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Abstract

We introduce Dynamic Contextual Markov Deci-
sion Processes (DCMDPs), a novel reinforcement
learning framework for history-dependent envi-
ronments that generalizes the contextual MDP
framework to handle non-Markov environments,
where contexts change over time. We consider
special cases of the model, with a focus on lo-
gistic DCMDPs, which break the exponential de-
pendence on history length by leveraging aggre-
gation functions to determine context transitions.
This special structure allows us to derive an upper-
confidence-bound style algorithm for which we
establish regret bounds. Motivated by our the-
oretical results, we introduce a practical model-
based algorithm for logistic DCMDPs that plans
in a latent space and uses optimism over history-
dependent features. We demonstrate the efficacy
of our approach on a recommendation task (using
MovieLens data) where user behavior dynamics
evolve in response to recommendations.

1. Introduction
Reinforcement learning (RL) is a paradigm in which an
agent learns to act in an environment to maximize long-term
reward. RL has been applied to numerous domains, includ-
ing recommender systems, robot control, video games, and
autonomous vehicles (Afsar et al., 2022; Tessler et al., 2019;
Mnih et al., 2015; Fayjie et al., 2018). While typical RL
approaches rely on a Markov property of both the reward
process and environment dynamics, many scenarios are in-
herently history-dependent (Bacchus et al., 1996; Ronca and
Giacomo, 2021), particularly, when humans are involved.
As one example, the behavior of users in recommender
systems often exhibits non-Markovian characteristics re-
flective of a user’s latent state, including: user preference
elicitation sessions, where users respond to a sequence of
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feedback-gathering interventions (e.g., ratings, comparisons,
annotations) (Chen and Pu, 2012; Zhao et al., 2013); user
ad blindness (i.e., the tendency to gradually ignore ads)
(Hohnhold et al., 2015); and the long-term evolution of user
satisfaction (Wilhelm et al., 2018; Mladenov et al., 2019).
Many aspects of a user’s latent state determine their disposi-
tion towards specific actions. For example, a user’s level of
frustration, trust, receptivity, and overall satisfaction, may
affect their tendency toward accepting recommendations,
providing feedback, or abandoning a session. Notably, such
features are cumulatively impacted by the user’s long-term
history, which makes RL especially challenging due to diffi-
cult credit assignment, where the impact of any individual
action is usually small and noisy. 1

In this paper, we introduce Dynamic Contextual Markov
Decision Processes (DCMDPs) to model such environ-
ment dynamics in a history-dependent contextual fashion.
DCMDPs decompose the state space to include dynamic
history-dependent contexts, where each context represents a
different MDP, e.g., preferences of a human interacting with
an agent, being affected by previous interactions. Particu-
larly, we introduce a special class of logistic DCMDPs, in
which context dynamics are determined by the aggregation
of a set of feature vectors—functions of the immediate con-
text, state and action—over time. This model is inspired by
various psychological studies of human learning and con-
ditioning; in particular, the Rescorla-Wagner (RW) model
(Rescorla, 1972), a neuroscience model which describes
the diminishing impact of repeated exposure to a stimulus
due to historical conditioning. Critically, this structure al-
lows us to develop tractable, UCB-style algorithms (Auer
et al., 2008) for logistic DCMDPs that break the exponential
dependence on history length in general DCMDPs.

Our contributions are as follows: (1) We introduce
DCMDPs, a model that captures non-Markov context dy-
namics. (2) We introduce a subclass of DCMDPs for which
state-action-context features are aggregated over time to de-
termine context dynamics. We show how such problems can

1A similar problem occurs in medical settings, where a patient’s
previous reactions to certain treatments could implicitly affect the
physician’s receptivity for treatment recommendations over long
horizons. Another example includes human driver interventions in
autonomous vehicles, where humans may take control of a vehicle
for short periods of time.
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Figure 1: Causal diagrams comparing Contextual MDPs (Hal-
lak et al., 2015), Markov DCMDPs (Section 2.1) and Logistic
DCMDPs (Section 3). Logistic DCMDPs are history dependent,
where σt =

∑t−1
l=0 α

t−l−1f∗l (sl, al, xl), and f∗l : S ×A×X 7→
RM are unknown, non-stationary, vector valued feature mappings.
Green circles represent unobserved variables.

be solved by devising sample efficient and computationally
tractable solutions, for which we establish regret bounds. (3)
Inspired by our theoretical results, we construct a practical
algorithm, based on MuZero (Schrittwieser et al., 2020), and
demonstrate its effectiveness on a recommendation system
benchmark with long history-dependent contexts.

2. Dynamic Contextual MDPs
We begin by defining Dynamic Contextual MDPs
(DCMDPs), a general framework for modeling history-
dependent contexts2. Let S, A and X be state, action, and
context spaces, with cardinalities S,A,X , respectively. For
any time t ≥ 1, letHt = {(s1, a1, x1, . . . , st, at−1, xt−1)}
be the set of histories up to time t; and letH =

⋃
tHt. We

denote (s0, a0, x0) = ∅.

A DCMDP is given by the tuple (X ,S,A, r, P,H), where,
r : S × A × X 7→ [0, 1] is a reward function, P :
H× S ×A 7→ ∆S is a history-dependent transition func-
tion, and H is the horizon. DCMDP dynamics proceeds
in discrete episodes k = 1, 2, . . . ,K. At the beginning
of episode k, the agent is initialized at state sk1 . At any
time h, the agent is in state skh, has observed a history

2The term “context", as opposed to “state", differentiates be-
tween the Markov part of the state and the history dependent part
of the state. Additionally, contexts often quantify characteristics
of the environment (e.g., types of humans-in-the-loop), which can
evolve in a distinct fashion, in contrast to the rest of the state.

τkh = (sk1 , a
k
1 , x

k
1 , . . . , s

k
h−1, a

k
h−1, x

k
h−1) ∈ Hh, and se-

lects an action akh ∈ A. Then, the next context xkh occurs
with (history-dependent) probability P (xkh|τkh ), the agent re-
ceives reward r(skh, a

k
h, x

k
h), and the environment transitions

to state skh+1 with probability Ph(skh+1|skh, akh, xkh).

A policy π : S ×H 7→ ∆A maps states and histories to dis-
tributions over actions. The value of π at time h is defined
as V πh (s, τ) = Eπ

[∑H
t=h r(st, at, xt)

∣∣∣ sh = s, τh = τ
]
,

where at ∼ π(st, τt), and xt ∼ P (·|τt). An optimal
policy π∗ maximizes the value over all states and histo-
ries ; we denote its value function by V ∗. We measure
the performance of an RL agent by its regret – the dif-
ference between its value and that of an optimal policy:
Reg(K) =

∑K
k=1 V

∗
1 (sk1)− V πk1 (sk1).

Figure 1 depicts causal diagrams comparing general
POMDPs to different types of DCMDPs, including three
special cases: Contextual MDPs (Hallak et al., 2015)
, Markov DCMDPs, and logistic DCMDPs (defined in
the next two sections). DCMDPs are closely related to
POMDPs, yet their causal structure allows us to devise
more tractable solution (characterized by an aggregation
function, as we’ll see in Section 3) which can efficiently and
tractably capture very long histories. In the next section, we
describe a simple instance of DCMDPs, for which contexts
are Markov, and show that standard MDP solutions can be
applied. Then, in Section 3, we describe a more general
DCMDP model, which uses aggregated features to represent
histories, for which we provide sample efficient solutions
and strong regret guarantees.

2.1. Markov DCMDPs

As a warm-up, we consider a simple version of DCMDPs
in which context distributions are Markov w.r.t. the
state and previous context. Specifically, we define a
Markov DCMDP as a DCMDP which satisfies for all
h ∈ [H], τh = (x1, s1, a1, . . . , xh−1, sh−1, ah−1) ∈ Hh
P (xh|τh) = P (xh|sh−1, ah−1, xh−1). A Markov DCMDP
M = (X ,S,A, r, P,H) can be reduced to an MDP by
augmenting the state space to include the context. To see
this, we define the augmented MDPM = (S̄,A, r̄, P̄ ,H),
where S̄ = S × X and r̄(s̄t, at) = r(st, at, xt),
P̄ (s̄t+1|s̄t, at) = P (st+1|st, at, xt)P (xt+1|st, at, xt). As
a consequence, the Markov DCMDPM and the MDPM
have the “same” optimal policy and value, andM can be
solved using standard RL methods, e.g., using UCBVI (Azar
et al., 2017) one can obtain Reg(K) ≤ Õ

(√
H3SAXK

)
.

Markov DCMDPs also generalize contextual MDPs in an
especially simple way; but they fail to capture the history
dependence of contexts embodied by general DCMDPs. In
the next section, we turn to a special case of DCMDPs that
does so, but also admits tractable solution methods.
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3. Logistic DCMDPs
We introduce a general class of DCMDPs, called logistic
DCMDPs, where history dependence is structured using an
aggregation of state-action-context-dependent features. Un-
like Markov DCMDPs, logistic DCMDPs allow for context
transitions to depend on history.

We define the softmax function zi : RM 7→ [0, 1], with
temperature η > 0 as

zi(u) =
exp(ηui)

1 +
∑M
m=1 exp(ηum)

(1)

for i ∈ [M ], u ∈ RM , and zM+1(u) = 1−
∑M
i=1 zi(u).

Definition 3.1 (Logistic DCMDP). A logistic DCMDP
with latent feature maps

{
f∗h : S ×A× X 7→ RM

}H−1

h=0

is a DCMDP with context space X =
{
x(i)
}M+1

i=1
,

which satisfies, for all h ∈ [H], τh =
(s1, a1, x1, . . . , sh−1, ah−1, xh−1) ∈ Hh, and i ∈ [M + 1]:

Pf∗(x
(i)
h |τh) = zi

(
h−1∑
t=0

αh−t−1f∗t (st, at, xt))

)
,

where α ∈ [0, 1] is a history discount factor.

Note that the latent functions f∗h are vector-valued and un-
known. In a recommender system, f∗h may represent a
user’s unknown degree of trust in the system, or the effect of
a sequence of recommendations on their satisfaction. The
discount α allows for immediate effects to diminish over
time (if less than 1).

A logistic DCMDP is denoted by (X ,S,A, r, P,H,f∗, α).

We assume f∗ is `2-bounded with
√∑

f∗2h,i(s, a, x) ≤ L,
and we denote

F = {f : |fh,i(s, a, x)| ≤ bh,i(s, a, x)} (2)

the (rectangular) set where bh,i(s, a, x) are upper bounds
on f∗. Throughout our analysis we denote the ef-
fective history horizon Hα = α2H−1

α−1 , and without loss
of generality scale transitions in zi (Equation (1)) with
temperature η = H−1

α .3 For clarity, we write
r(s, a, x(i)) = ri(s, a), P (s′|s, a, x(i)) = Pi(s

′|s, a),
and r(s, a) = (r1(s, a), . . . , rM+1(s, a))T , P (s′|s, a) =
(P1(s′|s, a), . . . , PM+1(s′|s, a))T . We also denote by
nkh(s, a, x) the number of visits to s, a, x at time step h
of episode k − 1.

Next, we define a sufficient statistic for logistic DCMDPs
that will prove valuable in our solution methods that follow.

3We set η = H
−1/2
α for convenience. Different choices of η

are equivalent to varying the bounds on F in Equation (2).

Definition 3.2 (Sufficient Statistic). Given a logistic
DCMDP with feature maps f , define σ : H 7→ RM as
σ(τh;f) :=

∑h−1
t=0 α

h−t−1f t(st, at, xt), and the set of
sufficient statistics by Σ(f) := {σ(τ ;f)}τ∈H.

In Appendix B.1, we prove that σ(τh;f) is a sufficient
statistic of the history for purposes of computing the optimal
policy at time h. We do so by defining an equivalent MDP
with state space S ×Σ(f) with well-defined dynamics and
reward, and an equivalent optimal policy, which achieves
the same optimal value.

Finally, similar to previous work on logistic and multino-
mial bandits (Abeille et al., 2021; Amani and Thrampoulidis,
2021), we define a problem-dependent constant for logistic
DCMDPs which plays a key role in characterizing the behav-
ior of M ≥ 1 mulitnomial logit bandit algorithms. For x ∈
RM+1 and τ ∈ H, let z(x) = (z0(x), . . . , zM+1(x))

T ,
A(τ ;f) = diag(z(σ(τ ;f))) − z(σ(τ ;f))z(σ(τ ;f))T ,
and 1/κ = infτ∈H λmin{A(τ ;f∗)}. Informally, κ is re-
lated to saturation of the softmax zi. For logistic DCMDPs,
it is related to a worst-case context distribution w.r.t. f∗

and τ ∈ H. We refer to Abeille et al. (2021); Amani and
Thrampoulidis (2021) for details, as well as lower bounds
using this constant in logistic bandits.

The Rescorla-Wagner Model in Recommenders. Be-
fore continuing to provide sample efficient methods for solv-
ing logistic DCMDPs, we turn to motivate the aggregated
model of history through the lens of the Rescola-Wagner
(RW) model (Rescorla, 1972) in a recommendation setting.

Logistic DCMDPs generate context transitions based on the
sum of specific features of prior states, actions, and contexts,
as captured by f∗, with backward discounting to diminish
the effect of past features or experiences, as captured by α.
Such a model can be used to capture a (very simple) RW
formulation of user behavior in an interactive recommender
system. Let I = {i1, . . . , in} be a set of items. A user
may like, dislike, or be unfamiliar with any of these items,
represented by u ∈ {1, 0,−1}n. Let gt be the user’s (latent)
current degree of satisfaction or engagement with the system.
At each time t, the system asks the user for their disposition
(e.g., rating) of an item it ∈ I . The user decides to answer
the question with probability z1(gt) (Equation (1)), which is
strictly increasing with higher degrees of engagement level.
The engagement level then evolves as gt+1 = αgt + βuit ,
where α ∈ [0, 1], and β is a user-specific sensitivity factor.
This model gives rise to a logistic DCMDP, whose solu-
tion gives the optimal recommender system policy. Specif-
ically, actions at := it ∈ I are the questions asked by
the system, f∗(st, at, xt) = βuat depends only on at,
user engagement is gh =

∑h−1
t=0 α

h−t−1f∗(st, at, xt) =∑h−1
t=0 α

h−t−1βuit , xt is the decision whether to answer,
and st is the observation of the answer.
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Algorithm 1 LDC-UCB

1: for k = 1, . . . ,K do
2: r̄ki,h(s, a) = r̂ki,h(s, a) + bki,h(s, a),∀i, h, s, a
3: π̄k ← Optimistic Planner

(
M̄k(δ)

)
// Eq. 6

4: Rollout a trajectory by acting π̄k

5: f̂
k
∈ arg maxf∈Ck(δ) Lkλ(f) // Eq. 3

6: Update P̂ k+1
i (s, a), r̂k+1

i (s, a), nk+1(s, a, x) over
rollout trajectory

7: end for

4. Optimistic Methods for Logistic DCMDPs
Logistic DCMDPs’ aggregation of features allow us to ob-
tain sample efficient and computationally tractable solutions;
namely, solutions which do not depend exponentially on
history. In this section, we describe an optimistic algorithm
for solving logistic DCMDPs and provide regret bounds.
We focus on theoretical motivations here, and address com-
putational tractability in the next section.

We first develop Logistic Dynamic Context Upper Confi-
dence Bound (LDC-UCB), a general RL method for logistic
DCMDPs with unknown latent features (see Algorithm 1).
At each episode k, LDC-UCB uses estimates of rewards

r̂kx,h(s, a) =

∑k
k′=1

1
{
xk
′
h =x,sk

′
h =s,ak

′
h =a

}
rk
′
h

nkh(s,a,x)
, transitions

P̂ kx,h(s′|s, a) =

∑k
k′=1

1
{
xk
′
h =x,sk

′
h =s,ak

′
h =a,sk

′
h+1=s′

}
nkh(s,a,x)

, and a

projected estimate of f̂ , calculated by maximizing the regu-
larized log likelihood:

Lkλ(f) =

k∑
k′=1

H−1∑
h=1

M+1∑
i=1

1
{
xkh = i

}
`ki,h(f)− λ ‖f‖22 ,

(3)

where `ki,h(f) = log
(
zi(σ(τkh ;f))

)
, λ > 0, and recall that

σ(τkh ;f) =
∑h−1
t=0 α

h−t−1f t(s
k
t , a

k
t , x

k
t ).

We account for uncertainty in these estimates by incorpo-
rating optimism. For rewards and transitions, we add a
bonus term bki,h (see Appendix C for explicit definitions) to
the estimated reward (line 2). To incorporate optimism in
the latent features f̂ , we build on results from multinomial
logistic bandits (Amani and Thrampoulidis, 2021). Specifi-
cally, we derive a confidence bound over f̂ , for which with
probability at least 1− δ∥∥∥gk(f∗)− gk(f̂ t)

∥∥∥
H−1
k (f∗)

≤ βk(δ), (4)

where Hk(f) = −∇2
fLkλ(f), gk(f) = −∇fLkλ(f) +Dk,

βk(δ) = M5/2SAH√
λ

(
log
(
1 + k

dλ

)
+ 2 log

(
2
δ

))
+
√

λ
4M +

√
λL. See Appendix G for exact expressions and a proof of

the bound in Equation (4).

Next, we leverage the bound in Equation (4) to construct a
feasible set of logistic DCMDPs. Specifically, we define the
confidence set

Ck(δ) =

{
f ∈ F :

∥∥∥gk(f)− gk(f̂ t)
∥∥∥
H−1
k (f)

≤ βk(δ)

}
.

(5)

and the following set of logistic DCMDPs:

M̄k(δ) =
{(
X ,S,A, r̄, P̂ ,H,f , α

)
: f ∈ Ck(δ)

}
. (6)

The optimistic policy π̄k (line 3) is that with greatest value
over all DCMDPs in M̄k(δ), i.e., π̄k corresponding to
maxm̄∈M̄k(δ) V

∗(s1; m̄).

Combining the above, we prove the following regret guar-
antee for Algorithm 1.

Theorem 4.1. Let λ = Θ(HM
2.5SA
L ). With probability at

least 1− δ, the regret of Algorithm 1 is

Reg(K) ≤ Õ(
√
H6M4.5S2A2L2κK).

The proof of Theorem 4.1 can be found in Appendix C.
We note that computing the optimistic policy over M̄k(δ)
(line 3) is computationally difficult, especially due the his-
tory dependence of π on the accumulated latent features∑h
t=1 α

h−tf(st, at, xt). We address this challenge next.

5. Mitigating Computational Complexity
In this section we show how to relax LDC-UCB (Algo-
rithm 1) to mitigate its high computational complexity. Im-
portantly, we maintain regret guarantees similar to those of
Theorem 4.1 while obtaining an exponential improvement
to computational cost. We later use these results to construct
a practical model-based algorithm in Section 6.

To address the computational challenges of Algorithm 1,
we focus on two problems. The first involves the set Ck(δ)
(Equation (5) and line 5 of Algorithm 1) – where compu-
tation of the maximum likelihood constrained to set Ck(δ)
is intractable. To address this, we prove that the constraint
on the maximum likelihood estimator can be replaced by a
simpler, rectangular set, enabling efficient calculation of the
projected maximum likelihood. The second challenge is the
complexity of the optimistic planner (Equation (6) and line
3 of Algorithm 1). To overcome this, we develop a local con-
fidence bound, for every state-action-context triple (s, a, x),
and show it can be leveraged to design an optimistic plan-
ner, using a novel thresholding mechanism for optimism in
logistic DCMDPs. Pseudocode for this tractable variant of
LDC-UCB is presented in Algorithm 2.
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5.1. A Tractable Estimator

We begin by constructing a tractable estimator for the
latent feature maps f∗ which, instead of projecting to
the set Ck(δ), solves for projected maximum likelihood
on the rectangular set F (Equation (2)). Let γk(δ) =(

2 + 2L
√
MH +

√
2(1 + L)

)
βk +

√
2(1+L)HM

λ β2
k(δ).

We define the tractable maximum likelihood estimator
f̂
k

T ∈ arg maxf∈F Lkλ(f), and have the following bound.

Lemma 5.1. With probability at least 1−δ, for all k ∈ [K],∥∥∥f̂kT − f∗∥∥∥
Hk(f∗)

≤ γk(δ). (7)

The proof (see Appendix G.2) uses a convex relaxation of

the set Ck(δ). Notice that the confidence region for f̂
k

T is

looser than that for f̂
k

(see Equation (4)), as βk(δ) < γk(δ).
Nevertheless, its computation is tractable.

Next we can exploit the confidence bound in Equation (7)
to construct a local bound for every state-action-context
triple (s, a, x) using the number of visits to (s, a, x), i.e.,
nkh(s, a, x). The following result uses structural properties

of logistic DCMDPs to achieve a local bound for f̂
k

T . Its
proof generalizes the local confidence bound in Tennenholtz
et al. (2022), and can be found in Appendix G.3.

Lemma 5.2 (Local Estimation Confidence Bound). For any
δ > 0, with probability of at least 1−δ, for all k ∈ [K], h ∈
[H], i ∈ [M ] and s, a, x ∈ S ×A× X , it holds that∣∣∣(f̂kT (s, a, x)

)
i,h
−
(
f∗(s, a, x)

)
i,h

∣∣∣ ≤ 2
√
κγk(δ)√

nkh(s, a, x)+4λ
.

Lemma 5.2 allows one to reason about the unknown fea-
tures locally for any visited (s, a, x), a vital step toward an
efficient optimistic planner. Indeed, as we see in the next
section, the cost of planning in logistic DCMDPs can be
reduced significantly using this bound.

5.2. Threshold Optimistic Planning

We now address the major computational challenge of Al-
gorithm 1 – the complexity of optimistic planning (line 3
of Algorithm 1). To do this, we leverage the local bound
in Lemma 5.2 and construct an optimistic planner using a
novel threshold mechanism, as we describe next.

Recall the set of sufficient statistics Σ(f) = {σ(τ ;f)}τ∈H
(Definition 3.2), which is a finite, vector-valued set with
cardinality |Σ(f)| = O

(
(SAMH)MH

)
, making planning

in state space S × Σ exponentially hard. Consequently,
searching for the optimistic DCMDP in the space of feature
maps satisfying f ∈ Ck(δ) (Equation (6)) requires searching
over an exponentially large space.

We mitigate this problem exponentially, by lever-
aging the local confidence bound in Lemma 5.2.
Let Bk(δ) ⊂ RM × RM be the rectangular cuboid
of all candidate confidence intervals satisfying the
bound in Lemma 5.2. That is, Bk(δ) is the set of
all M dimensional intervals

[
lkh(s, a, x),ukh(s, a, x)

]
,

such that for all h, s, a, x, f∗h(s, a, x) ∈[
lkh(s, a, x),ukh(s, a, x)

]
, where, ukh(s, a, x), lkh(s, a, x) =

f̂
k

T ±
(

2
√
κγk(δ)√

nkh(s,a,x(1))+4λ
, . . . , 2

√
κγk(δ)√

nkh(s,a,x(M))+4λ

)T
. In

what follows, we identify key characteristics of the
optimistic value when optimized over Bk(δ). Specifically,
we show that an optimistic solution lies on the extreme
points of Bk(δ), but more importantly, at one of M specific
extreme points. This limits the search required by optimistic
planning to a much smaller set, which can be approximated
effectively in practice.

Optimism in intervals. Instead of augmenting the state
space with Σ(f), we use the set of confidence intervals

defined by Bk(δ). We denote byCk
h : Σ(f̂

k
) 7→ RM×RM

the confidence interval of the sufficient statistic σ(τkh , f̂
k
).

That is,

Ck
h = C(σ(τkh ; f̂

k
))

=

[
h−1∑
t=0

αh−t−1lkh(skt , a
k
t , x

k
t ),

h−1∑
t=0

αh−t−1ukh(skt , a
k
t , x

k
t )

]
.

We also denote by Ik =
{
C(σ(τ, f̂

k

T ))
}
τ∈H

the set of

possible confidence intervals over Bk(δ) in episode k.

Next, we augment the state space S at every episode k by
S × Ik, and define the augmented state-action optimistic
value for context i ∈ [M +1] and confidence intervalCk

h =
C(σ(τkh ,f

k)) at time step h ∈ [H] by

Q̄i(s, a,C
k
h)) = r̄i(s, a) + Es′∼P̂i(·|s,a)

[
V̄h+1(s′,Ck

h+1)
]
,

where, with slight abuse of notation, we used Ck
h+1 =

C
(
σ
(
τkh ∪

{
s, a, x(i)

}
, f̂

k

T

))
to denote the next aggre-

gated confidence interval. The optimistic value V̄h is defined
by maximizing over sufficient statistics in the confidence
set Ck

h and a ∈ A. That is,

V̄h(s,Ck
h) = max

a∈A
max
σ̄∈Ckh

M+1∑
i=1

zi(σ̄)Qi(s, a,C
k
h) (8)

Indeed, V̄h is an optimistic value, as shown by the following
proposition. Its proof is provided in Appendix D.3.

Proposition 5.3 (Optimistic Value). Let V̄h as defined in
Equation (8). Then, w.h.p. V̄1(sk1 ,C

k
1) ≥ V ∗1 (sk1).
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Algorithm 2 Tractable LDC-UCB

1: for k = 1, . . . ,K do
2: r̄ki,h(s, a) = r̂ki,h(s, a) + bki,h(s, a),∀i, h, s, a
3: π̄k ← Optimistic DP

(
r̄k, P̂ k,Bk(δ)

)
// Eq. 8

4: Rollout a trajectory by acting π̄k

5: f̂
k+1

T ∈ arg maxf∈F Lkλ(f) // Eq. 3
6: Update P̂ k+1

i (s, a), r̂k+1
i (s, a), nk+1(s, a, x) over

rollout trajectory
7: end for

Next, we turn to show that the maximization problem
in Equation (8) can be solved efficiently, though Ck

h is
an exponentially large set. Notice that the inner term∑M
i=0 zi(σ̄)Qi(s, a,C

k
h) in Equation (8) is not convex.

Still, our analysis shows that a solution to the inner maxi-
mization problem lies in the set of extreme points of Ck

h.
That said, these 2M extreme points make exhaustive search
intractable. Fortunately, we can also show that the optimal
solution lies in a space of exactly M solutions – a linearly
sized, tractable search space.

To this end, we define the threshold set, which we will use
to construct the (linear) set of feasible extreme points.
Definition 5.4. For a rectangular cuboid defined by the
interval C = [l,u] ⊆ RM+1 × RM+1, vector y ∈ RM+1

and real number t ∈ R we define tht(y,C) ∈ RM+1 by

[tht(y,C)]i =

{
li yi < t

ui o.w.

Definition 5.5. For a vector Q ∈ RM+1, we define the

threshold set T (Q) =
{
Qi+Qi+1

2

}M
i=1

.

We use these definitions to show that the optimal solution to
Equation (8) lies in the threshold set of Q-values (see proof
in Appendix F.1).
Lemma 5.6 (Threshold Optimism). Let Q ∈ RM+1.
For any x ∈ RM+1 such that xi = 0 define f(x) =∑M+1

i=1 zi(x)Qi. Let C = [l,u] ⊆ RM+1 × RM+1 and
assume that l < u. Then, there exists t ∈ T (Q) such that
tht(Q,C) ∈ arg maxx∈C f(x).

We can now leverage Lemma 5.6 to solve the inner maxi-
mization in Equation (8). For notational convenience, we
write Q̄i = Q̄i(s, a,C

k
h) andQ = (Q1, . . . , QM+1)

T . Ap-
plying Lemma 5.6, we get that

max
σ̄∈Ckh

M+1∑
i=1

zi(σ̄)Q̄i = max
t∈T (Q)

M+1∑
i=1

zi

(
tht

(
Q,Ck

h

))
Q̄i.

(9)

As a result, the non-convex maximization problem in Equa-
tion (9) reduces the search space toM optimistic candidates.

5.3. Putting It All Together

Using Lemma 5.6 and particularly its derived corollary in
Equation (9), we construct an optimistic planner, denoted by
Optimistic DP, which plans via dynamic programming
using Equation (9); we refer to Appendix F for an explicit
formulation of the optimistic planner. Finally, using the

tractable estimator f̂
k

T , and the threshold optimistic planner,
we present a tractable variant of LDC-UCB in Algorithm 2,
for which we have the following regret guarantee.

Theorem 5.7. Let λ = Θ(HM
2.5SA
L ). With probability at

least 1− δ, the regret of Algorithm 2 is

R(K) ≤ Õ
(√

H8M6.5S2A2L4κK
)
.

The proof of the theorem can be found in Appendix D. As
expected, the regret upper bound in Algorithm 2 is worse
than that of Algorithm 1 by a factor of Õ(HML). This re-
sult is strongly affected by the looser bound for the tractable
feature maps in Lemma 5.2. Nevertheless, the intractability
of Algorithm 1 compared to the tractability of Algorithm 2
suggests this is a more-than-reasonable tradeoff. Moreover,
our tractable variant of LDC-UCB gives rise to practical
optimistic algorithms, as we demonstrate next.

6. DCZero
Motivated by our theoretical results, we present a practi-
cal model-based optimistic algorithm for solving DCMDPs.
We build on MuZero (Schrittwieser et al., 2020), a recent
model-based algorithm which constructs a model in latent
space and acts using Monte Carlo Tree Search (MCTS,
Coulom (2007)). MuZero uses representation, transition,
and prediction networks for training and acting. The rep-
resentation network first embeds observations in a latent
space, after which planning takes place using the transition
and prediction networks through a variant of MCTS. Im-
portantly, instead of predicting the next state (e.g., using
world models (Hafner et al., 2023)), MuZero trains its latent
space by predicting three quantities—the reward, value, and
current policy—by rolling out trajectories in latent space
(see Schrittwieser et al. (2020) for further details).

We develop DCZero, an algorithm based on MuZero for
DCMDPs (see Algorithm 3). Like MuZero, DCZero uses
representation, transition, and prediction networks to learn
and act in the environment. In contrast to MuZero, DCZero
trains an additional ensemble of networks to estimate the
unknown features f∗ using cross-entropy. Estimated quan-
tities of the ensemble are used to construct confidence inter-
vals for the sufficient statistics, which are used to augment
the state. DCZero uses M + 1 transition networks (one
for each context), and predicts M + 1 reward functions.
To incorporate optimism, the value function is trained opti-
mistically using the thresholding technique in the previous

6
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section, where rewards for unseen actions are sampled from
the trained reward models ri and next states are sampled
from the trained models Pi.

Movie Recommendation Environment. To evaluate the
effectiveness of DCZero, we develop a movie recommenda-
tion environment based on the MovieLens dataset (Harper
and Konstan, 2015). Users and items are represented in em-
bedding space computed using SVD of the MovieLens rat-
ings matrix. Each of n users is assigned a set of M possible
user embeddings; i.e., each user u ∈

{
u(i)
}n
i=1

is assigned

a set of preference vectors x =
{
x(j)

}M+1

j=1
,x(j) ∈ Rd.

Intuitively, these vectors reflect distinct user preferences
corresponding to some aspect of the user’s latent state (e.g.,
mood or current interest (Cen et al., 2020); location, com-
panions, or activity; level of trust or satisfaction with the
system) and hence influence u’s behavior.

The recommendation agent interacting with a user selects an
item x from a random set of A movies, {v(a)}Aa=1,v

(a) ∈
Rd, and recommends it. The user context then evolves ac-
cording to some history-dependent dynamics represented
by a logistic DCMDP. Specifically, we assume unknown
latent features f∗(x,v) with the user’s aggregated fea-
tures (at time h ∈ [H], episode k) being: σk,h =∑h−1
t=0 α

h−t−1f∗(x
(jt)
k ,v(at)). The agent recommends

movie v(a) to the user, while the user preference vector
is sampled as xjhk ∼ z(σk,h). The agent then receives a
reward rj(x, a) = (x

(jh)
k )TΣv(a) reflecting the user’s (cur-

rent) preference for the movie, and the user’s latent state
transitions given the unknown function f∗(x,v) and dis-
count α; that is, σk,h+1 = ασk,h + f∗(x

(jh)
k ,v(a)).

We test our methods in two variants of this environment.
In the first, “AttractionEnv”, user latent features f∗ are
correlated with the user’s degree of preference for the rec-
ommended movie:

f∗(x(j),v) = µ
(
(x(j))TΣv

)
, (Attraction)

where µ is a component-wise monotonically increasing func-
tion. AttractionEnv reflects users with a tendency to desire
content similar to those they most recently consumed. This
may reflect the positive influence of exposure to new types
of content, increased familiarity increasing preference, or
content domains (such as music) where some mild consis-
tency of experience is preferred to jarring shifts in style or
genre. The second environment, “NoveltyEnv”, reflects a
contrasting dynamics in which user latent features evolve
such that f∗ is anti-correlated with the user’s preference for
the recommended movie:

f∗i (x
(j),v) =

{
−µ
(
(x(j))TΣv

)
, j = i

µ
(
(x(j))TΣv

)
, o.w.

(Novelty)

Algorithm 3 DCZero

1: require: Size of ensemble B
2: init: Replay bufferR ← ∅
3: for k = 1, 2, . . . do
4: Train bootstrap ensemble of B feature maps{

f̂θb : S ×A× X 7→ RM
}B
b=1

overR using cross-
entropy loss.

5: Augment state s with aggregated feature confidence

Ch ←
∑h−1
t=0 α

h−t−1stdb

({
f̂θb(st, at, xt)

}B
b=1

)
.

6: Train threshold optimistic value estimator overR

Q̄i,ψ(s, a,Ch)) = r̂i(s, a) + γEs′∼P̂i(s,a)V̄ψ(s′,Ch+1),

V̄ψ(s,Ch) = max
t∈T (Qψ)

M+1∑
i=1

zi
(
tht
(
Qψ,C

k
h

))
Q̄
πφ(s)

i,ψ .

7: Act and train representation network, M transition
networks (for each P̂i), and M prediction networks
(for each r̂i) using MuZero-ALGwith the optimistic
value V̄ψ in MCTS. Return replay bufferR.

8: end for

As a result, movies that previously appealed to the user
become less preferred, reflecting a desire for novelty over
short time periods.

Experiments. All experiments used a horizon of
H = 300, M = 6 user classes, A = 6 slate items (changing
every reset), and a user embedding dimension of d = 20.
We used default parameters for MuZero and applied the
same parameters to DCZero. We compared DCZero and
MuZero on the AttractionEnv and NoveltyEnv environ-
ments. We also tested a history-dependent variant of
MuZero, which uses the sequence of past movies and con-
texts to densely represent history. More specifically, Hist-
MuZero uses a stack of 30 previous observations as its state.
We implemented both MLP and Transformer-based model
architectures, but present results for the Transformer, as
both had similar performance.

Figure 2 shows these comparisons. The plots compare the
return of DCZero with the two baselines on AttractionEnv
and NoveltyEnv with α = 0.99; we also vary the values
of α on the AttractionEnv. We see that DCZero is able
to outperform both baselines, with significant increases in
performance for larger values of α (i.e., longer history de-
pendence). This suggests that DCZero can be especially
beneficial in problems that exhibit long history dependence.
Interestingly, we note that using a dense history-dependent
Transformer hurts performance, except for very small values
of α (indeed, only for α = 0.1 does the sequence model
outperform the other methods).
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AttractionEnv AttractionEnvNoveltyEnv

MuZero   Hist-MuZero     DCZero

Figure 2: Plots comparing MuZero, Hist-Muzero, and DCZero on the AttractionEnv(left) and NoveltyEnv (middle). We also compare
results for different values of α (right). All experiments show mean scores with 95% confidence intervals.

7. Related Work
Contextual MDPs (Hallak et al., 2015) have proven useful
in a numerous studies (Jiang et al., 2017; Zintgraf et al.,
2019; Kwon et al., 2021). Contexts are sampled once and
are fixed throughout the episode. DCMDPs can be seen as
a generalization of contextual MDPs, where contexts can
change over time in a realistic, history-dependent fashion.
Other forms of DCMDPs, are interesting directions for fu-
ture work, including DCMDPs for which contexts change
slowly in time. In Chen et al. (2022) a latent context vari-
able changes abruptly at discrete points in time. Our logistic
DCMDP considers history-dependent dynamics of contexts,
which can depend on previous states and actions. Moreover,
our model can capture smoother behavior which changes
very slowly over time (over long histories). Finally, in con-
trast to Chen et al. (2022), our work provides theoretical
guarantees, showing statistical and computational efficiency
of our approach. In Mao et al. (2018), a non-stationary
contextual environment is considered, yet the contexts are
not allowed to depend on previous states and actions. Ren
et al. (2022) propose a Bayesian approach for learning con-
textual MDPs for which contexts can change dynamically.
Nevertheless, their model assumes dynamics that are not
state-action dependent, and not history dependent.

Partially observable MDPs are widely studied (Papadim-
itriou and Tsitsiklis, 1987; Vlassis et al., 2012; Krishna-
murthy et al., 2016; Tennenholtz et al., 2020; Xiong et al.,
2022). As POMDPs are inherently history dependent, re-
cent work has identified models and assumptions for which
sample-efficient algorithms can be derived (Xiong et al.,
2022; Liu et al., 2022a;b). Nevertheless, such solutions are
often computationally intractable, impeding their practical
implementation. With DCMPDs, we focus on specific forms
of history-dependence, and show them to be computation-
ally tractable, as well as effectively deployable.

Tennenholtz et al. (2022) define TerMDPs, a framework
which models exogenous, non-Markovian termination in the

environment. Once terminated, the agent stops acting and
accrues no further rewards. TerMDPs capture various sce-
narios in which exogenous actors disengage with the agent
(e.g., passengers in autonomous vehicles or users abandon-
ing a recommender), and can be shown to be a special case
of logistic DCMDPs (see Appendix B.2). As such, logistic
DCMDPs support reasoning about optimizing more general
contextual behavior, including: those involving notions of
trust (e.g., where users become more or less receptive to
agent recommendations); situations where humans override
an agent for short periods; and modeling the effects of user
satisfaction, moods, etc.

8. Discussion and Future Work
In this work we presented DCMDPs, and logistic DCMDPs
in particular—a general history-dependent contextual frame-
work which admits sample and computationally efficient
solutions. The aggregation structure of logistic DCMDPs
gives rise to efficient estimation of the unknown feature
maps. We provided regret guarantees and developed a
tractable realization of LDC-UCB using a computational
estimator and a novel planning procedure. Finally, we tested
DCZero, a model-based implementation of LDC-UCB,
demonstrating its efficacy on a recommendation benchmark.

While logistic DCMDPs assume linear aggregations of past
features, other variants with more complex parametric func-
tion classes over history are possible. Nevertheless, such
complex function classes often require sample-inefficient
techniques, suggesting that logistic DCMDPs may be es-
pecially well-suited to capturing extended, long history de-
pendence. In particular, they admit sample and computa-
tionally efficient solutions, which can be implemented in
practice. As future work, a hybrid approach which con-
siders combining dense models (such as Transformers) for
short-history dependence, and aggregated models (such as
logistic DCMDPs) for very long history dependence, may
offer the “best of both worlds" in practice.
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Appendix
The appendix is organized as follows. First, i Appendix A, we define additional notations that are used throughout this work.
We then show that σ is indeed a sufficient statistic for calculating the optimal policy in a logistic DCMDP (Appendix B.1).
Next, we provide regret guarantees for our algorithms for solving logistic DCMDPs: in Appendices C and D, we bound
the regret of LDC-UCB (Theorem 4.1) and its tractable variant (Theorem 5.7), respectively. Finally, Appendices E to G
contain technical lemmas which are crucial for deriving the above regret guarantees. Specifically, Appendix E is dedicated
for optimism lemmas and decomposing the regret for logisitic DCMDPs; Appendix F deals with the threshold optimistic
planning required for the tractable version of LDC-UCB; and Appendix G provides confidence sets for the regularized log
likelihood procedure, following Abeille et al. (2021); Amani and Thrampoulidis (2021).
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A. Additional Notations
In this section, we define additional notation that will be of use throughout the proof. We work with the natural filtration

Fk = σ

({
τk
′

H+1

}
k′∈[k]

, sk+1
1

)
= σ

({
(s1
h, a

1
h, x

1
h, R

1
h)
}H
h=1

, . . . ,
{

(skh, a
k
h, x

1
h, R

k
h)
}H
h=1

, sk+1
1

)
,

and notice that the policy πk, which might depend on sk1 , is Fk−1-measurable. For brevity, for any episode k ∈ [K] and
time step h ∈ [H], we define the probability distribution over the contexts by zkh = z(σ(τkh ;f∗), with zki,h = zi(σ(τkh ;f∗)
for any i ∈ X .

With slight abuse of notation, we treat the latent features f as vectors in F ⊆ RS×A×[H]×X×[M ] instead of a mapping
f∗h : S ×A× X 7→ RM ,∀h ∈ [H] and use the notations f i(s, a, h, x) = f(s, a, x, h, i). We also let dkh be the empirical
discounted visitation vector at episode k up to time step h, i.e.,

dkh(s, a, t, x) = H−1/2
α αh−t−11

{
skt = s, akt = a, xkt = x

}
,

where Hα , 1−α2H

1−α ≤ min
{
H, 1

1−α

}
is a normalization factor describing the effective historical horizon. Then, one can

write σi(τkh ;f) = 〈f i,d
k
h(s, a, t, x)〉. Notice that dkh is a vector containing zeros except for h elements with the values

{H−1/2
α , H

−1/2
α α, . . . ,H

−1/2
α αh−1}, where each value appears exactly once. We denote the set of all possible vectors of

such form for any h ∈ [H] by D, and notice that for all d ∈ D,

‖d‖22 ≤
H−1∑
h=1

H−1
α α2h =

1− α2H

1− α
H−1
α = 1.

Next, we define the following summation operators:

• For any fixed h ∈ [H] and i ∈ X , if Pi,h : S × A 7→ ∆S is a transition kernel and V : S × Hh 7→ R is a value
function, the expected value is denoted by

[Pi,hV ](s, a, τh) = Pi,h(·|s, a)TV (·, τh) =
∑
s′∈S

Pi(sh+1 = s′|sh = s, ah = a)V (s′, τh).

and, in general, use similar notations for any transition kernel P : Y 7→ ∆S from arbitrary space Y .

• We denote the vectorized version of Pi,hV by

PhV =
(
P1,hV, . . . , PM,hV

)T
.

• If Z : Y 7→ ∆X is a mapping to the probability simplex over X and U : Z × X 7→ R, where Y,W are some arbitrary
spaces, we let

[ZU ](y, w) =

M+1∑
i=1

Z(y, i)U(w, i),

and in particular, we use Zfh (τh) = z(σ(τh;f) and Zkh = zkh.

• Finally, given a transition kernel P and latent feature f , we denote the transition operator over a value V by

[TP,fh V ](s, a, τh) = [ZfhPhV ](s, a, τh) =
∑
s′∈S

M∑
i=1

Pi(s
′|s, a)zi(σ(τh;f)V (s′, τh).

we similarly use the notation TP,Zh when for general context distribution that are not necessarily by latent features f .

12
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B. Logistic DCMDPs
B.1. Sufficient Statistic

We prove that the σ is a sufficient statistic for calculating the optimal policy. We begin by defining an augmented MDP
Maug = (Saug,Aaug, Paug, raug, H), where Saug = S×Σ(f∗) is the augmented state space, andAaug = A is the (unchanged)
action space. The augmented transition function is defined for s,σ ∈ S ×Σ(f∗), a ∈ A, s′,σ′ ∈ S ×Σ(f∗)

Paug(s′,σ′|s,σ, a) = 1{σ′ = ασ + f∗(s, a, x)}
M+1∑
i=1

zi(σ)Pi(s
′|s, a).

Finally, the augmented reward function raug satisfies

raug(s,σ, a) =

M+1∑
i=1

zi(σ)ri(s, a).

The augmented MDPMaug is closely related to the logistic DCMDP (X ,S,A, r, P,H,f∗, α). In fact, as we will show
next, they both achieve the same optimal value. To see this, consider an MDP defined by the tuple (S1 × S2,A, P, r,H),
and let φ : S2 7→ D, where D is some known domain. Define the following set of deterministic policies

Πaug = {π : S1 × S2 7→ A : ∃η : S1 ×D 7→ [0, 1], π(s1, s2) = η(s1, φ(s2)}.

Define the augmented optimal value for some s ∈ S1 × S2

V ∗aug,1(s1, s2) = max
π∈Πaug

E

[
H∑
t=1

rt(st, at)

∣∣∣∣∣ s1 = s1, s2 = s2, at ∼ πt(s1, s2)

]
.

We apply the following proposition using the decomposition S1 = S, and S2 = H as the set of possible trajectories in the
known logistic DCMDP, where

φ(τh) := σ(τh;f) =

h−1∑
t=0

αh−t−1f t(st, at, xt).

Proposition B.1 (Tennenholtz et al. (2022)). Let M = (S1 × S2,A, P, r,H). Assume for any s1, s2 ∈ S1 × S2,
a ∈ A, P (s′1, φ(s′2)|s1, s2, a) = P (s′1, φ(s′2)|s1, φ(s2), a) and r(s1, s2, a) = g(s1, a), for some deterministic function
g : S1 ×A 7→ [0, 1]. Then, for any s1, s2 ∈ S1 × S2,

V ∗aug,1(s1, s2) = V ∗1 (s1, s2).

This concludes our claim, proving that σ is indeed sufficient, as playing any policy in Πaug achieves the same value.

B.2. Relation to TerMDPs

A special case of logistic DCMDPs are TerMDPs (Tennenholtz et al., 2022), which model exogenous, non-Markov ter-
mination in the environment. When terminated, the agent stops interacting with the environment and cannot collect
additional rewards. This setup describes various real-world scenarios, such as passengers in autonomous vehicles or users
abandoning a recommender systems. To model a TerMDP as a logistic DCMDP we let X = {0, 1} = {term, no term},
and define ri(s, a), Pi(s

′|s, a) such that sterm is a sink state for which ri(sterm, a) = 0. The reward in all other states

is defined by r1(s, a). The transition probabilities are defined by Pi(s
′|s, a) =

{
sterm, s = sterm ∨ i = 0

P1(s′|s, a), o.w.
.

TerMDPs use a cost functions ch(st, at) to define the probability of transitioning to the termination state, as
P (xh = term|τh) = z0

(∑h−1
t=1 ct(st, at)

)
– a special case of logistic DCMDPs with a two-class, context-independent

feature map, and a choice of α = 1. Indeed, this choice of parameters defines a TerMDP as proposed in Tennenholtz et al.
(2022).

Logistic DCMDPs let us consider generalized notions of such models, for which classes can reflect notions of trust, where
humans become less susceptible to following recommendations from an agent, through situations where humans override an
agent for short periods, to modeling the effects of changing moods.

13
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C. Regret Analysis of LDC-UCB
In this section, we prove the regret bounds of Theorem 4.1. We start by defining the good event, which holds uniformly for
all episode with probability 1− δ. Then, we show that LDC-UCB is optimistic under the good event. Next, we decompose
the regret to error terms of the reward, transition and latent features, and analyzing each of these terms result with the desired
regret bounds.

We start by stating the bonuses which the algorithm uses:

br,kx,h(s, a) = min


√

log 8SAMHK
δ

nkh(s, a, x) ∨ 1
, 1


bp,kx,h(s, a) = min

H
√

4S log 8SAMHK
δ

nkh(s, a, x) ∨ 1
, 2H


C.1. Failure Events

We define the following failure events.

F rk =

∃s ∈ S, a ∈ A, x ∈ X , h ∈ [H] : |rx,h(s, a)− r̂kx,h(s, a)| > min


√

log 2SAMHK
δ′

nkh(s, a, x) ∨ 1
, 1




F pk =

∃s ∈ S, a ∈ A, x ∈ X , h ∈ [H] :
∥∥∥Px,h(· | s, a)− P̂ kx,h(· | s, a)

∥∥∥
1
> min


√

4S log 2SAMHK
δ′

nkh(s, a, x) ∨ 1
, 2




Fn =


K∑
k=1

H∑
h=1

M+1∑
i=1

E

 zki,h√
nkh(skh, a

k
h, i) ∨ 1

∣∣∣∣∣∣ Fk−1

 > 18H2 log

(
1

δ′

)
+ 2HS(M + 1)A+ 4

√
H2S(M + 1)AK


F f ,global
k = {f∗ /∈ Ck(δ′)},

where the definition of Ck(δ) can be found at Appendix G.

Then, we define the good event, where none of the aforementioned failure events ever occur, i.e.,

G =
(
∪k∈[K]F̄

r
k

)
∩
(
∪k∈[K]F̄

p
k

)
∩
(
∪k∈[K]F̄

f ,global
k

)
∩ F̄n

Lemma C.1. Letting δ′ = δ/4, the event G holds with probability at least 1− δ.

Proof. We show that the probability that the events do not hold for all k ∈ [K] is smaller than δ′ = δ/4.

• Reward concentration. First observe that both the empirical and real rewards are bounded in [0, 1], so if the minimizer
in F rk is 1, the event never holds. Otherwise, for any fixed episode k, number of plays n, state s, action a, context x and

timestep h, by Hoeffding’s inequality, the estimation error is bounded w.p. 1− δ′ by
√

log 2
δ′
n . Taking the union bound

over all possible values of k, n ≥ 1, s, a, x and h, w.p. at least 1− δ′, for all k ∈ [K], s ∈ S, a ∈ A, x ∈ X , h ∈ [H],
the estimation error is bounded by

|rx,h(s, a)− r̂kx,h(s, a)| ≤

√
log 2SAMHK2

δ′

2nkh(s, a, x) ∨ 1
≤

√
log 2SAMHK

δ′

nkh(s, a, x) ∨ 1
.

Finally, we remark that since δ′ ≤ 1/4, the event F rk never holds when nkh(s, a, x) = 0 since the bound is larger than 1.

In other words, Pr
{
∪k∈[K]F̄

r
k

}
≤ δ′.
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• Transition concentration. By the exact same arguments as the reward concentration, while replacing Hoeffding’s
inequality by the concentration of the L1 error of a probability estimator (Weissman et al., 2003), we also get
Pr
{
∪k∈[K]F̄

p
k

}
≤ δ′. Notice that the L1 distance between any two probability distributions is bounded by 2, which

justifies the minimization in the event.

• Global feature estimation. By Lemma G.5, we have that

Pr
{
∪k∈[K]F̄

f ,global
k

}
≤ Pr{∃k ≥ 1 : f∗ /∈ Ck(δ′)} ≤ δ′.

• Expected counts concentration. By Lemma E.7, we have that Pr
{
F̄n
}
≤ δ′.

Fixing δ′ = δ/4 and taking the union bound concludes the proof.

C.2. Regret Analysis – Proof of Theorem 4.1

Theorem 4.1. Let λ = Θ(HM
2.5SA
L ). With probability at least 1− δ, the regret of Algorithm 1 is

Reg(K) ≤ Õ(
√
H6M4.5S2A2L2κK).

Proof. Under the good event, the conditions of the regret decomposition lemma (Lemma E.6) hold with r̄, P̂ , Z f̄k and
c = 4 due to the truncated value iteration, truncated bonuses and value optimism lemma (Proposition C.5). Therefore, the
regret can be decomposed in the following way

Reg(K) ≤
K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∣∣r̄ki,h(skh, a
k
h)− ri,h(skh, a

k
h)
∣∣ ∣∣ Fk−1

]
︸ ︷︷ ︸

(i)

+H

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∥∥∥(P̂ kh − Ph)(·|skh, akh)
∥∥∥

1

∣∣∣ Fk−1

]
︸ ︷︷ ︸

(ii)

+ 5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
︸ ︷︷ ︸

(iii)

.

By plugging in Lemma C.2, Lemma C.3 and Lemma C.4, which bound terms (i),(ii) and (iii), respectively, we get,

Reg(K) ≤ O

(
H2S

√
MAK log

SAMHK

δ

)

+O

(
H2S

√
MAK log

SAMHK

δ

)
+ Õ(

√
S2A2H6M4.5L2κK)

Noticing that the last term is the dominant, we get

Reg(K) ≤ Õ(
√
S2A2H6M4.5L2κK),

which concludes the proof.

Now, we prove the lemmas that bounds the three terms in the regret decomposition in Theorem 4.1.
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Lemma C.2 (Reward Concentration). Under the good event, we have that:

(i) =

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∣∣r̄ki,h(skh, a
k
h)− ri,h(skh, a

k
h)
∣∣ ∣∣ Fk−1

]
≤ 2H

√
S log

8SAMHK

δ
·
(

18H2 log

(
4

δ

)
+ 2HS(M + 1)A+ 4

√
H2S(M + 1)AK

)
(Under G)

= O

(
H2S

√
MAK log

SAMHK

δ

)

Proof.
K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∣∣r̄ki,h(skh, a
k
h)− ri,h(skh, a

k
h)
∣∣ ∣∣ Fk−1

]
≤

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

(
br,ki,h(skh, a

k
h) + bp,ki,h (skh, a

k
h) +

∣∣r̂ki,h(skh, a
k
h)− ri,h(skh, a

k
h)
∣∣) ∣∣∣ Fk−1

]
≤

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

(
2br,ki,h(skh, a

k
h) + bp,ki,h (skh, a

k
h)
) ∣∣∣ Fk−1

]
(Under G)

≤ 2H

√
S log

8SAMHK

δ

K∑
k=1

H∑
h=1

M+1∑
i=1

E

 zki,h√
nkh(skh, a

k
h, i) ∨ 1

∣∣∣∣∣∣ Fk−1


≤ 2H

√
S log

8SAMHK

δ
·
(

18H2 log

(
4

δ

)
+ 2HS(M + 1)A+ 4

√
H2S(M + 1)AK

)
(Under G)

= O

(
H2S

√
MAK log

SAMHK

δ

)

Lemma C.3 (Transition Concentration). Under the good event, we have that:

(ii) = H

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∥∥∥(P̂ kh − Ph)(·|skh, akh)
∥∥∥

1

∣∣∣ Fk−1

]
≤ O

(
H2S

√
MAK log

SAMHK

δ

)

Proof.

H

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∥∥∥(P̂ kh − Ph)(·|skh, akh)
∥∥∥

1

∣∣∣ Fk−1

]
≤ H

K∑
k=1

H∑
h=1

M∑
i=1

E
[
zki,h ·

1

H
bp,ki,h (skh, a

k
h)

∣∣∣∣ Fk−1

]
(Under G)

≤ H
√

4S log
8SAMHK

δ

K∑
k=1

H∑
h=1

M∑
i=1

E

 zki,h√
nkh(skh, a

k
h, i) ∨ 1

∣∣∣∣∣∣ Fk−1


≤ H

√
4S log

8SAMHK

δ
·
(

18H2 log

(
4

δ

)
+ 2HS(M + 1)A+ 4

√
H2S(M + 1)AK

)
(Under G)

= O

(
H2S

√
MAK log

SAMHK

δ

)
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Lemma C.4 (Latent Features Concentration). Under the good event, if L = Ω(1) and λ = Θ(SAHM
2.5

L ), we have that:

(iii) = 5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
≤ Õ(

√
S2A2H6M4.5L2κK)

Proof.

5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
≤ 5H

√
M + 1

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

2

∣∣∣ Fk−1

]
≤ 10H

√
(1 + 2L)(M + 1)κ

K∑
k=1

H∑
h=1

E
[
βk(4δ)

∥∥∥dkh∥∥∥
V −1
k

∣∣∣∣ Fk−1

]
(Lemma G.8)

≤ 10HβK(4δ)
√

(1 + 2L)(M + 1)κ

K∑
k=1

H∑
h=1

E
[ ∥∥∥dkh∥∥∥

V −1
k

∣∣∣∣ Fk−1

]

≤ 10HβK(4δ)
√

(1 + 2L)(M + 1)κ

√
2KH3MSA log κλHSMA+k

κλHSMA

max{1, 1/
√
λ}

(Corollary E.9)

= O

(
βK(4δ)

max{1, 1/
√
λ}

√
H5M2SALκK log

κλHSMA+ k

κλHSMA

)
= Õ(

√
S2A2H6M4.5L2κK)

For both the lemma and the corollary, we remind that dkh ≤ 1. For the last relation, recall that

βk(δ) =
M3/2(M + 1)SAH√

λ

(
log

(
1 +

k

(M + 1)SAλ

)
+ 2 log

(
2

δ

))
+

√
λ

4M
+
√
λL,

and assuming that L = Ω(1), we take λ = Θ(SAHM
2.5

L ), so βK(4δ) = Õ(
√
SAHM2.5L).

C.3. Optimism in Logistic DCMDPs

In this section, we prove Proposition C.5, which allows us to apply the regret decomposition (Lemma E.6) necessary for
proving Theorem 4.1.

We start by clearly stating the output value of the planning algorithm. For any f ∈ F , we define the truncated optimistic
value under f as the solution to the following value iteration problem:

V̄ k,fH+1(s, τH+1) = 0, ∀s ∈ S, τH+1 ∈ HH+1

V̄ k,fh (s, τh) = min
{
H,max

a

{[
Zfh r̄

k
h

]
(s, a, τh) +

[
T
P̂kh ,f
h V̄ k,fh+1

]
(s, a, τh)

}}
, ∀h ∈ [H], s ∈ S, τh ∈ Hh.

Then, given an initial state s, we define the optimistic value of the DCMDP by V̄ k1 (s, τh) = maxf∈Ck(δ) V̄
k,f
1 (s, τh). For

this value, the following holds:

Proposition C.5. Under the good event G, for any k ≥ 1 and any initial state s ∈ S, it holds that V̄ k1 (s) ≥ V ∗1 (s).

Proof. Assume that G holds, and let V̄ k,fh (s, τh), V̄ k1 (s, τh) as defined by the beginning of the section. In the proof, we will
show that for any k ∈ [K], s ∈ S, h ∈ [H] and τh ∈ Hh and f ∈ F , it holds that V̄ k,fh (s, τh) ≥ V ∗,f (s, τh). Since under
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G, we know that f ∈ Ck(δ), we then have that

V̄ k1 (s) = max
f∈Ck(δ)

V̄ k,f1 (s, τh) ≥ max
f∈Ck(δ)

V ∗,f1 (s, τh) ≥ V ∗1 (s),

which would conclude the prove. Throughout this proof, we assume w.l.o.g. that all optimistic values are smaller than H;
otherwise, they will be truncated to H , which still always optimistic since the rewards are in [0, 1] and the horizon is H .

We prove that V̄ k,fh (s, τh) ≥ V ∗,f (s, τh) by backward-induction. First notice that the claim holds for h = H , since

V̄ k,fH (s, τH ;f)− V ∗,fH (s, τH) = max
a

{[
ZfH r̄

k
H

]
(s, a, τH)

}
−max

a

{[
ZfHrH

]
(s, a, τH)

}
(1)

≥
[
ZfH r̄

k
H

]
(s, a∗, τH)−

[
ZfHrH

]
(s, a∗, τH)

(for a∗ ∈ arg maxa

{[
ZfHrH

]
(s, a, τH)

}
)

≥
[
ZfH(r̂kH + br,kH − r)

]
(s, a∗, τH)

≥ 0 (Lemma E.1)

Now let h ∈ [H − 1] and assume that the claim holds for h+ 1. Then, for

a∗ ∈ arg max
a

{[
Zfh rh

]
(s, a, τh) +

[
ThV

∗,f
h+1

]
(s, a, τh)

}
,

we have

V̄ k,fh (s, τh)− V ∗,fh (s, τh)

= max
a

{[
Zfh r̄

k
h

]
(s, a, τh) +

[
T
P̂kh ,f
h V̄ k,fh+1

]
(s, a, τh)

}
−max

a

{[
Zfh rh

]
(s, a, τh) +

[
ThV

∗,f
h+1

]
(s, a, τh)

}
(1)

≥
[
Zfh r̄

k
h

]
(s, a∗, τh) +

[
T
P̂kh ,f
h V̄ k,fh+1

]
(s, a∗, τh)−

[
Zfh rh

]
(s, a∗, τh)−

[
ThV

∗,f
h+1

]
(s, a∗, τh)

=
[
Zfh r̄

k
h

]
(s, a∗, τh)−

[
Zfh rh

]
(s, a∗, τh) +

[(
T
P̂kh ,f
h − Th

)
V̄ k,fh+1

]
(s, a∗, τh) +

[
Th

(
V̄ k,fh+1 − V

∗,f
h+1

)]
(s, a∗, τh)

(2)

≥
[
Zfh r̄

k
h

]
(s, a∗, τh)−

[
Zfh rh

]
(s, a∗, τh) +

[(
T
P̂kh ,f
h − Th

)
V̄ k,fh+1

]
(s, a∗, τh)

=
[
Zfh
(
r̄kh − rh

)]
(s, a∗, τh) +

[
Zfh

(
P̂ kh − Ph

)
V̄ k,fh+1

]
(s, a∗, τh),

where in (1) we used the definition of the max operator, and in (2) the induction step. Overall, replacing r̄kh with its
definition, we get that

V̄ kh (s, τh)− V ∗h (s, τh) ≥
[
Zfh

(
r̂kh + br,kh − rh

)]
(s, a∗, τh) +

[
Zfh

((
P̂ kh − Ph

)
V̄ k,fh+1 + bp,kh

)]
(s, a∗, τh)

≥ 0,

where the second inequality is by Lemma E.1 and Lemma E.2, which hold under G.
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D. Regret Analysis for Tractable LDC-UCB
In this section, we prove the regret bounds of Theorem 5.7. We start by defining the good event, which holds uniformly for
all episode with probability 1− δ. Then, we show that the Tractable LDC-UCB is optimistic under the good event. Next, we
decompose the regret to error terms of the reward, transition and latent features, and analyzing each of these terms result
with the desired regret bounds.

We start by stating the bonuses which the algorithm uses:

br,kx,h(s, a) = min


√

log 8SAMHK
δ

nkh(s, a, x) ∨ 1
, 1


bp,kx,h(s, a) = min

H
√

4S log 8SAMHK
δ

nkh(s, a, x) ∨ 1
, 2H


bf ,kx,h(s, a) =

2
√
κγk(4δ)√

nkh(s, a, x) + 4λ

The confidence intervals can then be written as

Ck
h =

[
σ(τkh ; f̂

k
)−

h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t ), σ(τkh ; f̂

k
) +

h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t )

]

D.1. Failure Events

We define the following failure events.

F rk =

∃s ∈ S, a ∈ A, x ∈ X , h ∈ [H] : |rx,h(s, a)− r̂kx,h(s, a)| > min


√

log 2SAMHK
δ′

nkh(s, a, x) ∨ 1
, 1




F pk =

∃s ∈ S, a ∈ A, x ∈ X , h ∈ [H] :
∥∥∥Px,h(· | s, a)− P̂ kx,h(· | s, a)

∥∥∥
1
> min


√

4S log 2SAMHK
δ′

nkh(s, a, x) ∨ 1
, 2




Fn =


K∑
k=1

H∑
h=1

M+1∑
i=1

E

 zki,h√
nkh(skh, a

k
h, i) ∨ 1

∣∣∣∣∣∣ Fk−1

 > 18H2 log

(
1

δ′

)
+ 2HS(M + 1)A+ 4

√
H2S(M + 1)AK


F f ,local
k =

∃s ∈ S, a ∈ A, x ∈ X , i ∈ [M ], h ∈ [H] :
∣∣∣f̂ki,h(s, a, x)− f∗i,h(s, a, x)

∣∣∣ > 2
√
κγk(δ′)√

nkh(s, a, x) + 4λ


where γk(δ) is defined in Proposition G.10.

Then, we define the good event, where none of the aforementioned failure events ever occur, i.e.,

G =
(
∪k∈[K]F̄

r
k

)
∩
(
∪k∈[K]F̄

p
k

)
∩
(
∪k∈[K]F̄

f ,local
k

)
∩ F̄n

Lemma D.1. Letting δ′ = δ/4, the event G holds with probability at least 1− δ.

Proof. The proof is almost identical to the one of Lemma C.1. We only need to prove that Pr
{
∪k∈[K]F̄

f ,local
k

}
≤ δ′, which

directly follows by Lemma 5.2.
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D.2. Regret Analysis – Proof of Theorem 5.7

Theorem 5.7. Let λ = Θ(HM
2.5SA
L ). With probability at least 1− δ, the regret of Algorithm 2 is

R(K) ≤ Õ
(√

H8M6.5S2A2L4κK
)
.

Proof. Let

σ̄kh(s, τh) ∈ arg max
σ̄∈Ckh

max
a

{
M+1∑
i=1

zi(σ̄)r̄ki,h(s, a) +

M+1∑
i=1

zi(σ̄)P̂ ki,h(·|s, a)T V̄ kh+1(·, τh+1)

}
,

and denote Z̄kh(s, τh) = z(σ̄kh(s, τh)).

Under the good event, the conditions of the regret decomposition lemma (Lemma E.6) hold with r̄, P̂ , Z̄ and c = 4 due to
the truncated value iteration, truncated bonuses and value optimism lemma (Proposition C.5). Therefore, the regret can be
decomposed in the following way,

Reg(K) ≤
K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∣∣r̄ki,h(skh, a
k
h)− ri,h(skh, a

k
h)
∣∣ ∣∣ Fk−1

]
︸ ︷︷ ︸

(i)

+H

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∥∥∥(P̂ kh − Ph)(·|skh, akh)
∥∥∥

1

∣∣∣ Fk−1

]
︸ ︷︷ ︸

(ii)

+ 5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
︸ ︷︷ ︸

(iii)

.

The terms (i) and (iii) are identical to the ones in the proof of Theorem 4.1 (as the reward bonuses are identical), and thus
can be bounded by Lemma C.2 and Lemma C.3. Term (iii) can be bounded by Lemma D.2.

Thus, we obtain,

Reg(K) ≤ O

(
H2S

√
MAK log

SAMHK

δ

)

+O

(
H2S

√
MAK log

SAMHK

δ

)
+ Õ

(√
H8S2A2M6.5L4κK

)
≤ Õ

(√
H8S2A2M6.5L4κK

)

Lemma D.2 (Latent Features Concentration). Under the good event, it holds that

5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
≤ O

((
1√
λ
∨ 1

)
γK(4δ)

√
κH6SM3AK

)
≤ Õ

(√
H8S2A2M6.5L4κK

)
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Proof.

5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
= 5H

K∑
k=1

H∑
h=1

E
[ ∥∥z(σ̄kh(s, τkh ))− z(σ(τkh ;f∗)

∥∥
1

∣∣ Fk−1

]
(1)

≤ 10H

K∑
k=1

H∑
h=1

M∑
i=1

E
[ ∣∣zi(σ̄kh(s, τkh ))− zi(σ(τkh ;f∗)

∣∣ ∣∣ Fk−1

]
(2)

≤ 2.5H

K∑
k=1

H∑
h=1

M∑
i=1

E
[ ∣∣σ̄ki,h(s, τkh )− σi(τkh ;f∗)

∣∣ ∣∣ Fk−1

]
where relation (1) holds by substituting zM+1(x) = 1−

∑M
i=1 zi(x) and applying the triangle inequality, and relation (2)

is since the function f(x) = ex/(a+ ex) is 1
4 -Lipschitz, and zi(x) can be represented as such a function of xi. Then,

5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
≤ 2.5H

K∑
k=1

H∑
h=1

M∑
i=1

E
[ ∣∣σ̄ki,h(s, τkh )− σi(τkh ;f∗

∣∣ ∣∣ Fk−1

]
≤ 2.5H

K∑
k=1

H∑
h=1

M∑
i=1

E
[ ∣∣∣σi(τh; f̂

k
)− σi(τkh ;f∗

∣∣∣ ∣∣∣ Fk−1

]
+ 2.5H

K∑
k=1

H∑
h=1

M∑
i=1

E

[
h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t )

∣∣∣∣∣ Fk−1

]

≤ 2.5H

K∑
k=1

H∑
h=1

M∑
i=1

E

[
h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t )

∣∣∣∣∣ Fk−1

]

+ 2.5H

K∑
k=1

H∑
h=1

M∑
i=1

E

[
h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t )

∣∣∣∣∣ Fk−1

]
(Under G)

= 5HM

K∑
k=1

H∑
h=1

E

[
h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t )

∣∣∣∣∣ Fk−1

]

≤ 5H2M

K∑
k=1

H∑
h=1

E
[
bf ,k
xkh,h

(skh, a
k
h)
∣∣∣ Fk−1

]

≤ 10H2M
√
κγK(4δ)

K∑
k=1

H∑
h=1

E

 1√
nkh(skh, a

k
h, x

k
h) + 4λ

∣∣∣∣∣∣ Fk−1


≤ 10H2M

(
1

2
√
λ
∨ 1

)√
κγK(4δ)

K∑
k=1

H∑
h=1

E

 1√
nkh(skh, a

k
h, x

k
h) ∨ 1

∣∣∣∣∣∣ Fk−1


≤ 10H2M

(
1

2
√
λ
∨ 1

)√
κγK(4δ)

(
18H2 log

(
1

δ

)
+ 2HS(M + 1)A+ 4

√
H2S(M + 1)AK

)
(Lemma E.7)

= O
((

1√
λ
∨ 1

)
γK(4δ)

√
κH6SM3AK

)
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Now, note that by the definition in Proposition G.10, γk(δ) :=
(

2 + 2L+
√

2(1 + L)
)
βk(δ) +

√
2(1+L)HM

λ β2
k(δ).

Also, by Equation (12), βk(δ) = M3/2(M+1)SAH√
λ

(
log
(

1 + k
(M+1)SAλ

)
+ 2 log

(
2
δ

))
+
√

λ
4M +

√
λL. Plugging in these

definitions we have that,

γk(δ) =
(

2 + 2L+
√

2(1 + L)
)(M3/2(M + 1)SAH√

λ

(
log

(
1 +

k

(M + 1)SAλ

)
+ 2 log

(
2

δ

))
+

√
λ

4M
+
√
λL

)

+

√
2(1 + L)HM

λ

(
M3/2(M + 1)SAH√

λ

(
log

(
1 +

k

(M + 1)SAλ

)
+ 2 log

(
2

δ

))
+

√
λ

4M
+
√
λL

)2

≤ O

(
LM5/2SAH

λ
log

(
1

δ
+

k

MSAλδ

)
+ L

√
λ

M
+
√
λL2

)

+

√
2(1 + L)HM

λ
O
(
M5S2AH2

λ
log2

(
1

δ
+

k

MSAλδ

)
+

λ

M
+ λL2

)
= Õ

(
λ−1LM5/2SAH + λ1/2LM−1/2 + λ1/2L2

)
+ Õ

(
λ−3/2L1/2M11/2S2A2H5/2 + λ1/2L1/2M−1/2H1/2 + λ1/2L5/2M1/2H1/2

)
≤ Õ

(
λ−1LM5/2SAH + λ1/2LM−1/2 + λ−3/2L1/2M11/2S2A2H5/2

+ λ1/2L1/2M−1/2H1/2 + λ1/2L5/2M1/2H1/2
)

≤ Õ
(
L2M7/4S1/2A1/2H

)
,

where we used λ = M2.5SAH
L to minimize the above term.

Finally, plugging in this expression we have that

5H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z f̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
≤ O

((
1√
λ
∨ 1

)
γK(4δ)

√
κH6SM3AK

)
≤ Õ

(
L2M7/4S1/2A1/2H

√
κH6SM3AK

)
= Õ

(√
H8S2A2M6.5L4κK

)
,

where we assumed that λ ≥ 1

D.3. Optimism in Tractable Logistic DCMDPs – Proof of Proposition 5.3

In this section, we prove Proposition 5.3, which allows us to apply the regret decomposition (Lemma E.6) necessary for
proving Theorem 5.7.

Proposition 5.3 (Optimistic Value). Let V̄h as defined in Equation (8). Then, w.h.p. V̄1(sk1 ,C
k
1) ≥ V ∗1 (sk1).

Proof. We divide the proof into two steps. Defining V̄h(s, τh) the optimistic value function which follows the equations

V̄ kH+1(s, τH+1) = 0, ∀s ∈ S, τH+1 ∈ HH+1, and

V̄ kh (s, τh) = min

{
H,max

a
max

σ̄∈C(σ(τh))

{
M+1∑
i=1

zi(σ̄)r̄ki,h(s, a) +

M+1∑
i=1

zi(σ̄)P̂ ki,h(·|s, a)T V̄ kh+1(·, τh+1)

}}
,

∀h ∈ [H], s ∈ S, τh ∈ Hh,

we first show that V̄ kh (s,Ck
h(τh)) = V̄ kh (s, τh) for all k ∈ [K], h ∈ [H], s ∈ S and τh ∈ Hh. This follows due to a simple

induction; first notice that the claim trivially holds when h = H + 1, where both values are 0. Now fix h ∈ [H] and assume
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that V̄ kh+1(s,Ck
h(τh+1)) = V̄ kh+1(s, τh+1) for all s ∈ S and τh+1 ∈ Hh+1. In the following, we prove that this implies

V̄ kh (s,Ck
h(τh)) = V̄ kh (s, τh) for any s ∈ S and τh ∈ Hh, which prove the claim.

V̄h(s,Ck
h(τh)) = min

{
max
a∈A

max
t∈T (Q̄)

M∑
i=0

zi

(
tht

(
Q̄,Ck

h(τh)
))
Q̄i(s, a,C

k
h(τh)), H

}
(1)
= min

{
max
a∈A

max
σ̄∈Ckh(τh)

M∑
i=0

zi(σ̄)Q̄i(s, a,C
k
h(τh)), H

}

= min

{
max
a∈A

max
σ̄∈Ckh(τh)

M∑
i=0

zi(σ̄)
(
r̄i(s, a) + Es′∼P̂i(·|s,a)

[
V̄h+1(s′,Ch+1(a, i))

])
, H

}
(2)
= min

{
max
a∈A

max
σ̄∈Ckh(τh)

M∑
i=0

zi(σ̄)
(
r̄i(s, a) + Es′∼P̂i(·|s,a)

[
V̄h+1(s′,Ck

h+1)
])
, H

}
(3)
= min

{
max
a∈A

max
σ̄∈Ckh(τh)

M∑
i=0

zi(σ̄)
(
r̄i(s, a) + Es′∼P̂i(·|s,a)

[
V̄ kh+1(s, τh)

])
, H

}
= V̄ kh (s, τh)

Relation (1) is by Lemma 5.6, which proves that when the confidence interval of a multinomial function is rectangular,
one of the maximizers of an linear combination w.r.t. this function is a threshold function; therefore, the maximum over
threshold functions achieves the same value at the rectangular set. Relation (2) is by the definition of Ch+1(ah, xh) at
Algorithm 4, which implies that Ch+1(ah, xh) = Ck

h+1. Finally, (3) is by the induction hypothesis.

Next, we prove that under the good event, V̄ kh (s, τh) ≥ V ∗h (s, τh) for all k ∈ [K], h ∈ [H], s ∈ S and τh ∈ Hh.
This claim is also proved by induction and clearly holds when h = H + 1, when all values equal zero. Assume that
V̄ kh+1(s, τh+1) ≥ V ∗h+1(s, τh+1) for all s ∈ S, τh+1 ∈ Hh+1. Also, assume w.l.o.g. that V̄ kh (s, τh) < H , otherwise the
claim trivially holds. Then, denoting

a∗ ∈ arg max
a

{[
Zf
∗

h rh

]
(s, a, τh) +

[
ThV

∗,f∗
h+1

]
(s, a, τh)

}
,

and under G,

V̄ kh (s, τh)− V ∗h (s, τh)

= max
a

max
σ̄∈Ckh

{
M+1∑
i=1

zi(σ̄)r̄ki,h(s, a) +

M+1∑
i=1

zi(σ̄)P̂ ki,h(·|s, a)T V̄ kh+1(·, τh+1)

}
−max

a

{[
Zf
∗

h rh

]
(s, a, τh) +

[
ThV

∗,f∗
h+1

]
(s, a, τh)

}
(1)

≥ max
σ̄∈Ckh

{
M+1∑
i=1

zi(σ̄)r̄ki,h(s, a∗) +

M+1∑
i=1

zi(σ̄)P̂ ki,h(·|s, a∗)T V̄ kh+1(·, τh+1)

}
−
[
Zf
∗

h rh

]
(s, a∗, τh)−

[
ThV

∗,f∗
h+1

]
(s, a∗, τh)

(2)

≥
[
Zf
∗

h r̄kh

]
(s, a∗, τh)−

[
T
P̂kh ,f

∗

h V̄ kh+1

]
(s, a∗, τh)−

[
Zf
∗

h rh

]
(s, a∗, τh)−

[
ThV

∗,f∗
h+1

]
(s, a∗, τh)

=
[
Zf
∗

h r̄kh

]
(s, a∗, τh)−

[
Zf
∗

h rh

]
(s, a∗, τh) +

[(
T
P̂kh ,f

∗

h − Th
)
V̄ k,f

∗

h+1

]
(s, a∗, τh) +

[
Th

(
V̄ k,f

∗

h+1 − V
∗,f∗
h+1

)]
(s, a∗, τh)

(3)

≥
[
Zf
∗

h r̄kh

]
(s, a∗, τh)−

[
Zf
∗

h rh

]
(s, a∗, τh) +

[(
T
P̂kh ,f

∗

h − Th
)
V̄ k,f

∗

h+1

]
(s, a∗, τh)

=
[
Zf
∗

h

(
r̄kh − rh

)]
(s, a∗, τh) +

[
Zf
∗

h

(
P̂ kh − Ph

)
V̄ k,f

∗

h+1

]
(s, a∗, τh).
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In (1) we used the definition of the max operator. Relation (2) holds since under the good event,

C(σ(τkh ;f∗)) =

h−1∑
t=0

αh−t−1f t(st, at, xt)

∈

[
σ(τh; f̂

k
)−

h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t ), σ(τ ; f̂

k
) +

h−1∑
t=0

αh−t−1bf ,k
xkt ,t

(skt , a
k
t )

]
(Under G)

= Ck
h.

In (3), we used the induction step the induction step. Overall, replacing r̄kh with its definition, we get that

V̄ kh (s, τh)− V ∗h (s, τh) ≥
[
Zf
∗

h

(
r̂kh + br,kh − rh

)]
(s, a∗, τh) +

[
Zf
∗

h

((
P̂ kh − Ph

)
V̄ k,f

∗

h+1 + bp,kh

)]
(s, a∗, τh)

≥ 0,

where the second inequality is by Lemma E.1 and Lemma E.2, which hold under G.
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E. Useful Lemmas
E.1. Optimism Lemmas

Lemma E.1 (Reward Optimism). For any k ≥ 1, define the event

F rk =
{
∃s ∈ S, a ∈ A, i ∈ [M ], h ∈ [H] : |ri,h(s, a)− r̂k,ri,h (s, a)| > bki,h(s, a)

}
.

Then, under F̄ rk , for any f ∈ F , h ∈ [H], s ∈ S, a ∈ A and τh ∈ Hh, it holds that[
Zfh (r̂kh + br,kh − r)

]
(s, a, τh) ≥ 0

Proof. The result directly follows by the definition of F̄ rk , since[
Zfh (r̂kh + br,kh − r)

]
(s, a, τh) ≥ min

i

{(
r̂ki,h(s, a)− ri(s, a)

)
+ br,ki,h(s, a)

}
≥ min

i

{
−br,ki,h(s, a) + br,ki,h(s, a)

}
(Under F̄ rk )

= 0

Lemma E.2 (Transition Optimism). For any k ≥ 1, define the event

F pk =

{
∃s ∈ S, a ∈ A, i ∈ [M ], h ∈ [H] :

∥∥∥Pi,h(· | s, a)− P̂ ki,h(· | s, a)
∥∥∥

1
>

1

H
bp,ki,h (s, a)

}
.

Then, under F̄ pk , for any f ∈ F , h ∈ [H], s ∈ S, a ∈ A, τh ∈ Hh and V ∈ [0, H]S , it holds that[
Zfh

((
P̂ kh − Ph

)
V + bp,kh

)]
(s, a, τh) ≥ 0

Proof. The result directly follows by the definition of F̄ pk and Cauchy-Schwartz inequality, since[
Zfh

((
P̂ kh − Ph

)
V + bp,kh

)]
(s, a, τh) ≥ min

i

{[(
P̂ kh − Ph

)
V
]
(s, a) + bp,ki,h (s, a)

}
≥ min

i

{
−
∥∥∥Pi,h(· | s, a)− P̂ ki,h(· | s, a)

∥∥∥
1
‖V ‖∞ + bp,ki,h (s, a)

}
(C.S)

≥ min
i

{
− 1

H
bp,ki,h (s, a) ·H + bp,ki,h (s, a)

}
(Under F̄ pk )

= 0

E.2. Decomposition Lemmas

Lemma E.3.

V : S ×H 7→ R,

Z(1), Z(2) : S ×A×H 7→ ∆X ,

r(1), r(2) : S ×A×H×X 7→ R, and

P (1), P (2) : S ×A×H×X 7→ ∆S .
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Then, for any s ∈ S, a ∈ A, h ∈ [H], τh ∈ H[
Z

(1)
h r

(1)
h + TP

(1),Z(1)

h Vh+1

]
(s, a, τh)−

[
Z

(2)
h r

(2)
h + TP

(2),Z(2)

h Vh+1

]
(s, a, τh)

=
[
Z

(2)
h

(
r

(1)
h − r

(2)
h

)]
(s, a, τh)

+
[(
Z

(1)
h − Z

(2)
h

)(
r

(1)
h + P

(1)
h Vh+1

)]
(s, a, τh)

+
[
Z

(2)
h

(
P

(1)
h − P (2)

h

)
Vh+1

]
(s, a, τh).

Proof. We have that[
Z

(1)
h r

(1)
h + TP

(1),Z(1)

h Vh+1

]
(s, a, τh)−

[
Z

(2)
h r

(2)
h + TP

(2),Z(2)

h Vh+1

]
(s, a, τh)

=
[(
Z

(1)
h − Z

(2)
h

)
r

(1)
h

]
(s, a, τh) +

[
Z(2)

(
r

(1)
h − r

(2)
h

)]
(s, a, τh) +

[(
TP

(1),Z(1)

h − TP
(2),Z(2)

h

)
Vh+1

]
(s, a, τh)

=
[(
Z

(1)
h − Z

(2)
h

)
r

(1)
h

]
(s, a, τh) +

[
Z(2)

(
r

(1)
h − r

(2)
h

)]
(s, a, τh) +

[(
Z

(1)
h P

(1)
h − Z(2)

h P
(2)
h

)
Vh+1

]
(s, a, τh)

=
[(
Z

(1)
h − Z

(2)
h

)
r

(1)
h

]
(s, a, τh) +

[
Z(2)

(
r

(1)
h − r

(2)
h

)]
(s, a, τh)

+
[(
Z

(1)
h − Z

(2)
h

)
P

(1)
h Vh+1

]
(s, a, τh) +

[
Z

(2)
h

(
P

(1)
h − P (2)

h

)
Vh+1

]
(s, a, τh)

=
[
Z

(2)
h

(
r

(1)
h − r

(2)
h

)]
(s, a, τh) +

[(
Z

(1)
h − Z

(2)
h

)(
r

(1)
h + P

(1)
h Vh+1

)]
(s, a, τh) +

[
Z

(2)
h

(
P

(1)
h − P (2)

h

)
Vh+1

]
(s, a, τh).

This completes the proof.

Next, recall that by embedding the history into the state, every DCMDP can be represented as an MDP. This equivalence
will allow us to apply the following lemma on DCMDPs:

Lemma E.4 (Value difference lemma, e.g., Dann et al. (2017), Lemma E.15). Consider two MDPsM = (S,A, P, r,H)
andM′ = (S,A, P ′, r′, H). For any policy π and any s, h, the following relation holds:

V πh (s;M′)− V πh (s;M)

= E

[
H∑
t=h

(r′t(st, at)− rt(st, at)) + (P ′ − P )(· | st, at)TV πt+1(·;M′)|sh = s, π, P

]

Corollary E.5 (Truncated value difference lemma). Consider two MDPsM = (S,A, P, r,H) andM′ = (S,A, P ′, r′, H).
Also, for any C ∈ R, define the truncated value of a policy π under MDPM by the solution to the truncated dynamic
programming problem

V πH+1(s;M, C) = 0, ∀s ∈ S
V πh (s;M, C) = Ea∼π

[
min

{
C, rh(s, a) + P (· | s, a)TV πh+1(·;M, C)

}]
, ∀h ∈ [H], s ∈ S.

Then, for any policy π, any s ∈ S, h ∈ [H] and any C ∈ R, the following relation holds:

V πh (s;M′, C)− V πh (s;M)

≤ E

[
H∑
t=h

(r′t(st, at)− rt(st, at)) + (P ′ − P )(· | st, at)TV πt+1(·;M′, C)|sh = s, π, P

]

Proof. We build an MDP whose value (without truncation) is V πh (s;M′, C) and its reward are always smaller than the
rewards ofM′. In particular, for any h ∈ [H], s ∈ S and a ∈ A, define the new reward function

r̄h(s, a) = r′h(s, a)−max
{

0, r′h(s, a) + P ′(· | s, a)TV πh+1(s;M′, C)− C
}
≤ r′h(s, a), (10)
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and denote M̄ = (S,A, P ′, r̄, H). Clearly, V πH+1(s;M̄) = V πH+1(s;M′, C) = 0. Now assume by induction the the
equality holds for all t > h and all s ∈ S.

Let s ∈ S be some state. If for some a ∈ A, the maximizer in Equation (10) equals zero, then there was no truncation in the
value iteration and so, by the induction hypothesis, we get

r̄h(s, a) + P ′(· | s, a)TV πh+1(·;M̄) = r′h(s, a) + P ′(· | s, a)TV πh+1(·;M′, C)

= min
{
C, rh(s, a) + P (· | s, a)TV πh+1(·;M′, C)

}
.

On the other hand, if the maximizer in Equation (10) is not zero, then one can easily verify that

r̄h(s, a) + P ′(· | s, a)TV πh+1(·;M̄) = min
{
C, rh(s, a) + P ′(· | s, a)TV πh+1(·;M′, C)

}
= C

Therefore, this equality holds for all a ∈ A and thus

V πh (s;M̄) = Ea∼π
[
r̄h(s, a) + P ′(· | s, a)TV πh+1(·;M̄)

]
= Ea∼π

[
min

{
C, rh(s, a) + P ′(· | s, a)TV πh+1(·;M; , C)

}]
= V πh (s;M′, C),

and by induction, this equality holds for all h ∈ [H] and s ∈ S . Now, using this fact with Lemma E.4 onM and M̄, we get:

V πh (s;M′, C)− V πh (s;M)

= E

[
H∑
t=h

(r̄t(st, at)− rt(st, at)) + (P ′ − P )(· | st, at)TV πt+1(·;M′, C)|sh = s, π, P

]

≤ E

[
H∑
t=h

(r′t(st, at)− rt(st, at)) + (P ′ − P )(· | st, at)TV πt+1(·;M′, C)|sh = s, π, P

]

where the inequality is since r̄h(s, a) ≤ r′h(s, a) for all h, s, a.

We are now ready to present the general regret decomposition lemma.

Lemma E.6 (Regret Decomposition). Assume that there exist an optimistic value function V̄ kh such that the following hold:

1. Value representation. For all k ∈ [K] and h ∈ [H], there exist Z̄kh : S ×A×Hh 7→ ∆X , r̄kh : S ×A× X 7→ R and
P̄ kh : S ×A× X 7→ ∆S such that for all k ≥ 1, h ∈ [H], s,∈ S and τh ∈ Hh, it holds that

V̄ kh (s, τh) ≤ Z̄kh r̄kh + T
P̄kh ,f̄k
h (·|skh, akh, τkh )T V̄ kh+1(·, τkh+1).

2. Boundedness. For all k ≥ 1, h ∈ [H], s,∈ S, a ∈ A i ∈ [M + 1] and τh ∈ Hh, it holds that 0 ≤ V̄ kh (s, τh) ≤ H
and 0 ≤ r̄ki,h(s, a, τh) ≤ cH for some c > 0.

3. Optimism. For all k ≥ 1, it holds that V̄ kh (sk1) ≥ V ∗1 (sk1).

Then, the regret can be bounded by

Reg(K) ≤
K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∣∣r̄ki,h(skh, a
k
h)− ri,h(skh, a

k
h)
∣∣ ∣∣ Fk−1

]
+H

K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∥∥(P̄ kh − Ph)(·|skh, akh)
∥∥

1

∣∣ Fk−1

]
+ (c+ 1)H

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
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Proof.

Reg(K) =

K∑
k=1

V ∗1 (sk1)− V π
k

1 (sk1)

≤
K∑
k=1

V̄ k1 (sk1)− V π
k

1 (sk1) (Optimism)

≤
K∑
k=1

H∑
h=1

E
[

(Z̄kh r̄
k
h − Z

f∗

h rh)(skh, a
k
h, τ

k
h ) + (T

P̄kh ,f̄k
h − Th)(·|skh, akh, τkh )T V̄ kh+1(·, τkh+1)

∣∣∣ Fk−1

]
(Corollary E.5)

≤
K∑
k=1

H∑
h=1

E
[ [
Zf
∗

h

(
r̄kh − rh

)]
(skh, a

k
h, τ

k
h )
∣∣∣ Fk−1

]
︸ ︷︷ ︸

(i)

+

K∑
k=1

H∑
h=1

E
[ (
Z̄kh − Z

f∗

h

)(
r̄kh(skh, a

k
h) + P̄ kh (·|skh, akh)V̄ kh+1(·, τkh+1)

) ∣∣∣ Fk−1

]
︸ ︷︷ ︸

(ii)

+

K∑
k=1

H∑
h=1

E
[
Zf
∗

h

[
P̄ kh − Ph

]
(·|skh, akh, τkh )

T
V̄ kh+1(·, τkh+1)

∣∣∣ Fk−1

]
︸ ︷︷ ︸

(iii)

(Lemma E.3)

Notice that in the application of Lemma E.4, which was applied w.r.t. πk, we used the fact that any DCMDP can be
represented as an MDP whose history was embedded into the state. We now bound each of the terms of the decomposition.

Reward error

(i) =

K∑
k=1

H∑
h=1

E

[
M+1∑
i=1

zki,h
(
r̄ki,h(skh, a

k
h)− ri,h(skh, a

k
h)
) ∣∣∣∣∣ Fk−1

]

≤
K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∣∣r̄ki,h(skh, a
k
h)− ri,h(skh, a

k
h)
∣∣ ∣∣ Fk−1

]
Latent features error

(ii) ≤
K∑
k=1

H∑
h=1

E
[ ∥∥∥Z̄kh − Zf∗h ∥∥∥

1

∥∥∥r̄kh(skh, a
k
h) + P̂ kh (·|skh, akh)T V̄ kh+1(·, τkh+1)

∥∥∥
∞

∣∣∣ Fk−1

]
(Hölder)

≤ (c+ 1)H
√
M + 1

K∑
k=1

H∑
h=1

E
[ ∥∥∥Z̄kh − Zf∗h ∥∥∥

1

∣∣∣ Fk−1

]
where the last inequality is since the optimistic value is bounded in [0, H] and the reward is in [0, cH].

Transition error

(iii) =

K∑
k=1

H∑
h=1

E

[
M+1∑
i=1

zki,h

((
P̂ kh − Ph

)
(·|skh, akh)T V̄ kh+1(·, τkh+1)

) ∣∣∣∣∣ Fk−1

]

≤
K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∥∥∥(P̂ kh − Ph)(·|skh, akh)
∥∥∥

1

∥∥V̄ kh+1(·, τkh+1)
∥∥
∞

∣∣∣ Fk−1

]
(Hölder)

≤ H
K∑
k=1

H∑
h=1

M+1∑
i=1

E
[
zki,h

∥∥∥(P̂ kh − Ph)(·|skh, akh)
∥∥∥

1

∣∣∣ Fk−1

]
(Boundedness)
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Combining all bounds concludes the proof.

E.3. Visitation-Summation Lemmas

Lemma E.7 (Expected Cumulative Visitation Bound, Lemma 22, Efroni et al. (2020), adapted to DCMDPs). Let {Fk}Kk=1

be the natural filtration. Then, with probability greater than 1− δ it holds that

K∑
k=1

H∑
h=1

M+1∑
i=1

E

 zki,h√
nkh(skh, a

k
h, i) ∨ 1

∣∣∣∣∣∣ Fk−1

 =

K∑
k=1

E

 H∑
h=1

1√
nkh(skh, a

k
h, x

k
h) ∨ 1

∣∣∣∣∣∣ Fk−1


≤ 18H2 log

(
1

δ

)
+ 2HS(M + 1)A+ 4

√
H2S(M + 1)AK

= O
(
H

(
SMA+H log

(
1

δ

))
+
√
H2SMAK

)
= Õ

(√
H2SMAK

)

Proof. We start by rewriting the sum as follows:

K∑
k=1

H∑
h=1

M+1∑
i=1

E

 zki,h√
nkh(skh, a

k
h, i) ∨ 1

∣∣∣∣∣∣ Fk−1

 =

K∑
k=1

H∑
h=1

E

M+1∑
i=1

zki,h
1√

nkh(skh, a
k
h, i) ∨ 1

∣∣∣∣∣∣ Fk−1


=

K∑
k=1

H∑
h=1

E

Exkh∼zki,h

 1√
nkh(skh, a

k
h, x

k
h) ∨ 1

 ∣∣∣∣∣∣ Fk−1


=

K∑
k=1

H∑
h=1

E

 1√
nkh(skh, a

k
h, x

k
h) ∨ 1

∣∣∣∣∣∣ Fk−1


=

K∑
k=1

E

 H∑
h=1

1√
nkh(skh, a

k
h, x

k
h) ∨ 1

∣∣∣∣∣∣ Fk−1

,

which proves the first equality. Now, defining Yk =
∑H
h=1

1√
nkh(skh,a

k
h,x

k
h)∨1

, which is Fk-measurable and bounded almost

surely in [0, H], we can apply Lemma 27 of (Efroni et al., 2021) and get that for any δ > 0, with probability at least 1− δ,

K∑
k=1

H∑
h=1

M+1∑
i=1

E

 zki,h√
nkh(skh, a

k
h, x

k
h)) ∨ 1

∣∣∣∣∣∣ Fk−1

 ≤ (1 +
1

2H

) K∑
k=1

H∑
h=1

1√
nkh(skh, a

k
h, x

k
h) ∨ 1

+ 2(2H + 1)2 log
1

δ

≤ 2

K∑
k=1

H∑
h=1

1√
nkh(skh, a

k
h, x

k
h) ∨ 1

+ 18H2 log
1

δ
.
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Finally, observing that every time a context-state-action is visited, its count increases, we can bound the sum by
K∑
k=1

H∑
h=1

1√
nkh(skh, a

k
h, x

k
h) ∨ 1

=

K∑
k=1

H∑
h=1

∑
x∈X

∑
s∈S

∑
a∈A

1
{
xkh = x, skh = s, akh = a

}√
nkh(skh, a

k
h, x

k
h) ∨ 1

≤
H∑
h=1

∑
x∈X

∑
s∈S

∑
a∈A

1 +

nKh (s,a,x)∑
n=1

1√
n


≤ HS(M + 1)A+

H∑
h=1

∑
x∈X

∑
s∈S

∑
a∈A

2
√
nKh (s, a, x)

≤ HS(M + 1)A+ 2

√√√√√√HS(M + 1)A

H∑
h=1

∑
x∈X

∑
s∈S

∑
a∈A

nKh (s, a, x)︸ ︷︷ ︸
=HK

(Cauchy Schwartz)

= HS(M + 1)A+ 2
√
H2S(M + 1)AK.

Substituting this bound concludes the proof.

Lemma E.8 (Elliptical potential lemma, Abbasi-Yadkori et al. (2011)). Let {xt}∞t=1 be a sequence in Rd such that
‖xt‖2 ≤ L for all t ≥ 1 and let V t = λI +

∑t−1
s=1 xsx

T
s . Then,

n∑
t=1

min
{
‖xt‖2V −1

t
, 1
}
≤ 2d log

λd+ nL2

λd

Corollary E.9. Let {xkh}k≥1,h∈[H] be a sequence in Rd such that ‖xt‖2 ≤ L for all k, h and let V k = λI +∑k−1
k′=1

∑H
t=1 x

k′

t x
k′

t

T
. Then,

k∑
k′=1

H∑
h=1

∥∥∥xk′h ∥∥∥
V −1

k′

≤

√
2KH2d log λd+kL2

λd

max{1, L/
√
λ}

.

Proof. Define the matrices V k,h =
∑k−1
k′=1 x

k
hx

k
h

T ; clearly, it holds that V k � V k,h for all k, h, and thus, by applying
Lemma E.8 for each of these matrices, we get

k∑
k′=1

H∑
h=1

min

{∥∥∥xk′h ∥∥∥2

V −1

k′

, 1

}
≤

(
k∑

k′=1

min

{∥∥∥xk′h ∥∥∥2

V −1

k′,h

, 1

})
≤

H∑
h=1

2d log
λd+ kL2

λd
= 2dH log

λd+ kL2

λd
.

Also, notice that if ‖x‖2 ≤ L, then ‖x‖2V −1
k
≤ L2

λmin(V k) ≤
L2

λ , and thus

∥∥∥xk′h ∥∥∥2

V −1

k′

≤
min

{∥∥∥xk′h ∥∥∥2

V −1

k′

, 1

}
max{1, L2/λ}

.

Finally, the desired result is achieved by the Cauchy-Schwartz inequality:

k∑
k′=1

H∑
h=1

∥∥∥xk′h ∥∥∥2

V −1

k′

≤

√√√√KH

k∑
k′=1

H∑
h=1

∥∥xk′h ∥∥2

V −1

k′

≤

√
KH

∑k
k′=1

∑H
h=1 min

{∥∥xk′h ∥∥2

V −1

k′
, 1
}

max{1, L/
√
λ}

≤

√
2KH2d log λd+kL2

λd

max{1, L/
√
λ}
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Algorithm 4 Optimistic Threshold Planner for Logistic DCMDPs

1: require: Optimistic reward r̄, estimated transition P̂ , and rectangular confidence set Bk(δ) for f̂T .
2: init: V̄H(s,C)← 0, for all s,C ∈ S × Ik
3: for h = H − 1, . . . , 1 do
4: for each s ∈ S,Ch ∈

{
C(σ(τh; f̂T )) : τh ∈ Hh

}
do

5: Ch+1 := αCh +
[
lkh,u

k
h

]
6: Q̄i(s, a,Ch) = r̄i(s, a) + Es′∼P̂i(·|s,a)

[
V̄h+1(s′,Ch+1)

]
// State-action optimistic value

7: V̄h(s,Ch) = min
{

maxa∈A,t∈T (Q̄)
∑M
i=0 zi

(
tht
(
Q̄,Ch

))
Q̄i(s, a,Ch), H

}
// Lemma 5.6

8: π̄(s,Ch) ∈ arg maxa∈Amaxt∈T (Q̄)
∑M
i=0 zi

(
tht
(
Q̄,Ch

))
Q̄i(s, a,Ch)

9: end for
10: end for
11: Output π̄(s, τ) = π̄(s,C(σ(τ)))

F. Threshold Optimistic Planning

F.1. Proof of Threshold Optimism – Lemma 5.6

Lemma 5.6 (Threshold Optimism). LetQ ∈ RM+1. For any x ∈ RM+1 such that xi = 0 define f(x) =
∑M+1
i=1 zi(x)Qi.

Let C = [l,u] ⊆ RM+1 × RM+1 and assume that l < u. Then, there exists t ∈ T (Q) such that tht(Q,C) ∈
arg maxx∈C f(x).

Proof. For brevity, throughout the proof, we assume that η = 1, namely, zi(x) = exp(xi)

1+
∑M
m=1 exp(xm)

. This has no impact on

the proof, since one can always denote
[̃
l, ũ
]

= [ηl, ηu] and follow the rest of the proof with the modified intervals.

Let X∗ = arg maxx∈R f(x). We start by showing that there exists at least one solution at the extreme points of R. We
then show that solutions at the extreme points have a thresholding behavior.

Part 1. We first show that X∗ ∩ ext(R) 6= ∅, i.e., there exists x∗ ∈ X∗ that is an extreme point of the setR. Note that f
is continuous andR is a compact set, therefore X∗ is nonempty.

Let x∗ ∈ X∗ and choose some k ∈ [M ]. We show that by replacing x∗k by either lk or uk, we get another solution at X∗.
Repeatedly doing so for all k ∈ [M ] will lead to x∗ ∈ ext(R) and conclude this part of the proof.

We now fix x∗1, . . . , x
∗
k−1, x

∗
k+1, . . . , x

∗
M and study f(x∗) only as a function of x∗k. We also use the convention, x∗0 = 0.

Then,

f(x∗) =

M∑
i=0

zi(x
∗)vi

=

M∑
i=0

exp(x∗i )∑M
j=0 exp

(
x∗j
)vi

=
exp(x∗k)vk∑M
j=0 exp

(
x∗j
) +

∑
i6=k exp(x∗i )vi∑M
j=0 exp

(
x∗j
)

=
exp(x∗k)vk∑M
j=0 exp

(
x∗j
) +

(
1− exp(x∗k)∑M

j=0 exp
(
x∗j
))∑i6=k exp(x∗i )vi∑

j 6=k exp
(
x∗j
) .
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Denote λ(x∗k) =
exp(x∗k)∑M
j=0 exp(x∗j )

, and vref =
∑
i6=k exp(x∗i )vi∑
j 6=k exp(x∗j )

. Then,

f(x∗) = λ(x∗k)vk + (1− λ(x∗k))vref.

Note that, since we fixed x∗1, . . . , x
∗
k−1, x

∗
k+1, . . . , x

∗
M , then vref is constant (does not depend on x∗k). Also, λ(x∗k) is a

strictly monotonically increasing function in x∗k and f(x∗) is linear in λ(x∗k). Hence maxx∗k f(x∗) is achieved either for
x̃∗k = arg minxk∈[lk,uk] λ(xk) = lk or x̃∗k = arg maxxk∈[lk,uk] λ(xk) = uk. Denoting the solution that replaces x∗k with
the maximizer x̃∗k by x̃∗, we get that f(x̃∗) ≥ f(x∗), but since x∗ ∈ X∗, so does x̃∗ ∈ X∗. Following this process for all
k ∈ [M ] leads to an optimal x̃∗ ∈ ext(R) and thus X∗ ∩ ext(R) 6= ∅.

Part 2. For the next part of the proof, we show that there exists an optimal solution that is a threshold function. Without loss
of generality, assume that (v1, . . . , vM ) are sorted in ascending order, such that v1 ≤ v2 ≤ . . . ≤ vM . Let x∗ ∈ X∗∩ext(R),
and assume by contradiction there exists i, j ∈ [M ], i < j, such that x∗i = ui, x

∗
j = lj and vi < vj . Denote

εi = min
{
x∗i − log

(
exp(x∗i ) + exp

(
x∗j
)
− exp(uj)

)
, x∗i − li

}
εj = log

(
exp(x∗i ) + exp

(
x∗j
)
− exp(x∗i − εi)

)
− x∗j

and let x̃ = x∗ − εiei + εjej . Then, εi, εj enjoy the folllowing properties.

1. εi, εj > 0, since

εi ≥ x∗i − log

exp(x∗i ) + exp
(
x∗j
)
− exp(uj)︸ ︷︷ ︸
>0

 > 0,

εj = log

exp(x∗i ) + exp
(
x∗j
)
− exp(x∗i − εi)︸ ︷︷ ︸
>0

− x∗j > 0.

2. By definition, εi ≤ x∗i − li by definition, and εj ≤ uj − x∗j , since by substituting εi, we get

εj ≤ log
(
exp(x∗i ) + exp

(
x∗j
)
− exp

(
x∗i −

[
x∗i − log

(
exp(x∗i ) + exp

(
x∗j
)
− exp(uj)

)]))
− x∗j

= log
(
exp(x∗i ) + exp

(
x∗j
)
− [exp(x∗i ) + exp

(
x∗j
)
− exp(uj)]

)
− x∗j

= uj − x∗j .

In particular, given that εi, εj > 0, it implies that li ≤ x∗i − εi ≤ ui and lj ≤ x∗j + εj ≤ uj .

3. The total weight of i, j is preserved

exp(x∗i − εi) + exp
(
x∗j + εj

)
= exp(x∗i − εi) +

[
exp(x∗i ) + exp

(
x∗j
)
− exp(x∗i − εi)

]
= exp(x∗i ) + exp

(
x∗j
)

Given these properties, x̃ is a valid solution for which we have that

f(x̃) =
exp(x̃i)vi

1 +
∑M
k=0 exp(x̃k)

+
exp(x̃j)vj

1 +
∑M
k=0 exp(x̃k)

+

∑
k 6=i,j exp(x̃k)vk

1 +
∑M
k=1 exp(x̃k)

=
exp(x̃i)vi

1 +
∑M
k=0 exp(x∗k)

+
exp(x̃j)vj

1 +
∑M
k=0 exp(x∗k)

+

∑
k 6=i,j exp(x∗k)vk

1 +
∑M
k=1 exp(x∗k)

. (By property (3))

Therefore,

f(x̃)− f(x∗) =
exp(x∗i − εi)vi + exp

(
x∗j + εj

)
vj − exp(x∗i )vi − exp

(
x∗j
)
vj

1 +
∑M
k=0 exp(x∗k)

.
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Considering the numerator, we have that

exp(x∗i − εi)vi + exp
(
x∗j + εj

)
vj − exp(x∗i )vi − exp

(
x∗j
)
vj

= exp(x∗i − εi)vi +
(
exp(x∗i ) + exp

(
x∗j
)
− exp(x∗i − εi)

)
vj − exp(x∗i )vi − exp

(
x∗j
)
vj (By property (3))

= exp(x∗i − εi)vi + exp(x∗i )vj − exp(x∗i − εi)vj − exp(x∗i )vi

= (exp(x∗i )− exp(x∗i − εi))(vj − vi)
> 0,

where the inequality is since εi > 0 and vi < vj . That is, f(x̃) > f(x∗), in contradiction to x ∈ X∗. To summarize,
we prove that for any x∗ ∈ X∗ ∩ ext(R), if vi < vj , then x∗i ≤ x∗j , which corresponds to a thresholding function. All
that is left is to prove that if vi = vj = v, there exists a solution x∗ ∈ X∗ ∩ ext(R) such that either x∗i = ui, x

∗
j = uj or

x∗i = li, x
∗
j = lj . To show this, we follow a similar path to the first part of the proof and write

f(x∗) =

M∑
k=0

zi(x
∗)vi

=
exp(x∗i )vi + exp

(
x∗j
)
vj∑M

k=0 exp(x∗k)
+

(
1−

exp(x∗i ) + exp
(
x∗j
)∑M

k=0 exp(x∗k)

)∑
k 6=i,j exp(x∗k)vk∑
k 6=i,j exp(x∗k)

=
exp(x∗i ) + exp

(
x∗j
)∑M

k=0 exp(x∗k)
v +

(
1−

exp(x∗i ) + exp
(
x∗j
)∑M

k=0 exp(x∗k)

)∑
k 6=i,j exp(x∗k)vk∑
k 6=i,j exp(x∗k)

.. (vi = vj = v)

Now, denoting λ(x∗i , x
∗
j ) =

exp(x∗i )+exp(x∗j )∑M
k=0 exp(x∗k)

, and vref =
∑
k 6=i,j exp(x∗k)vk∑
k 6=i,j exp(x∗k)

, we can follow the exact same line of the proof as

the first part, and conclude that there exist another solution x̃. in which λ(x∗i , x
∗
j ) is either maximized or minimized – either

x∗i = ui, x
∗
j = uj or x∗i = li, x

∗
j = lj .

This completes the proof.
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G. Confidence Sets
We require the following quantities, used by Amani and Thrampoulidis (2021) or adapted from Abeille et al. (2021). First,
recall that for any f ∈ RM(M+1)SAH and d ∈ RMSAH , we have

A(d,f) := diag(z(d,f))− z(d,f)z(d,f)T

Also, for any f ∈ RM(M+1)SAH , define

gk(f) := λf +

k−1∑
k′=1

H∑
h=1

zi(d
k′

h ,f)⊗ dk
′

h , and Hk(f) := λI +

k−1∑
k′=1

H∑
h=1

A(dk
′

h ,f)⊗ dk
′

h d
k′

h

T
.

Note that by definition

∇fLkλ(f) =

k−1∑
k′=1

H∑
h=1

mk′

h ⊗ d
k′

h − gk(f) and ∇2
fLkλ(f) = −Hk(f) (11)

Confidence Set

Ck(δ) :=

{
f ∈ F :

∥∥∥gk(f)− gk(f̂ t)
∥∥∥
H−1
k (f)

≤ βk(δ)

}
, (12)

where βk(δ) = M3/2(M+1)SAH√
λ

(
log
(

1 + k
(M+1)SAλ

)
+ 2 log

(
2
δ

))
+
√

λ
4M +

√
λL.

Other Notations For any f1,f2 ∈ RM(M+1)SAH and d ∈ RMSAH , define

B(d,f1,f2) :=

∫ 1

0

A(d, vf1 + (1− v)f2)dv,

B̃(d,f1,f2) :=

∫ 1

0

(1− v)A(d, vf1 + (1− v)f2)dv,

Gk(f1,f2) := λI +

k−1∑
k′=1

H∑
h=1

B(dkh,f1,f2)⊗ dkhd
k
h

T
,

G̃k(f1,f2) := λI +

k−1∑
k′=1

H∑
h=1

B̃(dkh,f1,f2)⊗ dkhd
k
h

T
,

V k := λI(M+1)SAH +

k−1∑
k′=1

H∑
h=1

dk
′

h d
k′

h

T
.

Note that we stray from the notation of V k in (Amani and Thrampoulidis, 2021), by removing the factor of κ from the
regularization term.

G.1. Useful Lemmas

We now provide a list of lemmas required for providing confidence intervals for the logistic history dependent transition
model in Appendices C and D. In what follows we will use the following expression:

d2(d,f1,f2) ,
∥∥∥(f1 − f2)

T
d
∥∥∥

2
≤ ‖f1 − f2‖2 ‖d‖2 ≤ L, (13)

To this end, the following properties hold:

Lemma G.1 (Amani and Thrampoulidis (2021), Lemma 2). For any f1,f2 ∈ RM(M+1)SAH and d ∈ RMSAH

z(d,f1)− z(d,f2) = [B(d,f1,f2)⊗ d](f1 − f2)
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Lemma G.2 (Amani and Thrampoulidis (2021), Lemma 3). For any f1,f2 ∈ RM(M+1)SAH ,

gk(f1)− gk(f2) = Gk(f1,f2)(f1 − f2)

Lemma G.3 (Amani and Thrampoulidis (2021), Lemma 4). For any f1,f2 ∈ F , it holds that (1 + 2L)−1Hk(f1) �
Gk(f1,f2) and (1 + 2L)−1Hk(f2) � Gk(f1,f2).

Lemma G.4 (Amani and Thrampoulidis (2021), Lemma 5). For any f ∈ RM(M+1)SAH and d ∈ RMSAH , the matrix
A(d,f) is strictly diagonally dominant and thus positive definite.

Lemma G.5 (Amani and Thrampoulidis (2021), Theorem 1). Let δ ∈ (0, 1). With probability at least 1− δ, for all k ≥ 1,
it holds that f∗ ∈ Ck(δ).

Remark G.6. Notice that Lemma G.4 also implies that all matricesB(d,f1,f2), B̃(d,f1,f2),Gk(f1,f2), G̃k(f1,f2)
are positive definite. More over, it implies that B(d,f1,f2) � B̃(d,f1,f2) (since 1 − v ∈ [0, 1]), and therefore,
Gk(f1,f2) � G̃k(f1,f2).

Relying on our different definition for Vk, the next lemma allows us to gain dependence on the derivative at the real latent
features f∗, instead of the worst-case derivative as in (Amani and Thrampoulidis, 2021).

Lemma G.7 (Connection between Local and Global Design Matrices). For any f ∈ F , denote κ(f) = 1
infd∈D λmin{A(d;f)} .

It holds that

κ(f)Hk(f) � IM ⊗ V k ,

and specifically for f∗ ∈ F ,

κHk(f∗) � IM ⊗ V k .

Proof. For clarity, we state the dimension of the identity matrices throughout the proof. Throughout the analysis, recall that
ifA,B,C � 0 andA � B thenA⊗C � B ⊗C. For any f ∈ F ,

Hk(f) = λIM(M+1)SAH +

k−1∑
k′=1

H∑
h=1

A(dk
′

h ,f)⊗ dk
′

h d
k′

h

T

� λIM(M+1)SAH +

k−1∑
k′=1

H∑
h=1

λmin

{
A(dk

′

h ;f)
}
IM+1 ⊗ dk

′

h d
k′

h

T

� λIM(M+1)SAH +

(
inf
d∈D

λmin{A(d;f)}
) k−1∑
k′=1

H∑
h=1

IM+1 ⊗ dk
′

h d
k′

h

T

= λIM(M+1)SAH +
1

κ(f)

k−1∑
k′=1

H∑
h=1

IM+1 ⊗ dk
′

h d
k′

h

T

=
1

κ(f)
IM ⊗

(
κ(f)λI(M+1)SAH +

k−1∑
k′=1

H∑
h=1

dk
′

h d
k′

h

T

)
(∗)
� 1

κ(f)
IM ⊗

(
λI(M+1)SAH +

k−1∑
k′=1

H∑
h=1

dk
′

h d
k′

h

T

)

=
1

κ(f)
IM ⊗ V k ,

where (∗) holds since κ(f) ≥ 1 (see, e.g., eq. (29) of Amani and Thrampoulidis (2021) when fixing the set of possible
parameters F to be a singleton F = {f}).

Finally, we conclude the proof by noting that for f∗ ∈ F , it holds by definition that κ = κ(f∗).

Lemma G.8. For all d ∈ RMSAH such that ‖d‖2 ≤ 1, k ≥ 1 and f ∈ Ck(δ), if f∗ ∈ Ck(δ) then

‖z(d,f)− z(d,f∗)‖2 ≤ 2βk(δ)(1 + 2L)
√
κ ‖d‖V −1

k
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Proof. Here, we closely follow the proof of Lemma 1 in (Amani and Thrampoulidis, 2021), with the exception that we
apply Lemma G.7 to achieve dependence on κ. Specifically, we let κmax := supdt∈D,f∈F λmax{A(d;f)}. Notice that
following (Amani and Thrampoulidis, 2021, Section 3), it holds that κmax ≤ 1.

‖z(d,f)− z(d,f∗)‖2
= ‖[B(d,f∗,f)⊗ d](f∗ − f)‖ (Lemma G.1)

=
∥∥∥[B(d,f∗,f)⊗ d]G

−1/2
k (f∗,f)G

1/2
k (f∗,f)(f∗ − f)

∥∥∥
≤
∥∥∥[B(d,f∗,f)⊗ d]G

−1/2
k (f∗,f)

∥∥∥ ‖f∗ − f‖Gk(f∗,f) (Cauchy-Schwartz)

=
∥∥∥[B(d,f∗,f)⊗ d]G

−1/2
k (f∗,f)

∥∥∥ ‖gk(f∗)− gk(f)‖G−1
k (f∗,f) (Lemma G.2)

=
√
λmax

(
[B(d,f∗,f)⊗ d]G−1

k (f∗,f)[B(d,f∗,f)⊗ d]
)
‖gk(f∗)− gk(f)‖G−1

k (f∗,f)

=

√
λmax

(
G
−1/2
k (f∗,f)

[
BT (d,f∗,f)⊗ d

][
B(d,f∗,f)⊗ dT

]
G
−1/2
k (f∗,f)

)
‖gk(f∗)− gk(f)‖G−1

k (f∗,f)

(cyclic property of λmax)

=

√
λmax

(
G
−1/2
k (f∗,f)

[
BT (d,f∗,f)B(d,f∗,f)⊗ ddT

]
G
−1/2
k (f∗,f)

)
‖gk(f∗)− gk(f)‖G−1

k (f∗,f)

(mixed-product property)

≤ κmax

√
λmax

(
G−1
k (f∗,f)

[
IM ⊗ ddT

])
‖gk(f∗)− gk(f)‖G−1

k (f∗,f) (definition of κmax)

=

√
λmax

(
G−1
k (f∗,f)[IM ⊗ d]

[
IM ⊗ dT

])
‖gk(f∗)− gk(f)‖G−1

k (f∗,f) (cyclic property of λmax, and κmax ≤ 1)

=

√
λmax

(
[IM ⊗ d]G−1

k (f∗,f)
[
IM ⊗ dT

])
‖gk(f∗)− gk(f)‖G−1

k (f∗,f) (mixed-product property)

≤
√

1 + 2L

√
λmax

(
[IM ⊗ d]H−1

k (f∗)
[
IM ⊗ dT

])
‖gk(f∗)− gk(f)‖G−1

k (f∗,f) (Lemma G.3)

≤
√
κ(1 + 2L)

√
λmax

(
[IM ⊗ d]

[
IM ⊗ V −1

k (f∗)
][
IM ⊗ dT

])
‖gk(f∗)− gk(f)‖G−1

k (f∗,f) (Lemma G.7)

=
√
κ(1 + 2L)

√
λmax

(
IM ⊗ ‖d‖2V −1

k

)
‖gk(f∗)− gk(f)‖G−1

k (f∗,f) (mixed-product property)

=
√
κ(1 + 2L) ‖d‖V −1

k
‖gk(f∗)− gk(f)‖G−1

k (f∗,f)

=
√
κ(1 + 2L) ‖d‖V −1

k

∥∥∥gk(f∗)− gk(f̂) + gk(f̂)− gk(f)
∥∥∥
G−1
k (f∗,f)

=
√
κ(1 + 2L) ‖d‖V −1

k

[∥∥∥gk(f∗)− gk(f̂)
∥∥∥
G−1
k (f∗,f)

+
∥∥∥gk(f̂)− gk(f)

∥∥∥
G−1
k (f∗,f)

]
≤ (1 + 2L)

√
κ ‖d‖V −1

k

[∥∥∥gk(f∗)− gk(f̂)
∥∥∥
H−1
k (f∗)

+
∥∥∥gk(f̂)− gk(f)

∥∥∥
H−1
k (f∗)

]
(Lemma G.3)

≤ 2βk(δ)(1 + 2L)
√
κ ‖d‖V −1

k
. (f ,f∗ ∈ Ck(δ))

The cyclic property of λmax refers to the fact that for two matricesM1,M2, the eigenvalues ofM1M2 are the same as the
eigenvalues ofM2M1, and thus the same hold for the maximal eigenvalue.

Lemma G.9 (Adaptation of (Abeille et al., 2021), Lemma 8, to the multinomial case in Amani and Thrampoulidis (2021),
Lemma 13). For any f1,f2 ∈ F , it holds that (2+2L)−1Hk(f1) � G̃k(f1,f2) and (2+2L)−1Hk(f2) � G̃k(f1,f2).

Proof. According to Sun and Tran-Dinh (2019)[Eq. 16], for any d ∈ RMSAH , f1,f2 ∈ RM(M+1)SAH , and for any
v ∈ [0, 1], we have that∇2f(vx+ (1− v)y) � e−vd2(d,f1,f2)∇2f(y), where d2(d,f1,f2) is defined in Equation (13).
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Thus, ∫ 1

0

(1− v)∇2f(vx+ (1− v)y)dv � ∇2f(y)

∫ 1

0

(1− v)e−vd2(d,f1,f2)dv,

and replacing with the notation∇2f(x) , A(d,x), we get

B̃(d,f1,f2) ,
∫ 1

0

(1− v)A(d, vf1 + (1− v)f2)dv � A(d,f2)

∫ 1

0

(1− v)e−vd2(d,f1,f2)dv,

Integrating the RHS by parts,

B̃(d,f1,f2) �

(
1

d2(d,f1,f2)
+
e−d2(d,f1,f2) − 1

(d2(d,f1,f2))
2

)
∇2f(y) = g(d2(d,f1,f2))A(d,f2),

where we defined g(z) , 1
z

(
1 + e−z−1

z

)
.

Next, by Abeille et al. (2021)[Lemma 10], for all z ≥ 0, it holds that g(z) ≥ 1
2+z , and therefore,

B̃(d,f1,f2) � (2 + d2(d,f1,f2))
−1
A(d,f2)) � (2 + 2L)

−1
A(d,f2), (14)

where the last inequality follows is due to Equation (13).

Plugging in Equation (14) with the definition of G̃k(f1,f2),

G̃k(f1,f2) = λI +

k−1∑
k′=1

H∑
h=1

B̃(dkh,f1,f2)⊗ dkhd
k
h

T

� (2 + 2L)
−1

(
λI +

k−1∑
k′=1

H∑
h=1

A(dk
′

h ,f2)⊗ dk
′

h d
k′

h

T

)
= (2 + 2L)

−1
Hk(f2).

By the symmetry in f1,f2 in the definition of B̃(d,f1,f2), we can similarly prove that (2 + 2L)
−1
Hk(f1) � G̃k(f1,f2)

G.2. Convex Relaxation

Similar to Abeille et al. (2021), we define the convex relaxation of the set Ck(δ) by

Ek(δ) =
{
f ∈ F : Lkλ(f̂k)− Lkλ(f) ≤ ξ2(δ)

}
where ξ(δ) = βk(δ) +

√
HM

λ
β2
k(δ). (15)

The next proposition is an adaptation of (Abeille et al., 2021)[Lemma 1] to the multinomial setting of (Amani and
Thrampoulidis, 2021). Importantly, this proposition provides a confidence interval for the convex relaxation set Equation (15),
which serves as the basis for the tractable estimator in Section 5.1.
Proposition G.10. Let δ ∈ (0, 1).

1. Ck(δ) ⊆ Ek(δ) for all k ≥ 1 and therefore, w.p. 1− δ, f∗ ∈ Ek(δ) for all k ≥ 1.

2. With probability 1− δ, it holds that

∀f ∈ Ek(δ), ‖f − f∗‖Hk(f∗) ≤ (2 + 2L)βk(δ) +
√

2(1 + L)ξk(δ).

In particular, for f̄ ∈ arg maxf∈F Lkλ(f), with probability 1− δ,∥∥f̄ − f∗∥∥
Hk(f∗)

≤ (2 + 2L)βk(δ) +
√

2(1 + L)ξk(δ) , γk(δ),

where γk(δ) :=
(

2 + 2L+
√

2(1 + L)
)
βk(δ) +

√
2(1+L)HM

λ β2
k(δ).
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As in (Abeille et al., 2021), in order to prove Proposition G.10, we first require the following side-lemma:

Lemma G.11 (Counterpart of Abeille et al. (2021), Lemma 2). Let δ ∈ (0, 1). For all f ∈ Ck(δ), it holds that

‖gk(f)− gk(f∗)‖G−1
k (f ,f̂) ≤ ξk(δ).

Proof. First notice that by Remark G.6, the norm w.r.t. the inverse is well-defined and we further have λmin(Gk(f1,f2)) ≥
λ. Next, we utilise Amani and Thrampoulidis (2021), (eq. 61), which states that for any f1,f2 ∈ F , d ∈ D (Recall thatB
is symmetric between f1,f2):

B(d,f1,f2) �
(

1 +
∥∥∥[fT11d− f

T
21d, . . . ,f

T
1Md− f

T
2Md

]∥∥∥)−1

A(d,f1)

(Amani and Thrampoulidis (2021), (eq. 61))

�
(

1 + ‖1M ⊗ d‖G−1
k (f1,f2) ‖f1 − f2‖Gk(f1,f2)

)−1

A(d,f1) (Cauchy-Schwartz)

�

(
1 +

√
HM

λ
‖f1 − f2‖Gk(f1,f2)

)−1

A(d,f1), (Gk(f1,f2) � λI)

where j ∈ [1, ...,M ], f ij is the j-th coordinate of f i and 1M ∈ RM is a vector of ones.

Thus, we can write for any f ∈ Ck(δ)

Gk(f , f̂k) = λI +

k−1∑
k′=1

H∑
h=1

B(dkh,f , f̂k)⊗ dkhd
k
h

T

� λI +

(
1 +

√
HM

λ

∥∥∥f − f̂k∥∥∥
Gk(f ,f̂k)

)−1 k−1∑
k′=1

H∑
h=1

A(d,f)⊗ dkhd
k
h

T
(∀A,B � 0⇒ A⊗B � 0)

�

(
1 +

√
HM

λ

∥∥∥f − f̂k∥∥∥
Gk(f ,f̂k)

)−1(
λI +

k−1∑
k′=1

H∑
h=1

A(d,f)⊗ dkhd
k
h

T

)

=

(
1 +

√
HM

λ

∥∥∥f − f̂k∥∥∥
Gk(f ,f̂k)

)−1

Hk(f)

=

(
1 +

√
HM

λ

∥∥∥gk(f)− gk(f̂k)
∥∥∥
G−1
k (f ,f̂k)

)−1

Hk(f), (Lemma G.2)

Using this inequality, we get∥∥∥gk(f)− gk(f̂k)
∥∥∥2

G−1
k (f ,f̂k)

≤

(
1 +

√
HM

λ

∥∥∥gk(f)− gk(f̂k)
∥∥∥
G−1
k (f ,f̂k)

)∥∥∥gk(f)− gk(f̂k)
∥∥∥2

H−1
k (f)

≤

(
1 +

√
HM

λ

∥∥∥gk(f)− gk(f̂k)
∥∥∥
G−1
k (f ,f̂k)

)
β2
k(δ). (f ∈ Ck(δ), see Equation (12))

Solving this inequality finally yields the desired result (see, e.g. Abeille et al., 2021, Proposition 7):∥∥∥gk(f)− gk(f̂k)
∥∥∥
G−1
k (f ,f̂k)

≤ βk(δ) +

√
HM

λ
β2
k(δ)

We are now ready to prove Proposition G.10.

38



Reinforcement Learning with History-Dependent Dynamic Contexts

Proof of Proposition G.10. Part 1. We start by writing the exact second-order Taylor expansion of the likelihood Lkλ(f),
which holds for any f ∈ RM(M+1)SAH

Lkλ(f) = Lkλ(f̂k) +∇fLkλ(f̂k)T (f − f̂k) + (f − f̂k)T
(∫ 1

v=0

(1− v)∇2
fLkλ(f̂k + v(f − f̂k))dv

)
(f − f̂k).

Since f̂k is the solution to the unconstrained minimization of the concave likelihood Lkλ(f), we have that∇fLkλ(f̂k) = 0.
Recalling that ∇2

fLkλ(f) = −Hk(f), we get

Lkλ(f)− Lkλ(f̂k) = ∇fLkλ(f̂k)T (f∗ − f̂k) + (f − f̂k)T
(∫ 1

v=0

(1− v)∇2
fLkλ(f̂k + v(f − f̂k))dv

)
(f − f̂k)

= −(f − f̂k)T
(∫ 1

v=1

(1− v)Hk(f̂k + v(f − f̂k))dv

)
(f − f̂k)

= −
∥∥∥f − f̂k∥∥∥2

G̃k(f̂k,f)
(Def. of G̃k(f̂k,f))

≥ −
∥∥∥f − f̂k)

∥∥∥2

Gk(f̂k,f)
(G̃k � Gk)

= −
∥∥∥gk(f)− gk(f̂k))

∥∥∥2

G−1
k (f̂k,f)

(Lemma G.2)

= −
∥∥∥gk(f)− gk(f̂k))

∥∥∥2

G−1
k (f ,f̂k)

. (Gk(f̂k,f) = Gk(f , f̂k))

Rearranging, we get that for any f ∈ RM(M+1)SAH ,

Lkλ(f̂k)− Lkλ(f) ≤
∥∥∥gk(f)− gk(f̂k))

∥∥∥2

G−1
k (f ,f̂k)

,

and thus, the above inequality holds for any f ∈ Ck(δ) ⊆ RM(M+1)SAH .

Finally, by Lemma G.11, for any f ∈ Ck(δ), we have that

Lkλ(f̂k)− Lkλ(f) ≤ ξ2
k(δ),

which implies that Ck(δ) ⊆ Ek(δ) by the definition of Equation (15). In particular, by Lemma G.5, f∗ ∈ Ck(δ) with
probability at least 1− δ, and thus the same holds for Ek(δ).

Part 2. For this part, assume that f∗ ∈ Ck(δ) ⊆ Ek(δ) for all k ≥ 1, an event that holds with probability at least 1 − δ.
Also, let f ∈ Ek(δ). Writing the Taylor expansion of Lkλ(f), following the same derivation as the last part, we get

Lkλ(f) = Lkλ(f∗) +∇fLkλ(f∗)T (f − f∗) + (f − f∗)T
(∫ 1

v=1

(1− v)∇2
fLkλ(f∗ + v(f − f∗))dv

)
(f − f∗)

= Lkλ(f∗) +∇fLkλ(f∗)T (f − f∗)− ‖f − f∗‖2G̃k(f∗,f) .

≤ Lkλ(f∗) +∇fLkλ(f∗)T (f − f∗)− (2 + 2L)−1 ‖f − f∗‖2Hk(f∗) . (Lemma G.9)

Rearranging this inequality, we get,

‖f − f∗‖2Hk(f∗) ≤ (2 + 2L)
(
Lkλ(f∗)− Lkλ(f)

)
+ (2 + 2L)∇fLkλ(f∗)T (f − f∗)

≤ (2 + 2L)
(
Lkλ(f̂k)− Lkλ(f)

)
+ (2 + 2L)∇fLkλ(f∗)T (f − f∗) (Def. of f̂k)

≤ (2 + 2L)ξ2
k(δ) + (2 + 2L)∇fLkλ(f∗)T (f − f∗) (f ∈ Ek(δ))

≤ (2 + 2L)ξ2
k(δ) + (2 + 2L) ‖f − f∗‖Hk(f∗)

∥∥∇fLkλ(f∗)
∥∥
H−1
k (f∗)

(Cauchy-Schwartz)

≤ (2 + 2L)ξ2
k(δ) + (2 + 2L)βk(δ) ‖f − f∗‖Hk(f∗)
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where the last inequality is since

∥∥∇fLkλ(f∗)
∥∥
H−1
k (f∗)

=

∥∥∥∥∥∥∇fLkλ(f∗)−∇fLkλ(f̂k)︸ ︷︷ ︸
=0

∥∥∥∥∥∥
H−1
k (f∗)

=
∥∥∥gk(f∗)− gk(f̂k)

∥∥∥
H−1
k (f∗)

(see Equation (11))

≤ βk(δ). (f∗ ∈ Ck(δ))

Thus, we have the inequality

‖f − f∗‖2Hk(f∗) ≤ (2 + 2L)ξ2
k(δ) + (2 + 2L)βk(δ) ‖f − f∗‖Hk(f∗) ,

which implies that (see, e.g. Abeille et al., 2021, Proposition 7)

‖f − f∗‖2Hk(f∗) ≤
√

(2 + 2L)ξk(δ) + (2 + 2L)βk(δ).

To conclude the proof, notice that under the event that f∗ ∈ Ck(δ) for all k ≥ 1, we also have that f∗ ∈ Ek(δ), and therefore,
Ek(δ) is not empty for all k ≥ 1. Specifically, when the set is nonempty, by the definition of the set Ek(δ) (Equation (15)),
there exists a f ∈ F for which Lkλ(f̂k)− Lkλ(f) ≤ ξ2

k(δ).

Now, by definition, it holds for the constrained maximizer f̄k ∈ arg maxf∈F Lkλ(f) that for any f ∈ F , Lkλ(f̄) ≥ Lkλ(f).
Consequently, for any f ∈ F , Lkλ(f̂k)− Lkλ(f̄k) ≤ Lkλ(f̂k)− Lkλ(f). Thus, when the set is nonempty, it must contain the
constrained maximizer f̄k. A direct conclusion of the previous inequality is that w.p. at least 1− δ, for all k ≥ 1,

∥∥f̄ − f∗∥∥
Hk(f∗)

≤ (2 + 2L)βk(δ) +
√

2(1 + L)ξk(δ).

G.3. Local Confidence Bound

To prove the local confidence bound, we adapt the proofs of (Tennenholtz et al., 2022, Appendix K) to the multinomial case,
while also taking into account the discounting of the latent features.

Next, we prove that the inverse of the Gram matrix of each episode is well behaved – its diagonal is bounded at any visited
state-action-context.

Lemma G.12 (Inverse Eigenvalues Bound). Let Dk =
∑H
h=1 d

k′

h d
k′

h

T
be the Gram matrix that corresponds to the

discounted visitations during episode k. If (s, a, x) ∈ τkh and ex,s,a,h ∈ R(M+1)SAH is a unit vector in the coordinate
(x, s, a, h), then eTx,s,a,h(λI +Dk)

−1
ex,s,a,h ≤ 1

1
4Hα

+λ
.

Proof. We closely follow the proof of (Tennenholtz et al., 2022, Lemma 7), while incorporating discount to the visitation
vector. For brevity, and with some abuse of notations, we use en ∈ R(M+1)SAH to denote the unit vector in the n-th
coordinate. In the following, we assume w.l.o.g. that the t-th coordinate of the vector dkh represents the state that was visited
on the t-th time step (while unvisited states can be arbitrarily ordered). As done by (Tennenholtz et al., 2022, Lemma
7), this can be done using any permutation matrix P k such that exkt ,,skt ,akt ,t = P ket for all t ∈ [H]. Then, denoting

ēt = H
−1/2
α

∑t
n=1 α

t−nen =
(
αt−1, αt−2, . . . , 1︸ ︷︷ ︸

t−elements

, 0, . . . , 0
)T

, we can write dkt = H
−1/2
α

∑t
n=1 α

t−nexkn,skn,akn,n =

H
−1/2
α

∑t
n=1 α

t−nP ken = P kēt.
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Now, recalling that permutation matrices are orthogonal (P−1
k = P T

k ) we can write

eTx,s,a,h(λI +Dk)
−1
ex,s,a,h = eTx,s,a,h

(
λI +

H∑
t=1

dk
′

t d
k′

t

T

)−1

ex,s,a,h

= eTx,s,a,h

(
λI +

H∑
t=1

P kētē
T
t P

T
k

)−1

ex,s,a,h

= eTx,s,a,h

(
P k

(
λI +

H∑
t=1

ētē
T
t

)
P T
k

)−1

ex,s,a,h

= eTx,s,a,hP k

(
λI +

H∑
t=1

ētē
T
t

)−1

P T
k ex,s,a,h

= eTh

(
λI +

H∑
t=1

ētē
T
t

)−1

eh .

Next, notice that λI +
∑H
t=1 ētē

T
t is a block-diagonal matrix, whose first block is of size H ×H (and the rest of the matrix

is fully diagonal). We denote this first block of
∑H
t=1 ētē

T
t by C. For block-diagonal matrices, each block can be inverted

independently of the other blocks, and for any coordinate h ∈ [H], if uh ∈ RH is the unit vector at coordinate h, we thus
have

eTx,s,a,h(λI +Dk)
−1
ex,s,a,h = eTh

(
λI +

H∑
t=1

ētē
T
t

)−1

eh

= uTh (λI +C)
−1
uh

≤
‖uh‖22

λmin(λI +C)

=
1

λ+ λmin(C)
(16)

In the rest of the proof, we focus on bounding λmin(C). First, observe that for any t ∈ [H], we have

(ētē
T
t )(i, j) =

{
H−1
α α2t−i−j i ≤ t, j ≤ t

0 else

and thus

C(i, j) =

H∑
t=1

(ētē
T
t )(i, j) = H−1

α

H∑
t=max{i,j}

α2t−i−j .

In particular, notice that for any i < j (above diagonal), we have C(i, j) = αC(i+ 1, j), while for i ≥ j (below and on
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diagonal), we have C(i, j) = αC(i+ 1, j) + αi−j . Using this structure, we can calculate its inverse using diagonalization:

∑H
t=1 α

2t−2
∑H
t=2 α

2t−3
∑H
t=3 α

2t−4 . . . αH−1 1 0 0 . . . 0∑H
t=2 α

2t−3
∑H
t=2 α

2t−4
∑H
t=3 α

2t−5 . . . αH−2 0 1 0 . . . 0∑H
t=3 α

2t−4
∑H
t=3 α

2t−5
∑H
t=3 α

2t−6 . . . αH−3 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
αH−1 αH−2 αH−3 . . . 1 0 0 0 . . . 1



=


1 0 0 . . . 0 1 −α 0 . . . 0
α 1 0 . . . 0 0 1 −α . . . 0
α2 α 1 . . . 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
αH−1 αH−2 αH−3 . . . 1 0 0 0 . . . 1



=


1 0 0 . . . 0 1 −α 0 . . . 0
0 1 0 . . . 0 −α 1 + α2 −α . . . 0
0 0 1 . . . 0 0 −α 1 + α2 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 1 0 0 0 . . . 1 + α2


In the first relation, we subtracted α-times the i+ 1 rows from the i rows, while in the second one, we subtracted α-times
the i− 1 rows from the i rows. Thus, the inverse can be explicitly written as:

C−1
i,j = Hα


1 i = j = 1
1 + α2 i = j > 1
−α i = j − 1 or i = j + 1
0 o.w.

Notice that the absolute values of all rows is smaller than Hα(1 + α)2 ≤ 4Hα. Then (e.g., by Gershgorin circle theorem),
λmax(C−1) ≤ 4Hα, and since B is PSD, λmin(C) ≥ 1

4Hα
. The proof is concluded by substituting this result back into

Equation (16).

We are now ready to prove the local concentration results for the latent features of a DCMDP:

Lemma G.13 (Local Estimation Confidence Bound). Let f̂
k
∈ arg maxf∈F Lkλ(f) be the maximum likelihood estimate of

the features. Then, for any δ > 0, with probability of at least 1−δ, for all k ∈ [K], h ∈ [H], i ∈ [M ] and s, a, x ∈ S×A×X ,
it holds that ∣∣∣f̂ki,h(s, a, x)− f∗i,h(s, a, x)

∣∣∣ ≤ 2γk(δ)
√
κHα√

nkh(s, a, x) + 4λHα

,

where γk(δ) is defined in Proposition G.10.

Proof. The proof follows Lemma 6 of (Tennenholtz et al., 2022).

For any k ∈ [K], h ∈ [H], i ∈ [M ] and s, a, x ∈ S ×A× X , let ex,s,a,h ∈ R(M+1)SAH be a unit vector in the (x, s, a, h)
coordinate and denote f i ∈ R(M+1)SAH the latent features that correspond to a next latent state i. We start by bounding∣∣∣f̂ki,h(s, a, x)− f∗i,h(s, a, x)

∣∣∣ =
∣∣∣〈ex,s,a,h, f̂ i − f∗i〉∣∣∣

≤ ‖ex,s,a,h‖V −1
k

∥∥∥f̂ i − f∗i ∥∥∥
V k

(Cauchy-Schwartz)

≤ ‖ex,s,a,h‖V −1
k

√√√√ M∑
i′=1

∥∥∥f̂ i′ − f∗i′∥∥∥2

V k

= ‖ex,s,a,h‖V −1
k

∥∥∥f̂ − f∗∥∥∥
IM⊗V k

, (17)
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We now turn our focus to bound ‖ex,s,a,h‖V −1
k

. Using the notationDk, as defined in Lemma G.12, we have

V −1
k =

(
λI +

k−1∑
k′=1

Dk′1
{

(s, a, x) ∈ τk
′

h

})−1

�

(
k−1∑
k′=1

(
λ

nh(s, a, x)
I +Dk′

)
1
{

(s, a, x) ∈ τk
′

h

})−1

� 1

(nh(s, a, x))
2

k−1∑
k′=1

(
λ

nh(s, a, x)
I +Dk′

)−1

1
{

(s, a, x) ∈ τk
′

h

}
,

where nkh(s, a, x) =
∑k−1
k′=1 1

{
(s, a, x) ∈ τk′h

}
and the third transition is due to HM-AM inequality for positive matrices

(Bhagwat and Subramanian, 1978). Next, we combine this result with Lemma G.12 and get

‖ex,s,a,h‖2V −1
k

= eTx,s,a,hV
−1
k ex,s,a,h

≤ 1(
nkh(s, a, x)

)2 k−1∑
k′=1

eTx,s,a,h

(
λ

nh(s, a, x)
I +Dk′

)−1

ex,s,a,h1
{

(s, a, x) ∈ τk
′

h

}
≤ 1

(nh(s, a, x))
2

k−1∑
k′=1

1
1

4Hα
+ λ

nh(s,a,x)

1
{

(s, a, x) ∈ τk
′

h

}
(Lemma G.12)

=
nh(s, a, x)

(nh(s, a, x))
2

1
1

4Hα
+ λ

nh(s,a,x)

=
1

nh(s,a,x)
4Hα

+ λ

=
4Hα

nh(s, a, x) + 4λHα
.

By plugging into Equation (17), we obtain that for any k and any h, s, a∣∣∣f̂ki,h(s, a, x)− f∗i,h(s, a, x)
∣∣∣ ≤ ‖ex,s,a,h‖V −1

k

∥∥∥f̂ − f∗∥∥∥
IM⊗V k

≤
∥∥∥f̂ − f∗∥∥∥

IM⊗V k

2
√
Hα√

nh(s, a, x) + 4λHα

≤
∥∥∥f̂ − f∗∥∥∥

Hk(f∗)

2
√
κHα√

nh(s, a, x) + 4λHα

.

Finally by Proposition G.10, with probability 1− δ, for all k ≥ 1, it holds that
∥∥∥f̂ − f∗∥∥∥

Hk(f∗)
≤ γk(δ), and substituting

this bound concludes the proof.
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