.20(1.1) 0.34 0.21(1.8) 0.23 0.21(1.1) 0.38 0.20(2.3) 0.20 0.20(1.1) 0.19 0.19(1.0)
ResNet-110 0.41 0.21(2.3) 0.24 0.23(1.2) 0.42 0.22(2.3) 0.26 0.22(1.1) 0.41 0.21(2.6) 0.24 0.21(1.2) 0.21 0.21(1.0)

Wide-ResNet-26-10 0.34 0.20(2.2) 0.19 0.19(1.1) 0.31 0.20(1.9) 0.21 0.21(1.0) 0.36 0.21(2.5) 0.18 0.19(1.1) 0.19 0.19(1.0)
DenseNet-121 0.45 0.23(2.3) 0.20 0.21(1.1) 0.42 0.24(2.1) 0.29 0.24(1.2) 0.41 0.24(2.3) 0.19 0.20(1.1) 0.20 0.20(1.0)

CIFAR-10

ResNet-50 0.91 0.45(2.5) 0.46 0.42(1.1) 0.94 0.52(2.6) 0.71 0.51(0.9) 0.91 0.44(2.8) 0.42 0.42(1.1) 0.35 0.35(1.0)
ResNet-110 0.91 0.50(2.8) 0.59 0.50(1.2) 1.04 0.55(2.8) 0.66 0.66(1.0) 0.89 0.45(2.9) 0.48 0.44(1.1) 0.35 0.35(1.0)

Wide-ResNet-26-10 0.68 0.37(2.2) 0.44 0.44(1.0) 0.70 0.35(2.2) 0.80 0.45(0.8) 0.77 0.39(2.7) 0.41 0.31(0.9) 0.34 0.34(1.0)
DenseNet-121 0.92 0.47(2.4) 0.46 0.46(1.0) 1.04 0.57(2.5) 0.60 0.50(0.9) 0.94 0.51(2.8) 0.41 0.41(1.0) 0.35 0.35(1.0)

Tiny-ImageNet ResNet-50 0.22 0.16(1.4) 0.16 0.16(0.9) 0.21 0.16(1.3) 0.21 0.17(0.7) 0.16 0.14(1.3) 0.16 0.16(1.0) 0.16 0.16(1.0)

Table 6. Classwise-ECE (%) evaluated for different methods. Both pre and post temperature scaling results are reported. Optimal
temperature is included in brackets. (calculated temperature on best ECE)

Dataset Model Weight Decay Brier Loss MMCE Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Brier et al., 1950) (Kumar et al., 2018) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours

Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 44.34 12.75(2.1) 36.75 21.61(1.1) 39.53 11.99(1.8) 26.11 18.58(1.1) 50.22 16.20(2.3) 16.12 27.18(1.1) 5.29 5.29(1.0)
ResNet-110 55.92 22.65(2.3) 24.85 13.56(1.2) 50.69 19.23(2.3) 36.23 30.46(1.1) 53.59 19.68(2.6) 22.57 10.94(1.2) 8.10 8.10(1.0)

Wide-ResNet-26-10 49.36 14.18(2.2) 14.68 13.42(1.1) 40.13 16.5(1.9) 23.79 23.79(1.0) 52.90 12.50(2.5) 10.17 9.73(1.1) 11.89 11.89(1.0)
DenseNet-121 56.28 21.63(2.3) 15.47 8.55(1.1) 49.97 13.02(2.1) 43.59 29.95(1.2) 53.11 8.45(2.3) 9.68 5.68(1.1) 10.14 10.14(1.0)

CIFAR-10

ResNet-50 36.65 20.6(2.5) 31.54 22.46(1.1) 60.06 23.6(2.6) 35.61 40.51(0.9) 49.74 34.1(2.8) 14.89 26.37(1.1) 24.24 24.24(1.0)
ResNet-110 44.25 29.98(2.8) 25.18 22.73(1.2) 67.52 31.87(2.8) 45.72 45.72(1.0) 39.81 32.44(2.9) 18.95 17.35(1.1) 12.59 12.59(1.0)

Wide-ResNet-26-10 48.17 26.63(2.2) 77.15 77.15(1.0) 36.82 32.33(2.2) 24.89 37.53(0.8) 33.51 74.52(2.7) 74.07 36.56(0.9) 26.27 26.27(1.0)
DenseNet-121 45.19 32.52(2.4) 19.39 19.39(1.0) 43.29 27.03(2.5) 45.5 53.57(0.9) 52.11 33.79(2.8) 13.36 13.36(1.0) 52.11 52.11(1.0)

Tiny-ImageNet ResNet-50 30.83 13.33(1.4) 8.41 12.82(0.9) 34.72 12.52(1.3) 25.48 17.2(0.7) 30.13 11.53(1.3) 3.76 3.76(1.0) 4.82 4.82(1.0)

Table 7. MCE (%) evaluated for different methods. Both pre and post temperature scaling results are reported. Optimal temperature is
included in brackets (calculated temperature on best ECE).

addresses the deficiency of ECE in only measuring the calibration performance of the single predicted class. It can be
formulated as:

Classwise-ECE =
1

K

B∑
i=1

K∑
j=1

|Bi,j |
N

|Ii,j − Ci,j | (28)

where Bi,j denotes the set of samples with the jth class label in the ith bin, Ii,j and Ci,j represents the accuracy and
confidence of samples in Bi,j .

Table 6 demonstrates the superior performance of Classwise-ECE, as it shows that DFL not only calibrates the confidence of
the predicted label, but also the probabilities of all other class labels. Table 8 displays competitive NLL results, with DFL
achieving a better NLL on more complex datasets such as CIFAR-100 and Tiny-ImageNet. This indicates that DFL acts as a
regularization method, which can also be applied to other tasks related to overfitting, such as improving model robustness.
Table 7 illustrates the competitive results of MCE, with DFL achieving the state-of-the-art results in most cases, particularly
before temperature scaling. DFL outperforms other methods significantly. Table 9 shows the AUROC score measured on
different methods. DFL can achieve the competitive results in most cases.
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Dataset Model Weight Decay Brier Loss MMCE Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Brier et al., 1950) (Kumar et al., 2018) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours

Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 153.67 106.83(2.1) 99.63 99.57(1.1) 125.28 101.92(1.8) 121.02 120.19(1.1) 170.9 104.8(2.3) 88.03 88.27(1.1) 87.75 87.75(1.0)
ResNet-110 179.21 104.63(2.3) 110.72 111.81(1.2) 180.54 106.73(2.3) 133.11 129.76(1.1) 210.3 110.8(2.6) 89.92 88.93(1.2) 88.81 88.81(1.0)

Wide-ResNet-26-10 140.1 91.0(2.2) 84.62 85.77(1.1) 119.58 95.92(1.9) 108.06 108.06(1.0) 173 100.6(2.5) 76.92 78.14(1.1) 78.67 78.67(1.0)
DenseNet-121 205.61 119.23(2.3) 98.31 98.74(1.1) 166.65 113.24(2.1) 142.04 136.28(1.2) 178.6 115.8(2.3) 85.47 86.06(1.1) 85.82 85.82(1.0)

CIFAR-10

ResNet-50 41.21 20.38(2.5) 18.36 18.36(1.1) 44.83 21.58(2.6) 27.68 27.69(0.9) 48.3 21.0(2.8) 17.55 17.37(1.1) 17.02 17.02(1.0)
ResNet-110 47.51 21.52(2.8) 20.44 19.60(1.2) 55.71 24.61(2.8) 29.88 29.88(1.0) 52.9 22.3(2.9) 18.54 18.24(1.1) 17.98 17.98(1.0)

Wide-ResNet-26-10 26.75 15.33(2.2) 15.85 15.85(1.0) 28.47 16.16(2.2) 21.71 21.19(0.8) 39.33 18.09(2.7) 14.55 14.23(0.9) 14.23 14.23(1.0)
DenseNet-121 42.93 21.77(2.4) 19.11 19.11(1.0) 52.14 24.88(2.5) 28.7 28.95(0.9) 54.5 23.41(2.8) 18.39 18.39(1.0) 17.48 17.48(1.0)

Tiny-ImageNet ResNet-50 232.85 220.98(1.4) 240.32 238.98(0.9) 234.29 226.29(1.3) 235.04 214.95(0.7) 242.1 240.9(1.3) 204.97 204.97(1.0) 203.3 203.3(1.0)

Table 8. NLL (%) evaluated for different methods. Both pre and post temperature scaling results are reported. Optimal temperature is
included in brackets (calculated temperature on best ECE).

Dataset Model Weight Decay Brier Loss MMCE Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Brier et al., 1950) (Kumar et al., 2018) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-10/SVHN ResNet-50 94.32 94.56 93.59 93.72 85.17 64.75 78.88 78.89 92.41 92.60 92.48 92.79 94.34 94.34
DenseNet-121 84.43 81.57 94.65 94.66 85.88 84.87 78.79 78.94 74.08 67.78 89.59 89.59 93.78 93.78

CIFAR-10/CIFAR-10-C ResNet-50 86.23 86.03 90.21 90.13 89.97 90.11 72.01 72.02 77.81 74.74 89.45 89.56 87.93 87.93
DenseNet-121 87.61 86.41 87.38 87.38 84.9 84.88 73.67 73.8 76.72 72.51 89.47 89.47 89.56 89.56

Table 9. Robustness on Dataset Shift. AUROC (%), being the higher the better, is evaluated for different methods with models shifting
from CIFAR-10 (in-distribution) to SVHN and CIFAR-10-C as the OoD datasets.

F. Comparison with SOTA Method KDE-XE
KDE-XE (Popordanoska et al., 2022) is a tractable, differentiable, and consistent estimator of the expected Lp canonical
calibration error based on the Dirichlet kernel. For fair comparison, we use the same training setting provided in (Popor-
danoska et al., 2022) and evaluate the calibration performance on ECE and L1 canonical calibration error. We report the
calibration performance on four different models (ResNet-110, ResNet-110sd, Wide-ResNet and DenseNet-40) and two
datasets (CIFAR10 and CIFAR100) in Table 10. The results indicate that our methods outperform KDE-XE in terms of ECE.
However, Dual focal loss fails to outperform KDE-XE in terms of canonical calibration error. We argue that KDE-XE takes
the L1 canonical calibration error as an auxiliary training loss, which makes it difficult to outperform in terms of canonical
calibration error. We contend that while canonical calibration error is a significant metric, traditional evaluation metrics such
as ECE are still commonly accepted in recent studies, such as (Mukhoti et al., 2020; Ghosh et al., 2022). Our approach
demonstrates a substantially superior ECE performance compared to KDE-XE.

Metrics Model Dataset Cross Entropy KDE-XE DualFocal

ECE ResNet-110 CIFAR-10 3.89 3.093 0.4
ECE ResNet-110sd CIFAR-10 3.555 2.778 1.51
ECE ResNet-110 CIFAR-100 12.769 8.969 2.43
ECE ResNet-110sd CIFAR-100 11.175 7.828 2.6
ECE Wide-ResNet CIFAR-100 7.279 3.703 1.04
ECE DenseNet-40 CIFAR-100 9.196 8.016 2.34

ECEKDE ResNet-110 CIFAR-10 0.133 0.126 0.153
ECEKDE DenseNet-40 CIFAR-10 0.104 0.098 0.121

Table 10. Comparison with SOTA Method KDE-XE.

G. Calibration Assessment with Metrics RBS
KDE-RBS (Gruber & Buettner, 2022) is a calibration metric proposed recently, which is robust w.r.t. the test set size. To
evaluate the performance of our method on RBS, we conduct experiments on two datasets (cifar10 and cifar100) and four
models (Resnet50, Resnet110, Densenet121 and Wide-Resnet), and our results demonstrate a consistent enhancement over
other methods in terms of RBS. Table 11 shows the RBS performance of different methods.
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Dual Focal Loss for Calibration

Dataset Model Weight Decay MMCE Brier Loss Label Smoothing Focal Loss Dual Focal
(Guo et al., 2017) (Kumar et al., 2018) (Brier et al., 1950) (Szegedy et al., 2016) (Mukhoti et al., 2020) Ours

CIFAR-10

ResNet-50 0.0922 0.0938 0.0815 0.0943 0.0801 0.0774
ResNet-110 0.0916 0.1034 0.0879 0.1013 0.0839 0.0798

Wide-ResNet-26-10 0.0691 0.071 0.0655 0.0728 0.0634 0.0624
DenseNet-121 0.0929 0.1034 0.0817 0.0949 0.0842 0.081

CIFAR-100

ResNet-50 0.3974 0.3748 0.3424 0.3574 0.3315 0.3193
ResNet-110 0.4071 0.4123 0.3725 0.3774 0.3366 0.322

Wide-ResNet-26-10 0.3519 0.3391 0.2966 0.3171 0.2852 0.2848
DenseNet-121 0.4457 0.4181 0.339 0.4003 0.3218 0.3157

Table 11. Calibration Assessment with Metrics RBS

H. Robustness of DFL
To verify the robustness of our method, we replicated the experiment using Resnet50 on CIFAR10 and presented the mean
calibration error along with the standard error in Table 12. These results indicate that our approach exhibits a consistent and
robust calibration performance.

Weight Decay MMCE Brier Loss Label Smoothing Inverse Focal Loss Focal Loss Dual Focal
(Guo et al., 2017) (Kumar et al., 2018) (Brier et al., 1950) (Szegedy et al., 2016) (Wang et al., 2021) (Mukhoti et al., 2020) Ours

ECE 4.4±0.15 1.81±0.07 4.51±0.06 3.01±0.13 4.45±0.15 1.45±0.05 0.49±0.05
ECE(T) 1.37±0.16 1.21±0.15 1.18±0.05 1.66±0.06 1.33±0.07 0.99±0.08 0.49±0.05
AdaECE 4.37±0.17 1.8±0.1 4.51±0.07 2.99±0.09 4.39±0.11 1.49±0.1 0.47±0.04
Classwise-ECE 0.93±0.3 0.41±0.05 0.94±0.03 0.72±0.05 0.95±0.04 0.42±0.01 0.35±0.01

Table 12. Robustness of DFL

I. Gamma Value Selection in DFL
We simply discover the appropriate γ via cross-validation, which is a normal technique as mentioned in (Mukhoti et al.,
2020), “Finding an appropriate γ is normally done using cross-validation. Also, traditionally, γ is fixed for all samples in the
dataset.” We notice that the FLSD-53 strategy is utilized in (Mukhoti et al., 2020) to better control the gradient magnitude
via a better trade-off in the curve of function g which is discussed in (Mukhoti et al., 2020). The major reason why we use
fixed γ in DFL instead of FLSD-53 strategy lies in the fact that DFL naturally performs gradient magnitude control and
better trade-offs in terms of function g.

We agree that adjusting γ can be an effective solution to the better calibration performance with focal loss. However, our
proposed DFL can also meet the requirements in (Mukhoti et al., 2020) through the involvement of other logits. We further
provide more empirical results of γ selection on ResNet50 on CIFAR10 in Table 13.

Accuracy ECE ECE(T) AdaECE Classwise ECE

γ = 2 95.3 2.156 0.8553 2.144 0.5167
γ = 3 94.69 1.79 1.179 1.991 0.4828
γ = 4 94.75 1.617 1.024 1.69 0.4958
γ = 5 94.83 0.461 0.461 0.6694 0.3578
γ = 10 94.44 1.096 1.096 1.446 0.4406

Table 13. Gamma Selection
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