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Abstract
Score-based generative modeling, informally re-
ferred to as diffusion models, continue to grow
in popularity across several important domains
and tasks. While they provide high-quality and
diverse samples from empirical distributions, im-
portant questions remain on the reliability and
trustworthiness of these sampling procedures for
their responsible use in critical scenarios. Confor-
mal prediction is a modern tool to construct finite-
sample, distribution-free uncertainty guarantees
for any black-box predictor. In this work, we fo-
cus on image-to-image regression tasks and we
present a generalization of the Risk-Controlling
Prediction Sets (RCPS) procedure, that we term
K-RCPS, which allows to (i) provide entrywise
calibrated intervals for future samples of any diffu-
sion model, and (ii) control a certain notion of risk
with respect to a ground truth image with minimal
mean interval length. Differently from existing
conformal risk control procedures, ours relies on
a novel convex optimization approach that allows
for multidimensional risk control while provably
minimizing the mean interval length. We illus-
trate our approach on two real-world image de-
noising problems: on natural images of faces as
well as on computed tomography (CT) scans of
the abdomen, demonstrating state of the art per-
formance.

1. Introduction
Generative modeling is one of the longest standing tasks
of classical and modern machine learning (Bishop &
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Nasrabadi, 2006). Recently, the foundational works by Song
& Ermon (2019); Song et al. (2020a); Pang et al. (2020) on
sampling via score-matching (Hyvärinen & Dayan, 2005)
and by Ho et al. (2020) on denoising diffusion models (Sohl-
Dickstein et al., 2015) paved the way for a new class of
score-based generative models, which solve a reverse-time
stochastic differential equation (SDE) (Song et al., 2020b;
Anderson, 1982). These models have proven remarkably
effective on both unconditional (i.e., starting from random
noise) and conditional (e.g., inpainting, denoising, super-
resolution, or class-conditional) sample generation across
a variety of fields (Yang et al., 2022; Croitoru et al., 2022).
For example, score-based generative models have been ap-
plied to inverse problems in general computer vision and
medical imaging (Kadkhodaie & Simoncelli, 2021; Kawar
et al., 2021b;a; Xie & Li, 2022; Torem et al., 2022; Song
et al., 2021), 3D shape generation (Zeng et al., 2022; Xu
et al., 2022; Metzer et al., 2022), and even in protein design
(Hoogeboom et al., 2022; Corso et al., 2022; Watson et al.,
2022; Ingraham et al., 2022).

These strong empirical results highlight the potential of
score-based generative models. However, they currently
lack of precise statistical guarantees on the distribution of
the generated samples, which hinders their safe deployment
in high-stakes scenarios (Horwitz & Hoshen, 2022). For
example, consider a radiologist who is shown a computed
tomography (CT) scan of the abdomen of a patient recon-
structed via a score-based generative model. How confident
should they be of the fine-grained details of the presented
image? Should they trust that the model has not hallucinated
some of the features (e.g., calcifications, blood vessels, or
nodules) involved in the diagnostic process? Put differently,
how different will future samples be from the presented im-
age, and how far can we expect them to be from the ground
truth image?

In this work we focus on image-to-image regression prob-
lems, where we are interested in recovering a high-quality
ground truth image given a low-quality observation. While
our approach is general, we focus on the problem of image
denoising as a running example. We address the questions
posed above on the reliability of score-based generative
models (and, more generally, of any sampling procedure)
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through the lens of conformal prediction (Papadopoulos
et al., 2002; Vovk et al., 2005; Lei & Wasserman, 2014;
Shafer & Vovk, 2008; Angelopoulos & Bates, 2021) and
conformal risk control (Bates et al., 2021; Angelopoulos
et al., 2021; 2022a) which provide any black-box predictor
with distribution-free, finite-sample uncertainty guarantees.
In particular, the contribution of this paper is three-fold:

1. Given a fixed score network, a low-quality observation,
and any sampling procedure, we show how to construct
valid entrywise calibrated intervals that provide cov-
erage of future samples, i.e. future samples (on the
same observation) will fall within the intervals with
high probability;

2. We introduce a novel high-dimensional conformal risk
control procedure that minimizes the mean interval
length directly, while guaranteeing the number of pix-
els in the ground truth image that fall outside of these
intervals is below a user-specified level on future, un-
seen low-quality observations;

3. We showcase our approach for denoising of natural
face images as well as for computed tomography of
the abdomen, achieving state of the art results in mean
interval length.

Going back to our example, providing such uncertainty inter-
vals with provable statistical guarantees would improve the
radiologist’s trust in the sense that these intervals precisely
characterize the type of tissue that could be reconstructed
by the model. Lastly, even though our contributions are
presented in the context of score-based generative model-
ing for regression problems—given their recent popularity
(Kazerouni et al., 2022; Yang et al., 2022; Croitoru et al.,
2023)—our results are broadly applicable to any sampling
procedure, and we will comment on potential direct exten-
sions where appropriate.

1.1. Related work

Image-to-Image Risk Control Previous works have ex-
plored conformal risk control procedures for image-to-
image regression tasks. In particular, Angelopoulos et al.
(2022b) show how to construct set predictors from heuristic
notions of uncertainty (e.g., quantile regression (Koenker
& Bassett Jr, 1978; Romano et al., 2019)) for any image
regressor, and how to calibrate the resulting intervals accord-
ing to the original RCPS procedure of Bates et al. (2021).
Kutiel et al. (2022) move beyond set predictors and propose
a mask-based conformal risk control procedure that allows
for notions of distance between the ground truth and pre-
dicted images other than interval-based ones. Finally, and
most closely to this paper, Horwitz & Hoshen (2022) sketch
ideas of conformal risk control for diffusion models with

the intention to integrate quantile regression and produce
heuristic sampling bounds without the need to sample sev-
eral times. Horwitz & Hoshen (2022) also use the original
RCPS procedure to guarantee risk control. Although similar
in spirit, the contribution of this paper focuses on a high-
dimensional generalization of the original RCPS procedure
that formally minimizes the mean interval length. Our pro-
posed procedure is agnostic of the notion of uncertainty
chosen to construct the necessary set predictors.

2. Background
First, we briefly introduce the necessary notation and gen-
eral background information. Herein, we will refer to im-
ages as vectors in Rd, such that X ⊂ Rd and Y ⊂ Rd

indicate the space of high-quality ground truth images, and
low-quality observations, respectively. We assume both X
and Y to be bounded. For a general image-to-image regres-
sion problem, given a pair (x, y) drawn from an unknown
distribution D over X × Y , the task is to retrieve x ∈ X
given y ∈ Y . This is usually carried out by means of a
predictor f : Y → X that minimizes some notion of dis-
tance (e.g., MSE loss) between the ground truth images and
reconstructed estimates on a set {(xi, yi)}ni=1 ∼ Dn of n
pairs of high- and low-quality images. For example, in the
classical denoising problem, one has y = x + v0 where
v0 ∼ N (0, σ2

0I) is random Gaussian noise with variance σ2
0 ,

and one wishes to learn a denoiser f such that f(y) ≈ x.

2.1. Score-based Conditional Sampling

Most image-to-image regression problems are ill-posed:
there exist several ground truth images that could have gen-
erated the same low-quality observation. This is easy to
see for the classical denoising problem described above.
Instead of a point predictor f—which could approximate
a maximum-a-posteriori (MAP) estimate—one is often in-
terested in devising a sampling procedure F : Y → X for
the posterior p(x|y), which precisely describes the distri-
bution of possible ground truth images that generated the
observation y. In real-world scenarios, however, the full
joint (x, y) is unknown, and one must resort to approximate
p(x|y) from finite data. It is known that for a general Itô
process dx = h(x, t) dt+ g(t) dw that perturbs an input x
into random noise (Karatzas et al., 1991), it suffices to know
the Stein score ∇x log pt(x) (Anderson, 1982; Liu et al.,
2016) to sample from p(x) via the reverse-time process

dx = [h(x, t)− g(t)2∇x log pt(x)] dt+ g(t) dw̄, (1)

where h(x, t) and g(t) are a drift and diffusion term, re-
spectively, and dw and dw̄ are forward- and reverse-time
standard Brownian motion.1 Furthermore, if the likelihood

1We will assume time t continuous in [0, 1].
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p(y|x) is known—which is usually the case for image-
to-image regression problems—it is possible to condition
the sampling procedure on an observation y. Specifi-
cally, by Bayes’ rule, it follows that ∇x log pt(x|y) =
∇x log pt(y|x)+∇x log pt(x) which can be plugged-in into
the reverse-time SDE in Equation (1) to sample from p(x|y).

Recent advances in generative modeling by Song & Er-
mon (2019); Song et al. (2020b) showed that one can ef-
ficiently train a time-conditional score network s(x̃, t) to
approximate the score ∇x log pt(x̃) via denoising score-
matching (Hyvärinen & Dayan, 2005). In this way, given
a forward-time SDE that models the observation process,
a score network s(x̃, t) ≈ ∇x log pt(x̃), and the likelihood
term p(y|x̃), one can sample from p(x|y) by solving the
conditional reverse-time SDE with any discretization (e.g.,
Euler-Maruyama) or predictor-corrector scheme (Song et al.,
2020b). While these models perform remarkably well in
practice, limited guarantees exist on the distributions that
they sample from (Lee et al., 2022). Instead, we will pro-
vide guarantees for diffusion models by leveraging ideas of
conformal prediction and conformal risk control, which we
now introduce.

2.2. Conformal Prediction

Conformal prediction has a rich history in mathematical
statistics (Vovk et al., 2005; Papadopoulos et al., 2002; Vovk,
2015; Barber et al., 2021; 2022; Gupta et al., 2022).2 It
comprises various methodologies to construct finite-sample,
statistically valid uncertainty guarantees for general predic-
tors without making any assumption on the distribution of
the response (i.e., they are distribution-free). It particular,
these methods construct valid prediction sets that provide
coverage, which we now define.
Definition 2.1 (Coverage (Shafer & Vovk, 2008)). Let
z1, . . . , zm, zm+1 be m+1 exchangeable random variables
drawn from the same unknown distributionQ over Z . For a
desired miscoverage level α ∈ [0, 1], a set C ⊆ 2Z that only
depends on z1, . . . , zm provides coverage if

P[zm+1 ∈ C] ≥ 1− α. (2)

We remark that the notion of coverage defined above was
introduced in the context of classification problems, where
one is interested in guaranteeing that the true, unseen label
of a future sample will be in the prediction set C with high
probability. It is immediate to see how conformal prediction
conveys a very precise notion of uncertainty—the larger C
has to be in order to guarantee coverage, the more uncertain
the underlying predictor. We refer the interested reader to
(Shafer & Vovk, 2008; Angelopoulos & Bates, 2021) for
classical examples of conformal prediction.

2Throughout this work, we will refer to split conformal predic-
tion (Vovk et al., 2005) simply as conformal prediction.

In many scenarios (e.g., regression), the natural notion of
uncertainty may be different from miscoverage as described
above (e.g., ℓ2 norm). We now move onto presenting confor-
mal risk control, which extends the coverage to any notion
of risk.

2.3. Conformal Risk Control

Let I : Y → X ′ be a general set-valued predictor from Y
intoX ′ ⊆ 2X . Consider a nonnegative loss ℓ : X×X ′ → R
measuring the discrepancy between a ground truth x and
the predicted intervals I(y). We might be interested in
guaranteeing that this loss will be below a certain tolerance
ϵ ≥ 0 with high probability on future, unseen samples y for
which we do not know the ground truth x. Conformal risk
control (Bates et al., 2021; Angelopoulos et al., 2021; 2022a)
extends ideas of conformal prediction in order to select a
specific predictor I that controls the risk E[ℓ(x, I(y))] in
the following sense.
Definition 2.2 (Risk Controlling Prediction Sets). Let
Scal = {(xi, yi)}ni=1 ∼ Dn be a calibration set of n i.i.d.
samples from an unknown distribution D over X × Y . For
a desired risk level ϵ ≥ 0 and a failure probability δ ∈ [0, 1],
a random set-valued predictor I : Y → X ′ ⊆ 2X is an
(ϵ, δ)-RCPS w.r.t. a loss function ℓ : X × X ′ → R if

PScal [E(x,y)∼D[ℓ(x, I(y))] ≤ ϵ] ≥ 1− δ. (3)

Bates et al. (2021) introduced the first conformal risk control
procedure for monotonically nonincreasing loss functions,
those that satisfy, for a fixed x,

I(y) ⊂ I ′(y) =⇒ ℓ(x, I ′(y)) ≤ ℓ(x, I(y)). (4)

In this way, increasing the size of the sets cannot increase
the value of the loss. Furthermore, assume that for a fixed
input y the family of set predictors {Iλ(y)}λ∈Λ, indexed
by λ ∈ Λ, Λ ⊂ R := R ∪ {±∞}, satisfies the following
nesting property (Gupta et al., 2022)

λ1 < λ2 =⇒ Iλ1
(y) ⊂ Iλ2

(y). (5)

Denote R(λ) = E[ℓ(x, Iλ(y))] the risk of Iλ(y) and
R̂(λ) its empirical estimate over a calibration set Scal =
{(xi, yi)}ni=1. Finally, let R̂+(λ) be a pointwise upper con-
fidence bound (UCB) that covers the risk, that is

P[R(λ) ≤ R̂+(λ)] ≥ 1− δ (6)

for each, fixed value of λ—such that can be derived by
means of concentration inequalities (e.g., Hoeffding’s in-
equality (Hoeffding, 1994), Bentkus’ inequality (Bentkus,
2004), or respective hybridization (Bates et al., 2021)).3

With these elements, Bates et al. (2021) show that choosing

λ̂ = inf{λ ∈ Λ : R̂+(λ′) < ϵ, ∀λ′ ≥ λ} (7)

3We stress that Equation (6) does not imply uniform coverage
∀λ ∈ Λ.
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guarantees that Iλ̂(y) is an (ϵ, δ)-RCPS according to Def-
inition 2.2. In other words, choosing λ̂ as the smallest λ
such that the UCB is below the desired level ϵ for all values
of λ ≥ λ̂ controls the risk al level ϵ with probability at
least 1 − δ. For the sake of completeness, we include the
original conformal risk control procedure in Algorithm 2 in
Appendix B.

Equipped with these general concepts, we now move onto
presenting the contributions of this work.

3. How to Trust Your Diffusion Model
We now go back to the main focus of this paper: solving
image-to-image regression problems with diffusion models.
Rather than a point-predictor f : Y → X , we assume to
have access to a stochastic sampling procedure F : Y → X
such that F (y) is a random variable with unknown distribu-
tion Qy—that hopefully approximates the posterior distri-
bution of x given y, i.e. Qy ≈ p(x|y). However, we make
no assumptions on the quality of this approximation for our
results to hold. As described in Section 2.1, F can be ob-
tained by means of a time-conditional score network s(x̃, t)
and a reverse-time SDE. While our results are applicable to
any sampling procedure, we present them in the context of
diffusion models because of their remarkable empirical re-
sults and increasing use in critical applications (Yang et al.,
2022; Croitoru et al., 2022).

One can identify three separate sources of randomness in
a general stochastic image-to-image regression problem:
(i) the unknown prior p(x) over the space of ground-truth
images, as x ∼ p(x), (ii) the randomness in the observation
process of y (which can be modeled by a forward-time SDE
over x), and finally (iii) the stochasticity in the sampling
procedure F (y). We will first provide conformal prediction
guarantees for a fixed observation y, and then move onto
conformal risk control for the ground truth image x.

3.1. Calibrated Quantiles for Future Samples

Given the same low-quality (e.g., noisy) observation y,
where will future unseen samples from F (y) ∼ Qy fall?
How concentrated will they be? Denote I : Y → X ′ a (ran-
dom) set-valued predictor from Y ⊂ Rd into a space of sets
X ′ ⊆ 2X over X ⊂ Rd (e.g., X = [0, 1]d, X ′ ⊆ 2[0,1]

d

).
We extend the notion of coverage in Definition 2.1 to entry-
wise coverage, which we now make precise.

Definition 3.1 (Entrywise coverage). Let z1, . . . , zm, zm+1

be m+1 exchangeable random vectors drawn from the same
unknown distribution Q over X ⊂ Rd. For a desired mis-
coverage level α ∈ [0, 1], a set I ⊆ 2X that only depends
on z1, . . . , zm provides entrywise coverage if

P[(zm+1)j ∈ Ij ] ≥ 1− α (8)

for each j ∈ [d] := {1, . . . , d}.

We stress that the definition above is different from notions
of vector quantiles (Carlier et al., 2016; Chernozhukov et al.,
2017) in the sense that coverage is not guaranteed over the
entire new random vector zm+1 but rather along each di-
mension independently. Ideas of vector quantile regression
(VQR) are complementary to the contribution of the current
work and subject of ongoing research (Genevay et al., 2016;
Carlier et al., 2020; Rosenberg et al., 2022).

For a fixed observation y, we use conformal prediction to
construct a set predictor that provides entrywise coverage.

Lemma 3.2 (Calibrated quantiles guarantee entrywise cov-
erage). Let F : Y → X be a stochastic sampling
procedure from Y ⊂ Rd into X ⊂ Rd. Given y ∈
Y , let F1, . . . , Fm, Fm+1 be m + 1 i.i.d. samples from
F (y). For a desired miscoverage level α ∈ [0, 1] and
for each j ∈ [d], let l̂j,α, ûj,α be the ⌊(m + 1)α/2⌋/m
and ⌈(m+1)(1−α/2)⌉/m entrywise calibrated empirical
quantiles of F1, . . . , Fm. Then,

Iα(y)j = [l̂j,α, ûj,α] (9)

provides entrywise coverage.

The simple proof of this result is included in Appendix A.1.
We remark that, analogously to previous works (Angelopou-
los et al., 2022b; Horwitz & Hoshen, 2022), the intervals
in Iα(y) are feature-dependent and they capture regions
of the image where the sampling process F (y) may have
larger uncertainty. The intervals in Iα(y) are statistically
valid for any number of samples m and any distribution Qy ,
i.e. they are not a heuristic notion of uncertainty. If the
sampling procedure F is a diffusion model, constructing
Iα(y) is agnostic of the discretization scheme used to solve
the reverse-time SDE (Song et al., 2020b) and it does not
require retraining the underlying score network, which can
be a time-consuming and delicate process, especially when
the size of the images is considerable. On the other hand,
constructing the intervals Iα(y) requires sampling a large
enough number of times from F (y), which may seen cum-
bersome (Horwitz & Hoshen, 2022). This is by construction
and intention: diffusion models are indeed very useful in
providing good (and varied) samples from the approximate
posterior. In this way, practitioners do typically sample sev-
eral realizations to get an empirical study of this distribution.
In these settings, constructing the intervals Iα(y) does not
involve any additional computational costs. Furthermore,
note that sampling is completely parallelizable, and so no
extra complexity is incurred if a larger number of computing
nodes are available.
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3.2. A Provable Approach to Optimal Risk Control

In this section, we will revisit the main ideas around con-
formal risk control introduced in Section 2.3 and generalize
them into our proposed approach, K-RCPS. Naturally, one
would like a good conformal risk control procedure to yield
the shortest possible interval lengths. Assume pixel inten-
sities are normalized between [0, 1] and consider the loss
function

ℓ01(x, I(y)) = 1

d

∑
j∈[d]

1[xj /∈ I(y)j ], (10)

which counts the (average) number of ground truth pixels
that fall outside of their respective intervals in I(y). The
constant set-valued predictor U(y) = [0, 1]d would trivially
control the risk, i.e. R01(λ) = E[ℓ01(x,U(y))] = 0. Alas,
such a predictor would be completely uninformative. In-
stead, let {Iλ(y)}λ∈Λ, Λ ⊂ R be a family of predictors that
satisfies the nesting property in Equation (5). In particular,
we propose the following additive parametrization in λ

Iλ(y)j = [l̂j − λ, ûj + λ] (11)

for some lower and upper endpoints l̂j < ûj that may de-
pend on y. For this particularly chosen family of nested
predictors, it follows that the mean interval length is

Ī(λ) =
1

d

∑
j∈[d]

(ûj − l̂j) + 2λ, (12)

a linear function of λ. Moreover, we can instantiate l̂j and
ûj to be the calibrated quantiles with entrywise coverage,
i.e. Iαλ (y) = [l̂j,α − λ, ûj,α + λ].

For such a class of predictors—since the ℓ01 loss is mono-
tonically nonincreasing—the original RCPS procedure (see
Equation (7)) is equivalent to the following constrained
optimization problem

λ̂ = arg min
λ∈Λ

Ī(λ) s.t. R̂01+(λ′) < ϵ, ∀λ′ ≥ λ (P1)

which naturally minimizes λ. However, optimizing the
mean interval length over a single scalar parameter λ is
suboptimal in general, as shown in Figure 1. With abuse
of notation—we do not generally refer to vectors with
boldface—let {Iλ(y)}λ∈Λd be a family of predictors in-
dexed by a d-dimensional vector λ = (λ1, . . . , λd) that
satisfies the nesting property in Equation (5) in an entrywise
fashion. A natural extension of Equation (11) is then

Iλ(y)j = [l̂j − λj , ûj + λj ], (13)

from which one can define an equivalent function Ī(λ). In
particular, using the calibrated intervals as before, define

Iαλ(y) = [l̂j,α − λj , ûj,α + λj ]. (14)

(a) µ = [−1, 1]T . (b) µ = [−2, 0.75]T .

Figure 1: Pictorial representation of the suboptimality of the
choice of a single scalar parameter λ w.r.t. the mean interval
length. Scal ∼ N (µ, I2)n, n = 128, and (Iλ)j = [−1 −
λj , 1 + λj ], λ = (λ1, λ2). For ϵ = δ = 0.1, R̂01+(λ) is
obtained via Hoeffding-Bentkus hybridization. Green areas
indicate regions where R̂01+(λ) ≤ ϵ, and conversely for
red regions. (a) Shows that when features are concentrated
symmetrically around the intervals, minimizing λ1 = λ2 =
λ (blue star) minimizes the mean interval length, while (b)
shows that in the general case, the optimal λ (orange star)
may have λ1 ̸= λ2. ∆ highlights the gain in mean interval
length obtained by choosing the orange star instead of the
blue one.

Note now that ℓ01(x, Iλ(y)) is entrywise monotonically
nonincreasing. Hence, for a fixed vector η ∈ Rd in the
positive orthant (i.e., η ≥ 0, entrywise), the d-dimensional
extension of (P1) becomes

λ̂ = arg min
λ∈Λd

∑
j∈[d]

λj s.t. R̂01+(λ+ βη) < ϵ, (Pd)

∀β ≥ 0. We include an explicit analytical expression for
R̂01+(λ+ η) in Appendix C. Intuitively, λ̂ minimizes the
sum of its entries such that the UCB is smaller than ϵ for all
points to its right along the direction of η parametrized by β.
We now show a general high-dimensional risk control result
that holds for any entrywise monotonically nonincreasing
loss function ℓ (and not just ℓ01 as presented in (Pd)) with
risk R(λ), empirical estimate R̂(λ) and respective UCB
R̂+(λ).

Theorem 3.3 (Optimal mean interval length risk control).
Let ℓ : X × X ′ → R, X ′ ⊆ 2X , X ⊂ Rd be an entrywise
monotonically nonincreasing function and let {Iλ(y) =

[l̂j −λj , ûj +λj ]}λ∈Λd be a family of set-valued predictors
I : Y → X ′, Y ⊂ Rd indexed by λ ∈ Λd, Λ ⊂ R, for
some lower and upper bounds l̂j < ûj that may depend on
y. For a fixed vector η ∈ Rd, η ≥ 0, if

λ̂ = arg min
λ∈Λd

∑
j∈[d]

λj s.t. R̂+(λ+ βη) < ϵ (15)

∀β ≥ 0, then Iλ̂(y) is an (ϵ, δ)-RCPS, and λ̂ minimizes the
mean interval length.
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(a) ℓ01, ℓγ as a function of x.

0 1

01

, = 0
, = 0.5
, = 0.9

(b) ℓ01, ℓγ as a function of λ.

Figure 2: Visualization of ℓ01(x, Iλ(y)) and ℓγ(x, Iλ(y))
for Iλ(y) = [0.50− λ, 1.50 + λ], γ ∈ {0, 0.5, 0.9}. In (a)
λ = 0, and in (b) x = 1.6.

The proof is included in Appendix A.2. Since ℓ01 is en-
trywise monotonically nonincreasing, it follows that the
solution to (Pd) controls risk. The attentive reader will
have noticed (as shown in Figure 1) that the constraint set
R̂01+(λ) ≤ ϵ need not be convex. Furthermore, and as
shown in Figure 2b, ℓ01 is not convex in λ. Hence, it is not
possible to optimally solve (Pd) directly. Instead, we relax
it to a convex optimization problem by means of a convex
upper bound4

ℓγ(x, Iλ(y)) =
1

d

∑
j∈[d]

[
2(1 + q)

I(λ)j
|xj − cj | − q

]
+

, (16)

where q = γ/(1 − γ), γ ∈ [0, 1), I(λ)j = ûj − l̂j +

2λj , cj = (ûj + l̂j)/2, and [·]+ = max(0, ·). As shown
in Figure 2a, the hyperparameter γ controls the degree of
relaxation by means of changing the portion of the intervals
[l̂j , ûj ] where the loss is 0. This way, γ = 0 retrieves the ℓ1
loss centered at cj , and limγ→1 ℓ

γ =∞ if ∃j ∈ [d] : xj /∈
[l̂j , ûj ] and 0 otherwise.

While one can readily propose a convex alternative to (Pd)
by means of this new loss, we instead propose a generaliza-
tion of this idea in our final problem formulation

λ̃K = arg min
λ∈ΛK

∑
k∈[K]

nkλk s.t. R̂γ(Mλ) ≤ ϵ, (PK)

for any user-defined K-partition of the [d] features—which
can be identified by a membership matrix M ∈ {0, 1}d×K

where each feature belongs to (only) one of the K groups
with nk := |{j ∈ [d] : Mjk = 1}|,

∑
k∈[K] nk = d. As

we will shortly see, it will be useful to define these groups
as the empirical quantiles; i.e. set M as that assigning
each feature to their respective kth quantile of the entrywise
empirical loss over the optimization set (which is a vector
in Rd). We remark that the constrain set in (PK) is defined
on the empirical estimate of the risk of Iλ(y) and it does

4We defer proofs to Appendix A.3.

Algorithm 1 K-RCPS

1: Input: risk level ϵ ≥ 0, failure probability δ ∈ [0, 1],
calibration set Scal = {(xi, yi)}ni=1 of n i.i.d. samples
such that n = nopt + nRCPS, membership functionM,
family of set-valued predictors {Iλ(y) = [l̂j −λj , uj +
λj ]}λ∈Λd , initial (large) value βmax, stepsize dβ > 0.

2: Split Scal into Sopt,SRCPS
3: M ←M(Sopt)

4: λ̃K ← SOLVE-PK(Sopt,M)

5: λ←M λ̃K + βmax1
6: R̂01+(λ)← 0
7: while R̂01+(λ) ≤ ϵ do
8: λprev ← λ
9: λ← λ− (dβ)1

10: λ← [λ]+
11: R̂01(λ)← 1/nRCPS ·

∑
(xi,yi)∈SRCPS

ℓ01(xi, Iλ(yi))
12: R̂01+(λ)← UCB(nRCPS, δ, R̂

01(λ))
13: end while
14: λ̂K ← λprev

15: return λ̂K

not involve the computation of the UCB. Then, (PK) can be
solved with any standard off-the-shelf convex optimization
software (e.g., CVXPY (Diamond & Boyd, 2016; Agrawal
et al., 2018), MOSEK (ApS, 2019)).

Our novel conformal risk control procedure, K-RCPS, finds
a vector λ̂K that approximates a solution to the nonconvex
optimization problem (Pd) via a two step procedure:

1. First obtaining the optimal solution λ̃K to a user-
defined (PK) problem, and then

2. Choosing β̂ ∈ Λ such that

β̂ = inf{β ∈ Λ : R̂01+(M λ̃K+β′1) < ϵ, ∀β′ ≥ β}

and return λ̂K = M λ̃K + β̂1.

Intuitively, the K-RCPS algorithm is equivalent to perform-
ing the original RCPS procedure along the line M λ̃K + β1
parametrized by β. We remark that—as noted in Theo-
rem 3.3—any choice of η ≥ 0 provides a valid direction
along which to perform the RCPS procedure. Here, we
choose 1 because it is precisely the gradient of the objective
function. Future work entails devising more sophisticated
algorithms to approximate the solution of (Pd).

Algorithm 1 implements the K-RCPS procedure for any cal-
ibration set Scal = {(xi, yi)}ni=1, any general family of set-
valued predictors of the form {Iλ = [l̂j−λj , ûj+λj ]}λ∈Λd ,
any membership functionM : {X × Y}n → {0, 1}d×K ,
and a general UCB(n, δ, R̂(λ)) that accepts a number of
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l uOriginal Perturbed u l

(a) CelebA dataset, σ2
0 = 1.0, α = 0.10.

l uOriginal Perturbed u l

(b) AbdomenCT-1K dataset, σ2
0 = 0.4, α = 0.20.

Figure 3: Calibrated quantiles Iα(y) computed on 128 samples from F (y) for noisy inputs y with noise level σ2
0 . The

difference ûα − l̂α represents intervals sizes (i.e., larger intervals indicate larger uncertainty).

samples n, a failure probability δ, and an empirical risk
R̂(λ) and that returns a pointwise upper confidence bound
R̂+(λ) that satisfies Equation (6). We remark that, follow-
ing the split fixed sequence testing framework introduced
in Angelopoulos et al. (2021) and applied in previous work
(Laufer-Goldshtein et al., 2022), the membership matrix and
its optimization problem (PK) are computed on a subset Sopt

of the calibration set Scal, such that the direction M λ̃K+β1
along which to perform the RCPS procedure is chosen be-
fore looking at the data SRCPS = Scal \ Sopt. We note that
K-RCPS allows for some of the entries in λ̂K to be set to
0, which preserves the original intervals such that—if they
are obtained as described in Section 3.1—they still provide
entrywise coverage of future samples at the desired level α.

We now move onto showcasing the advantage of K-RCPS
in terms on mean interval length on two real-world high
dimensional denoising problems: one on natural images of
faces as well as on CT scans of the abdomen.

4. Experiments
As a reminder, the methodological contribution of this paper
is two-fold: (i) we propose to use the calibrated quantiles
Iα(y) as a statistically valid notion of uncertainty for diffu-
sion models, and (ii) we introduce the K-RCPS procedure
to guarantee high-dimensional risk control. Although it
is natural to use the two in conjunction, we remark that
the K-RCPS procedure is agnostic of the notion of uncer-
tainty and it can be applied to any nested family of set pre-
dictors {Iλ(y)}λ∈Λd that satisfy the additive parametriza-
tion in Equation (13). Therefore, we compare K-RCPS
with the original RCPS algorithm on several baseline no-
tions of uncertainty: quantile regression (Angelopoulos
et al., 2022b), MC-Dropout (Gal & Ghahramani, 2016),
N-Conffusion (Horwitz & Hoshen, 2022), and naive (i.e.,
not calibrated) quantiles. We focus on denoising problems
where y = x + v0 with v0 ∼ N (0, σ2

0), on two imag-

ing datasets: the CelebA dataset (Liu et al., 2018) and the
AbdomenCT-1K dataset (Ma et al., 2021). In particular—for
each dataset—we train:

• A time-conditional score network s(x̃, t) ≈
∇x log pt(x̃) following Song et al. (2020b) to
sample from the posterior distribution p(x|y) as
described in Section 2.1, and

• a time-conditional image regressor f : Y × R →
X 3 following Angelopoulos et al. (2022b) such that
f(y, t) = (q̂α/2, x̂, q̂1−α/2), where x̂ ≈ E[x | y] min-
imizes the MSE loss between the noisy observation
y and the ground truth x, and q̂α/2, q̂1−α/2 are the
α/2 and 1− α/2 quantile regressors of x, respectively
(Koenker & Bassett Jr, 1978; Romano et al., 2019;
Angelopoulos et al., 2022b).

Both models are composed of the same NCSN++ back-
bone (Song et al., 2020b) with dropout p = 0.10 for a fair
comparison. We then fine-tune the original score network
s(x̃, t) according to the N-Conffusion algorithm proposed
by Horwitz & Hoshen (2022) such that—similarly to the
image regressor f—the resulting time-conditional predictor
s̃(y, t) = (q̂α/2, q̂1−α/2) estimates the α/2 and 1 − α/2
quantile regressors of x. Finally, in order to compare with
MC-Dropout, we activate the dropout layers in the image
regressor f at inference time, and estimate the mean x̄ and
standard deviation σ̂ over 128 samples x̂1, . . . , x̂128. To
summarize, we compare K-RCPS and RCPS on the follow-
ing families of nested set predictors:

Quantile Regression (QR)

Iλ,QR(y)j = [x̂j − λj(q̂α/2)j , x̂j + λj(q̂1−α/2)j ], (17)

where f(y, t) = (q̂α/2, x̂, q̂1−α/2).

MC-Dropout

Iλ,MC-Dropout(y)j = [x̄j − λj σ̂j , x̄j + λj σ̂j ], (18)
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K

=
4

K
=

8
K

=
32

Conformalized uncertainty mapsK

(a) CelebA dataset (α = 0.10, ϵ = 0.10).

Conformalized uncertainty mapsK

(b) AbdomenCT-1K dataset (α = 0.20, ϵ = 0.05).

Figure 4: Example optimal λ̂K for K ∈ {4, 8, 32}, nopt = 256, and dopt = 100 with respective conformalized uncertainty
maps Iα

λ̂
(y) = [l̂j,α − (λ̂K)j , ûj,α + (λ̂K)j ]. With probability at least 90% no more than ϵ portion of the ground truth

pixels will fall outside of Iα
λ̂

on future, unseen samples.

where x̄, σ̂ are the sample mean and standard deviation over
128 samples x̂1, . . . , x̂128 obtained by activating the dropout
layers in the image regressor f .

N-Conffusion5 We compare two different
parametrizations—multiplicative and additive:

I multiplicative
λ,Conffusion (y)j =

[
(q̂α/2)j

λj
, λj(q̂1−α/2)j

]
(19)

and

I additive
λ,Conffusion(y)j =

[
(q̂α/2)j − λj , (q̂1−α/2)j + λj

]
, (20)

where s̃(y, t) = (q̂α/2, q̂1−α/2) is the fine-tuned score net-
work by means of quantile regression on 1000 additional
samples.

Naive quantiles

Iλ,naive(y)j = [l̂j − λj , ûj + λj ], (21)

where l̂, û are the naive (i.e., not calibrated) α/2 and 1−α/2
entrywise empirical quantiles computed on 128 samples
from the diffusion model.

Calibrated quantiles

Iαλ(y)j = [l̂j,α − λj , ûj,α + λj ] (22)

where l̂α, ûα are the entrywise calibrated quantiles com-
puted on 128 samples from the diffusion model as described
in Equation (9) (see Figure 3 for some examples).

We include further details on the datasets, the models,
and the training and sampling procedures in Appendix D.
The implementation of K-RCPS with all code and data
necessary to reproduce the experiments is available at
https://github.com/Sulam-Group/k-rcps.

5A detailed discussion of Conffusion and the contributions
of this paper is included in Appendix E.

We compare all models and calibration procedures on 20
random draws of calibration and validation sets Scal,Sval of
length ncal and nval, respectively. We remark that for the
K-RCPS procedure, nopt samples from Scal will be used to
solve the optimization problem (PK). It follows that for a
fixed ncal, the concentration inequality used in the K-RCPS
procedure will be looser compared to the one in the RCPS
algorithm. We will show that there remains a clear benefit
of using the K-RCPS algorithm in terms of mean interval
length given the same amount of calibration data available
(i.e., even while the concentration bound becomes looser).
In these experiments, we construct the membership matrix
M by assigning each feature j ∈ [d] to the respective kth,
k = 1, . . . ,K quantile of the entrywise empirical estimate
of the risk on Sopt. Furthermore, even though (PK) is low-
dimensional (i.e., K ≪ d), the number of constraints grows
as dnopt, which quickly makes the computation of λ̃K inef-
ficient and time-consuming (e.g., for the AbdomenCT-1K
dataset, dnopt ∼ 108 when nopt = 128, a mild number of
samples to optimize over). In practice, we randomly sub-
sample a small number of features dopt ≪ d stratified by
membership, which drastically speeds up computation. In
the following experiments, we set dopt ∈ {50, 100} and use
K ∈ {4, 8, 32}, which reduces the runtime of solving the
optimization problem to less than a second for both datasets.
Finally, we pick γ that minimizes the objective function
over 16 values equally spaced in [0.3, 0.7]. The choice of
these heuristics makes the runtime of K-RCPS comparable
to that of RCPS, with a small overhead to solve the reduced
(PK) problem (potentially multiple times to optimize γ).

Figure F.1 shows that all combinations of notion of un-
certainty and calibration procedures control the risk, as
promised. In particular, we set δ = 0.10 for both datasets,
and ϵ = 0.10, 0.05 for the CelebA and AbdomenCT-1K
dataset, respectively. We repeat all calibration procedures
over 20 random samples of Scal,Sval, with nval = 128, and
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Table 1: Comparison of all notions of uncertainty with RCPS and K-RCPS in terms of guarantees provided and mean
interval length over 20 independent draws of Scal. We refer the reader to Appendix E for a detailed discussion of the
comparison with the Conffusion framework.

UNCERTAINTY
DIFFUSION

MODEL?
ENTRYWISE
COVERAGE?

RISK
CONTROL?

CALIBRATION
PROCEDURE

MEAN INTERVAL LENGTH
CELEBA ABDOMENCT-1K

QR ✗ ✗ ✓ RCPS 0.4843± 0.0121 0.2943± 0.0060
MC-DROPOUT ✗ ✗ ✓ RCPS 0.6314± 0.0109 0.2810± 0.0013
N-CONffusion
— MULTIPLICATIVE ✗ ✗ ✓ RCPS 0.6949± 0.0084 0.1126± 0.0020
— ADDITIVE ✗ ✗ ✓ RCPS 0.3314± 0.0040 0.1164± 0.0024
— ADDITIVE ✗ ✗ ✓ K-RCPS 0.3131± 0.0056 0.1136± 0.0019
NAIVE QUANTILES ✓ ✗ ✓ RCPS 0.2688± 0.0068 0.1518± 0.0016
NAIVE QUANTILES ✓ ✗ ✓ K-RCPS 0.2523± 0.0052 0.1374± 0.0019

CALIBRATED QUANTILES ✓ ✓ ✓ RCPS 0.2762± 0.0059 0.1506± 0.0014
CALIBRATED QUANTILES ✓ ✓ ✓ K-RCPS 0.2644± 0.0067 0.1369± 0.0016

ncal = 640 or ncal = 512 for the CelebA or AbdomenCT-
1K dataset, respectively. Figure 4 showcases some example
λ̂K’s obtained by running the K-RCPS procedure with
K = 4, 8, and 32 quantiles alongside their respective con-
formalized uncertainty maps from Sval. We can appreciate
how for both datasets, λ̂K captures information about the
structure of the data distribution (e.g., eyes and lips for the
CelebA dataset, and the position of lungs and the heart for
the AbdomenCT-1K dataset). Finally, we compare all base-
lines and calibration procedures in terms of the guarantees
each of them provide and their mean interval length. In
particular, we report whether each notion of uncertainty
provides guarantees over a diffusion model or not. Note
that naive and calibrated quantiles are the only notions of
uncertainty that precisely provide guarantees on the sam-
ples from a diffusion model. Furthermore, calibrated quan-
tiles are the only method that ensures entrywise coverage
on future samples on the same noisy observation. For K-
RCPS, we perform a grid search over nopt ∈ {128, 256},
dopt ∈ {50, 100}, and K ∈ {4, 8, 32}, and we report the
optimal results in Table 1. For both datasets, K-RCPS
provides the tightest intervals among methods that provide
both entrywise coverage and risk control for diffusion mod-
els. When relaxing the constraint of entrywise coverage,
K-RCPS still provides the tightest intervals. Across the
uncertainty quantification methods that do not relate to a
diffusion model, we found that K-RCPS with naive sam-
pling provides better results on the CelebA dataset. For the
AbdomenCT-1K dataset, N-Conffusion with multiplica-
tive parametrization and RCPS provides slightly shorter in-
tervals compared to Conffusion with additive parametriza-
tion and K-RCPS. However, we stress that the intervals
provided by N-Conffusion are computed for a fine-tuned
model that is different from the original diffusion model, and
thus provide no guarantees over the samples of the original
model. We found that N-Conffusion with multiplicative
parametrization underperforms on the CelebA dataset be-
cause the lower bounds do not decay fast enough, and the

loss is concentrated on features whose (q̂α/2)j/λj > xj .

5. Conclusions
Diffusion models represent huge potential for sampling in
inverse problems, alas how to devise precise guarantees on
uncertainty has remained open. We have provided (i) cali-
brated intervals that guarantee coverage of future samples
generated by diffusion models, (ii) shown how to extend
RCPS to K-RCPS, allowing for greater flexibility by con-
formalizing in higher dimensions by means of a convex sur-
rogate problem. Yet, our results are general and hold for any
data distribution and any sampling procedure—diffusion
models or otherwise. When combined, these two contribu-
tions provide state of the art uncertainty quantification by
controlling risk with minimal mean interval length. Our
contributions open the door to a variety of new problems.
While we have focused on denoising problems, the applica-
tion of these tools for other, more challenging restoration
tasks is almost direct since no distributional assumptions
are employed. The variety of diffusion models for other
conditional-sampling problem can readily be applied here
too (Yang et al., 2022; Croitoru et al., 2022). Lastly—and
differently from other works that explore controlling multi-
ple risks (Laufer-Goldshtein et al., 2022)—ours is the first
approach to provide multi-dimensional control of one risk
for conformal prediction, and likely improvements to our
optimization schemes could be possible. More generally,
we envision our tools to contribute to the responsible use of
machine learning in modern settings.
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A. Proofs
In this section, we include the proofs for the results presented in this paper. Herein, denote I : Y → X ′ a set-valued
predictor from Y ⊂ Rd into a space of subsets X ′ ⊆ 2X for X ⊂ Rd.

A.1. Proof of Lemma 3.2

Let F : Y → X be a stochastic sampling procedure from Y to X such that for a fixed y ∈ Y , F (y) is a random vector
with unknown distribution Qy . We show that for a desired miscoverage level α ∈ [0, 1], the entrywise calibrated empirical
quantiles Iα(y)j = [l̂j,α, ûj,α] defined in Equation (9) provide entrywise coverage as in Definition 3.1. That is, for each
j ∈ [d] := {1, . . . , d}

P[F (y)j ∈ Iα(y)j ] ≥ 1− α. (23)

Proof. The proof is a variation of the classical split conformal prediction coverage guarantee (see Angelopoulos & Bates
(2021), Theorem D.1). Let F1, . . . , Fm, Fm+1 be m+1 i.i.d. samples from F (y). For a desired miscoverage level α ∈ [0, 1]
and for each j ∈ [d] denote

l̂j,α = inf

{
l :
|{k : (Fk)j ≤ l}|

m
≥ ⌊(m+ 1)α/2⌋

m

}
(24)

and

ûj,α = inf

{
u :
|{k : (Fk)j ≤ u}|

m
≥ ⌈(m+ 1)(1− α/2)⌉

m

}
(25)

the ⌊(m+ 1)α/2⌋/m and ⌈(m+ 1)(1− α/2)⌉/m entrywise calibrated empirical quantiles of F1, . . . , Fm. Assume that
for each j ∈ [d], the first m samples are ordered in ascending order, i.e. (F1)j < · · · < (Fm)j such that

l̂j,α = (F⌊(m+1)α/2⌋)j and ûj,α = (F⌈(m+1)(1−α/2)⌉)j . (26)

Note that by symmetry of (F1)j , . . . , (Fm)j it follows that (Fm+1)j is equally likely to fall between any of the first m
samples. That is, for any two indices m1 < m2

P[(Fm+1)j ∈ [(Fm1
)j , (Fm2

)j ]] =
m2 −m1

m+ 1
. (27)

Instantiating the above equality with Iα(y)j = [l̂j,α, ûj,α] yields

P[(Fm+1)j ∈ Iα(y)j ] = P
[
(Fm+1)j ∈ [l̂j,α, ûj,α]

]
(28)

= P
[
(Fm+1)j ∈ [(F⌊(m+1)α/2⌋)j , (F⌈(m+1)(1−α/2)⌉)j ]

]
(29)

=
⌈(m+ 1)(1− α/2)⌉ − ⌊(m+ 1)α/2⌋

m+ 1
(30)

≥ (m+ 1)(1− α)

m+ 1
= 1− α (31)

which concludes the proof.

A.2. Proof of Theorem 3.3

Recall that for a calibration set Scal = {(xi, yi)}ni=1 of n i.i.d. samples from an unknown distribution D over X × Y , a
loss function ℓ : X × X ′ → R, and a family {Iλ(y)}λ∈Λd of set-valued predictors indexed by a d-dimensional vector
λ = (λ1, . . . , λd) ∈ Λd, Λ ⊂ R = R ∪ {±∞}

R(λ) = E(x,y)∼D [ℓ(x, Iλ(y))] and R̂(λ) =
1

n

n∑
(xi,yi)∈Scal

ℓ(xi, Iλ(yi)) (32)

denote the risk of Iλ(y) and its empirical estimate on the calibration set, respectively. Furthermore, let R̂+(λ) be a pointwise
upper confidence bound (UCB) such that for each fixed λ ∈ Λd and ∀δ ∈ [0, 1]

P[R(λ) ≤ R̂+(λ)] ≥ 1− δ (33)
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as presented in Equation (6). Equivalently to Definition 2.2, for a risk level ϵ ≥ 0, we say that Iλ(y) is an (ϵ, δ)-RCPS if

PScal [R(λ) ≤ ϵ] ≥ 1− δ. (34)

We show that for entrywise monotonically nonincreasing loss functions and for the family of set-valued predictors of the
form Iλ(y) = [l̂j − λj , ûj + λj ], for some lower and upper bounds l̂j < ûj that may depend on y, fixed η ≥ 0, if

λ̂ = arg min
λ∈Λd

∑
j∈[d]

λj s.t. R̂+(λ+ βη) < ϵ,∀β ≥ 0 (35)

Iλ̂(y) is an (ϵ, δ)-RCPS. We start by reminding the following definitions

Definition A.1 (Entrywise monotonically nonincreasing function). A loss function ℓ is entrywise monotonically nonincreas-
ing if for a fixed ground truth x , ∀j ∈ [d]

I(y)j ⊂ I ′(y)j =⇒ ℓ(x, I ′(y)) ≤ ℓ(x, I(y)). (36)

Definition A.2 (Entrywise nesting property). A family of set predictors {Iλ(y)}λ∈Λd is entrywise nested if for a fixed
observation y, ∀j ∈ [d]

λj,1 < λj,2 =⇒ I[λj,1,λ−j ](y)j ⊂ I[λj,2,λ−j ](y)j , (37)

where [λj ,λ−j ] is the vector that takes value λj in its jth entry and λ−j in its complement −j := [d] \ {j}.

Proof. The proof is a high-dimensional extension of the validity of the original RCPS calibration procedure. Note that the
family of set-valued predictors {Iλ(y) = [l̂j − λj , ûj + λj ]}λ∈Λd satisfies the entrywise nesting property in Definition A.2.
∀λ̂ ∈ Λd, denote L : R→ R the one-dimensional function such that

L(β) = R(λ̂+ βη) and L̂+(η) = R̂+(λ̂+ βη). (38)

It follows that L is monotonically nonincreasing because ℓ is entrywise monotonically nonincreasing by assumption, and η
belongs to the positive orthant. Furthermore, P[L(η) ≤ L̂+(η)] ≥ 1− δ by definition of R̂+(λ). Denote

β∗ = inf{β ∈ R : L(β) ≤ ϵ} (39)

and assume R(λ̂) = L(0) > ϵ. By monotonicity of L it follows that β∗ > 0, and by definition of λ̂, L̂+(β∗) =

R̂+(λ̂+ β∗η) < ϵ. However, since L(β∗) = ϵ and P[L(β∗) ≤ L̂+(β∗)] ≥ 1− δ, we conclude that this event happens with
probability at most δ. Hence, P[R(λ̂) ≤ ϵ] ≥ 1− δ and Iλ̂(y) is an (ϵ, δ)-RCPS.

Lastly, it is easy to see that λ̂ minimizes the mean interval length Ī(λ). Note that

Ī(λ) =
1

d

∑
j∈[d]

(ûj − l̂j) + 2
∑
j∈[d]

λj , (40)

and the statement follows by definition.

A.3. Proof that ℓγ is a convex upper bound to ℓ01 (see Equation (16))

Recall that for a family of set-valued predictors {Iλ(y) = [l̂j − λj , ûj + λj ]}λ∈Λd indexed by a d-dimensional vector
λ = (λ1, . . . , λd) ∈ Λd, Λ ⊂ R := R ∪ {±∞} for some general lower and upper bounds l̂j < ûj that may depend on y,
we define ℓγ(x, Iλ(y)) to be

ℓγ(x, Iλ(y)) =
1

d

∑
j∈[d]

[
2(1 + q)

I(λ)j
|xj − cj | − q

]
+

, (41)

where q = γ/(1 − γ), γ ∈ [0, 1), I(λ)j = ûj − l̂j + 2λj , cj = (ûj + l̂j)/2, and [u]+ = max(0, u). First, we show that
ℓγ(x, Iλ(y)) is convex in λ for λ ≥ 0.
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Proof. Note that ℓγ(x, Iλ(y)) is separable in λ. Hence, it suffices to show that ℓγ(x, Iλ(y)) is convex in each entry λj .
That is, we want to show that

ℓγ(x, Iλ(y))j =

[
2(1 + q)

ûj − l̂j + 2λj

|xj − cj | − q

]
+

(42)

is convex in λj . Note that:

• The term 1/(ûj − l̂j + 2λj) behaves like 1/λj , hence it is convex for λj ≥ 0 > −(ûj − l̂j)/2,

• C = 2(1 + q)|xj − cj | is nonnegative, hence C · 1/(ûj − l̂j + 2λj) is convex,

• q does not depend on λj , hence C · 1/(ûj − l̂j + 2λj)− q is still convex, and finally

• the positive part [u]+ = max(0, u) is a convex function of its argument, hence [C · 1/(ûj − l̂j + 2λj)− q]+ is convex.

We conclude that ℓγ(x, Iλ(y))j is convex in each entry j ∈ [d] for λj ≥ 0, hence ℓγ(x, Iλ(y)) is convex for λ ≥ 0.

Note that ℓγ is an upper bound to ℓ01 by construction. One can see that ∀λ, ℓγ(x, Iλ(y)) ≥ ℓ01(x, Iλ(y)).

Proof. We will now show that ℓγ(x, Iλ(y))j ≥ ℓ01(x, Iλ(y))j entrywise. To this end, we will show that both functions
attain the same value (i.e., 1) at the extremes of the intervals (i.e., l̂ − λ and û+ λ), and use the fact that ℓγ(x, Iλ(y))j is
convex nonnegative.

First, note that ∀λ, it holds that

ℓγ(l̂ − λ, Iλ(y))j = ℓγ(û+ λ, Iλ(y))j =
[
2(1 + q)

I(λ)j
·
∣∣∣∣I(λ)j2

∣∣∣∣− q

]
+

= 1, (43)

ℓ01(l̂ − λ, Iλ(y))j = ℓ01(û+ λ, Iλ(y))j = 1. (44)

Furthermore,

ℓ01(x, Iλ(y))j = 0, ∀xj ∈ [l̂j − λj , ûj + λj ] (45)

by definition. We conclude that ℓγ upper bounds ℓ01 because ℓγ is convex, nonnegative, it intersects ℓ01 at l̂ − λ and û+ λ
(for which both losses are equal to 1), and ℓ01 is exactly 0 between l̂j − λj and ûj + λj .

B. Risk Controlling Prediction Sets (RCPS) (Bates et al., 2021)
In this section, we present the original RCPS procedure presented in Bates et al. (2021). Let ℓ : Y ×Y ′ → R, Y ′ ⊆ 2Y be a
monotonically nonincreasing loss function (see Equation (4)) over X ⊂ Rd and Y ⊂ Rd, and let {Iλ(y)}λ∈Λ, Λ ⊂ R be a
family of set-valued predictors I : Y → X ′ that satisfies the nesting property in Equation (5). Here,

Algorithm 2 summarizes the original conformal risk control procedure introduced in Bates et al. (2021) for a general
bounding function UCB(n, δ, R̂(λ)) that accepts the number of samples in a calibration set Scal = {(xi, yi)}ni=1 of n
i.i.d. samples from an unknown distribution D over X × Y , a failure probability δ ∈ [0, 1], the empirical estimate
R̂(λ) = 1/n ·

∑n
i=1 ℓ(xi, Iλ(yi)) evaluated on Scal, and that returns a pointwise upper confidence bound R̂+(λ) that

satisfies
P[R(λ) ≤ R̂+(λ)] ≥ 1− δ (46)

as presented in Equation (6). For example, for losses bounded above by 1, Hoeffding’s inequality (Hoeffding, 1994) yields

R̂+(λ) = UCB(n, δ, R̂(λ)) = R̂(λ) +

√
1

2n
log

(
1

δ

)
. (47)

In practice, tighter alternatives exist (see Bates et al. (2021), Section 3.1 for a thorough discussion).
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Algorithm 2 (ϵ, δ)-RCPS (see (Angelopoulos et al., 2022b), Algorithm 2)

1: Input: risk level ϵ ≥ 0, failure probability δ ∈ [0, 1], calibration set Scal = {(xi, yi)}ni=1 of n i.i.d. samples,
monotonically nonincreasing loss function ℓ, family of nested set-valued predictors {Iλ}λ∈Λ, Λ ⊂ R, initial (large)
value λmax, stepsize dλ > 0.

2: λ← λmax

3: R̂+(λ)← 0
4: while R̂+(λ) ≤ ϵ do
5: λ← λ− dλ
6: R̂(λ)← 1/n ·

∑
(xi,yi)∈Scal

ℓ(xi, Iλ(yi))
7: R̂+(λ)← UCB(n, δ, R̂(λ))
8: end while
9: λ̂← λ+ dλ

10: return λ̂

C. Computing R̂01+(λ+ η)

In this section, we include a detailed analytical example on how one can compute the UCB R̂01+(λ + η) by means
of concentration inequalities. Recall that, for a family of nested set predictors {Iλ(y)}λ∈Λd indexed by a vector λ =
(λ1, . . . , λd), the 01 loss ℓ01(x, Iλ(y)) counts the number of pixels in x that fall outside of their respective intervals in
Iλ(y). For example, choosing Iλ(y)j = [l̂j − λj , ûj + λj ] as proposed in Equation (11), given a vector η = (η1, . . . , ηd)
yields

ℓ01(x, Iλ+η(y)) =
1

d

∑
j∈[d]

1

[
xj /∈ [l̂j − (λj + ηj), ûj + (λj + ηj)]

]
. (48)

Then, R01(λ + η) = E[ℓ01(x, Iλ+η(y))] denotes the risk of Iλ+η and its empirical estimate over a calibration set
Scal = {(xi, yi)}ni=1 of n i.i.d. samples from an unknown distribution D over X × Y is

R̂01(λ+ η) =
1

n

∑
i∈[n]

ℓ01(xi, Iλ+η(yi)). (49)

In turn, for a user-specified failure probability δ ∈ [0, 1], the UCB R01+(λ + η) can be obtained by means of common
concentration inequalities. For example, Hoeffding’s inequality implies

R̂01+(λ+ η) = R̂01(λ+ η) +

√
1

2n
log

(
1

δ

)
. (50)

D. Experimental Details
In this section, we include further experimental details. All experiments were performed on a private cluster with 8 NVIDIA
RTX A5000 with 24 GB of memory.

D.1. Datasets

D.1.1. CELEBA DATASET

The CelebA dataset (Liu et al., 2018) (available at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
contains more than 200 × 103, 178 × 218 pixel images of celebrity faces with several landmark locations and binary
attributes (e.g., eyeglasses, bangs, smiling). In this work, we center-crop all images to 128× 128 pixels and normalize them
between [−1, 1].

D.1.2. ABDOMENCT-1K DATASET

The AbdomenCT-1K dataset (Ma et al., 2021) (available at https://github.com/JunMa11/AbdomenCT-1K)
comprises more than 1000 abdominal CT scans (for a total of more than 200× 103, 512× 512 pixel individual images)
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(a) CelebA dataset. (b) AbdomenCT-1K dataset.

Figure D.1: Example images.

aggregated from 6 existing datasets. Scans are provided in NIfTI format, so we first convert them to their Hounsfield unit
(HU) values and subsequently window them with the standard abdomen setting (WW = 400, WL = 40) such that pixels
intensities are normalized in [0, 1] and they represent the same tissue across images.

Figure D.1 shows some example images for both datasets.

D.2. Models

Recall that in this work, we train both:

• A score network s(x̃, t) ≈ ∇x log pt(x̃) to sample from p(x|y) as introduced in Section 2.1, and

• a modified time-conditional image regressor f : Y ×R→ X 3 such that f(y, t) = (q̂α/2, x̂, q̂α/2), where x̂ ≈ E[x | y]
and q̂α/2, q̂1−α/2 are the entrywise α/2 and 1− α/2 quantile regressors of x (Koenker & Bassett Jr, 1978; Romano
et al., 2019; Angelopoulos et al., 2022b), respectively.

Both models are implemented wit the same U-net-like (Ronneberger et al., 2015) backbone: NCSN++, which was introduced
by Song et al. (2020b) (code is available at https://github.com/yang-song/score_sde). We use the original
NCSN++ configurations presented in Song et al. (2020b) for the CelebA dataset and, for the AbdomenCT-1K dataset,
for the FFHQ dataset (available at https://github.com/NVlabs/ffhq-dataset) given the larger image size
of 512 × 512. For the image regressor f , we use the original implementation of the quantile regression head used
in Angelopoulos et al. (2022b) (available at https://github.com/aangelopoulos/im2im-uq) on top of the
NCSN++ backbone. This allows us to maintain a time-conditional backbone and extend the original image regressor
presented in Angelopoulos et al. (2022b) to all noise levels as the score network.

D.3. Training

D.3.1. DATA AUGMENTATION

For both datasets, we augment the training data by means of random horizontal and vertical flips, and random rotations
between [−π/2, π/2] degrees.

D.3.2. FORWARD SDE

Recall that in this work, we are interested in solving the classical denoising problem where y = x+ v0 is a noisy observation
of a ground truth image x perturbed with random Gaussian noise with known variance σ2

0 . As done by previous works
(Song & Ermon, 2019; 2020; Song et al., 2021; Kawar et al., 2021a), we model the observation process with a variance
exploding (VE) forward-time SDE

dx =

√
d[σ2(t)]

dt
dw where σ(t) = σmin

(
σmax

σmin

)t

, t ∈ [0, 1] (51)

17

https://github.com/yang-song/score_sde
https://github.com/NVlabs/ffhq-dataset
https://github.com/aangelopoulos/im2im-uq


How to Trust Your Diffusion Model

(a) CelebA dataset. (b) AbdomenCT-1K dataset.

Figure D.2: Example of perturbed images via the forward SDE. The final level of noise is σ2 = 1.

such that σ(0) = σmin and σ(1) = σmax. In particular, we set σmin = 0 and σmax = 90 for the CelebA dataset and
σmax = 1 for the AbdomenCT-1K dataset. It has been shown (Song et al., 2020b) that the above forward-time SDE is
equivalent to the following discrete Markov chain

xt = xt−1 +
√
σ2
t − σ2

t−1z, z ∼ N (0, I), for t = 1, . . . , N (52)

and {σi}Ni=0 noise levels. That is, xt = x + zt, where zt ∼ (0, σ2
t ). Figure D.2 shows some example images from both

datasets perturbed via the forward SDE described in this section.

D.3.3. DENOISING SCORE-MATCHING

Here, we briefly describe the loss function used to train the time-conditional score network s(x̃, t). Denote θ ∈ Θ the
parametrization of s, then, following Song & Ermon (2019); Song et al. (2020b), we have s(x̃, t) = sθ∗(x̃, t), where

θ∗ = arg min
θ∈Θ

Et∼U(0,1)

[
ξ(t)Ex∼p(x), x(t)|x

[
∥sθ(x(t), t)−∇x log pt(x(t)|x)∥2

]]
(53)

= arg min
θ∈Θ

Et∼U(0,1)

[
ξ(t)Ex∼p(x), x(t)|x

[∥∥∥∥sθ(x(t), t) + x(t)− x

σ(t)

∥∥∥∥2
]]

, (54)

where ξ(t) ∝ σ2(t) and U(0, 1) is the uniform distribution over [0, 1].

D.3.4. QUANTILE REGRESSION

Similarly to above, we briefly describe the loss function used to train the modified time-conditional image regressor f .
Denote θ ∈ Θ the parametrization of f , and recall that for a desired α quantile and its respective quantile regressor q̂α, the
quantile loss function (Koenker & Bassett Jr, 1978; Romano et al., 2019; Angelopoulos et al., 2022b) ℓα(x, q̂α) is

ℓα(x, q̂α) = α(x− q̂α) · 1[x > q̂α] + (1− α)(q̂α − x) · 1[x ≤ q̂α]. (55)

For the image regressor f , we set α = 0.10 and use the original implementation of the quantile regression head from
Angelopoulos et al. (2022b) (available at https://github.com/aangelopoulos/im2im-uq) which minimizes
the multi-loss objective

L(x, f(y, t)) = ℓα/2(x, q̂α/2) + (x− x̂)2 + ℓ1−α/2(x, q̂1−α/2) (56)

on top of the NCSN++ backbone. This allows us to maintain a time-conditional backbone and extend the original image
regressor presented in Angelopoulos et al. (2022b) to all noise levels as the score network. Then, f(y, t) = fθ∗(y, t) where

θ∗ = arg min
θ∈Θ

Et∼U(0,1) [L(x, f(x(t), t)] . (57)
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Original Perturbed q0.05 x q0.95

(a) CelebA dataset.

Original Perturbed q0.05 x q0.95

(b) AbdomenCT-1K dataset.

Figure D.3: Example of results with the modified image regressor.

Original Perturbed Samples

(a) CelebA dataset.

Perturbed SamplesOriginal

(b) AbdomenCT-1K dataset.

Figure D.4: Example of images sampled via Algorithm 3.

D.4. Sampling

Here, we briefly describe the sampling procedure used in this work to solve the conditional reserve-time SDE

dx = [h(x, t)− g(t)2∇x log pt(x|y)] dt+ g(t) dw̄ (58)

where y is the initial noisy observation with known noise level σ2
0 , and g(t) =

√
d[σ2(t)]/dt, h(x, t) = 0 as in Equa-

tion (51). Although several different discretization schemes exist (Song et al., 2020b), we use the classical Euler-Maruyama
discretization (Karatzas et al., 1991) since the contribution of this work is not focused on improving existing diffusion
models. Recall that for a general Itô process

dx = h(x, t) dt+ g(t) dw, (59)

its Euler-Maruyama discretization with step ∆t is

xt+1 = xt + h(x, t)∆t+ g(t)
√
∆t z, z ∼ N (0, I). (60)

Furthermore, under the forward SDE described in Equation (51), and as shown by previous works (Kawar et al., 2021b;a;
Kadkhodaie & Simoncelli, 2021), it holds that

∇x log pt(x(t)|y) = ∇x log pt(x(t)) +
y − x(t)

σ2
0 − σ2(t)

. (61)
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We conclude that the reverse-time Euler-Maruyama discretization of the conditional SDE above is

xt−1 = xt + g2t

[
∇x log pt(xt) +

y − xt

σ2
0 − σ2

t

]
∆t+ gt

√
∆t z, z ∼ N (0, I). (62)

Algorithm 3 implements the sampling procedure for a general score network s(x̃, t).

Algorithm 3 Denoising Reverse-time SDE

1: Input: observation y, initial noise level σ0, σmax, σmin, number of steps N
2: t0 ← (log σ0 − log σmin)/(log σmax − log σmin)
3: ∆t← 1/N
4: n← ⌊t0/∆t⌋
5: xn ← y
6: for i = n, . . . , 1 do
7: Draw zi ∼ N (0, I)
8: ti ← i∆t
9: σi ← σmin · (σmax/σmin)

ti

10: gi ← σi ·
√
2 log(σmax/σmin)

11: xi−1 ← xi + g2i [s(xi, ti) + (y − xi)/(σ
2
0 − σ2

i )]∆t+ gi
√
∆t zi

12: end for
13: return x0

E. Comparison with Conffusion
In this section, we discuss the differences between the Conffusion framework proposed by Horwitz & Hoshen (2022) and
the contributions of this paper. Although similar in spirit and motivation, the two are fundamentally different and address
separate and distinct questions. Conffusion deploys ideas of quantile regression (Koenker & Bassett Jr, 1978) to fine-tune
an existing score network and obtain an image regressor equipped with heuristic uncertainty intervals. Such intervals can
then be conformalized to provide risk control. On the other hand, our K-RCPS is a novel high-dimensional calibration
procedure for any stochastic sampler and any notion of uncertainty (i.e., it is agnostic of the notion of uncertainty), including
diffusion models and quantile regression. In this paper, we present K-RCPS for diffusion models given their remarkable
performance in solving inverse problems via conditional sampling.

In order to contextualize the choices of parametrization for the families of set predictors in Equations (19) and (20),
we highlight a gap between the presentation of Conffusion in the arXiv paper available at https://arxiv.org/
abs/2211.09795v1 and the official code release in https://github.com/eliahuhorwitz/Conffusion.
In particular Section 3.2 of Horwitz & Hoshen (2022) introduces the following family of set predictors:

I arXiv
λ,Conffusion(y)j = [λj(q̂α/2)j , λj(q̂1−α/2)j ], (63)

which does not satisfy the nesting property in Equation (5). It is easy to see that—without any further assumptions—as
λj increases, I arXiv

λ,Conffusion(y)j does not cover the interval [0, 1] and the 01 loss in Equation (10) is not entrywise
monotonically non-increasing. This renders the RCPS procedure (and most calibration procedures) not applicable
as presented in the arXiv paper. While this family of set predictors is thus not applicable, we resorted to the au-
thors’ GitHub release where such parametrization is different (see https://github.com/eliahuhorwitz/
Conffusion/blob/fffe5c946219cf9dead1a1c921a131111e31214e/inpainting_n_conffusion/
core/calibration_masked.py#L28). More precisely, the GitHub implementation reflects the multiplicative
parametrization presented in Equation (19), which does indeed satisfy the entrywise nesting property. Finally, we
additionally propose the additive parametrization in Equation (20) to showcase how K-RCPS is agnostic of the notion of
uncertainty and it can be used in conjunction with Conffusion.
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F. Figures
This section contains supplementary figures.
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(a) CelebA dataset.
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(b) AbdomenCT-1K dataset.

Figure F.1: Empirical estimates of risk over 20 random draws of Scal. All combinations of notion of uncertainty and
calibration procedure successfully control risk at level ϵ = 0.10, 0.05 for the CelebA and AbdomenCT-1K dataset,
respectively, with probability at least 1− δ, δ = 0.10.
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