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Abstract

In this paper, we address the problem of adapt-
ing models from a source domain to a target
domain, a task that has become increasingly
important due to the brittle generalization of
deep neural networks. While several test-time
adaptation techniques have emerged, they typi-
cally rely on synthetic toolbox data augmenta-
tions in cases of limited target data availability.
We consider the challenging setting of single-
shot adaptation and explore the design of aug-
mentation strategies. We argue that augmen-
tations utilized by existing methods are insuf-
ficient to handle large distribution shifts, and
hence propose a new approach SiSTA (Single-
Shot Target Augmentations), which first fine-
tunes a generative model from the source do-
main using a single-shot target, and then em-
ploys novel sampling strategies for curating syn-
thetic target data. Using experiments on a va-
riety of benchmarks, distribution shifts and im-
age corruptions, we find that SiSTA produces
significantly improved generalization over ex-
isting baselines in face attribute detection and
multi-class object recognition. Furthermore,
SiSTA performs competitively to models ob-
tained by training on larger target datasets. Our
codes can be accessed at https://github.
com/Rakshith-2905/SiSTA.

1. Introduction
Deep models tend to suffer a significant drop in their per-
formance when there is a shift between train and test dis-
tributions (Torralba & Efros, 2011). A natural solution
to improve generalization under such domain shifts is to
adapt models using data from the target domain of interest.

*Equal contribution 1Lawrence Livermore National Laboratory,
Livermore, CA, USA 2Arizona State University, Tempe, AZ, USA.
Correspondence to: Kowshik Thopalli <thopalli1@llnl.gov>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

However, it is infeasible to obtain data from every possi-
ble target during source model training itself. Test-time
adaptation has emerged as an alternate solution, where a
source-trained model is adapted solely using target data
without accessing the source data. However, the success
of these source-free adaptation (SFDA) methods hinges on
sufficient target data availability (Liang et al.; Yang et al.,
2021). While there exist online adaptation methods such as
TENT (Wang et al., 2021) and MEMO (Zhang et al., 2021),
they are are found to be ineffective under complex distribu-
tion shifts and when target data is limited, often producing
on par or only marginally better results than non-adaptation
performance (Thopalli et al., 2022).

In this work, we investigate a practical, yet challenging,
scenario where the goal is to adapt models under unknown
distribution shifts with minimal target data. Specifically,
we focus on the extreme case where only single-shot exam-
ple is available. In such data scarce settings, it is common
to leverage synthetic augmentations; examples range from
image manipulations to adversarial corruptions (Gokhale
et al., 2023). Despite their wide-spread adoption, the best
augmentation strategy can vary for different shifts, and more
importantly, their utility diminishes in the single-shot case.
Another popular approach is to use generative augmenta-
tions (Yue et al., 2022), where data variants are synthesized
through generative models. Despite being more expres-
sive than generic augmentations, they require comparatively
larger datasets for effective training.

We propose SiSTA, a new target-aware generative aug-
mentation technique for SFDA with single-shot target data
(see Figure 1). At its core, SiSTA relaxes the assumption
of requiring source data, and instead assumes access to a
source-trained generative model. We motivate and justify
this assumption using a practical vendor-client implemen-
tation in Section 3. In this study, we consider StyelGAN
as the choice for generative modeling, motivated by their
flexibility in disentangling content and style. Our proposed
algorithm has two steps, namely SiSTA-G and SiSTA-S,
to fine-tune a source-trained StyleGAN with the target data,
and to synthesize diverse augmentations respectively.

Our contributions can be summarized as follows:

1. We propose a new target-aware, generative augmentation
technique for single-shot adaptation;
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Figure 1. SiSTA: Assuming access to both the classifier and a StyleGAN from the source domain, we first adapt the generator to the
target domain using a single-shot example. Next, we employ the proposed activation pruning strategies to construct the synthetic target
dataset �Dt. Finally, this dataset is used with any SFDA technique for model adaptation.

2. We introduce two novel sampling strategies based on
activation pruning, prune-zero and prune-rewind, to support
domain-invariant feature learning;

3. Using a popular SFDA approach, NRC (Yang et al.,
2021), on augmentations from SiSTA, we show significant
gains in generalization over SoTA online adaptation;

4. By benchmarking on multiple datasets (CelebA, AFHQ,
CIFAR-10, DomainNet) and a wide variety of domain shifts
(style variations, natural image corruptions), we establish
SiSTA as a SoTA method for 1�shot adaptation;

5. We show the efficacy of SiSTA in multi-class classifica-
tion using both class-conditional GANs as well as multiple
class-specific GANs.

2. Background
Source free domain Adaptation: In the standard setting
of SFDA we only have access to the pre-trained source
classifier Fs : x ! y but not to the source dataset Ds =
f(xi

s; y
i
s)g. Here, xi

s 2 Xs and yi
s 2 Y denote the ith image

and its corresponding label from the source domain Xs.
Subsequently, the model needs to be adapted to a target
domain Xt using unlabeled examples Dt = f(xj

tg, where
xj

t 2 Xt. Note, the set of classes Y is pre-specified and
remains the same across all domains.

A number of approaches to SFDA have been proposed in
the literature and can be categorized into two groups: meth-
ods which perform adaptation by fine-tuning the source
classifier alone, and those that update the feature extrac-
tor as well for promoting domain invariance. In the for-
mer category, adaptation is typically achieved through
unsupervised/self-supervised learning objectives; examples
include rotation prediction (Sun et al., 2020), self-supervised
knowledge distillation (Liu & Yuan, 2022), contrastive learn-
ing (Huang et al., 2021) and batch normalization statis-
tics matching (Wang et al., 2021; Ishii & Sugiyama, 2021).

The second category includes state-of-the-art approaches
such as SHOT (Liang et al.), NRC (Yang et al., 2021) and
N2DCX (Tang et al., 2021), which utilize pseudo-labeling
based optimization, and often require sufficient amount of
data to update the entire feature extractor meaningfully.

While SHOT is known to be effective under challenging
shifts, it relies on global clustering to obtain pseudo-labels
for the target data, and in practice, can fail in some cases
due to the prediction diversity among samples within a clus-
ter. The more recent NRC (Yang et al., 2021) alleviates
this by exploiting the neighborhood structure through the
introduction of affinity values that reflect the degree of con-
nectedness between each data point and its neighbors. This
inherently encourages prediction consistency between each
samples and its most relevant neighbors. Formally, the opti-
mization of NRC involves the following objective:

LNRC = Lneigh + Lself + Lexp + Ldiv (1)

where Lneigh enforces prediction consistency of a sample
with respect to its neighbors, while Lself attempts to reduce
the effect of noisy neighbors and Lexp considers expanded
neigbhorhood structure. Finally, Ldiv is the widely adopted
diversity maximization term implemented as the KL diver-
gence between the distribution of predictions in a batch to
a uniform distribution. While SiSTA can admit any SFDA
technique, we find NRC to be an appropriate choice, since it
updates the feature extractor and utilizes the local semantic
context to improve performance. This is particularly im-
portant in the context of our rich synthetic augmentations,
which exhibit a high degree of diversity.

Generative Augmentations: It is well known that the per-
formance of SFDA methods suffers when the target dataset
is sparse. To mitigate this, synthetic augmentations are of-
ten leveraged. While it has been found that data augmenta-
tion can improve both in-distribution and out-of-distribution
(OOD) accuracies (Steiner et al., 2021; Hendrycks et al.,
2021), their use in SFDA is more recent. Existing aug-
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mentations can be broadly viewed in two categories - (i)
pixel/geometric corruptions, and (ii) generative augmen-
tations. The former category includes strategies such as
CutMix (Yun et al., 2019), Cutout (DeVries & Taylor,
2017), Augmix (Hendrycks et al., 2020), RandConv (Xu
et al., 2021), mixup (Zhang et al., 2018) and AutoAug-
ment (Cubuk et al., 2019). These domain-agnostic methods
are known to be insufficient to achieve OOD generalization,
especially under complex domain shifts. To circumvent
this, generative augmentations based on GANs or Varia-
tional Autoencoders (VAEs) have emerged. These methods
involve training a generative model to synthesize new sam-
ples (Yue et al., 2022). These augmentations have been used
in various tasks such as image-to-image translation and im-
proving generalization under shifts. For example, methods
such as MBDG (Robey et al., 2021), CyCADA (Hoffman
et al., 2018), 3C-GAN (Rahman et al., 2021) and GenToAd-
apt (Sankaranarayanan et al., 2018) have leveraged gen-
erative augmentations to better adapt to unlabeled target
domains. However, by design, these methods require large
amounts of data from both source and target domains. In
contrast, SiSTA focuses on obtaining target-aware genera-
tive augmentations by fine-tuning source-trained generative
models using only a single-shot target sample.

StyleGAN-v2 Architecture: While significant progress has
been made in generative AI, including StyleGANs and de-
noising diffusion models (Saharia et al., 2022), we utilize
StyleGAN-V2 as the base generative model in our work.
This choice is motivated by the flexibility that StyleGANs
offer in producing images of different styles, which can
be attributed to the inherent disentanglement of style and
semantic content in their latent space. Existing approaches
works (Wu et al., 2021a;b) have studied this disentanglement
property and uncovered the StyleGAN’s ability to manip-
ulate the style of an image projected onto the latent space
by replacing the latent codes corresponding to only style.
Another recent study (Chong & Forsyth, 2021) reported that
by leveraging such manipulations, one can perform style
transfer with a limited number of paired examples. Inter-
estingly, it has also been recently found (Wu et al., 2021b)
that, even after transferring a GAN to a different data dis-
tribution (faces to cartoons), the latent space of the adapted
GAN is point-wise aligned with the source StyleGAN. We
take inspiration from these works to develop our single-shot
GAN fine-tuning protocol as well as our novel sampling
strategies to enable domain-invariant feature learning.

3. Proposed Approach
In this section, we introduce SiSTA, a new target-aware,
generative augmentation strategy with the goal of improving
domain adaptation of pre-trained classifiers using single-
shot target data. While SFDA methods are known to be

Figure 2. A high-level illustration of our adaptation approach
SiSTA, which is carried out on the vendor side that stores the
source classifier and a generative model. Designed to support
single-shot adaptation, SiSTA returns target-aware synthetic aug-
mentations. Finally, the vendor executes any SFDA technique to
update the source classifier using the synthesized augmentations.

effective under a variety of distribution shifts, their perfor-
mance hinges on the availability of a sufficient amount of
target data. In this work, we propose to relax SFDA’s as-
sumption on source data access by requiring a source-trained
generative model (StyleGANs in our study) to synthesize
augmentations in the target domain, in order to enable ef-
fective adaptation even under limited data. In particular,
we consider the extreme, yet practical setting where only
1�shot target data is available.

Figure 2 illustrates an implementation of such a setup where
the source dataset, classifier, and the pre-trained generator
are available only on the vendor side. A client that wants to
adapt the classifier to a novel domain submits the one-shot
target data and receives both the source classifier as well as
the synthetic generative augmentations. Finally, the client
executes any SFDA approach to update the classifier using
only the unlabeled synthetic data. This implementation
eliminates the need for the vendor to share their generative
model, while also minimizing the amount of client data that
gets shared.

As described earlier, SiSTA is comprised of two key steps
that are carried out on the vendor side: (i) SiSTA-G: Fine-
tune a pre-trained StyleGAN generator Gs using single-shot
target data fxtg under unknown distribution shifts.; and (ii)
SiSTA-S: Synthesize diverse samples Dt = f�xj

tg using
the fine-tuned generator Gt to support effective classifier
adaptation to the target domain. Finally, we leverage the
recently proposed NRC method to perform client-side adap-
tation. Now, we describe these steps in detail.

3.1. SiSTA-G: Single-Shot StyleGAN Fine-Tuning

Our goal in this step is to fine-tune Gs using only the single-
shot example xt from the target domain to produce an up-
dated generator Gt. To this end, the proposed approach first
inverts xt onto the style-space of Gs. In practice, this can be
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Algorithm 1 SiSTA-G

1: Input : Target samplext , No. of training iterationsM ,
Source generatorGs, Inversion moduleE
Set of style layersL st.

2: Output : Fine-tuned generatorGt .
3: Invert the target sample to obtainw +

t = E(x t )
4: for m in 1 to M do
5: Generate random style latentr +

6: Perform style-mixing,i.e., replace style layersL st of
w +

t with r +

7: Generate imagêx t = G s(ŵ +
t )

8: Update parameters� t using (2)
9: end for

10: return : Gt with parameters� t .

done using one of the following strategies: (i) a pre-trained
encoder such as Pixel2Style2Pixel (Richardson et al., 2021)
or E4E (Tov et al., 2021), which maps a given image into the
style codew +

t 2 RL � 512. This latent code corresponds to
L intermediate layers of a StyleGAN model (e.g.,L = 18 in
StyleGAN-v2); (ii) any standard GAN inversion technique
to infer an approximate solution in the style space (Xia et al.,
2022); (iii) text-guided inversion such as StyleClip (Patash-
nik et al., 2021) if the label is available for the single-shot
target image. Though conventional GAN inversion is known
to be expensive, it will not be a signi�cant bottleneck with
only a single image.

Without loss of generality, the target domain is expected
to contain distribution shifts w.r.t. the source domain, and
hence the inverted solution in the style-space is more likely
to resemble the source domain. For example, inverting a
cartoon into the style-space of a GAN trained on real face
images will produce a semantically similar image from the
face manifold. Recent evidence (Subramanyam et al., 2022)
suggests that one can accurately recover an OOD image
using an additional vicinal regularization to the inversion
process. However, in our case, we do not want an accurate
reconstruction, but rather re�ne the generatorGs to emulate
the characteristics of a target domain.

To this end, we utilize the following loss function de�ned on
the activations from the source-domain discriminatorHs:

� t = arg min
��

X

`

kH`
s(Gs(w +

t ; ��)) � H`
s(x t )k1; (2)

wherew +
t is the style-space latent code obtained via GAN

inversion,� t refers to the parameters of the updated gener-
atorGt andH`

s denotes the activations from layer` of the
discriminatorHs. Intuitively, this objective minimizes the
discrepancy between the target image and the reconstruction
from the updated generator. Note that, the parameters of
the discriminator are not updated during this optimization.
While any pre-trained feature extractor can be used for this

optimization, the source discriminator provides meaningful
gradients by comparing both the content and style aspects
of the target image. Upon training, we expect the generator
Gt to produce images resembling the target domain for any
random latent code in the style-space.

An inherent issue with our objective is that, this optimization
can be highly unstable when using a singlext . To circum-
vent this, we leverage multiple, style-manipulated versions
of xt through a style-mixing protocol. More speci�cally, we
�rst generate a random coder + in the style-space (using the
mapping network in StyleGAN). Next, we perform mixing
by replacing the latent codes from a pre-speci�ed subset of
layersL st in w +

t using the corresponding codes fromr + .
In effect, this produces a modi�ed image that contains the
content fromw +

t and the style fromr + . We denote this
style-manipulated latent using the notationŵ +

t . In each
iteration of our optimization, a different style-mixed latent
codeŵ +

t is generated to compute the loss in(2). Algorithm
1 summarizes the steps ofSiSTA-G .

Choosing layers for style-mixing.We chooseL st by ex-
ploiting the inherent style and content disentanglement in
StyleGANs. Priors works (Wu et al., 2021a; Kafri et al.,
2021; Karras et al., 2020) have established that the initial
layers typically encode the semantic content, while the later
layers capture the style characteristics. Since the exact
subset of layers that correspond to style vary as the image
resolution changes, following standard practice, we used
L st = 8 � 18whenGs produces images of size1024� 1024
andL st = 3 � 8 for images of size32� 32 (CIFAR-10).

3.2.SiSTA-S : Target-aware Augmentation Synthesis

Once we obtain the target domain-adapted StyleGAN gen-
eratorGt , we next synthesize augmentations by sampling
in its latent space. Despite the ef�cacy of such an approach,
the inherent discrepancy between the true target distribu-
tion Pt (x) and the approximateQt (x) (synthetic data) can
limit generalization. Existing works (Kundu et al., 2020)
have found that constructing generic representations (using
standard augmentations) is useful for test-time adaptation
any domain. However, in contrast, our goal is to produce
augmentations speci�c only to a given target domain, thus
enabling effective generalization even with single-shot data.

To this end, we propose two novel strategies that perturb the
latent representations from different layers ofGt to realize
a more diverse set of style variations. Both our sampling
strategies are based on activation pruning,i.e., identifying
the activations in each style layer that are lower than thepth

percentile value of that layer, and replacing them with (i)
zero (referred to asprune-zero); or (ii) activations from the
corresponding layer of the source GANGs (prune-rewind).
The former strategy aims at creating a generic representa-
tion by systematically eliminating style information in the
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Algorithm 2 SiSTA-S

1: Input : Target GANGt (:; � t ), Source GANGs(:; � s),
Pruning strategy� , Pruning ratiop,
Set of style layersL st;

2: Output : Sampled image�x t

3: Draw a random latent codew + from Gt (:; � t )
4: for ` in L st do
5: � � RandInt(0; 1)
6: if � == 1 then
7: Obtain layer̀ activationsh`

t from Gt (w + )
8: /* Iterate over activation channelsV ` */
9: for v in 1 to V ` do

10: � p = p-th percentile ofh`
t [:; :; v]

11: if � == prune-zerothen
12: h`

t [i; j; v ] = 0 if h`
t [i; j; v ] < � p; 8 i; j

13: else
14: Obtain activationsh`

s from Gs(w + )
15: h`

t [i; j; v ] = h `
s[i; j; v ] if h`

t [i; j; v ] < � p; 8 i; j
16: end if
17: end for
18: end if
19: end for
20: return : Image�x t = G t (w + ; �)

image. On the other hand, the latter attempts to create a
smooth interpolation between the source and target domains
by mixing the activations from the two generators. Note,
we perform pruning only in the style layers, so that the se-
mantic content of a sample is not changed. Note, we use the
same set of style layers selected for performingSiSTA-G .
Algorithm 2 lists the activation pruning step.

3.3.SiSTA-mcG: Extending to class-conditional GANs

When dealing with multi-class problems, it is typical to
construct class-conditional GANs,Gs(:; c), to effectively
model the different marginal distributions. In such set-
tings, images from different classes get mapped to dis-
parate sub-manifolds in the StyleGAN latent space. As-
suming there areK different classes inY, we can directly
applySiSTA-G using 1-shot examples from each of the
classes. The only difference occurs in the GAN inversion
step, wherein we need to identify the conditioning variable
c along with the latent codew +

t . Note, if the labels are
available, one can estimate onlyw +

t . Finally, the algorithm
1 is repeated withK target images. We refer to this protocol
asSiSTA-mcG (multi-class generation).

However, when we performSiSTA-mcG using only a sub-
set of the classes (say only one outK ), there is a risk of not
incorporating target-domain characteristics into the images
synthesized for all realizations from the latent space. How-
ever, as we will show in the results (Figure 5a), even using

Figure 3.Synthetic data generated using our proposed ap-
proach. In each case, we show the source domain image and
the corresponding reconstructions from the target StyleGAN sam-
pling (base), prune-zero and prune-rewind strategies.

an example from a single class still leads to signi�cantly im-
proved generalization. We hypothesize that this behavior is
due to the fact that the synthesized augmentations (random
samples fromGt ) arise from bothXs andXt , thus emulating
an implicit mixing between the two data manifolds.

4. Experiments

We perform an extensive evaluation ofSiSTA using a suite
of classi�cation tasks with multiple benchmark datasets,
different StyleGAN architectures and more importantly, a
variety of challenging distribution shifts. In all our exper-
iments, we use single-shot target data and utilize publicly
available, pre-trained StyleGAN weights.

4.1. Experimental Setup

Datasets:For our empirical study, we consider the follow-
ing four datasets: (i) CelebA-HQ (Karras et al., 2017) is
a high-quality (1024x1024 resolution) large-scale face at-
tribute dataset with30K images. We split this into a source
dataset of18K images and the remaining was used to design
the target domains. We perform attribute detection exper-
iments on a subset of19 attributes, i.e., each attribute is
posed as its own binary classi�cation task; (ii) AFHQ (Choi
et al., 2020) is a dataset of animal faces consisting of 15,000
images at 512×512 resolutions with three classes, namely
cat, dog and wildlife, each containing 5000 images. For each
class,500 images were used to create the target domains,
and the remaining was used as the source data; (iii) CIFAR-
10 (Krizhevsky et al., 2009) is also a multiclass classi�cation
dataset with 60000 images at 32x32 resolution from 10 dif-
ferent object classes. We use the standard train-test splits for
constructing the source and target domain datasets. While
we used the StyleGAN-v2 trained on FFHQ faces for our
experiments on the CelebA-HQ dataset1, for AFHQ and

1
https://github.com/rosinality/stylegan2-pytorch

5



Target-Aware Generative Augmentations for Single-Shot Adaptation

Figure 4.SiSTA signi�cantly improves generalization of face attribute detectors. We report the1� shot SFDA performance (Accuracy
%) averaged across different face attribute detection tasks for different distribution shifts (Domains A, B & C) and a suite of image
corruptions (Domain D).SiSTA consistently improves upon the baseline(source-only) and SoTA baseline MEMO in all cases.

CIFAR-10 we obtained the pre-trained StyleGAN2-ADA
models2 from their respective sources; and (iv) Domain-
Net (Peng et al., 2019), a large-scale benchmark comprising
6 domains namely Clipart, Painting, Quickdraw, Sketch,
Infograph and Real with each domain consisting of im-
ages from340categories. For this experiment, we used the
state-of-the-art StyleGAN-XL model (Sauer et al., 2022)
trained on ImageNet (Russakovsky et al., 2015). Note, we
used only the subset of categories from DomainNet that
directly overlapped with ImageNet classes. To the best of
our knowledge, this is the �rst work to report adaptation per-
formance with a single target image on DomainNet, and to
use ImageNet-scale StyleGAN-XL for data augmentation.

Target Domain Design:To emulate a wide-variety of real-
world shifts, we employed standard image manipulation
techniques (we will release this new benchmark dataset
along with our codes) to construct the following target do-
mains: (i)Domain A: We used theStylizationtechnique in
OpenCV with� s = 40 and� r = 0 :2; (ii) Domain B: For
this shift, we used thePencilSketchtechnique in OpenCV
with � s = 40 and� r = 0 :04; (iii) Domain C: This chal-
lenging domain shift was created by converting each color
image to grayscale, and then performing pixel-wise division
with a smoothed, inverted grayscale image; and (iv)Domain
D: This shift was created using a different natural image cor-
ruptions from ImageNet-C (Hendrycks & Dietterich, 2019)

2
https://github.com/NVlabs/stylegan2-ada-pytorch

typically used for evaluating model robustness. In particular,
we used theimagecorruptions3 package for realizing6 dif-
ferent shifts, namelycontrast, defocus blur, motion blur, fog,
frost and snow. We report our performance across all the do-
main shifts for the different attribute detection tasks. Given
the inherently challenging nature of Domain C, we used
that exclusively to evaluate the multi-class classi�ers trained
on AFHQ and CIFAR-10 datasets. Finally, for DomainNet
evaluations we consideredReal photosas the source domain
and used each of the �ve remaining domains as the target.

Evaluation methodology: (a) Source model training: To
obtain the source modelFs we �ne-tune an ImageNet pre-
trained ResNet-50 (He et al., 2016) with labeled source
data. We use a learning rate of1e � 4, Adam optimizer
and train for30epochs; (b)StyleGAN �ne-tuning: We �ne-
tuneGs for 300 iterations (M in Algorithm 1) using one-
target image with learning rate set to2e � 3 and Adam
optimizer with� = 0 :99. These parameters were identi�ed
using the CelebA benchmark and we used the same settings
for all experiments; (c)Synthetic data curation: The size
of the synthetic target dataset�Dt , T , was set to1000im-
ages in all experiments. Note, in section 4.3, we study
the impact of this choice. Another important hyperpa-
rameter is the choice of GAN layers for style manipula-
tion: (i) layers8 � 18 in StyleGAN-2; (ii) layers3 � 8
in CIFAR-10 GAN; (iii) layers10 � 27 in StyleGAN-XL.

3
https://github.com/bethgelab/imagecorruptions

6



Target-Aware Generative Augmentations for Single-Shot Adaptation

(a) CIFAR-10. (b) AFHQ.

Figure 5.Multi-class classi�cation: (a)-left illustratesSiSTA-mcG with class-conditoned GANs, (a)-right shows the performance
of SiSTA , while the bottom plot studies the performance ofSiSTA with exposure to only a subset of classes from the target domain. (b)
visualizes our approach for AFHQ dataset where individual class-speci�c generators are �netuned and bottom plot analysesSiSTA along
with baselines for this challenging dataset.

This selection was motivated by �ndings from recent stud-
ies on style/content disentanglement in StyleGAN latent
spaces (Wu et al., 2021a; Kafri et al., 2021; Karras et al.,
2019). (d)Choice of pruning ratio: For all experiments, we
setp = 20% for prune-rewind andp = 50% for prune-zero
strategies. Note, in section 4.3, we study the impact of this
choice; (e)SFDA training: For the NRC algorithm, we set
both neighborhood and expanded neighborhood sizes at5
respectively. Finally, we adaptFs using SGD with momen-
tum0:9 and learning rate1e � 3. All results that we report
are computed as an average of3 independent trials; (f) For
evaluation, we report the target accuracy (%) on a held-out
test set in each of the target domains.

Baselines:In addition to the vanilla source-only baseline
(no adaptation), while there exists a number of test-time
adaptation approaches, we perform comparisons to the state-
of-the-art online adaptation method, MEMO (Zhang et al.,
2021), that enforces prediction consistency between an im-
age and its augmented variants. In particular, we imple-
ment MEMO with two popular augmentation strategies
namely Augmix and RandConv (Xu et al., 2021). We choose
MEMO as the key baseline, since it is already well estab-
lished that it is superior to other protocols like TENT and
TTT. Finally, for comparison, we report the Full Target DA
performance as an upper bound,i.e., when the entire target
dataset (unlabeled) is used for adaptation.

4.2. Findings

Figure 3 illustrates the synthetic data generated for a target
domain (pencil sketch) using vanilla sampling (or base),

prune-zeroand (prune-rewind) strategies. More examples
can be found in the supplement (Figure 8).

SiSTA consistently produces superior performance
across different distribution shifts.

In Tables 2-10, the performance ofSiSTA across different
domain shifts (A, B, C, D) on the CelebA-HQ dataset is
compared to the baselines for all the19attributes. Further-
more, Figure 4 summarizes the average performance (across
attributes and multiple trials) for the CelebA-HQ dataset.
We see that when compared to the source-only baseline and
the state-of-the-art MEMO,SiSTA yields average improve-
ments of4:41%, 7:5%, 17:73%and5:1% respectively for
the four target domains. This improvement can be directly
attributed to the ef�cacy of our proposed augmentations,
which enable the SFDA method to learn domain-invariant
features when adapting the source classi�er.

Additionally, utilizing the proposed activation pruning strate-
gies reveal signi�cant gains under severe shifts over the
nä�ve sampling (base). For example, we see an average im-
provement of18%across different attributes in Domain C,
when compared to the state-of-the-art MEMO. In particular,
we notice that for challenging attributes such asbangs, blond
hair, andgender, we obtain striking26:1%; 29:6%; 33:9%
improvements over the source-only performance. This illus-
trates how our pruning strategy can create generic represen-
tations that aid in an effective adaptation.

Failure cases: While SiSTA is generally very effective,
there are a few cases where it does not perform as ex-
pected. For example, with the Domain B results in Ta-
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