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Abstract
We address the challenge of exploration in rein-
forcement learning (RL) when the agent operates
in an unknown environment with sparse or no
rewards. In this work, we study the maximum en-
tropy exploration problem of two different types.
The first type is visitation entropy maximization
previously considered by Hazan et al. (2019) in
the discounted setting. For this type of explo-
ration, we propose a game-theoretic algorithm
that has Õ(H3S2A/ε2) sample complexity thus
improving the ε-dependence upon existing results,
where S is a number of states, A is a number of
actions, H is an episode length, and ε is a desired
accuracy. The second type of entropy we study is
the trajectory entropy. This objective function is
closely related to the entropy-regularized MDPs,
and we propose a simple algorithm that has a
sample complexity of order Õ(poly(S,A,H)/ε).
Interestingly, it is the first theoretical result in RL
literature that establishes the potential statistical
advantage of regularized MDPs for exploration.
Finally, we apply developed regularization tech-
niques to reduce sample complexity of visitation
entropy maximization to Õ(H2SA/ε2), yielding
a statistical separation between maximum entropy
exploration and reward-free exploration.

1. Introduction
In reinforcement learning (RL), an agent interacts with an
environment aiming to maximize the sum of rewards re-
turned by the environment. When the reward signal is very
sparse or completely absent, the agent may experience long
periods without any feedback. In these periods exploration
is the main challenge.
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This work studies the problem of efficient exploration in the
absence of rewards. Approaches to solve this problem can
be roughly cast into three main groups: The bonus-based
exploration where the agent maximizes self-defined bonuses
or intrinsic rewards collected along trajectory (Schmidhu-
ber, 1991; Oudeyer et al., 2007; Bellemare et al., 2016).
Typically these bonuses are related to the variances of error-
signals from some auxiliary tasks, such as learning the tran-
sition probability distributions (Schmidhuber, 1991; Chen-
tanez et al., 2004; Pathak et al., 2017; Savas et al., 2019),
learning the optimal value function for all the possible re-
wards (Jin et al., 2020; Kaufmann et al., 2021; Ménard et al.,
2021), learning random generated features (Burda et al.,
2019). A second approach is the goal-conditioned explo-
ration where the agent learns to navigate to self-assigned
states (or goals). A common goal-selection rule for this
class of algorithms is to select as goals the states at the fron-
tier of the visited states (Lim & Auer, 2012; Tarbouriech
et al., 2020a; Ecoffet et al., 2019). Other selection-goal rules
include reaching each state a fixed number of times (Tar-
bouriech et al., 2021) or going to states where the estimation
error for the transition probabilities is large (Tarbouriech
et al., 2020b). The third approach, which has received rela-
tively less attention thus far, is the maximum entropy explo-
ration (Hazan et al., 2019; Lee et al., 2019; Mutti & Restelli,
2020; Mutti et al., 2021). This approach involves learning
a policy that aims to achieve a visitation distribution over
state-action pairs that is as uniform as possible. One specific
application of this approach is in unsupervised pretraining,
where it helps to obtain a better initial policy (Seo et al.,
2021; Zhang et al., 2021; Mutti et al., 2022). To achieve
this goal, the approach focuses on maximizing entropy-like
functionals, which is the main focus of our study.

In this work, we focus on environments modeled by an
episodic, finite, reward-free Markov Decision Process
(MDP) with S states, A actions, horizon H and step-
dependent transitions. We consider two types of entropy:
the visitation entropy and the trajectory entropy. The visita-
tion entropy of a policy is defined as the sum of the entropies
of the visitation distributions induced by the given policy
at each step. The trajectory entropy of a policy is given
by the entropy of a trajectory, generated when one follows
the given policy and seen as one random variable on the
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corresponding path space. We study maximum entropy ex-
ploration under the (ε, δ)-PAC framework, that is, we want
to learn, with probability 1−δ, a policy leading to ε-optimal
maximum visitation or trajectory entropy and using as few
as possible interactions with the environment.

Visitation entropy Hazan et al. (2019) study maximum
visitation entropy1 exploration (MVEE) in the more general
framework of convex MDPs where the agent wants to max-
imize a convex function of the visitation distribution. The
authors in Hazan et al. (2019) propose to apply the Frank-
Wolfe algorithm (Frank & Wolfe, 1956) to a smoothed ver-
sion of the visitation entropy. Their algorithm, MaxEnt2,
has a sample complexity of order3 Õ(H4S2A/ε3+S3/ε6),
that is, it needs to sample that number of trajectories in order
to find an ε-optimal policy for MVEE. Later, Cheung (2019)
obtains a better rate of order Õ(H4S2A/ε2 +H3S/ε3) for
the Toc-UCRL2 algorithm. Then, building on the ideas in-
troduced by Abernethy & Wang (2017), Zahavy et al. (2021)
reinterpret the MaxEnt algorithm as a method to compute the
equilibrium of a particular game induced by the Legendre-
Fenchel transform of the smoothed entropy. Using this new
point of view, they propose the MetaEnt algorithm4 with a
sample complexity of order Õ(H4S2A/(δ2ε2)+H3S/ε3).
In this work, building on the ideas by Grünwald & Dawid
(2002), we draw a connection between MVEE and another
game. In this game, a forecaster-player tries to predict the
state-action pairs visited by a sampler-player who aims
at surprising the forecaster-player by visiting not well pre-
dicted state-action pairs. We propose the EntGame algo-
rithm that tackles MVEE by solving this prediction game.
We prove that EntGame has a sample complexity of order
Õ(H4S2A/ε2 +HSA/ε), thus improving over the previ-
ous rate in terms of its dependence of ε, see Table 1. The
key technical point leading to this improvement is that, con-
trary to the previous algorithms, EntGame does not need to
estimate accurately the visitation distribution of a policy at
each iteration but only needs one trajectory generated by
following this policy. Moreover, we propose RegEntGame,
the regularized version of EntGame, that achieves sample
complexity of order Õ(H2SA/ε2), additionally improving
the previous rates in S. The main technique behind this

1Note that Hazan et al. (2019) consider a slightly different
entropy; see Remark 3.3.

2In this work we refer to MaxEnt as the algorithm by Hazan
et al. (2019) applied to the visitation entropy and not to the reverse
entropy as initially proposed by the authors.

3We adapt rates from the γ-discounted setting by replacing
1/(1− γ) with H . To take into account step-dependent transitions
we multiply the first order term by H2.

4We call MetaEnt the specialization of their general Meta-
algorithm to the special case of MVEE. Note that MaxEnt,
Toc-UCRL2, MetaEnt could be seen as variations of the same
algorithm. We use different names to distinguish, at least, the
associated sample complexity.

improvement is exploiting a strong connection between vis-
itation entropy and regularization in MDPs. As a result, we
have shown that MVEE is statistically strictly simpler than
reward-free exploration (Jin et al., 2020).

Trajectory entropy The second problem we consider is
maximum trajectory entropy exploration (MTEE). The en-
tropy of paths of a (Markovian) stochastic process was first
introduced in Ekroot & Cover (1993). Intuitively maxi-
mizing the trajectory entropy of an MDP minimizes the
predictability of paths. Also there is a close connection be-
tween MTEE and regularized RL, a very popular approach
in practical applications of RL.

Contrary to MVEE, the optimal policy for MTEE can easily
be obtained by solving entropy-regularized Bellman equa-
tions with entropy of the transition probabilities as rewards.
Leveraging this observation, one can proceed in a similar
way as for the best policy identification5 (BPI, Fiechter
1994). Precisely, we propose two algorithms. The first one,
UCBVI-Ent is the simplest one and computes a policy by
solving optimistic version of the aforementioned Bellman
equations and using it to interact with the environment. The
algorithm stops when an upper confidence bound on the
difference between the maximum trajectory entropy and
the trajectory entropy of the current policy is small enough.
The second algorithm, RL-Explore-Ent, is an adaptation
of the reward-free exploration by Jin et al. (2020) to our
setting. This algorithm has two phases. In the first phase, we
compute a preliminary exploration policy which is then used
to generate independent trajectories (data). In the second
phase, a nearly optimal MTEE policy is obtained by solving
the empirical Bellman equations with transitions estimated
from the data collected in the first phase.

Interestingly, we prove that RL-Explore-Ent enjoys a sam-
ple complexity of order Õ(poly(S,A,H)/ε). The key tech-
nical ingredients to obtain such fast rate are exploitation of
the smoothness introduced by the regularization and the use
of the explicit form of the optimal policy.

Regularized MDPs Notably we can adapt6 our algo-
rithms for MTEE to best policy identification in regularized
MDPs (Neu et al., 2017; Geist et al., 2019). Especially, we
consider the same entropy-regularized MDPs and associ-
ated Bellman equations as in Soft Q-learning (Fox et al.,
2016; Schulman et al., 2017; Haarnoja et al., 2017) or SAC
(Haarnoja et al., 2018), see Remark 4.3. We show that a
variation of RL-Explore-Ent has a sample complexity of
order Õ(poly(S,A,H)/(ελ)) for BPI and reward-free ex-
ploration in regularized MDPs, where λ is the regularization

5Where in this problem the goal is to identify the optimal policy
of a given MDP (equipped with a reward function).

6That is replace the entropy of the transition probability by an
arbitrary reward function.
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Algorithm Setting Sample complexity

MaxEnt (Hazan et al., 2019)

MVEE

Õ(H4S2A/ε3+S3/ε6)

Toc-UCRL2 (Cheung, 2019) Õ(H4S2A/ε2+H3S/ε3)

MetaEnt (Zahavy et al., 2021) Õ(H4S2A/(δ2ε2)+H3S/ε3)

EntGame (this paper) Õ(H4S2A/ε2+HSA/ε)

RegEntGame (this paper) Õ(H2SA/ε2+H8S4A/ε)

UCBVI-Ent (this paper) MTEE Õ(H3SA/ε2 + H3S2A/ε)

RL-Explore-Ent (this paper) Õ(H8S4A/ε)

Table 1. Sample complexities for MVEE and MTEE. We convert
rates from the γ-discounted setting by replacing 1/(1−γ) with H
or from the infinite horizon setting by replacing the diameter with
H . To take into account step-dependent transitions we multiply
the first order term by H2. (For MetaEnt since they do not precisely specify

the cost for estimating a visitation distribution we use the same 1/ε3 term as for

Toc-UCRL2.)

parameter. In particular, it exhibits a statistical separation
between BPI in regularized MDP and BPI in the original
MDP since in this case the optimal sample complexity is
of order Õ(H3SA/ε2) (Ménard et al., 2021; Domingues
et al., 2021a). Thus, our analysis shows that regularization
is an effective way to trade-off bias for sample complexity.
Additionally, we show how to use entropy regularization to
obtain a theoretically faster version of EntGame algorithm.

We highlight our main contributions:

• We propose the EntGame algorithm for MVEE with a sam-
ple complexity of order Õ(H4S2A/ε2) thus significantly
improving the existing complexity bounds for MVEE.

• We introduce the new MTEE setting for exploration and
provide two algorithm: the UCBVI-Ent algorithm for
MTEE with a sample complexity of order Õ(H3SA/ε2),
and RL-Explore-Ent with a sample complexity of order
Õ(poly(S,A,H)/ε). Up to our knowledge, this is the
first time that a fast rate (in 1/ε) is obtained thanks to
regularization.

• We adapt UCBVI-Ent and RL-Explore-Ent to solve the
entropy-regularized MDPs with a sample complexity of
order Õ(H3SA/ε2) and Õ(poly(S,A,H)/(λε)) corre-
spondingly, where λ is the regularization parameter.

• We combine EntGame algorithm with regularization tech-
niques, resulting in a new algorithm RegEntGame. This
algorithm improves a sample complexity of EntGame to
Õ(H2SA/ε2) and shows statistical separation of MVEE
from reward-free exploration.

2. Setting
We consider a finite episodic reward-free MDP M =(
S,A, H, {ph}h∈[H], s1

)
, where S is the set of states of

size S, A is the set of actions of size A, H is the number of
steps in one episode, ph(s′|s, a) is the probability transition

from state s to state s′ by performing action a in step h.
And s1 is the fixed initial state.

Policy & value functions A general policy π =
(ψh)h∈[H] is a collection of function ψh : (S × A ×
[0, 1])h−1 × S × [0, 1] → A that maps an history Ih =
(s1, a1, u1, . . . , sh−1, ah−1, uh−1) where uh are i.i.d. uni-
formly distributed on the unit interval, a state sh and an
auxiliary independent uniformly distributed random vari-
able uh to an action ah = ψh(Ih, sh, uh). A policy is
Markovian if the action depends only on the previous state
and the auxiliary noise ah = ψh(sh, uh). In this case
the policy can be represented as π = (πh)h∈[H] a col-
lection of mappings from states to probability distribu-
tions over actions πh : S → ∆A for all h ∈ [H] where
ah = ψh(sh, uh) ∼ πh(sh). Furthermore, phf(s, a) ≜
Es′∼ph(·|s,a)[f(s

′)] denotes the expectation operator with
respect to the transition probabilities ph and (πhg)(s) ≜
πhg(s) ≜ Ea∼πh(s)[g(s, a)] denotes the composition with
policy π at step h. Also, for any distribution over actions
π ∈ ∆A define πg(s) ≜ Ea∼π[g(s, a)].

Visitation distribution The state-action visitation distri-
bution of policy π at step h is denoted by dπh , where dπh(s, a)
is the probability of reaching the state-action pair (s, a) at
step h after policy π.

Visitation polytopes All the admissible collection of visi-
tation distributions belong to the following polytope

Kp ≜
{
d = (dh)h∈[H] :

∑
a∈A

d1(s, a) = 1{s = s1} ∀s ∈ S

∑
a∈A

dh+1(s, a) =
∑

(s′,a′)∈S×A

ph(s|s′, a′
)dh(s

′
, a

′
) ∀s ∈ S, ∀h ≥ 1

}
.

We also denote by K the set of collections of probability
distributions over state-action pairs without the constraint
to be a valid visitation distribution, that is

K ≜
{
d = (dh)h∈[H] : dh(s, a) ≥ 0, ∀(h, s, a) ∈ [H] × S × A∑

(s,a)∈S×A

dh(s, a) = 1, ∀h ∈ [H]
}
.

Trajectory distribution We denote by T ≜ (S ×A)H ={
(s1, a1, . . . , sH , aH) : (sh, ah) ∈ S × A, ∀h ∈ [H]

}
the

set of all possible trajectories. The probability to gener-
ate the trajectory m = (s1, a1, . . . , sH , aH) with he policy
π is qπ(m) ≜ π(a1|s1)

∏H
h=2 ph−1(sh|sh−1, ah−1)πh(ah|sh).

Note that the visitation distribution at step h of policy
π is a marginal of the trajectory distribution dπh(s, a) =
E(s1,a1,...,sH ,aH)∼qπ [1{(s, a) = (sh, ah)}].

Counts and empirical transition probability the num-
ber of times the state action-pair (s, a) was visited
in step h in the first t episodes are nth(s, a) ≜
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i=1 1

{
(sih, a

i
h) = (s, a)

}
. Next, we define nth(s

′|s, a) ≜∑t
i=1 1

{
(sih, a

i
h, s

i
h+1) = (s, a, s′)

}
the number of transi-

tions from s to s′ at step h. The empirical distribution is de-
fined as p̂ t

h(s
′|s, a) = n t

h(s
′|s, a)/n t

h(s, a) if nth(s, a) > 0
and p̂ t

h(s
′|s, a) ≜ 1/A for all s′ ∈ S else.

Additional notation For n ∈ N+ we define the set
[n] ≜ {1, . . . , n}. For n ∈ N+ we denote by ∆n the prob-
ability simplex of dimension n. For elements (p, q) ∈ ∆n

the entropy of p is denoted by H(p) ≜ −∑i∈[n] pi log pi
and the Kullback-Leibler divergence between p and q
by KL(p, q) ≜

∑
i∈[n] pi log(pi/qi). For a number x

and any two number m < M define clip(x,m,M) ≜
max(min(x,M),m).

3. Visitation Entropy
In this section we focus on maximizing the visitation entropy
defined below.

Visitation entropy We define the visitation entropy of a
policy π denoted by as the sum of the visitation distribution
entropies at each steps

Hvisit(d
π) ≜

H∑
h=1

H(dπh) ·

We denote by π⋆,VE ∈ argmaxπHvisit(d
π) a policy that

maximizes the visitation entropy.

Maximum visitation entropy exploration In MVEE the
agent interacts with the reward-free MDP M as follows.
At the beginning of episode t, the agent picks a policy πt

based only on the transitions collected up to episode t− 1.
Then a new reward-free trajectory is sampled following the
policy πt and observed by the agent. At the end of each
episode the agent can decide to stop collecting new data,
according to a random stopping time τ , the stopping rule,
and outputs a (general) policy π̂ based on the observed
transitions. An agent for MVEE is therefore made of a
triplet ((πt)t∈N, τ, π̂).
Definition 3.1. (PAC algorithm for MVEE) An algorithm
((πt)t∈N, τ, π̂) is (ε, δ)-PAC for MVEE if

P
(
Hvisit

(
dπ

⋆,VE)
−Hvisit(d

π̂) ≤ ε
)
≥ 1− δ.

Our goal is to design an algorithm that is (ε, δ)-PAC for
MVEE with as sample complexity τ as small as possible.

3.1. MVEE by Solving Game

Following the general framework of Hazan et al. (2019);
Zahavy et al. (2021), it is possible to solve MVEE by ap-
plying the Frank-Wolfe algorithm to a smoothed version

of the visitation entropy. Interestingly, Abernethy & Wang
(2017) showed that this procedure is equivalent to comput-
ing the Nash equilibrium of a particular game induced by
the Legendre-Fenchel transform of the smoothed entropy.
In fact, as noted by Grünwald & Dawid (2002), there exists
another game naturally linked to MVEE, stated next.

Prediction game Maximum visitation entropy is the value
of the following prediction game

max
d∈Kp

Hvisit(d) = max
d∈Kp

min
d̄∈K

∑
(h,s,a)

dh(s, a) log
1

d̄h(s, a)

= min
d̄∈K

max
d∈Kp

∑
(h,s,a)

dh(s, a) log
1

d̄h(s, a)
,

see Lemma H.1 in Appendix H for a proof. This game can
be interpreted as follows. On the one hand, the min player,
or forecaster player, tries to predict which state-action pairs
the max player will visit to minimize KL(dh, d̄h). On the
other hand, the max player, or sampler player, is rewarded
for visiting state-action pairs that the forecaster player did
not predict correctly.

We now describe the algorithm EntGame for MVEE. In this
algorithm, we let a forecaster player and a sampler player
compete for T episodes long. Let us first define the two
players.

Forecaster-player As forecaster-player we use the
Mixture-Forecaster for a logarithmic loss, see Section 9
in (Cesa-Bianchi & Lugosi, 2006). Fix a prior count n0
and their sum t0 = SAn0. The forecaster-player pre-
dicts at episode t the distributions d̄t ∈ K with d̄th(s, a) =
n̄t−1
h (s, a)/(t+ t0) where the pseudo counts are n̄th(s, a) =
nth(s, a) + n0 and nth(s, a) the counts of state-action pairs
visited by the sampler-player. Note that d̄th can be seen
as the posterior mean under a Dirichlet distribution prior
Dir({n0}(s,a)∈S×A) on S ×A.

Sampler-player As sampler-player we choose the opti-
mistic best-response. Define the optimistic Bellman equa-
tions

Q
t

h(s, a) = log
1

d̄t+1
h (s, a)

+ p̂ t
hV

t
h+1(s, a) + bth(s, a),

V
t
h(s) = clip

(
max
a∈A

Q
t

h(s, a), 0, log(t/n0 + SA)H

)
,

(1)

where V t
H+1 = 0 and bth are some Hoeffding-like bonuses

defined in (6) of Appendix B. The sampler player then plays
dπ

t+1

where πt+1 is greedy with respect to the optimistic
Q-values, that is, πt+1

h (s) ∈ argmaxπ∈∆A
πQ

t

h(s).

Sampling rule At each episode t the policy πt of the
sampler-player is used as a sampling rule to generate a new
trajectory.
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Decision rule After T episodes we output a non-
Markovian policy π̂ defined as the mixture of the policies
{πt}t∈[T ], that is, to obtain a trajectory from π̂ we first sam-
ple uniformly at random t ∈ [T ] and then follow the policy
πt. Note that the visitation distribution of π̂ is exactly the
average dπ̂ = (1/T )

∑
t∈[T ] d

πt

.

Remark that the stopping rule of EntGame is deterministic
and equals to τ = T . The complete procedure is detailed in
Algorithm 1.

Algorithm 1 EntGame
1: Input: Number of episodes T , prior counts n0.
2: for t ∈ [T ] do
3: # Forecaster-player
4: Update pseudo counts n̄t−1

h (s, a) and predict
d̄th(s, a).

5: # Sampler-player
6: Compute πt by optimistic planning (1) with rewards

log
(
1/d̄th(s, a)

)
.

7: # Sampling
8: for h ∈ [H] do
9: Play ath ∼ πt

h(s
t
h)

10: Observe sth+1 ∼ ph(sth, ath)
11: end for
12: Update counts and transition estimates.
13: end for
14: Output π̂ the uniform mixture of {πt}t∈[T ].

Theorem 3.2. Fix ε > 0, δ ∈ (0, 1) and n0 = 1. Then
under the choice

T = Õ
(
H4S2A

ε2
+
HSA

ε

)
the algorithm EntGame is (ε, δ)-PAC. See Theorem B.7 in
Appendix B for a precise bound.

Thus the sample complexity of EntGame is of order
Õ(H4S2A/ε2). In particular, this result significantly im-
proves over the previous rate for MTEE, see Table 1. Note
that, by using Bernstein-like bonuses (Azar et al., 2017)
instead of Hoeffding-like ones for the sampler-player would
give a sample complexity of order Õ(H3S2A/ε2) saving
one factor H . However, in the Section 5 we present a way
to use regularization techniques to achieve a sample com-
plexity of order Õ(H2SA/ε2).

Space and time complexity Since EntGame relies on a
model-based algorithm for the sampler-player, its space
complexity is of orderO(HS2A). Because of the value iter-
ation performed by the sampler-player, the time-complexity
of one iteration of EntGame is of order O(HS2A).
Remark 3.3. Note that our definition of the visitation en-
tropy slightly differs from the one considered by Hazan et al.

(2019). Indeed, their definition, translated to the episodic
setting, is the entropy of the average of the visitation dis-
tributions which is an upper bound on the average of the
entropies by concavity of the entropy

H

(
1

H

H∑
h=1

dπh

)
≥ 1

H
Hvisit(d

π) .

Even if both definitions make sense in the episodic set-
ting, we think ours is slightly more appropriate in the case
of step-dependent transition probabilities. Indeed, in this
case we want visitation distributions to be close to the uni-
form distribution over state-action pairs for all steps. Nev-
ertheless, EntGame can be adapted to optimize the visita-
tion entropy used in Hazan et al. (2019) simply by pre-
dicting d̄th(s, a) =

∑H
h′=1 n̄

t−1
h′ (s, a)/(H(t + t0)) for the

forecaster-player. We conjecture that the sample complexity
of this adaptation of EntGame for the alternative entropy is
again of order Õ(HS2A/ε2).

Comparison with MaxEnt and MetaEnt All three algo-
rithms, EntGame, MetaEnt (Zahavy et al., 2021), MaxEnt
(Hazan et al., 2019) rely on the same principle of comput-
ing, implicitly or explicitly, the equilibrium of a well chosen
game and deduce from it an optimal policy for MVEE. One
first difference between EntGame and its competitors lies in
the choice of the game. While MetaEnt, MaxEnt consider
the game induced by the Legendre-Fenchel conjugate of a
smoothed visitation entropy (Zahavy et al., 2021), EntGame
leverages the prediction game which looks more natural for
MVEE. One advantage of using this game, is that it allows
to avoid the need to smooth the visitation entropy because it
is done implicitly by the forecaster-agent with the pseudo-
counts. More importantly, MaxEnt and MetaEnt both needs
to accurately estimate at each episode the visitation distri-
butions of the sampler-player dπ

t

h , leading to an extra 1/ε3

term in the sample complexity. Whereas EntGame needs
one trajectory from πt since it only involves the estimation
of the averages 1/T

∑T
t=1 d

πt

h .

4. Trajectory Entropy
In this section we focus on another type of entropy, the
trajectory entropy, that can be efficiently maximized. The
entropy of paths of a (Markovian) stochastic process is
introduced by Ekroot & Cover (1993). It quantifies the
randomness of realizations with fixed initial and final states.
Later it was extended (Savas et al., 2019) to realizations that
reach a certain set of states, rather than a fixed final state.
This type of entropy is also closely related to the so-called
entropy rate of a stochastic process.

Trajectory entropy We define the trajectory entropy of
a policy π as the entropy of a trajectory generated with the
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policy π

Htraj(q
π) ≜ H(qπ) =

∑
m∈T

qπ(m) log
1

qπ(m)
.

We denote by π⋆,TE ∈ argmaxπHtraj(q
π) a policy that

maximizes the trajectory entropy.

Maximum trajectory entropy exploration MTEE dif-
fers from MVEE only in the choice of entropy. In particular
an algorithm ((πt)t∈N+ , τ, π̂) for MTEE is also a combina-
tion of a time dependent policy (πt)t∈N+

, a stopping rule τ ,
and a decision rule π̂.

Definition 4.1. (PAC algortihm for MTEE) An algorithm
((πt)t∈N, τ, π̂) is (ε, δ)-PAC for MTEE if

P
(
Htraj

(
qπ

⋆,TE)−Htraj(q
π̂) ≤ ε

)
≤ 1− δ .

As noted by Eysenbach & Levine (2019), MTEE can also be
connected to a prediction game. In this game, the forecaster-
player aims to predict the whole trajectory that the sampler-
player will generate. Remark that predicting the trajectory
implies to predict, in particular, the visited state-action pairs
but the reverse is not true in general 7. We could then
apply the same strategy as in Section 3 to solve MTEE.
Nevertheless, for trajectory entropy, there is a more direct
way to proceed.

Entropy regularized Bellman equations One big differ-
ence between MVEE and MTEE is that the optimal policy
can be obtained by solving regularized Bellman equations.
Indeed, thanks to the chain rule for the entropy, the tra-
jectory entropy of a policy π is Htraj(d

π) = V π
1 (s1) and

the maximum trajectory entropy isHtraj
(
dπ

⋆,TE)
= V ⋆

1 (s1)
where the value functions V π and V ⋆ satisfy

Qπ
h(s, a) = H

(
ph(s, a)

)
+ phV

π
h+1(s, a) ,

V π
h (s) = πhQ

π
h(s) +H

(
πh(s)

)
,

Q⋆
h(s, a) = H

(
ph(s, a)

)
+ phV

⋆
h+1(s, a) ,

V ⋆
h (s) = max

π∈∆A

{πQ⋆
h(s) +H(π)} ,

where by definition, V ⋆
H+1 ≜ V π

H+1 ≜ 0. In particular, the
maximum trajectory entropy policy is given by π⋆,TE

h (s) =
argmaxπ∈∆A

(πQ⋆(s) + H(π)). It can be computed ex-
plicitly via π⋆,TE

h (a|s) = exp
(
Q⋆

h(s, a)−V ⋆
h (s)

)
as well as

the optimal value function V ⋆
h (s) = log

(∑
a∈A eQ

⋆
h(s,a)

)
.

We refer to Appendix C for a complete derivation.

We now describe our algorithm RL-Explore-Ent, the de-
scription of UCBVI-Ent is postponed to Appendix D. The
idea of the algorithm is rather simple: since we need to
solve regularized Bellman equations to obtain a maximum

7Indeed dπh are only the marginals of qπ .

trajectory entropy policy, we can 1) find a preliminary ex-
ploration policy πmix allowing one to construct estimates of
the transition probabilities which are uniformly good when
computing expectations of arbitrary bounded functions over
all policies (see Lemma G.6), and 2) solve the regularized
Bellman equations based on the estimated model. A simi-
lar approach is used in reward-free exploration (Jin et al.,
2020; Kaufmann et al., 2021; Ménard et al., 2021), and, in
particular, our algorithm is close to RF-RL-Explore by Jin
et al. (2020). However, the key difference is that in the pres-
ence of regularization a much smaller number of transitions
(trajectories) needs to be collected in order to obtain a high
quality policy.

Exploration phase This phase is devoted to learn a sim-
ple (non-Markovian) preliminary exploration policy πmix

that could be used to construct a accurate enough estimates
of transition probabilities. This policy is obtained, as in
RF-RL-Explore, by learning for each state s and step h, a
policy that reliably reaches state s at step h. This can be
done by running for N0 iterations any regret minimization
algorithm, e.g. EULER (Zanette & Brunskill, 2019), for the
sparse reward function putting reward one at state s at step
h and zero otherwise. The policy πmix is defined as the
uniform mixture of the aforementioned policies. Then the
policy πmix is used to collect N fresh independent trajecto-
ries from the MDP.

Planning phase For the planning phase, the agent builds
a transition model

p̂h(s
′|s, a) =

{
nh(s

′|s,a)
nh(s,a)

nh(s, a) > 0
1
S nh(s, a) = 0

, (2)

where nh(s, a) is the number of visits of the state-action pair
(s, a) at step h for these N sampled trajectories. The final
policy is a solution to the empirical regularized Bellman
equations

Q̂⋆
h(s, a) = H

(
p̂h(s, a)

)
+ p̂hV̂

⋆
h+1(s, a) ,

V̂ ⋆
h (s) = max

π∈∆A

{
πQ̂⋆

h(s) +H(π)
}
,

π̂h(s) = argmax
π∈∆A

{
πQ̂⋆

h(s) +H(π)
}
.

(3)

The complete procedure is described in Algorithm 2. We
now prove that, for the well-calibrated choice of N and
N0 of order Õ(poly(S,A,H)/ε), the RL-Explore-Ent
algorithm is (ε, δ)-PAC for MTEE and provide an upper
bound on its sample complexity. For the proof we refer to
Appendix E.

Theorem 4.2. The algorithm RL-Explore-Ent with pa-
rameters N0 = Ω

(
H7S3A·L3

ε

)
and N = Ω

(
H6S3AL5

ε

)
is (ε, δ)-PAC for the MTEE problem, where L =
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log(SAH/(εδ)). Its total sample complexity SHN0 +N
is bounded by

Õ
(
H8S4A

ε

)
.

Algorithm 2 RL-Explore-Ent
1: Input: Target precision ε, target probability δ, number

of episodes for simple exploration policy N0, number
of sampled trajectories N .

2: for (s′, h′) ∈ S × [H] do
3: Form rewards rh(s, a) = 1{s = s′, h = h′}.
4: Run EULER (Zanette & Brunskill, 2019) with rewards

rh over N0 episodes and collect all policies Πs′,h′ .
5: Modify π ∈ Πs′,h′ : πh′(a|s′) = 1/A for all a ∈ A.
6: end for
7: Construct a uniform mixture policy πmix over all {π ∈

Πs,h : (s, h) ∈ S × [H]}.
8: SampleN independent trajectories (zn)n∈[N ] following
πmix in the original MDP.

9: Construct from (zn)n∈[N ] an empirical model p̂h as in
(2).

10: Output policy π̂ as a solution to (3).

Remark 4.3. (On solving regularized MDPs) Interestingly,
our approach for MTEE can be adapted to solve entropy-
regularized MDPs. For a reward functions (rh)h∈[H] and
regularization parameter λ > 0, consider the regularized
Bellman equations

Qπ
λ,h(s, a) = rh(s, a) + phV

π
λ,h+1(s, a) ,

V π
λ,h(s) = πhQ

π
λ,h(s) + λH

(
πh(s)

)
,

Q⋆
λ,h(s, a) = rh(s, a) + phV

⋆
λ,h+1(s, a) ,

V ⋆
λ,h(s) = max

π∈∆A

πQ⋆
λ,h(s) + λH(π),

where V π
λ,H+1 = V ⋆

λ,H+1 = 0. Note that these are
the Bellman equations used by Soft Q-learning (Fox
et al., 2016; Schulman et al., 2017; Haarnoja et al., 2017)
and SAC (Haarnoja et al., 2018) algorithms. We are in-
terested in the best policy identification for this regular-
ized MDP. That is finding an algorithm that will output
an ε-optimal policy π̂ such that with probability 1 − δ,
it holds V ⋆

λ,1(s1) − V π̂
λ,1(s1) ≤ ε after a minimal num-

ber τ of trajectories sampled from the MDP Mr =
(S,A, H, (ph)h∈[H], (rh)h∈[H], s1). By using similar ex-
ploration and planning phases as in RL-Explore-Ent, we
get an algorithm for BPI in the entropy-regularized MDP
that also enjoys the fast rate of order Õ

(
H8S4A/(ελ)

)
.

Moreover, this algorithm could be used for more general
types of regularization and even in reward-free setting with
the same order of the sample complexity. Refer to Ap-
pendix D-E for precise statements and proofs.

We observe that the sample complexity for solving the regu-
larized MDP is strictly smaller8 than the sample complexity

8For small enough ε.

for solving the original MDP. Indeed, one needs at least
Õ(H3SA/ε2) trajectory (Domingues et al., 2021a) to learn
a policy π which value in the (unregularized) MDP is ε-close
to the optimal value. Nevertheless, regularizing the MDP
introduces a bias in the value function. Precisely we have
for all π, 0 ≤ V π

λ,1(s1)− V π
1 (s1) ≤ Õ(λH) where V π

1 (s1)
is the value function of π at the initial state and MDPMr.
Thus, to solve BPI inMr through BPI in the regularized
MDP, one needs to take λ = Õ(1/(Hε)), leading to a sam-
ple complexity of order Õ(H9S4A/ε2). In particular, our
fast rate for BPI in regularized MDP does not contradict
the lower bound for BPI in the original MDP. However, our
analysis shows that regularization is an effective way to
trade-off bias for sample complexity.

Visitation entropy vs trajectory entropy We can com-
pare the visitation entropy and the trajectory entropy with

Htraj(q
π) ≤ KL(qπ,⊗H

h=1d
π
h) +Htraj(q

π)︸ ︷︷ ︸
Hvisit(dπ)

≤ HHtraj(q
π) ,

where ⊗H
h=1d

π
h is a product measure, see Lemma H.3 in Ap-

pendix H for a proof. Note also that in general the visitation
distributions of an optimal policy for maximum trajectory
entropy will be less ’spread’ than the one of an optimal
policy for MTEE, see Section 6 for an example. In par-
ticular one can prove that the optimal policy for MTEE is
the uniform policy if the transitions are deterministic, see
Lemma H.4 of Appendix H.

4.1. Proof Sketch

In this section we sketch the proof of Theorem D.10.

Properties of entropy We start from analysing several
properties of the entropy function. First, we notice that the
well-known log-sum-exp function is a convex conjugate to
the negative entropy defined only on the probability simplex
(Boyd & Vandenberghe, 2004)

F (x) ≜ log

(∑
a∈A

exa

)
= max

π∈∆A

⟨π, x⟩+H(π)

and extend its action to Q-functions

F (Q)(s) ≜ max
π∈∆A

πQ(s) +H(π).

This definition is useful because we can rewrite the optimal
value function for MTEE in real and empirical model as
follows

V ⋆
h (s) = F (Q⋆

h)(s), V̂ π̂
h (s) = F (Q̂π̂

h)(s). (4)

Additionally, we notice that the gradient of F is equal to the
soft-max policy that maximizes the expressions above

π⋆
h(s) = ∇F (Q⋆

h)(s), π̂h(s) = ∇F (Q̂π̂
h)(s),

7
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and, moreover, since the negative entropy −H(π) is 1-
strongly convex with respect to ℓ1 norm, gradients of F
is 1-Lipschitz with respect to ℓ∞ norm by the properties
of the convex conjugate (Kakade et al., 2009). Combining
the gradient properties with the smoothness definition to Q⋆

and Q̂π̂ we obtain

F (Q⋆
h)(s) ≤ F (Q̂π̂

h)(s) + π̂h

(
Q⋆

h − Q̂π̂
h

)
(s)

+
1

2
∥Q⋆

h − Q̂π̂
h∥2∞(s),

(5)

where ∥Q⋆
h − Q̂π̂

h∥∞(s) = maxa∈A |Q⋆
h(s, a)− Q̂π̂

h(s, a)|.

Bound on the policy error Next we apply the key in-
equality (5) to analyze the error between the optimal policy
and policy π̂. Using (4) yields

V ⋆
h (s)− V π̂

h (s) ≤ V̂ π̂
h (s)− V π̂

h (s) + π̂h

(
Q⋆

h − Q̂π̂
h

)
(s)

+
1

2
max
a∈A

(
Q̂π̂

h(s, a)−Q⋆
h(s, a)

)2
.

Next, by definition of π̂ we have V̂ π̂
h (s) = H(π̂h(s)) +

π̂hQ̂
π̂
h(s), therefore by the regularized Bellman equations

V ⋆
h (s)− V π̂

h (s) ≤ π̂hph
(
V ⋆
h+1 − V π̂

h+1

)
(s)

+
1

2
max
a∈A

(
Q̂π̂

h(s, a)−Q⋆
h(s, a)

)2
.

Finally, rolling out this expression we have

V ⋆
1 (s1)− V π̂

1 (s1) ≤
1

2
Eπ̂

[
H∑

h=1

max
a∈A

(
Q̂π̂

h −Q⋆
h

)2
(sh, a)

]
.

Next we may notice that in the generative model setting9

there is available results that tells us that Õ(1/ε) samples
are enough to obtain ∥Q̂π̂

h − Q⋆
h∥∞ ≲

√
ε (Azar et al.,

2013), and we can conclude the statement. However, in
the online setup the situation is more complicated, and we
apply reward-free techniques developed by Jin et al. (2020)
to obtain a "surrogate" of the generative model.

5. Faster Rates for Visitation Entropy
In this section, we show how to combine the regularization
techniques developed in Section 4 with EntGame algorithm
presented in Section 3.1.

The new algorithm RegEntGame is based on exactly the
same game-theoretical framework as EntGame, but uses a
regularized sampler player instead of the usual one.

Regularized sampler-player For the sampler player, we
shall take advantage of strong convexity of the visitation
entropy. Beforehand, we construct an estimate of the model
{p̂h}h∈[H] by reward-free exploration, using HSN0 sam-
ples to compute a policy πmix and N samples to estimate

9When there is a sampling oracle for each state-action pair.

transitions. Next, define the empirical regularized Bellman
equations

Q̂t
h(s, a) = log

(
1

d̄t+1
h (s)

)
+ p̂hV̂

t
h+1(s, a),

V̂ t
h(s) = max

π∈∆A
{πQ̂t

h(s) +H(π)},

where V̂ t
H+1 = 0. The sampler player then follows the

distribution dπ
t+1

where πt+1 is greedy with respect to
the regularized empirical Q-values, that is, πt+1

h (s) ∈
argmaxπ∈∆A

{πQ̂t
h(s) +H(π)}.

Theorem 5.1. Fix ε > 0 and δ ∈ (0, 1). For n0 = 1,

N0 = Ω

(
H7S3A · L3

ε

)
, N = Ω

(
H6S3AL5

ε

)
,

and

T = Ω

(
H3SAL3

ε2
+

H2S2A2L2

ε

)
.

with L = log(SAH/δε) the algorithm RegEntGame is
(ε, δ)-PAC. The total sample complexity is equal to SH ·
N0 +N + T, that is,

τ = Õ
(
H2SA

ε2
+

H8S4A

ε

)
.

Thus, the sample complexity of RegEntGame is of order
Õ(H2SA/ε2) for ε large enough. In particular, this result
significantly improves over the previous rates for MVEE,
see Table 1. Moreover, this result shows a rate separa-
tion between reward-free exploration (Jin et al., 2020),
where the established lower bound on sample complexity
Ω(H3S2A/ε2) scales with S2, and the visitation entropy
maximization problem.

Proof idea The main proof idea is to exploit not just strong
convexity of the visitation entropy with respect to Euclidean
distance but its strong convexity with respect to trajectory
entropy (Bauschke et al., 2017). It allows us to use entropy
regularization as described in Section 4.1 for the sampler
player resulting in an averaged regret less than ε for only
Õ(poly(S,A,H)/ε) samples. Thus, the density estimation
error becomes the leading term in the full error decomposi-
tion. For more details refer to Appendix F.

6. Experiments
In this section we report experimental results on simple tab-
ular MDP for presented algorithms and show the difference
between visitation and trajectory entropies. In particular,
we compare EntGame and UCBVI-Ent algorithms with (a)
random agent that takes all actions uniformly at random, (b)
an optimal MVEE policy computed by solving the convex
program, and (c) an optimal MTEE policy computed by
solving the regularized Bellman equations. As an MDP, we
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Figure 1. Number of state visits for N = 100000 samples in Dou-
ble Chain MDP with S = 31 states, A = 2 actions, a horizon
H = 20 and a 0.1 probability of moving to the opposite direction.

choose a stochastic environment called Double Chain as
considered by Kaufmann et al. (2021).

Since the transition kernel for this environment is stage-
homogeneous, for EntGame and UCBVI-Ent algorithms we
joint counters over the different steps h. In particular, it
changes the objective of the EntGame algorithm to the ob-
jective considered by Hazan et al. (2019) that makes more
sense in the stage-independent setting 10.

In Figure 1 we present the number of state visits for our
algorithms and baselines during N = 100000 interactions
with the environment. For UCBVI-Ent algorithm the pro-
cedure was separated on two stages: at first we learn MDP
with N -sample budget and extract the final policy, and then
plot the number of visits for the final policy during another
N samples.

In particular, we see that since this environment is al-
most deterministic the optimal MTEE policy is almost
coincides with a random policy. Notably, the policy in-
duced by UCBVI-Ent is more uniform over states because
of 1/

√
nt(s, a) bonuses, that make our algorithm close to

RF-UCRL (Kaufmann et al., 2021). Also we see that the
optimal MVEE policy is the most uniform over states, that
makes it an appropriate target for the pure exploration prob-
lem. For more details and additional experiments we refer
to Appendix I.

7. Conclusion
In this work we studied MVEE for which we provided
the EntGame algorithm with a sampling complexity signifi-
cantly smaller than the existing complexity rates. We also
introduced the MTEE problem where the optimal policy can
be found using the dynamic programming. We proposed the
UCBVI-Ent and RL-Explore-Ent algorithms for MTEE

10See Remark 3.3.

that can be adapted to BPI in regularized MDPs. We proved
that, in both cases, RL-Explore-Ent and its variant enjoy
a fast rate. In particular, we observed a statistical separation
between BPI in regularized MDP and in the original MDP.
Moreover, we show that the regularized version of EntGame
called RegEntGame enjoys Õ(H2SA/ε2) rates, making de-
pendence in S smaller than in the reward-free exploration
problem (Jin et al., 2020).

This work opens the following interesting future research
directions:

Optimal rates for MVEE and MTEE We are still lack-
ing lower bounds for MTEE and MVEE problems enabling
us to determine the optimal rates, especially what the num-
ber of states S and the horizon H is concerned. Note that
one cannot apply directly the usual lower-bounds techniques
for these two problems because of the entropy regularization
in both cases. In particular, we conjecture that the optimal
rate for MVEE is also of order Õ(poly(H,S,A)/ε).

Optimal rate for entropy-regularized RL It would be
interesting to obtain the optimal rate for BPI in a regularized
MDP. In particular to recover the optimal rate for BPI in the
original MDP by tuning the regularization parameter λ. We
conjecture that the optimal rate is Õ(H2SA/(λε)) for BPI
in entropy-regularized MDP.

Other types of entropies Our methodology can be ap-
plied to other types of entropies and even to other regular-
ization penalties. One interesting case would be the goal-
conditioned trajectory entropy (see Savas et al. 2019) where
one considers only process realizations that reach a certain
set of states at time H . This entropy can be applied to goal-
conditioned RL. Another type of problem that could be of
high interest is visitation entropy maximization under safety
constraints (Yang & Spaan, 2023).

Acknowledgements
The work of D. Tiapkin, A. Naumov, and D. Belomestny
were supported by the grant for research centers in the field
of AI provided by the Analytical Center for the Govern-
ment of the Russian Federation (ACRF) in accordance with
the agreement on the provision of subsidies (identifier of
the agreement 000000D730321P5Q0002) and the agree-
ment with HSE University No. 70-2021-00139. D. Be-
lomestny acknowledges the financial support from Deutsche
Forschungsgemeinschaft (DFG), Grant Nr.497300407. P.
Ménard acknowledges the Chaire SeqALO (ANR-20-CHIA-
0020-01).

9



Fast Rates for Maximum Entropy Exploration

References
Abernethy, J. D. and Wang, J.-K. On Frank-Wolfe

and equilibrium computation. In Neural Infor-
mation Processing Systems, 2017. URL https:
//proceedings.neurips.cc/paper/2017/file/
7371364b3d72ac9a3ed8638e6f0be2c9-Paper.pdf.

Antos, A. and Kontoyiannis, I. Convergence prop-
erties of functional estimates for discrete distribu-
tions. Random Structures & Algorithms, 19(3-4):
163–193, 2001. doi: https://doi.org/10.1002/rsa.
10019. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/rsa.10019.

Azar, M. G., Munos, R., and Kappen, H. J. Mini-
max PAC bounds on the sample complexity of rein-
forcement learning with a generative model. Machine
Learning, 91(3):325–349, 2013. URL https://hal.
archives-ouvertes.fr/hal-00831875.

Azar, M. G., Osband, I., and Munos, R. Minimax re-
gret bounds for reinforcement learning. In Interna-
tional Conference on Machine Learning, 2017. URL
https://arxiv.org/pdf/1703.05449.pdf.

Bauschke, H. H., Bolte, J., and Teboulle, M. A de-
scent lemma beyond lipschitz gradient continuity: First-
order methods revisited and applications. Mathemat-
ics of Operations Research, 42(2):330–348, 2017. doi:
10.1287/moor.2016.0817. URL https://doi.org/10.
1287/moor.2016.0817.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016. URL https:
//proceedings.neurips.cc/paper/2016/file/
afda332245e2af431fb7b672a68b659d-Paper.pdf.

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004. doi: 10.1017/
CBO9780511804441.

Bubeck, S. Convex optimization: Algorithms and complex-
ity. Found. Trends Mach. Learn., 8(3–4):231–357, nov
2015. ISSN 1935-8237. doi: 10.1561/2200000050. URL
https://doi.org/10.1561/2200000050.

Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O.
Exploration by random network distillation. In 7th Inter-
national Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net, 2019. URL https://openreview.net/
forum?id=H1lJJnR5Ym.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge University Press, 2006. ISBN 978-0-
511-54692-1.

Cesa-Bianchi, N., Gentile, C., Lugosi, G., and Neu, G.
Boltzmann exploration done right. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 6287–6296, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Chentanez, N., Barto, A., and Singh, S. Intrin-
sically motivated reinforcement learning. In
Saul, L., Weiss, Y., and Bottou, L. (eds.), Ad-
vances in Neural Information Processing Sys-
tems, volume 17. MIT Press, 2004. URL https:
//proceedings.neurips.cc/paper/2004/file/
4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf.

Cheung, W. C. Exploration-exploitation trade-off in rein-
forcement learning on online markov decision processes
with global concave rewards. CoRR, abs/1905.06466,
2019. URL http://arxiv.org/abs/1905.06466.

Cover, T. M. and Thomas, J. A. Elements
of information theory. John Wiley & Sons,
2006. URL https://www.amazon.com/
Elements-Information-Theory-Telecommunications-Processing/
dp/0471241954.

Dann, C., Lattimore, T., and Brunskill, E. Unifying PAC
and regret: Uniform PAC bounds for episodic reinforce-
ment learning. In Neural Information Processing Systems,
2017. URL https://arxiv.org/pdf/1703.07710.
pdf.

Dann, C., Li, L., Wei, W., and Brunskill, E. Policy cer-
tificates: Towards accountable reinforcement learning.
In International Conference on Machine Learning, pp.
1507–1516. PMLR, 2019.

Domingues, O. D., Ménard, P., Kaufmann, E., and Valko, M.
Episodic reinforcement learning in finite mdps: Minimax
lower bounds revisited. In Algorithmic Learning Theory,
pp. 578–598. PMLR, 2021a.

Domingues, O. D., Menard, P., Pirotta, M., Kaufmann,
E., and Valko, M. Kernel-based reinforcement learn-
ing: A finite-time analysis. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 2783–2792. PMLR, 18–24
Jul 2021b. URL https://proceedings.mlr.press/
v139/domingues21a.html.

10

https://proceedings.neurips.cc/paper/2017/file/7371364b3d72ac9a3ed8638e6f0be2c9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7371364b3d72ac9a3ed8638e6f0be2c9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7371364b3d72ac9a3ed8638e6f0be2c9-Paper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.10019
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.10019
https://hal.archives-ouvertes.fr/hal-00831875
https://hal.archives-ouvertes.fr/hal-00831875
https://arxiv.org/pdf/1703.05449.pdf
https://doi.org/10.1287/moor.2016.0817
https://doi.org/10.1287/moor.2016.0817
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://doi.org/10.1561/2200000050
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://proceedings.neurips.cc/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
http://arxiv.org/abs/1905.06466
https://www.amazon.com/Elements-Information-Theory-Telecommunications-Processing/dp/0471241954
https://www.amazon.com/Elements-Information-Theory-Telecommunications-Processing/dp/0471241954
https://www.amazon.com/Elements-Information-Theory-Telecommunications-Processing/dp/0471241954
https://arxiv.org/pdf/1703.07710.pdf
https://arxiv.org/pdf/1703.07710.pdf
https://proceedings.mlr.press/v139/domingues21a.html
https://proceedings.mlr.press/v139/domingues21a.html


Fast Rates for Maximum Entropy Exploration

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. CoRR, abs/1901.10995, 2019.
URL http://arxiv.org/abs/1901.10995.

Ekroot, L. and Cover, T. M. The entropy of markov trajec-
tories. IEEE Transactions on Information Theory, 39(4):
1418–1421, 1993.

Eysenbach, B. and Levine, S. If maxent RL is the answer,
what is the question? CoRR, abs/1910.01913, 2019. URL
http://arxiv.org/abs/1910.01913.

Fiechter, C.-N. Efficient reinforcement learn-
ing. In Conference on Learning The-
ory, 1994. URL http://citeseerx.ist.
psu.edu/viewdoc/download;jsessionid=
7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.
1.1.49.8652&rep=rep1&type=pdf.

Fox, R., Pakman, A., and Tishby, N. Taming the noise
in reinforcement learning via soft updates. In Ihler,
A. and Janzing, D. (eds.), Proceedings of the Thirty-
Second Conference on Uncertainty in Artificial Intel-
ligence, UAI 2016, June 25-29, 2016, New York City,
NY, USA. AUAI Press, 2016. URL http://auai.org/
uai2016/proceedings/papers/219.pdf.

Frank, M. and Wolfe, P. An algorithm for quadratic
programming. Naval Research Logistics Quarterly, 3
(1-2):95–110, 1956. doi: https://doi.org/10.1002/nav.
3800030109. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/nav.3800030109.

Geist, M., Scherrer, B., and Pietquin, O. A theory of reg-
ularized Markov decision processes. In Chaudhuri, K.
and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp. 2160–2169. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/geist19a.html.

Grill, J.-B., Darwiche Domingues, O., Menard, P.,
Munos, R., and Valko, M. Planning in entropy-
regularized markov decision processes and games.
In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/
50982fb2f2cfa186d335310461dfa2be-Paper.pdf.

Grünwald, P. D. and Dawid, A. P. Game theory, max-
imum generalized entropy, minimum discrepancy, ro-
bust bayes and pythagoras. In Proceedings of the 2002
IEEE Information Theory Workshop, ITW 2002, 20-
25 October 2002, Bangalore, India, pp. 94–97. IEEE,

2002. doi: 10.1109/ITW.2002.1115425. URL https:
//doi.org/10.1109/ITW.2002.1115425.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, ICML’17, pp. 1352–1361.
JMLR.org, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 1861–1870. PMLR, 10–15
Jul 2018. URL https://proceedings.mlr.press/
v80/haarnoja18b.html.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp. 2681–2691. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/hazan19a.html.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
Reward-free exploration for reinforcement learning. In
III, H. D. and Singh, A. (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
4870–4879. PMLR, 13–18 Jul 2020. URL https://
proceedings.mlr.press/v119/jin20d.html.

Jonsson, A., Kaufmann, E., Ménard, P., Dar-
wiche Domingues, O., Leurent, E., and Valko, M.
Planning in markov decision processes with gap-
dependent sample complexity. Advances in Neural
Information Processing Systems, 33:1253–1263, 2020.

Kakade, S., Shalev-Shwartz, S., Tewari, A., et al. On
the duality of strong convexity and strong smooth-
ness: Learning applications and matrix regulariza-
tion. Unpublished Manuscript, http://ttic. uchicago.
edu/shai/papers/KakadeShalevTewari09. pdf, 2(1):35,
2009.

Kaufmann, E., Ménard, P., Darwiche Domingues, O., Jons-
son, A., Leurent, E., and Valko, M. Adaptive reward-free
exploration. In Feldman, V., Ligett, K., and Sabato, S.
(eds.), Proceedings of the 32nd International Conference
on Algorithmic Learning Theory, volume 132 of Proceed-
ings of Machine Learning Research, pp. 865–891. PMLR,
16–19 Mar 2021. URL https://proceedings.mlr.
press/v132/kaufmann21a.html.

11

http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1910.01913
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7F5F8FCD1AA7ED07356410DDD5B384FE?doi=10.1.1.49.8652&rep=rep1&type=pdf
http://auai.org/uai2016/proceedings/papers/219.pdf
http://auai.org/uai2016/proceedings/papers/219.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://proceedings.mlr.press/v97/geist19a.html
https://proceedings.mlr.press/v97/geist19a.html
https://proceedings.neurips.cc/paper/2019/file/50982fb2f2cfa186d335310461dfa2be-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/50982fb2f2cfa186d335310461dfa2be-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/50982fb2f2cfa186d335310461dfa2be-Paper.pdf
https://doi.org/10.1109/ITW.2002.1115425
https://doi.org/10.1109/ITW.2002.1115425
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v97/hazan19a.html
https://proceedings.mlr.press/v97/hazan19a.html
https://proceedings.mlr.press/v119/jin20d.html
https://proceedings.mlr.press/v119/jin20d.html
https://proceedings.mlr.press/v132/kaufmann21a.html
https://proceedings.mlr.press/v132/kaufmann21a.html


Fast Rates for Maximum Entropy Exploration

Lee, L., Eysenbach, B., Parisotto, E., Xing, E. P., Levine,
S., and Salakhutdinov, R. Efficient exploration via state
marginal matching. CoRR, abs/1906.05274, 2019. URL
http://arxiv.org/abs/1906.05274.

Lim, S. H. and Auer, P. Autonomous exploration for navi-
gating in mdps. In Conference on Learning Theory, pp.
40–1, 2012.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann, E.,
Leurent, E., and Valko, M. Fast active learning for pure
exploration in reinforcement learning. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 7599–7608.
PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/menard21a.html.

Mutti, M. and Restelli, M. An intrinsically-motivated ap-
proach for learning highly exploring and fast mixing
policies. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 34(04):5232–5239, Apr. 2020. doi:
10.1609/aaai.v34i04.5968. URL https://ojs.aaai.
org/index.php/AAAI/article/view/5968.

Mutti, M., Pratissoli, L., and Restelli, M. Task-agnostic
exploration via policy gradient of a non-parametric state
entropy estimate. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Con-
ference on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pp. 9028–9036. AAAI
Press, 2021. URL https://ojs.aaai.org/index.
php/AAAI/article/view/17091.

Mutti, M., Mancassola, M., and Restelli, M. Unsupervised
reinforcement learning in multiple environments. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 36(7):7850–7858, Jun. 2022. doi: 10.1609/aaai.
v36i7.20754. URL https://ojs.aaai.org/index.
php/AAAI/article/view/20754.

Neu, G., Jonsson, A., and Gómez, V. A unified view of
entropy-regularized markov decision processes. CoRR,
abs/1705.07798, 2017. URL http://arxiv.org/abs/
1705.07798.

Oudeyer, P., Kaplan, F., and Hafner, V. V. Intrinsic mo-
tivation systems for autonomous mental development.
IEEE Trans. Evol. Comput., 11(2):265–286, 2007. doi:
10.1109/TEVC.2006.890271. URL https://doi.org/
10.1109/TEVC.2006.890271.

Paninski, L. Estimation of Entropy and Mutual Information.
Neural Computation, 15(6):1191–1253, 06 2003. ISSN
0899-7667. doi: 10.1162/089976603321780272. URL
https://doi.org/10.1162/089976603321780272.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
pp. 2778–2787. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/pathak17a.html.

Savas, Y., Ornik, M., Cubuktepe, M., Karabag, M. O., and
Topcu, U. Entropy maximization for markov decision
processes under temporal logic constraints. IEEE Trans-
actions on Automatic Control, 65(4):1552–1567, 2019.

Schmidhuber, J. A possibility for implementing curiosity
and boredom in model-building neural controllers. In
Proc. of the international conference on simulation of
adaptive behavior: From animals to animats, pp. 222–
227, 1991.

Schulman, J., Abbeel, P., and Chen, X. Equivalence
between policy gradients and soft q-learning. CoRR,
abs/1704.06440, 2017. URL http://arxiv.org/abs/
1704.06440.

Seo, Y., Chen, L., Shin, J., Lee, H., Abbeel, P., and Lee,
K. State entropy maximization with random encoders
for efficient exploration. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 9443–9454. PMLR, 18–24
Jul 2021. URL https://proceedings.mlr.press/
v139/seo21a.html.

Sion, M. On general minimax theorems. Pacific Jour-
nal of Mathematics, 8(1):171 – 176, 1958. doi: pjm/
1103040253. URL https://doi.org/.

Sutton, R. S. Integrated architectures for learning, planning,
and reacting based on approximating dynamic program-
ming. In Porter, B. and Mooney, R. (eds.), Machine
Learning Proceedings 1990, pp. 216–224. Morgan Kauf-
mann, San Francisco (CA), 1990. ISBN 978-1-55860-
141-3. doi: https://doi.org/10.1016/B978-1-55860-141-3.
50030-4. URL https://www.sciencedirect.com/
science/article/pii/B9781558601413500304.

Talebi, M. S. and Maillard, O.-A. Variance-aware regret
bounds for undiscounted reinforcement learning in mdps.
In Algorithmic Learning Theory, pp. 770–805, 2018.

Tarbouriech, J., Pirotta, M., Valko, M., and Lazaric,
A. Improved sample complexity for incremental
autonomous exploration in mdps. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 11273–11284.
Curran Associates, Inc., 2020a. URL https:

12

http://arxiv.org/abs/1906.05274
https://proceedings.mlr.press/v139/menard21a.html
https://proceedings.mlr.press/v139/menard21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/5968
https://ojs.aaai.org/index.php/AAAI/article/view/5968
https://ojs.aaai.org/index.php/AAAI/article/view/17091
https://ojs.aaai.org/index.php/AAAI/article/view/17091
https://ojs.aaai.org/index.php/AAAI/article/view/20754
https://ojs.aaai.org/index.php/AAAI/article/view/20754
http://arxiv.org/abs/1705.07798
http://arxiv.org/abs/1705.07798
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.1162/089976603321780272
https://proceedings.mlr.press/v70/pathak17a.html
https://proceedings.mlr.press/v70/pathak17a.html
http://arxiv.org/abs/1704.06440
http://arxiv.org/abs/1704.06440
https://proceedings.mlr.press/v139/seo21a.html
https://proceedings.mlr.press/v139/seo21a.html
https://doi.org/
https://www.sciencedirect.com/science/article/pii/B9781558601413500304
https://www.sciencedirect.com/science/article/pii/B9781558601413500304
https://proceedings.neurips.cc/paper/2020/file/81e793dc8317a3dbc3534ed3f242c418-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/81e793dc8317a3dbc3534ed3f242c418-Paper.pdf


Fast Rates for Maximum Entropy Exploration

//proceedings.neurips.cc/paper/2020/file/
81e793dc8317a3dbc3534ed3f242c418-Paper.pdf.

Tarbouriech, J., Shekhar, S., Pirotta, M., Ghavamzadeh,
M., and Lazaric, A. Active model estimation in markov
decision processes. In Peters, J. and Sontag, D. (eds.),
Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), volume 124 of Proceedings
of Machine Learning Research, pp. 1019–1028. PMLR,
03–06 Aug 2020b. URL https://proceedings.mlr.
press/v124/tarbouriech20a.html.

Tarbouriech, J., Pirotta, M., Valko, M., and Lazaric, A. A
provably efficient sample collection strategy for reinforce-
ment learning. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W. (eds.), Advances in
Neural Information Processing Systems, volume 34, pp.
7611–7624. Curran Associates, Inc., 2021. URL https:
//proceedings.neurips.cc/paper/2021/file/
3e98410c45ea98addec555019bbae8eb-Paper.pdf.

Tirinzoni, A., Al-Marjani, A., and Kaufmann, E. Optimistic
pac reinforcement learning: the instance-dependent view.
In International Conference on Algorithmic Learning
Theory, pp. 1460–1480. PMLR, 2023.

van Handel, R. Probability in high dimensions. manuscript,
2014, 2014.

Yang, Q. and Spaan, M. T. Cem: Constrained entropy
maximization for task-agnostic safe exploration. In The
Thirty-Seventh AAAI Conference on Artificial Intelligence,
2023.

Zahavy, T., O’Donoghue, B., Desjardins, G., and Singh,
S. Reward is enough for convex MDPs. In Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Sys-
tems, 2021. URL https://openreview.net/forum?
id=ELndVeVA-TR.

Zanette, A. and Brunskill, E. Tighter problem-dependent
regret bounds in reinforcement learning without domain
knowledge using value function bounds. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pp. 7304–7312. PMLR, 09–15 Jun 2019. URL https://
proceedings.mlr.press/v97/zanette19a.html.

Zhang, C., Cai, Y., Huang, L., and Li, J. Exploration
by maximizing renyi entropy for reward-free rl frame-
work. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 35(12):10859–10867, May 2021. doi:
10.1609/aaai.v35i12.17297. URL https://ojs.aaai.
org/index.php/AAAI/article/view/17297.

13

https://proceedings.neurips.cc/paper/2020/file/81e793dc8317a3dbc3534ed3f242c418-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/81e793dc8317a3dbc3534ed3f242c418-Paper.pdf
https://proceedings.mlr.press/v124/tarbouriech20a.html
https://proceedings.mlr.press/v124/tarbouriech20a.html
https://proceedings.neurips.cc/paper/2021/file/3e98410c45ea98addec555019bbae8eb-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3e98410c45ea98addec555019bbae8eb-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3e98410c45ea98addec555019bbae8eb-Paper.pdf
https://openreview.net/forum?id=ELndVeVA-TR
https://openreview.net/forum?id=ELndVeVA-TR
https://proceedings.mlr.press/v97/zanette19a.html
https://proceedings.mlr.press/v97/zanette19a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17297
https://ojs.aaai.org/index.php/AAAI/article/view/17297


Fast Rates for Maximum Entropy Exploration

Appendix
Table of Contents

A Notation 15

B Proofs for Visitation Entropy 17
B.1 Regret of the Forecaster-Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B.2 Regret of the Sampler-Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B.3 Bias Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.4 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C Regularized Bellman Equations 24
C.1 Proof of Entropy-Regularized Bellman Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
C.2 A Bellman-type Equations for Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
C.3 Performance-Difference Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D Sample Complexity for MTEE and Regularized MDPs 28
D.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
D.2 UCBVI-Ent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
D.3 Concentration Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D.4 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
D.5 Regularization-Agnostic Stopping Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

E Fast Rates for MTEE and Regularized MDPs 41
E.1 RL-Explore-Ent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
E.2 Concentration Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
E.3 Sample Complexity Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
E.4 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

F Faster Rates for Visitation Entropy 48
F.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
F.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
F.3 Regret of the Sampler-Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
F.4 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

G Deviation Inequalities 53
G.1 Deviation Inequality for Categorical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
G.2 Deviation Inequality for Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
G.3 Deviation Inequality for Sequence of Bernoulli Random Variables . . . . . . . . . . . . . . . . . . . . . 54
G.4 Deviation Inequality for Bounded Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
G.5 Deviation Inequalities for Expectation over Sampling Measure . . . . . . . . . . . . . . . . . . . . . . . 54

H Technical Lemmas 56
H.1 Entropy Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
H.2 Counts to Pseudo-counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
H.3 On the Bernstein Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

I Additional Experiments 59

14



Fast Rates for Maximum Entropy Exploration

A. Notation

Table 2. Table of notation use throughout the paper

Notation Meaning

S state space of size S
A action space of size A
H length of one episode
s1 initial state
τ stopping time
T trajectory space, T ≜ (S ×A)H
ε desired accuracy of solving the problem
δ desired upper bound on failure probability
λ regularization parameter in regularized MDPs (see Appendix D).
κ weight of transition entropy in reward in regualrized MDPs (see Appendix D)
ph(s

′|s, a) probability transition
rh(s, a) reward function
dπh(s, a) state-action visitation distribution at step h for the policy π
qπ(m) visitation probability of trajectory m ∈ T by policy π
Kp polytope of all admissible state-action visitation distributions
K polytope of all admissible distributions over state-actions, K ≜ (∆SA)

H

Hvisit(d
π) visitation entropyHvisit(d

π) ≜
∑H

h=1H(dπh) for dπ ∈ Kp,
π⋆,VE policy that maximizesHvisit(d

π), a solution to the MVEE problem
Htraj(q

π) trajectory entropyHtraj(q
π) ≜ H(qπ)

π⋆,TE policy that maximizesHtraj(q
π), a solution to the MTEE problem

n0 number of prior visits for the forecaster-player in EntGame
t0 total number of prior visits
s t
h state that was visited at h step during t episode
a t
h action that was picked at h step during t episode
nth(s, a) number of visits of state-action nth(s, a) =

∑t
k=1 1

{
(skh, a

k
h) = (s, a)

}
nth(s

′|s, a) number of transition to s′ from state-action nt
h(s

′|s, a) =
∑t

k=1 1
{
(skh, a

k
h, s

k
h+1) = (s, a, s′)

}
.

nth(s, a) pseudo number of visits of state-action nth(s, a) = nth(s, a) + n0
p̂ t
h(s

′|s, a) empirical probability transition p̂ t
h(s

′|s, a) = nth(s
′|s, a)/nth(s, a)

d̄th(s, a) predicted distribution by the forecaster-player in EntGame d̄th(s, a) ≜ nt−1
h (s, a)/(t+ t0)

Q
t

h(s, a),V
t

h(s, a) for EntGame: upper bound on the optimal Q/V-functions in a MDP with rewards log(1/d̄t+1
h (s, a)))

Qπ
h(s, a), V

π
h (s, a) Q- and V-functions for the MTEE problem

Q⋆
h(s, a), V

⋆
h (s, a) optimal Q- and V-function for the MTEE problem

Q
t

h(s, a), V
t

h(s, a) for UCBVI-Ent: the upper bound on the optimal Q/V-functions for the MTEE problem
Qt

h
(s, a), V t

h(s, a) for UCBVI-Ent: the lower bound on the optimal Q/V-functions for the MTEE problem
Qπ

λ,h(s, a), V
π
λ,h(s, a) Q- and V-functions in a regularized MDP

Q⋆
λ,h(s, a), V

⋆
λ,h(s, a) optimal Q- and V-function in a regularized MDP

Q̂π
λ,h(s, a), V̂

π
λ,h(s, a) for RL-Explore-Ent: the empirical Q- and V-functions in a regularized MDP

R+ non-negative real numbers
N+ positive natural numbers
[n] set {1, 2, . . . , n}
e Euler’s number
∆d d+ 1-dimensional probability simplex: ∆d ≜ {x ∈ Rd

+ :
∑d

j=1 xj = 1}
∆X set of distributions over a finite set X : ∆X = ∆|X |.
H(p) Shannon entropy for p ∈ ∆X ,H(p) ≜∑i∈X pi log(1/pi)

clip(x,m,M) clipping procedure clip(x,m,M) ≜ max(min(x,M),m)

Let (X,X ) be a measurable space and P(X) be the set of all probability measures on this space. For p ∈ P(X) we denote
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by Ep the expectation w.r.t. p. For random variable ξ : X → R notation ξ ∼ p means Law(ξ) = p. For any measures
p, q ∈ P(X) we denote their product measure by p ⊗ q. We also write Eξ∼p instead of Ep. For any p, q ∈ P(X) the
Kullback-Leibler divergence KL(p, q) is given by

KL(p, q) =

{
Ep[log

dp
dq ], p≪ q

+∞, otherwise

For any p ∈ P(X) and f : X → R, pf = Ep[f ]. In particular, for any p ∈ ∆d and f : {0, . . . , d} → R, pf =∑d
ℓ=0 f(ℓ)p(ℓ). Define Varp(f) = Es′∼p

[
(f(s′) − pf)2

]
= p[f2] − (pf)2. For any (s, a) ∈ S, transition kernel

p(s, a) ∈ P(S) and f : S → R define pf(s, a) = Ep(s,a)[f ] and Varp[f ](s, a) = Varp(s,a)[f ]. For any s ∈ S, policy
π(s) ∈ P(S) and f : S ×A → R define πf(s) = Ea∼π(s)[f(s, a)] and Varπf(s) = Vara∼π(s)[f(s, a)].

For a MDPM,a policy π and a sequence of function fh define Eπ[
∑H

h′=h f(sh′ , ah′)|sh] as a conditional expectation
of
∑H

h′=h f(sh′ , ah′) with respect to the sigma-algebra Fh = σ{(sh′ , ah′)|h′ ≤ h}, where for any h ∈ [H] we have
ah ∼ π(sh), sh+1 ∼ ph(sh, ah).
We write f(S,A,H, ε) = O(g(S,A,H, ε, δ)) if there exist S0, A0, H0, ε0, δ0 and constant Cf,g such that for any
S ≥ S0, A ≥ A0, H ≥ H0, ε < ε0, δ < δ0, f(S,A,H, T, δ) ≤ Cf,g · g(S,A,H, T, δ). We write f(S,A,H, ε, δ) =

Õ(g(S,A,H, ε, δ)) if Cf,g in the previous definition is poly-logarithmic in S,A,H, 1/ε, 1/δ.
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B. Proofs for Visitation Entropy
We first define the regrets of each players obtained by playing T times the games. For the forecaster-player, for any d̄ ∈ K
we define

RT
Fore(d̄) ≜

T∑
t=1

∑
h,s,a

d̃th(s, a)

(
log

1

d̄th(s, a)
− log

1

d̄h(s, a)

)

where d̃th(s, a) ≜ 1
{
(sth, a

t
h) = (s, a)

}
is a sample from dπ

t

h (s, a). Similarly for the sampler-player, for any d ∈ Kp we
define

RT
Samp(d) ≜

T∑
t=1

∑
h,s,a

(
dh(s, a)− dπ

t

h (s, a)
)
log

1

d̄th(s, a)
.

Recall that the visitation distribution of the policy π returned by EntGame is the average of the visitation distributions of
the sampler-player dπ̂h(s, a) = d̂T

h (s, a) ≜ (1/T )
∑T

t=1 d
πt

h (s, a). We also denote by d̊Th (s, a) ≜ (1/T )
∑T

t=1 d̃
t(s, a) the

average of the ’sample’ visitation distributions.

We now relate the difference between the optimal visitation entropy and the visitation entropy of the outputted policy π̂
with the regrets of the two players. Indeed, using H(p) = ∑i∈[n] pi log(1/qi) − KL(p, q) ≤ ∑i∈[n] pi log(1/qi) for all
(p, q) ∈ (∆n)

2, we obtain

T
(
Hvisit(d

π⋆

)−Hvisit(d
π̂)
)
≤

T∑
t=1

∑
h,a,s

dπ
⋆

h (s, a) log
1

d̄th(s, a)
− d̃th(s, a) log

1

d̊T
h (s, a)

+ T
(
Hvisit(d̊

T )−Hvisit(d̂
T )
)

= RT
Samp(d

π⋆

) +

T∑
t=1

∑
h,s,a

(
dπ

t

h (s, a)− d̃th(s, a)
)
log

1

d̄th(s, a)︸ ︷︷ ︸
Bias1

+RT
Fore(d̊

T )

+ T
(
Hvisit(d̊

T )−Hvisit(d̂
T )
)︸ ︷︷ ︸

Bias2

.

It remains to upper bound each terms separately in order to obtain a bound on the gap. We first bound the two regrets terms.
The first bias term is martingale and can easily be bounded with a deviation inequality, whereas for the second one we
introduce just instrumentally smoothing of the entropy.

B.1. Regret of the Forecaster-Player

We prove in this section a regret-bound for the mixture forecaster.

Lemma B.1. For n0 = 1, for any d̄ ∈ K it holds almost surely

RT
Fore(d̄) ≤ HSA log

(
e(T + 1)

)
− T

H∑
h=1

KL(d̊Th , d̄h) .

Proof. We will bound the regret at step h,

RT
Fore,h(d̄) ≜

T∑
t=1

∑
s,a

d̃th(s, a)

(
log

1

d̄th(s, a)
− log

1

d̄h(s, a)

)

and then sum the upper bounds. Recall

d̄th(s, a) =
nt−1
h (s, a) + 1

t− 1 + SA
,

and for (s, a) = (sth, a
t
h) and any t ∈ [T ], h ∈ [H] we have nt−1

h (s, a) + 1 = nth(s, a). Since n0 = 1, we have
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d̄th(s
t
h, a

t
h) = nth(s

t
h, a

t
h)/(SA+ t− 1). Armed with this observation we can rewrite the regret as follows

RT
Fore,h(d̄) = −T KL(d̊Th , d̄h)− TH(d̊Th )−

T∑
t=1

log
(
d̄th(s

t
h, a

t
h)
)

= −T KL(d̊Th , d̄h)− TH(d̊Th )− log

(
T∏

t=1

d̄th(s
t
h, a

t
h)

)
.

Then we have an explicit formula for the product of d̄th

T∏
t=1

d̄th(s
t
h, a

t
h) =

T∏
t=1

nth(s
t
h, a

t
h)

SA+ t− 1
=

(SA− 1)!

(SA+ T − 1)!

∏
(s,a)∈S×A

[nTh (s, a)]!

=
1(
T

(nT
h (s,a))(s,a)∈S×A

) 1(
T+SA−1
SA−1

)
≥ exp

(
−TH(d̊Th )− (T + SA− 1)H

(
SA− 1

T + SA− 1

))
where in the last inequality we used Theorem 11.1.3 by Cover & Thomas (2006) and overload the entropy notation
H(p) = −p log(p)− (1− p) log(1− p) for p ∈ [0, 1]. Putting all together we get

RT
Fore,h(d̄) ≤ (T + SA− 1)H

(
A− 1

T +A− 1

)
− T KL(d̊Th , d̄h) .

Bounding the entropic term

(T + SA− 1)H
(

SA− 1

T + SA− 1

)
= (SA− 1) log

T + SA− 1

SA− 1
+ T log

T + SA− 1

T

≤ (SA− 1) log
T + SA− 1

SA− 1
+ T log

(
1 +

SA− 1

T

)
≤ (SA− 1) log

e(T + SA− 1)

SA− 1

≤ SA log
(
e(T + 1)

)
,

and summing over h allows us to conclude.

B.2. Regret of the Sampler-Player

We start from introducing new notation. LetMt = (S,A, {ph}h∈[H], {rth}h∈[H], s1) be a sequence of MDPs where reward
defined as follows rth(s, a) = log(1/d̄th(s, a)). Define Qπ,t

h (s, a) and V π,t
h (s, a) as a action-value and value functions of a

policy π on a MDPMt. Notice that the value-function of initial state in this case could be written as follows

V π,t
1 (s1) =

∑
h,s,a

dπh(s, a) log

(
1

d̄th(s, a)

)

therefore, the regret for the sampler-player could be rewritten in the terms of the regret for this sequence of MDPs

RT
Samp(d

π) =

T∑
t=1

V π,t
1 (s1)− V πt,t

1 (s1).

Since the rewards are changing in each episode and depending on the full history on interaction during previous episodes,
we have to handle more uniform approach as in usual UCBVI proofs (Azar et al., 2017).
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Concentration Let αKL, αcnt : (0, 1) × R+ → R+ be some functions defined later on in Lemma B.2. We define the
following favorable events

EKL(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : KL(p̂ t

h(s, a), ph(s, a)) ≤
αKL(δ, n t

h(s, a))

n t
h(s, a)

}
,

Ecnt(δ) ≜
{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : nth(s, a) ≥

1

2
nth(s, a)− αcnt(δ)

}
,

Lemma B.2. For any δ ∈ (0, 1) and for the following choices of functions α,

αKL(δ, n) ≜ log(2SAH/δ) + S log(e(1 + n)), αcnt(δ) ≜ log(2SAH/δ),

it holds that

P[EKL(δ)] ≥ 1− δ/2, P[Ecnt(δ)] ≥ 1− δ/2

In particular, P[G(δ)] ≥ 1− δ.

Proof. Applying Theorem G.1 and the union bound over h ∈ [H], (s, a) ∈ S × A we get P[EKL(δ)] ≥ 1 − δ/2. By
Theorem G.3 and union bound, P[Ecnt(δ)] ≥ 1− δ/2. The union bound yields P[G(δ)] ≥ 1− δ.

Optimism Next we define the exploration bonuses bth(s, a) for the sampler-player for n0 = 1

bth(s, a) =

√
2H2 log2(t+ SA) · αKL(δ, nth(s, a))

nth(s, a)
(6)

Lemma B.3. For any t ∈ [T ] and any policy π, the following holds on event G(δ)

Q
t

h(s, a) ≥ Qπ,t+1
h (s, a), V

t

h(s) ≥ V π,t+1
h (s).

Proof. Proceed by backward induction over h. For h = H + 1 the statement trivially holds. Next we assume that the
statement holds for any h′ > h. Then we have by induction hypothesis and Hölder’s inequality

Q
t

h(s, a)−Qπ,t+1
h (s, a) = p̂thV

t

h+1(s, a)− phV π,t+1
h (s, a) + bth(s, a)

≥ [p̂th − ph]V π,t+1
h (s, a) + bth(s, a) ≥ −∥V π,t+1

h ∥∞∥p̂th − ph∥1 + bth(s, a).

The fact that ∥V π,t+1
h ∥∞ ≤ H log(t+ SA), Pinsker’s inequality and the definition of the event EKL(δ) yields

∥V π,t+1
h ∥∞∥p̂th − ph∥1 ≤ H log(t+ SA)

√
2αKL(δ, nth(s, a))

nth(s, a)
= bth(s, a)

that shows Q
t

h(s, a)−Qπ,t+1
h (s, a) ≥ 0. The inequality on V -functions could be derived as follows

V
t

h(s) ≥ πQ
t

h(s) ≥ πQπ,t+1
h (s) = V π,t+1

h (s).

Regret Bound
Lemma B.4. Let π be any fixed policy. Then for any δ ∈ (0, 1) with probability at least 1− δ the following holds

RT
Samp(d

π) ≤ 10 log(T + SA)
√
2H4SAT · (log(2SAH/δ) + S log(eT )) log(T ).
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Proof. Assume that the event G(δ) holds. By Lemma B.3 for any t ∈ [T ] and h ∈ [H] we have

V π,t
t (sh)− V πt,t

h (sth) ≤ V
t−1

h (sth)− V πt,t
h (sth) = πt

h(Q
t−1

h −Qπt,t
h )(s),

thus we can define δth(s, a) = Q
t−1

h (s, a)−Qπt,t
h (s, a) and upper bound the regret as follows

RT
Samp(d

π) ≤
T∑

t=1

πt
1δ

t
1(s1).

Next we analyze δth(s
t
h). By the same argument as in Lemma B.3

δth(s, a) = [p̂t−1
h − ph]V

t−1

h+1(s, a) + bth(s, a) + ph[V
t−1

h+1 − V πt,t
h+1 ](s, a) ≤ 2bt−1

h (s, a) + phπ
t
h+1[Q

t−1

h+1 −Qπt,t
h+1](s, a)

that could be rewritten as follows

δth(s, a) ≤ Eπt

[
2bt−1

h (s, a) + δth+1(sh+1, ah+1)|(sh, ah) = (s, a)
]
,

thus, rolling out the initial bound on regret we have

RT
Samp(d

π) ≤ H log(T + SA)

T−1∑
t=1

Eπt

[
H∑

h=1

2

√
2αKL(δ, nth(sh, ah))

nth(sh, ah)
∧ 1

∣∣∣∣s1
]
+H log(T + SA).

By Lemma H.5 and Jensen’s inequality we have

RT
Samp(d

π) ≤ 5H3/2 log(T + SA)
√
2T

√√√√∑
h,s,a

T−1∑
t=1

dπ
t

h (s, a)
αKL(δ, nth(s, a))

nth(s, a) ∨ 1
.

Notice that dπ
t

h (s, a) = nt+1
h (s, a) − nth(s, a) and αKL(δ, nth(s, a)) ≤ αKL(δ, T − 1). Combined with Lemma H.6 it

implies
RT

Samp(d
π) ≤ 10 log(T + SA)

√
2H4SAT · (log(2SAH/δ) + S log(eT )) log(T ).

Finally, the fact that P[G(δ)] ≥ 1− δ concludes the statement of theorem.

Remark B.5. It is possible to improve the H-dependence by introducing Bernstein-type bonuses, however, we are focused
on improvement in a dependence in ε−1 and leave this regret bound as simple as possible.

B.3. Bias Terms

Lemma B.6. Let δ ∈ (0, 1) and n0 = 1. Then with probability at least 1− δ the following two bounds hold

Bias1 ≜
T∑

t=1

∑
h,s,a

(
dπ

t

h (s, a)− d̃th(s, a)
)
log

1

d̄th(s, a)
≤ log(T + SA)

√
2TH log(2/δ)

Bias2 ≜ T (Hvisit(d̊
T )−Hvisit(d̂

T )) ≤ log(SAT )
(√

2TH log(2/δ) + 3H
√
SAT log(3T )

)
.

Proof. Let us define the lexicographic order on the set [T ]× [H] with an additional convention (t, 0) = (t− 1, H).

Then we can define a filtration Ft,h = σ
{
(st

′

h′ , at
′

h′) ∀t ≤ t, ∀h′ ∈ [H]} ∪ {(sth′ , ath′) ∀h′ ≤ h}
}

that consists of the all
history of interactions of the EntGame algorithm with an environment up to the h-th step of the episode t. The most
important fact is that πt and d̄th(s, a) are Ft,h−1-measurable for h > 1 and Ft−1,H -measurable for h = 1.

Therefore, for any t ∈ [T ], h ∈ [H]

E

[∑
s,a

(dπ
t

h (s, a)− d̃th(s, a)) log
1

d̄th(s, a)

∣∣∣∣Ft,h−1

]
= 0.
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Therefore Xt,h =
∑

s,a(d
πt

h (s, a)− d̃th(s, a)) log 1
d̄t
h(s,a)

is a martingale-difference sequence adapted to the filtration Ft,h.
Also we notice that a.s. the following bound holds

|Xt,h| ≤ log(T + SA)

All these facts combined with Azuma-Hoeffding inequality implies that with probability at least 1− δ/2

Bias1 =

T∑
t=1

H∑
h=1

Xt,h ≤ log(T + SA)
√

2TH log(2/δ).

To show the second part of the statement we notice that

Bias2 = T

H∑
h=1

(H(d̊Th )−H(d̂Th )).

Let us introduce the smoothed entropy as it was done by Hazan et al. (2019).

∀d ∈ ∆SA : Hσ(d) =
∑
s,a

d(s, a) log
1

d(s, a) + σ
.

The key difference with our approach and approach of Hazan et al. (2019) that we need the smoothing only instrumentally
to provide a bound on Bias2.

It is easy to see thatHσ is concave and, moreover d ∈ ∆SA

|H(d)−Hσ(d)| ≤
∑
s,a

d(s, a) log
d(s, a) + σ

d(s, a)
≤ σSA,

where we used inequality log(1 + x) ≤ x for all x ≥ 0, and also for σ < e−1

∥∇Hσ(d)∥∞ = sup
x∈(0,1)

∣∣∣∣log(x+ σ) +
x

x+ σ

∣∣∣∣ ≤ log(σ−1).

By replacing an entropy with a smoothed entropy

Bias2 ≤ T
∑
h∈H

(Hσ(d̊
T
h )−Hσ(d̂

T
h )) + 2σ · TSAH.

To analyze the first term we use thatHσ is concave, therefore

H∑
h=1

Hσ(d̊
T
h )−Hσ(d̂

T
h ) ≤

H∑
h=1

⟨∇Hσ(d̂
T
h ), d̊

T
h − d̂Th ⟩ =

1

T

∑
s,a

T∑
t=1

H∑
h=1

(d̃th(s, a)− dπ
t

h (s, a)) · ∇Hσ(d̂
T
h )(s, a)

For this term situation is more involved than for Bias1 because d̂Th is dependent on all generated policies. Therefore we
have to preform uniform bounds. DefineW = {w ∈ RHSA | |wh(s, a)| ≤ 1} as a unit ℓ∞-ball in RHSA. Then we have

T

H∑
h=1

Hσ(d̊
T
h )−Hσ(d̂

T
h ) ≤ log(σ−1) · sup

w∈W

T∑
t=1

H∑
h=1

(∑
s,a

(d̃th(s, a)− dπ
t

h (s, a)) · wh(s, a)

)
.

Define N(ε, ∥·∥∞,W) as ε-covering number for a setW with ℓ∞-norm as a distance, andWε as a minimal ε-net. Next we
can use the well-known result on upper bound on the covering number (e.g. see Exercise 5.5 by van Handel (2014))

N(ε, ∥·∥∞,W) ≤
(
3

ε

)SAH

,
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and replace our maximization problem with the maximization over ε-net

sup
w∈W

T∑
t=1

H∑
h=1

(∑
s,a

(d̃th(s, a)− dπ
t

h (s, a)) · wh(s, a)

)
≤ sup

ŵ∈Wε

T∑
t=1

H∑
h=1

(∑
s,a

(d̃th(s, a)− dπ
t

h (s, a)) · ŵh(s, a)

)
+ εTH.

For any fixed ŵ ∈ Wε we apply Azuma-Hoeffding inequality exactly in the same manner as in the bound for Bias1-term.
We have that with probability at least 1− δ/(2Nε) for N = N(ε, ∥·∥∞,W) we have

T∑
t=1

H∑
h=1

(∑
s,a

(d̃th(s, a)− dπ
t

h (s, a)) · ŵh(s, a)

)
≤
√

2TH log(2Nε/δ).

Thus, by union bound we have with probability at least 1− δ/2

sup
w∈W

T∑
t=1

H∑
h=1

(∑
s,a

(d̃th(s, a)− dπ
t

h (s, a)) · wh(s, a)

)
≤
√
2TH(log(2/δ) + SAH log(3/ε)) + εTH.

Taking ε = 1/T we have

Bias2 ≤ log(σ−1)(
√
2TH(log(2/δ) + SAH log(3T )) +H) + σSATH.

Next we choose σ = 1/SAT and by inequality
√
a+ b ≤ √a+

√
b obtain

Bias2 ≤ log(SAT )
(√

2TH log(2/δ) + 3H
√
SAT log(3T )

)
.

B.4. Proof of Theorem 3.2

We state the version of this theorem with all prescribed dependencies factors.

Theorem B.7. For all ε > 0 and δ ∈ (0, 1). For n0 = 1 and

T ≥ 1 +
648(log(SA) + L)H4SA · (log(4SAH/δ) + S + L) · L

ε2
+

2HSA(2 + L)

ε

for L = 9 log
(
1010

√
H4S8/3A8/3 log(4SAH/δ)/ε

)
the algorithm EntGame is (ε, δ)-PAC.

Proof. We start from writing down the decomposition defined in the beginning of the appendix

T (Hvisit(d
π⋆,VE

)−Hvisit(d
π̂)) ≤ RT

Samp(d
π⋆,VE

) +RT
Fore(d̊

T ) + Bias1 +Bias2.

By Lemma B.4 with probability at least 1− δ/2 it holds

RT
Samp(d

π⋆,VE
) = 10 log(T + SA)

√
2H4SAT · (log(4SAH/δ) + S log(eT )) log(T )

By Lemma B.1
RT

Fore(d̊
T ) ≤ HSA log

(
e(T + 1)

)
.

By Lemma B.6 with probability at least 1− δ/2

Bias1 +Bias2 ≤ 3 log(SAT )
(√

TH log(4/δ) +H
√
SAT log(3T )

)
.

By union bound all these inequalities hold simultaneously with probability at least 1− δ. Combining all these bounds we get

T (Hvisit(d
π⋆,VE

)−Hvisit(d
π̂)) ≤ 18 log(SAT )

√
H4SAT (log(4SAH/δ) + S log(eT )) log(T ) +HSA log(e(T + 1)).
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Therefore, it is enough to choose T such thatHvisit(d
π⋆,VE

)−Hvisit(d
π̂) is guaranteed to be less than ε. In this case EntGame

become automatically (ε, δ)-PAC.

It is equivalent to find a maximal T such that

εT ≤ 18 log(SAT )
√
H4SAT (log(4SAH/δ) + S log(eT )) log(T ) +HSA log(e(T + 1))

and add 1 to it.

We start from obtaining a loose bound to eliminate logarithmic factors in T .

First, we assume that T ≥ 1, thus T + 1 ≤ 2T . Additionally, let us use inequality log(x) ≤ xβ/β for any x > 0 and β > 0.
We obtain

εT ≤ 18
(SAT )1/3

1/3

√
H4S2AT log(4SAH/δ)

(eT )1/18

1/18

T 1/18

1/18
+HSA

(2eT )8/9

8/9

≤ T 8/9
(
1010

√
H4S2A2 log(2SAH/δ)

)
,

thus we can define L = 9 log
(
1010

√
H4S8/3A8/3 log(4SAH/δ)/ε

)
for which log(T ) ≤ L. Thus we have

εT ≤ 18(log(SA) + L)
√
H4SAT (log(4SAH/δ) + S + L)L+HSA(2 + L).

Solving this quadratic inequality, we obtain the minimal required T to guaranteeHvisit(d
π⋆,VE

)−Hvisit(d
π̂) ≤ ε. In particular,

T ≥ 1 +
648(log(SA) + L)H4SA · (log(4SAH/δ) + S + L) · L

ε2
+

2HSA(2 + L)

ε
.
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C. Regularized Bellman Equations
In this section we provide complete proofs for regularized Bellman Equations in the general setting. Let Φ: ∆A → R be a
strictly convex function.

Then we can define the regularized value function as follows

V π
λ,h(s) ≜ Eπ

[
H∑

h′=h

rh′(sh′ , ah′)− λΦ(πh′(sh′)) | sh = s

]
. (7)

Notably, for a specific choice of rewards rh(s, a) = H(ph(s, a)), the regularizer is equal to the negative entropy Φ(π) =
−H(π), and λ = 1 we have V π

λ,1(s1) = Htraj(q
π), see Lemma H.2 In more general setting let rh(s, a) be equal to the

sum of deterministic reward and λH(ph(s, a)). In this case we have V π
λ,1(s1) = V π

1 (s1) + λHtraj(q
π) in terms of a usual

non-regularized value function.

Let us define an entropy action-value function as follows

Qπ
λ,h(s, a) ≜ Eπ

[
rh(sh, ah) +

H∑
h′=h+1

[rh′(sh′ , ah′)− λΦ(πh(sh′))] | (sh, ah) = (s, a)

]
. (8)

Additionally, we define an optimal entropy-regularized value functions a follows

V ⋆
λ,h(s) ≜ max

π
V π
λ,h(s), Q⋆

λ,h(s, a) ≜ max
π

Qπ
λ,h(s, a) ∀(s, a, h) ∈ S ×A× [H].

C.1. Proof of Entropy-Regularized Bellman Equations

Theorem C.1 (Regularized Bellman Equations). For any stochastic policy π the following decomposition of the entropy-
regularized value function holds

Qπ
λ,h(s, a) = rh(s, a) + phV

π
λ,h+1(s, a),

V π
λ,h(s) = πhQ

π
λ,h(s)− λΦ(πh(s)).

(9)

Moreover, for optimal Q- and V -functions we have

Q⋆
λ,h(s, a) = rh(s, a) + phV

⋆
λ,h+1(s, a),

V ⋆
λ,h(s) = max

π∈∆A
{πQ⋆

h(s)− λΦ(π)}.
(10)

Remark C.2. For the case of interest Φ(π) = −H(π) the expression for the V -function allows the closed-form formula by a
well-known LogSumExp smooth maximum approximation

V ⋆
λ,h(s) = λ log

(∑
a∈A

exp

(
1

λ
Q⋆

λ,h(s, a)

))
,

and as λ→ 0 we see that entropy-regularized value function tends to a usual value function without regularization.

Proof. We proceed by induction. For h = H + 1 the equation is trivial. By definition and tower property of conditional
expectation

Qπ
λ,h(s, a) = rh(s, a) + E

[
H∑

t=h+1

rt(st, at)− λΦ(πt(st))
∣∣∣∣sh = s, ah = a

]

= r(s, a) + E

[
E

[
H∑

t=h+1

rt(st, at)− λΦ(πt(st))
∣∣∣∣sh+1

]∣∣∣∣sh = s, ah = a

]
= rh(s, a) + phV

π
λ,h+1(s, a).
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Next we provide the second Bellman equation by tower property and the definition of the regularized Q-function

V π
λ,h(s) = −λΦ(πh(s)) + E

[
rh(sh, ah) +

H∑
t=h+1

rt(st, at)− λΦ(πt(st))
∣∣∣∣sh = s

]
= πhQ

π
λ,h(s)− λΦ(πh(s)).

For optimal Bellman equation we proceed by induction. For h = H + 1 the equation is also trivial. By Bellman equations

Q⋆
λ,h(s, a) = max

π

{
rh(s, a) + phV

π
λ,h+1(s, a)

}
= rh(s, a) + phV

⋆
λ,h+1(s, a),

and, finally

V ⋆
λ,h(s) = max

π1,...,πH∈∆A

{
πhQ

⋆
λ,h(s)− λΦ(πh(s))

}
= max

π∈∆A

{
πQ⋆

λ,h(s)− λΦ(π)
}
.

C.2. A Bellman-type Equations for Variance

For a stochastic policy π we define Bellman-type equations for the variances as follows

σQπ
λ,h(s, a) ≜ Varph

V π
λ,h+1(s, a) + phσV

π
λ,h+1(s, a)

σV π
λ,h(s) ≜ Varπh

Qπ
λ,h(s) + πhσQ

π
λ,h(s)

σV π
λ,H+1(s) ≜ 0,

where Varph
(f)(s, a) ≜ Es′∼ph(·|s,a)

[
(f(s′) − phf(s, a))

2
]

denotes the variance operator over transitions and
Varπh

(f)(s) ≜ Ea′∼πh(s)

[
(f(s, a′)− πhf(s))2

]
denoted the variance operator over the policy. In particular, the function

s 7→ σV π
λ,1(s) represents the average sum of the local variances Varph

V π
λ,h+1(s, a) and Varπh

Qπ
λ,h(s) over a trajectory

following the policy π, starting from (s, a). Indeed, the definition above implies that

σV π
λ,1(s1) =

H∑
h=1

∑
s∈S

dπh(s)Varπh
Qπ

λ,h(s) +

H∑
h=1

∑
s,a

dπh(s, a)Varph
(V π

λ,h+1)(s, a).

The lemma below shows that we can relate the global variance of the cumulative reward over a trajectory to the average sum
of local variances.

Lemma C.3 (Law of total variance). For any stochastic policy π and for all h ∈ [H],

σQπ
λ,h(s, a) = Eπ

( H∑
h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))−
(
Qπ

λ,h(sh, ah)− λΦ(πh(sh))
))2∣∣∣∣∣∣(sh, ah) = (s, a)

,
σV π

λ,h(s) = Eπ

( H∑
h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h(sh)

)2∣∣∣∣∣∣sh = s

.

Proof. We proceed by induction. The statement in Lemma C.3 is trivial for h = H + 1. We now assume that it holds for
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h+ 1 and prove that it also holds for h. For this purpose, we compute

Eπ

( H∑
h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))−
(
Qπ

λ,h(sh, ah)− λΦ(πh(sh))
))2∣∣∣∣∣∣(sh, ah)


= Eπ

(V π
λ,h+1(sh+1)− phV π

λ,h+1(sh, ah) +

H∑
h′=h+1

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h+1(sh+1)

)2∣∣∣∣∣∣(sh, ah)


= Eπ

[(
V π
λ,h+1(sh+1)− phV π

λ,h+1(sh, ah)
)2∣∣∣(sh, ah)]

+ Eπ

( H∑
h′=h+1

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h+1(sh+1)

)2∣∣∣∣∣∣(sh, ah)


+ 2Eπ

[(
H∑

h′=h+1

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h+1(sh+1)

)(
V π
λ,h+1(sh+1)− phV π

λ,h+1(sh, ah)
)∣∣∣∣∣(sh, ah)

]
.

The definition of V π
λ,h+1(sh+1) implies that

Eπ

[
H∑

h′=h+1

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h+1(sh+1)

∣∣∣∣∣sh+1

]
= 0.

Therefore, the tower property of conditional expectation gives us

Eπ

( H∑
h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))−
(
Qπ

λ,h(sh, ah)− λΦ(πh(sh))
))2∣∣∣∣∣∣(sh, ah)


= Eπ

[(
V π
λ,h+1(sh+1)− phV π

λ,h+1(sh, ah)
)2∣∣∣(sh, ah)]

+ E

Eπ

( H∑
h′=h+1

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h+1(sh+1)

)2∣∣∣∣∣∣sh+1

∣∣∣∣∣∣(sh, ah)


= Varph
V π
λ,h+1(sh, ah) + phσV

π
λ,h+1(sh, ah) = σQπ

λ,h(sh, ah)

where in the third equality we used the inductive hypothesis and the definition of σV π
h+1. To prove the second equation we

use the entropy-regularized Bellman equations

Eπ

( H∑
h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h(sh)

)2∣∣∣∣∣∣sh = s


= Eπ

( H∑
h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− (Qπ
λ,h(sh, ah)− λΦ(πh(sh)))

)2∣∣∣∣∣∣sh = s


+ 2Eπ

[(
H∑

h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− (Qπ
λ,h(sh, ah)− λΦ(πh(sh)))

)(
πhQ

π
λ,h(sh)−Qπ

λ,h(sh, ah)
)∣∣∣∣∣sh = s

]
+ Eπ

[(
πhQ

π
λ,h(sh)−Qπ

λ,h(sh, ah)
)2∣∣∣sh = s

]
.

By definition of Qπ
λ,h we have

Eπ

[(
H∑

h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− (Qπ
λ,h(sh, ah)− λΦ(πh(sh)))

)∣∣∣∣∣(sh, ah) = (s, a)

]
= 0,
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thus, by the tower property

Eπ

( H∑
h′=h

(rh′(sh′ , ah′)− λΦ(πh′(sh′)))− V π
λ,h(sh)

)2∣∣∣∣∣∣sh = s

 = πhσQ
π
λ,h(sh) + Varπh

Qπ
λ,h(sh) = σV π

λ,h(sh).

C.3. Performance-Difference Lemma

In this section we provide a version of performance-difference lemma (see e.g. Lemma E.15 by Dann et al. (2017)) for
regularized Bellman equations.

Lemma C.4 (Performance-Difference Lemma). Let M′ = (S,A, H, {p′h}h∈[H], {r′h}h∈[H], s1) and M′′ =

(S,A, H, {p′′h}h∈[H], {r′′h}h∈[H], s1) be two MDPs and let QM,π
λ,h (s, a) be a Q-value of policy π in the MDP M with

regularization. Then for any (s, a, h) ∈ S ×A× [H],

QM′,π
λ,h (s, a)−QM′′,π

λ,h (s, a) = EM′′,π

[
H∑

h′=h

r′h′(sh′ , ah′)− r′′h′(sh′ , ah′)

∣∣∣∣ (sh, ah) = (s, a)

]

+ EM′′,π

[
H∑

h′=h

[p′h′ − p′′h′ ]V
M′,π
λ,h′+1(sh′ , ah′)

∣∣∣∣ (sh, ah) = (s, a)

]
.

Proof. Let us proceed by induction over h. For h = H + 1 this statement is trivially true. Next we assume that it holds for
any h′ > h. By regularized Bellman equations

QM′,π
λ,h (s, a)−QM′′,π

λ,h (s, a) = [r′h(s, a)− r′′h(s, a)] + p′hV
M′,π
λ,h (s, a)− p′′hVM′′,π

λ,h (s, a)

= [r′h(s, a)− r′′h(s, a)] + [p′h − p′′h]VM′,π
λ,h+1(s, a)− p′′h

[
VM′′,π
λ,h+1 − V

M′,π
λ,h+1

]
(s, a)

= [r′h(s, a)− r′′h(s, a)] + [p′h − p′′h]VM′,π
λ,h+1(s, a) + p′′h

[
VM′,π
λ,h+1 − V

M′′,π
λ,h+1

]
(s, a).

Next we notice that

VM′,π
λ,h+1(s)− V

M′′,π
λ,h+1 (s) = πQM′,π

λ,h+1(s)− λΦ(π)− πQ
M′′,π
λ,h+1(s) + λΦ(π) = π

[
QM′,π

λ,h+1 −Q
M′′,π
λ,h+1

]
(s)

since the regularizer is cancelled out. Thus, we can rewrite this difference as follows

QM′,π
λ,h (s, a)−QM′′,π

λ,h (s, a) = Eπ,M′′

[
r′h(sh, ah)− r′′h(sh, ah) + [p′h − p′′h]VM′,π

λ,h+1(sh, ah)

+
[
QM′,π

λ,h+1(sh+1, ah+1)−QM′′,π
λ,h+1(sh+1, ah+1)

] ∣∣∣∣ (sh, ah) = (s, a)

]
.

By induction hypothesis we conclude the statement.
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D. Sample Complexity for MTEE and Regularized MDPs
In this section we describe the general setting of regularized MDPs, not only entropy-regularized.

D.1. Preliminaries

First we define class of regularizers we are interested in. For more exposition on this definition, see Bubeck (2015).

Definition D.1. Let Φ: ∆A → R be a proper closed strongly-convex function. We will call Φ a mirror-map if the following
holds

• Φ is 1-strongly convex with respect to norm ∥·∥;

• ∇Φ takes all possible values in RA;

• ∇Φ diverges on the boundary of ∆A: limx∈∂∆A∥∇Φ(x)∥ = +∞;

We explain three main examples of a such regularizers.

• The negative Shannon entropy Φ(π) = −H(π) for H(π) =
∑

a∈A πa log
(

1
πa

)
satisfies the Definition D.1 for

ℓ1-norm;

• The negative Tsallis entropy Φ(π) = − 1
qTq(π) for Tq(π) = 1

q−1

(
1−∑a∈A π

q
a

)
satisfied the Definition D.1 for ℓ2

norm for every q ∈ (0, 1). In particular, q = 0.5 corresponds to the choice by Grill et al. (2019) in Appendix E that is
tightly connected to the UCB algorithm;

• For any other fixed policy π′ ∈ ∆A we can choose Φ(π) = KL(π, π′) =
∑

a∈A πa log
(

πa

π′
a

)
that inherits all the

properties from the choice of the negative entropy.

LetM = (S,A, {ph}h∈[H], {rh}h∈[H], s1) be a finite-horizon MDP, where rh(s, a) is a deterministic reward function. For
simplicity we assume that 0 ≤ rh(s, a) ≤ rmax for any (h, s, a) ∈ [H]× S ×A.

Then we can define entropy-augmented rewards as follows

rκ,h(s, a) = rh(s, a) + κH(ph(s, a)).

This definition is required to cover the following case of practical interest. Let κ = λ and Φ(π) = −H(π), then we obtain
the following representation for the λ-regularized value function

V π
λ,1(s1) = V π

1 (s1) + λHtraj(q
π),

where V π
1 (s1) is a usual value function for a MDPM. For rmax = 0 and κ = λ = 1 we recover just a trajectory entropy

V π
λ,1(s1) = Htraj(q

π).

Next we define a convex conjugate to λΦ as Fλ : RA → R

Fλ(x) = max
π∈∆A

{⟨π, x⟩ − λΦ(π)}

and, with a sight abuse of notation extend the action of this function to the Q-function as follows

V ⋆
λ,h(s) = Fλ(Q

⋆
λ,h)(s) = max

π∈∆A

{
πQ⋆

λ,h(s)− λΦ(π)
}
.

Thanks to the fact that Φ satisfies Definition D.1, we have exact formula for the optimal policy by Fenchel-Legendre
transform

π⋆
h(s) = argmax

π∈∆A

{
πQ⋆

λ,h(s)− λΦ(π)
}
= ∇Fλ(Q

⋆
λ,h(s, ·)).

Notice that we have ∇Fλ(Q
⋆
λ,h(s, ·)) ∈ ∆A since the gradient of Φ diverges on the boundary of ∆A. For entropy

regularization this formula become the softmax function.
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Finally, it is known that the smoothness property of Fλ plays a key role in reduced sample complexity for planning in
regularized MDPs (Grill et al., 2019). For our general setting we have that since λΦ is λ-strongly convex with respect to ∥·∥,
then Fλ is 1/λ-strongly smooth with respect to a dual norm ∥·∥∗

Fλ(x) ≤ Fλ(x
′) + ⟨∇Fλ(x

′), x− x′⟩+ 1

2λ
∥x− x′∥2∗.

Let us define RΦ as a maximal possible value of |Φ|. Without loss of generality assume that Φ ≤ 0. In this case we define
Rmax = rmax + κ log(S) + λRΦ as an upper bound of an about of reward obtain at the one step. By this definition we have
0 ≤ V π

λ,h(s) ≤ HRmax for any h ∈ [H], s ∈ S and any policy π.

Also, since all norms in RA are equivalent, we define a constant rA that defined for a dual norm ∥·∥∗ as follows

∥·∥∗ ≤ rA · ∥·∥∞. (11)

For example, for ℓ2-norm rA =
√
A and for ℓ1-norm rA = A. In the case Φ = −H we have rA = 1 since the entropy is

1-strongly convex with respect to a ℓ1-norm, thus the dual norm is exactly a ℓ∞-norm.

The rest of this section is devoted to obtain the sample complexity guarantees for UCBVI-Ent algorithm with a regularization-
agnostic stopping rule (17) with the gap notion (16). In this case Theorem D.9 gives us Õ

(
H3SA

ε2 + H3S2A
ε

)
sample

complexity guarantee ignoring Rmax and poly-logarithmic factors. Notably, this sample complexity result does depend
directly on 1/λ, so small regularization does not affect the complexity.

In Section E we present another algorithm RL-Explore-Ent, based on ideas of reward-free exploration, that achieves
sample complexity of order Õ(poly(S,A,H)/(λε). As a particular example, it yields an algorithm for the MTEE problem
with sample complexity Õ(poly(S,A,H)/ε) by taking as a regularizer negative entropy, λ = κ = 1 and rmax = 0.
Moreover, in Section F we apply this algorithm to achieve sample complexity of order Õ(H2SA/ε2) for the maximum
visitation entropy exploration problem.

D.2. UCBVI-Ent Algorithm

In this section we describe UCBVI-Ent algorithm to solve MTEE problem, however as we show in the proofs, it is capable
to work with general regularized MDPs.

We now describe our algorithm UCBVI-Ent for MTEE. Since one only needs to solve regularized Bellman equations to
obtain a maximum trajectory entropy policy, we can use an algorithm of the same flavor as the ones proposed for best
policy identification (Tirinzoni et al., 2023; Ménard et al., 2021; Kaufmann et al., 2021; Dann et al., 2019). In particular,
UCBVI-Ent is close to the BPI-UCRL algorithm by Kaufmann et al. (2021) and can be characterized by the following rules.

Sampling rule As sampling rule we use an optimistic policy πt+1 obtained by optimistic planning in the regularized MDP

Q
t

h(s, a) = clip
(
H
(
p̂h(s, a)

)
+ bH,t

h (s, a) + p̂thV
t

h+1(s, a) + bp,th (s, a), 0, log(SA)H
)
,

V
t

h(s) = max
π∈∆A

πQ
t

h(s) +H(π) , (12)

πt+1
h (s) = argmax

π∈∆A

πQ
t

h(s) +H(π) ,

with V
t

H+1 = 0 by convention where bH,t, bp,t are bonuses for the entropy and the transition probabilities, respectively.
Precisely, we use bonuses of the form

bH,t
h (s, a) =

√
2βH(δ, nth(s, a))

nth(s, a)
+ min

(
βKL(δ, nt

h(s, a))

nth(s, a)
, log(S)

)
,

bp,th (s, a) ≜ bB,t
h (s, a) + bcorr,th (s, a),

bB,t
h (s, a) ≜ 3

√
Varp̂t

h
(V

t

h+1)(s, a)
βconc(δ, nth(s, a))

nth(s, a)
+

9H2 log(SA)βKL(δ, nth(s, a))

nth(s, a)
,

bcorr,th (s, a) ≜
1

H
p̂th(V

t

h+1 − V t
h+1)(s, a).
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for some functions βH, βKL and βconc and V t is a lower confidence bound on the optimal value function defined in
Appendix D.4.

Stopping and decision rule To define the stopping rule, we first recursively build an upper-bound on the difference
between the value of the optimal policy and the value of the current policy πt+1,

Gt
h(s, a) ≜ clip

(
2bB,t

h (s, a) + 2bH,t
h (s, a) +

4H2 log(SA)βKL(δ, nth(s, a))

nth(s, a)

+

(
1 +

3

H

)
p̂th
[
πt+1
h+1G

t
h+1

]
(s, a), 0, HRmax

)
,

(13)

where V t is a lower-bound on the optimal value function defined in Appendix D.4 and Gt
H+1(s, a) = 0 by convention.

Then the stopping time τ = inf{t ∈ N : πt+1Gt
1(s1) ≤ ε} corresponds to the first episode when this upper-bound is smaller

than ε. At this episode we return the Markovian policy π̂ = πτ+1.

Algorithm 3 UCBVI-Ent
1: Input: Target precision ε, target probability δ, threshold functions βH, βp, βconc.
2: while true do
3: Compute πt by optimistic planning with (12).
4: Compute bound on the gap Gt−1

1 (s, a) with (13).
5: if πtGt−1

1 (s1) ≤ ε then break
6: for h ∈ [H] do
7: Play ath ∼ πt

h(s
t
h)

8: Observe sth+1 ∼ ph(sth, ath)
9: end for

10: Update counts nt, transition estimates p̂t and episode number t← t+ 1.
11: end while
12: Output policy π̂ = πt.

The complete procedure is described in Algorithm 3. We now state our main theoretical result for UCBVI-Ent. We prove
that for the well calibrated threshold functions βH, βKL and βconc, the UCBVI-Ent is (ε, δ)-PAC for MTEE and provide a
high-probability upper bound on its sample complexity.

Theorem D.2. Let βKL, βconc and βH be defined in Lemma D.3 of Appendix D. Fix ε > 0 and δ ∈ (0, 1), then the
UCBVI-Ent algorithm is (ε, δ)-PAC for MTEE. Moreover, the optimal policy is given by π̂ = πτ+1 where

τ = Õ
(
H3SA

ε2
+
H3S2A

ε

)
.

with probability at least 1− δ. Here Õ hides poly-logarithmic factors in ε, δ,H, S,A.

See Theorem D.10 in Appendix D for a precise bound and a proof. Basically, this result is a simple corollary of the general
result on regularized MDPs.

Space and time complexity Since UCBVI-Ent is a model based algorithm, its space-complexity is of order O(HS2A)
whereas its time-complexity for one episode is of order O(HS2A) because of the optimistic planning.

D.3. Concentration Events

Following the ideas of (Ménard et al., 2021), we define the following concentration events.

Let βKL, βconc, βcnt, βH : (0, 1)× N→ R+ be some functions defined later on in Lemma D.3. We define the following
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favorable events

EKL(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : KL(p̂ t

h(s, a), ph(s, a)) ≤
βKL(δ, n t

h(s, a))

n t
h(s, a)

}
,

Econc(δ) ≜
{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

|(p̂th − ph)V ⋆
λ,h+1(s, a)| ≤

√
2Varph

(V ⋆
λ,h+1)(s, a)

βconc(δ, nth(s, a))

nth(s, a)
+ 3HRmax

βconc(δ, nth(s, a))

nth(s, a)

}
,

Ecnt(δ) ≜
{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : nth(s, a) ≥

1

2
nth(s, a)− βcnt(δ)

}
,

EH(δ) ≜

{
∀t ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A :

|H(p̂th(s, a))−H(ph(s, a))| ≤
√

2βH(δ, nth(s, a))

nth(s, a)
+

(
βKL(δ, nth(s, a))

nth(s, a)
∧ log(S)

)}
.

We also introduce two intersections of these events of interest, G(δ) ≜ EKL(δ) ∩ EconcB (δ) ∩ Ecnt(δ) ∩ EH(δ). We prove
that for the right choice of the functions βKL, βconc, βcnt, βH the above events hold with high probability.

Lemma D.3. For any δ ∈ (0, 1) and for the following choices of functions β,

βKL(δ, n) ≜ log(4SAH/δ) + S log(e(1 + n)),

βconc(δ, n) ≜ log(4SAH/δ) + log(4en(2n+ 1)),

βcnt(δ) ≜ log(4SAH/δ),

βH(δ, n) ≜ log2(n)(log(4SAH/δ) + log(n(n+ 1))),

it holds that

P[EKL(δ)] ≥ 1− δ/4, P[Econc(δ)] ≥ 1− δ/4,
P[Ecnt(δ)] ≥ 1− δ/4, P[EH(δ)] ≥ 1− δ/4.

In particular, P[G(δ)] ≥ 1− δ.

Proof. Applying Theorem G.1 and the union bound over h ∈ [H], (s, a) ∈ S × A we get P[EKL(δ)] ≥ 1 − δ/4. Next,
Theorem G.4 and the union bound over h ∈ [H], (s, a) ∈ S ×A yield P[Econc(δ)] ≥ 1− δ/4. By Theorem G.3 and union
bound, P[Ecnt(δ)] ≥ 1− δ/4. Finally, by Theorem G.2 and union bound over (s, a, h) ∈ S ×A× [H] P[EH(δ)] ≥ 1− δ/4.
The union bound over four prescribed events concludes P[G(δ)] ≥ 1− δ.

Lemma D.4. Assume conditions of Lemma D.3. Then on event EKL(δ), for any f : S → [0, HRmax], t ∈ N, h ∈
[H], (s, a) ∈ S ×A,

[ph − p̂th]f(s, a) ≤
1

H
p̂thf(s, a) + 2HRmax

(
2HβKL(δ, n t

h(s, a))

n t
h(s, a)

∧ 1

)
,

[p̂th − ph]f(s, a) ≤
1

H
phf(s, a) + 2HRmax

(
2HβKL(δ, n t

h(s, a))

n t
h(s, a)

∧ 1

)
.

Proof. Let us start from the first statement. We apply the second inequality of Lemma H.7 and Lemma H.8 to obtain

[ph − p̂th]f(s, a) ≤
√
2Varph

[f ](s, a) ·KL(p̂th, ph)

≤ 2
√
Varp̂t

h
[f ](s, a) ·KL(p̂th, ph) + 3HRmax KL(p̂th, ph).
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Since 0 ≤ f(s) ≤ HRmax we get

Varp̂t
h
[f ](s, a) ≤ p̂th[f2](s, a) ≤ HRmax · p̂thf(s, a).

Finally, applying 2
√
ab ≤ a+ b, a, b ≥ 0, we obtain the following inequality

(p̂th − ph)f(s, a) ≤
1

H
p̂thf(s, a) + 4H2Rmax KL(p̂th, ph).

Definition of EKL(δ) implies the part of the statement. At the same time we have a trivial bound since f(s) ∈ [0, HRmax]

[ph − p̂th]f(s, a) ≤ 2HRmax ≤
1

H
p̂thf(s, a) + 2HRmax.

To prove the second statement, apply the first inequality of Lemma H.7 and proceed similarly.

Lemma D.5. Assume conditions of Lemma D.3 and assume that βconc(δ) ≤ βKL(δ). Then conditioned on event G(δ), for
any U : S → [0, HRmax], t ∈ N, h ∈ [H], (s, a) ∈ S ×A,

|(p̂th − ph)V ⋆
λ,h+1(s, a)| ≤ 3

√
Varp̂t

h+1
(U)(s, a)

βconc(δ, nth(s, a))

nth(s, a)
+

9H2Rmaxβ
KL(δ, nth(s, a))

nth(s, a)

+
1

H
p̂th|U − V ⋆

λ,h+1|(s, a).

Proof. First, we apply the definition of event Econc(δ)

|(p̂th − ph)V ⋆
λ,h+1(s, a)| ≤

√
2Varph

(V ⋆
λ,h+1)(s, a)

βconc(δ, nth(s, a))

nth(s, a)
+ 3HRmax

βconc(δ, nth(s, a))

nth(s, a)
.

Next we apply Lemma H.8 and Lemma H.9 and obtain

Varph
(V ⋆

λ,h+1)(s, a) ≤ 2Varp̂t
h
(V ⋆

λ,h+1)(s, a) + 4H2R2
max KL(p̂th(s, a), ph(s, a))

≤ 4Varp̂t
h+1

(U)(s, a) + 4HRmaxp̂
t
h|U − V ⋆

λ,h+1|(s, a) + 4H2R2
max KL(p̂th(s, a), ph(s, a)).

Thus, by inequality
√
a+ b ≤ √a+

√
b.

|(p̂th − ph)V ⋆
λ,h+1(s, a)| ≤ 3

√
Varp̂t

h+1
(U)(s, a)

βconc(δ, nt
h(s, a))

nth(s, a)

+ 3

√
HRmaxp̂th|U − V ⋆

λ,h+1|(s, a) ·
βconc(δ, nth(s, a))

nth(s, a)

+ 3HRmax

√
KL(p̂th(s, a), ph(s, a)) ·

βconc(δ, nth(s, a))

nth(s, a)

+ 3HRmax
βconc(δ, nth(s, a))

nth(s, a)
.

By inequality 2
√
ab ≤ a+ b we have

3

√
HRmaxp̂th|U − V ⋆

λ,h+1|(s, a) ·
βconc(δ, nth(s, a))

nth(s, a)
≤ 1

H
p̂th|U − V ⋆

λ,h+1|(s, a) +
9H2Rmaxβ

conc(δ, nth(s, a))

4nth(s, a)
.

By the definition of the event EKL(δ) and the fact βconc(δ) ≤ βKL(δ) we have√
KL(p̂th(s, a), ph(s, a)) ·

βconc(δ, nth(s, a))

nth(s, a)
≤ βKL(δ, nth(s, a))

nth(s, a)
.
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D.4. Confidence Intervals

Similar to Azar et al. (2017); Zanette & Brunskill (2019); Ménard et al. (2021), we define the upper confidence bound for
the optimal regularized Q-function of two types: with Hoeffding bonuses and with Bernstein bonuses.

Let us define empirical estimate of entropy-augmented rewards as follows

r̂tκ,h(s, a) = rh(s, a) + κH(p̂th(s, a)).
Then we have the following sequences defined as follows

Q
t

h(s, a) = clip
(
r̂tκ,h(s, a) + p̂thV

t

h(s, a) + bp,th (s, a) + κbH,t
h (s, a), 0, HRmax

)
πt+1
h (s) = max

π∈∆A
{πQt

h(s)− λΦ(π)},

V
t

h(s) = H(πt+1
h (s)) + πt+1

h Q
t

h(s)

V
t

H+1(s) = 0,

and the lower confidence bound as follows

Qt

h
(s, a) = clip

(
r̂tκ,h(s, a) + p̂thV

t
h(s, a)− bp,th (s, a)− κbH,t

h (s, a), 0, HRmax

)
V t

h(s) = max
π∈∆A

{πQt

h
(s)− λΦ(π)}

V t
H+1(s) = 0,

where the Bernstein bonuses for transitions are defined as follows

bp,th (s, a) ≜ bB,t
h (s, a) + bcorr,th (s, a),

bB,t
h (s, a) ≜ 3

√
Varp̂t

h
(V

t

h+1)(s, a)
βconc(δ, nt

h(s, a))

nth(s, a)
+

9H2Rmaxβ
KL(δ, nt

h(s, a))

nth(s, a)
,

bcorr,th (s, a) ≜
1

H
p̂th(V

t

h+1 − V t
h+1)(s, a).

(14)

The entropy bonuses are defined bellow

bH,t
h (s, a) ≜

√
2βH(δ, nth(s, a))

nth(s, a)
+

(
βKL(δ, nth(s, a))

nth(s, a)
∧ log(S)

)
. (15)

Theorem D.6. Let δ ∈ (0, 1). Assume Bernstein bonuses (14). Then on event G(δ) for any t ∈ N, (h, s, a) ∈ [H]× S ×A
it holds

Qt

h
(s, a) ≤ Q⋆

λ,h(s, a) ≤ Q
t

h(s, a), V t
h(s) ≤ V ⋆

λ,h(s) ≤ V
t

h(s, a).

Proof. Proceed by induction over h. For h = H + 1 the statement is trivial. Now we assume that inequality holds for any
h′ > h for a fixed h ∈ [H]. Fix a timestamp t ∈ N and a state-action pair (s, a) and assume that Q

t

h(s, a) < HRmax, i.e.
no clipping occurs. Otherwise the inequality Q⋆

λ,h(s, a) ≤ Q
t

h(s, a) is trivial. In particular, it implies nth(s, a) > 0.

In this case, by Bellman equations (10) we have

[Q
t

h −Q⋆
λ,h](s, a) = rh(s, a) + κH(p̂th(s, a))− rh(s, a)− κH(ph(s, a)) + κbH,t

h (s, a)︸ ︷︷ ︸
T1

+ p̂thV
t

h+1(s, a)− phV ⋆
λ,h+1(s, a) + bp,th (s, a)︸ ︷︷ ︸
T2

.

By the definition of event EH(δ) that is subset of G(δ) we have T1 ≥ 0. To show that T2 ≥ 0, we start from induction
hypothesis

T2 ≥ [p̂th − ph]V ⋆
λ,h+1(s, a) + bp,th (s, a).
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Next we apply Lemma D.5 with U = V
t

h+1 and definition of transition bonuses we have

T2 ≥ −
1

H
p̂th|V

t

h+1 − V ⋆
λ,h+1|(s, a) +

1

H
p̂th[V

t

h+1 − V t
h+1](s, a).

By induction hypothesis we have V
t

h+1(s) ≥ V ⋆
λ,h+1(s) ≥ V t

h+1(s), thus T2 ≥ 0.

To prove the second inequality on Q-function, we assume Qt

h
(s, a) > 0 and, as a consequence, nth(s, a) > 0. Thus we have

[Qt

h
−Q⋆

λ,h](s, a) = H(p̂th(s, a))−H(ph(s, a))− bH,t
h (s, a)︸ ︷︷ ︸

T ′
1

+ p̂thV
t
h+1(s, a)− phV ⋆

λ,h+1(s, a)− bp,th (s, a)︸ ︷︷ ︸
T ′
2

.

Again, by the definition of event EH(δ) we have T ′
1 ≤ 0 and, by induction hypothesis

T ′
2 ≤ [p̂th − ph]V H,⋆

h+1 (s, a)− b
p,t
h (s, a).

We again apply Lemma D.5 with U = V
t

h+1

T ′
2 ≤

1

H
p̂th|V

t

h+1 − V ⋆
λ,h+1|(s, a)−

1

H
p̂th[V

t

h+1 − V t
h+1](s, a).

We conclude the statement by induction hypothesis for h′ = h+ 1.

Finally, we have to show the inequality for V -functions. To do it, we use the fact that V -functions are computed by Fλ

applied to Q-functions

V t
h(s) = Fλ(Q

t

h
)(s), V ⋆

λ,h(s) = Fλ(Q
⋆
λ,h)(s), V

t

h(s) = Fλ(Q
t

h)(s).

Notice that ∇Fλ takes values in a probability simplex, thus, all partial derivatives of Fλ are non-negative and therefore
Fλ is monotone in each coordinate. Thus, since Qt

h
(s, a) ≤ Q⋆

λ,h(s, a) ≤ Q
t

h(s, a), we have the same inequality

V t
h(s) ≤ V ⋆

λ,h(s) ≤ V
t

h(s).

D.5. Regularization-Agnostic Stopping Rule

In this section we provide guarantees for the so-called regularization-agnostic gap: this notion of gap does not influenced by
regularization except the changing of the range of value functions and basically mimics UCBVI-BPI algorithm by Ménard
et al. (2021) in definition of the similar gap.

Let us define Gt
H+1(s, a) ≜ 0 for all s, a and

Gt
h(s, a) ≜ clip

(
2bB,t

h (s, a) +
4H2Rmaxβ

KL(δ, nth(s, a))

nth(s, a)
+ 2κbH,t

h (s, a) +

(
1 +

3

H

)
p̂th
[
πt+1
h+1G

t
h+1

]
(s, a),

0, HRmax

)
,

(16)

where bB,t
h (s, a) is defined in (14). For this notion of the gap we can define the stopping rule as follows

τ = min{t ∈ N : πt+1
1 Gt

1(s1) ≤ ε}. (17)

The lemma below justifies this choice of the stopping time.

Lemma D.7. Assume the choice of Bernstein bonuses (14) and let the event G(δ) defined in Lemma D.3 holds. Then for all
t ∈ N we have

V ⋆
λ,1(s1)− V πt+1

λ,1 (s1) ≤ πt+1
1 Gt

1(s1).
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Proof. Following (Ménard et al., 2021), we start by defining the following quantities

Q̃t
h(s, a) ≜ clip

(
r̂tκ,h(s, a) + p̂thṼ

t
h+1(s, a)− bp,th (s, a)− κbH,t

h (s, a), 0, rκ,h(s, a) + phṼ
t
h+1(s, a)

)
,

Ṽ t
h(s) ≜ πt+1

h Q̃t
h(s)− λΦ(πt+1

h (s)),

Ṽ t
H+1(s) ≜ 0.

By Theorem D.6 and Lemma D.8 we have

V ⋆
λ,1(s1)− V πt+1

λ,1 (s1) ≤ V
t

1(s1)− V πt+1

λ,1 (s1) ≤ V
t

1(s1)− Ṽ t
1 (s1)

= πt+1
1 Q

t

1(s1)− λΦ(πt+1
1 (s1))− πt+1

1 Q̃t
1(s1) + λΦ(πt+1

1 (s1)) = πt+1
1 [Q

t

1 − Q̃t
1](s1).

Therefore, it is enough to show that for any (h, s, a) ∈ [H]× S ×A

[Q
t

h − Q̃t
h](s, a) ≤ Gt

h(s, a), [V
t

h − Ṽ t
h ](s) ≤ πt+1

h Gt
h(s).

Proceed by backward induction over h. The case h = H + 1 is trivial, thus we may assume that the statement holds for any
h′ > h for a fixed h. Also fix (s, a) ∈ S ×A.

Notice that if Gt
h(s, a) = HRmax, then the inequality is trivially true. Therefore we may assume that Gt

h(s, a) < HRmax

and, consequently, nth(s, a) > 0. Now we have to separate cases.

First case. In this case we have Q̃t
h(s, a) = rκ,h(s, a) + phṼ

t
h+1(s, a), i.e. maximal clipping occurs. Therefore

Q
t

h(s, a)− Q̃t
h(s, a) = rh(s, a) + κH(p̂th(s, a)) + κbH,t

h (s, a)− rh(s, a)− κH(ph(s, a))
+ p̂thV

t

h+1(s, a)− phṼ t
h+1(s, a) + bp,th (s, a).

By the definition of the event EH(δ) ⊆ G(δ) we have

κH(p̂th(s, a)) + κbH,t
h (s, a)− κH(ph(s, a)) ≤ 2κbH,t

h (s, a),

for the next term we have

p̂thV
t

h+1 − phṼ t
h+1(s, a) = p̂th[V

t

h+1 − Ṽ t
h+1(s, a)] + [p̂th − ph]V ⋆

λ,h+1(s, a) + [ph − p̂th][V ⋆
λ,h+1 − Ṽ t

h+1](s, a).

By induction hypothesis
p̂th[V

t

h+1 − Ṽ t
h+1(s, a)] ≤ p̂th[πt+1

h+1G
t
h+1](s, a).

Next we apply Lemma D.5 with U = V
t

h+1(s, a) and Theorem D.6

[p̂th − ph]V ⋆
λ,h+1(s, a) ≤ bp,th (s, a).

Finally, we apply Lemma D.4 and obtain

[ph − p̂th][V ⋆
λ,h+1 − Ṽ t

h+1](s, a) ≤
1

H
p̂th[V

⋆
λ,h+1 − Ṽ t

h+1](s, a) +
4H2Rmax · βKL(δ, nt

h(s, a))

nth(s, a)
.

Summing all these bounds up, we have

Q
t

h(s, a)− Q̃t
h(s, a) ≤ p̂th[πt+1

h+1G
t
h+1](s, a) + 2κbH,t

h (s, a) + 2bp,th (s, a)

+
1

H
p̂th[V

⋆
λ,h+1 − Ṽ t

h+1](s, a) +
4H2Rmax · βKL(δ, nth(s, a))

nth(s, a)
.

Notice that by Theorem D.6 and the induction hypothesis

1

H
p̂th[V

⋆
λ,h+1 − Ṽ t

h+1](s, a) ≤
1

H
p̂th[V

t

h+1 − Ṽ t
h+1](s, a) ≤

1

H
p̂th[π

t+1
h+1G

t
h+1](s, a),
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and by decomposing the transition bonus (14) to Bernstein bonus and correction term and applying Lemma D.8

bp,th (s, a) = bB,t
h (s, a) +

1

H
p̂th[V

t

h+1 − V t
h+1](s, a) ≤ bB,t

h (s, a) +
1

H
p̂th[V

t

h+1 − Ṽ t
h+1](s, a)

≤ bB,t
h (s, a) +

1

H
p̂th[π

t+1
h+1G

t
h+1](s, a),

thus

Q
t

h(s, a)− Q̃t
h(s, a) ≤

(
1 +

3

H

)
p̂th[π

t+1
h+1G

t
h+1](s, a) + 2κbH,t

h (s, a) + 2bB,t
h (s, a)

+
4H2Rmax · βKL(δ, nth(s, a))

nth(s, a)
= Gt

h(s, a).

Second case. In this case we have Q̃t
h(s, a) = r̂tλ,h(s, a) + p̂thṼ

t
h+1(s, a)− bp,th (s, a)− κbH,t

h (s, a). Thus

Q
t

h(s, a)− Q̃t
h(s, a) ≤ 2κbH,t

h (s, a) + 2bB,t
h (s, a) + p̂th[V

t

h+1 − Ṽ t
h+1](s, a) +

2

H
p̂th[V

t

h+1 − V t
h+1](s, a).

By Lemma D.8 and induction hypothesis we have

Q
t

h(s, a)− Q̃t
h(s, a) ≤ 2κbH,t

h (s, a) + 2bB,t
h (s, a) +

(
1 +

2

H

)
p̂th[π

t+1
h+1G

t
h+1](s, a) ≤ Gt

h(s, a).

Conclusion. From the two cases above we conclude

[Q
t

h − Q̃t
h](s, a) ≤ Gt

h(s, a).

Moreover, we have

V
t

h(s)− Ṽ t
h(s) = πt+1

h Q
t

h(s)− λΦ(πt+1
h (s))πt+1

h Q̃t
h(s) + λΦ(πt+1

h (s)) = πt+1
h [Q

t

h − Q̃t
h](s) ≤ πt+1

h Gt
h(s).

The last inequality concludes the statement of Lemma D.7.

Lemma D.8. Under the choice of Bernstein bonuses (14), on event G(δ) for any t ∈ N and any (h, s, a) ∈ [H]× S ×A

Q̃t
h(s, a) ≤ min{Qπt+1

λ,h (s, a), Qt

h
(s, a)}, Ṽ t

h(s) ≤ min{V πt+1

λ,h (s), V t
h(s)}.

Proof. Proceed by backward induction over h. The case h = H + 1 is trivially true, assume that the statement holds for any
h′ > h for a fixed h. Also let us fix t, s, a. By induction hypothesis we have

Q̃t
h(s, a) ≤ rκ,h(s, a) + phṼ

t
h+1 ≤ rκ,h(s, a) + phV

πt+1

λ,h+1(s, a) = Qπt+1

λ,h (s, a).

In the same manner

Q̃t
h(s, a) ≤ r̂tκ,h(s, a) + p̂thṼ

t
h+1 − bp,th (s, a)− κbH,t

h (s, a)

≤ r̂tκ,h(s, a) + p̂thV
t
h+1 − bp,th (s, a)− κbH,t

h (s, a) = Qt

h
(s, a).

Next, we prove the same inequalities for V -functions

Ṽ t
h(s) = πt+1

h (s)Q̃t
h(s, a)− λΦ(πt+1

h (s)) ≤ πt+1
h (s)Qπt+1

λ,h (s, a)− λΦ(πt+1
h (s)) = V πt+1

λ,h (s),

and

Ṽ t
h(s) = πt+1

h Q̃t
h(s)− λΦ(πt+1

h (s)) ≤ πt+1
h Qt

h
(s)− λΦ(πt+1

h (s)) ≤ max
π∈∆A

{
πQt

h
(s)− λΦ(π)

}
= V t

h(s).
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After defining a proper quantity for a stopping rule we may proceed with the final proof for sample-complexity of the
presented algorithm UCBVI-Ent.

Theorem D.9. Let δ ∈ (0, 1). Then UCBVI-Ent algorithm with Bernstein bonuses (14) and a regularization-agnostic
stopping rule τ is (ε, δ)-PAC for the best policy identification in regularized MDPs.

Moreover, with probability at least 1− δ the stopping time τ is bounded as follows

τ = O
(
H3SAR2

max log(SAH/δ)L
4

ε2
+
H3SA(log(SAH/δ) + SL) · L

ε

)
,

where L = O(log(SAHRmax/ε)) + log log(SAH/δ)).

Proof. Notice that if τ = 0, then our sample complexity bound is trivial, thus we assume that τ > 0. Let us start from
deriving an upper bound for Gt

h(s, a) for t < τ, h ∈ [H], (s, a) ∈ S ×A.

Gt
h(s, a) ≤ 2bB,t

h (s, a) + 2κbH,t
h (s, a) +

4H2Rmaxβ
KL(δ, nth(s, a))

nth(s, a)
+

(
1 +

3

H

)
p̂th[π

t+1
h+1G

t
h+1](s, a)

≤ 6

√
Varp̂t

h
[V

t

h+1](s, a)
βconc(δ, nth(s, a))

nth(s, a)
+ 2κ

√
2βH(δ, nt

h(s, a))

nth(s, a)
+

23H2Rmaxβ
KL(δ, nth(s, a))

nth(s, a)

+

(
1 +

3

H

)
[p̂th − ph][πt+1

h+1G
t
h+1](s, a) +

(
1 +

3

H

)
ph[π

t+1
h+1G

t
h+1](s, a).

By Lemma D.4

[p̂th − ph][πt+1
h+1G

t
h+1](s, a) ≤

1

H
ph[π

t+1
h+1G

t
h+1](s, a) +

4H2Rmaxβ
KL(δ, nth(s, a))

nth(s, a)
.

Also we have to replace the variance of the empirical model with the real variance of the value function for πt+1 in order to
apply the law of total variance (Lemma C.3).

Apply Lemma H.9 and Lemma H.8

Varp̂t
h
[V

t

h+1](s, a) ≤ 2Varph
[V

t

h+1](s, a) +
4H2R2

maxβ
KL(δ, nth(s, a))

nth(s, a)

≤ 4Varph
[V πt+1

λ,h+1](s, a) + 2HRmaxph[V
t

h+1 − V πt+1

λ,h+1](s, a) +
4H2R2

maxβ
KL(δ, nth(s, a))

nth(s, a)
.

In the proof of Lemma D.7 it was proven that

[V
t

h+1 − V πt+1

λ,h+1](s) ≤ πt+1
h+1G

t
h+1(s),

thus, combining with an inequality
√
a+ b ≤ √a+

√
b

6

√
Varp̂t

h
[V

t

h+1](s, a)
βconc(δ, nth(s, a))

nth(s, a)
≤ 12

√
Varph

[V πt+1

λ,h+1](s, a)
βconc(δ, nt

h(s, a))

nth(s, a)

+ 6

√
ph[π

t+1
h+1G

t
h+1](s, a)

2HRmaxβconc(δ, nth(s, a))

nth(s, a)

+
12HRmaxβ

KL(δ, nth(s, a)

nth(s, a)

To bound the second term, we use inequality 2
√
ab ≤ a+ b

6

√
ph[π

t+1
h+1G

t
h+1](s, a)

2HRmaxβconc(δ, nth(s, a))

nth(s, a)
≤ 3

H
ph[π

t+1
h+1G

t
h+1](s, a) +

3H2Rmaxβ
conc(δ, nth(s, a))

nth(s, a)
.
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Finally, we have the following bound on Gt
h(s, a)

Gt
h(s, a) ≤ 12

√
Varph

[V πt+1

λ,h+1](s, a)
βconc(δ, nth(s, a))

nth(s, a)
+ 2κ

√
2βH(δ, nt

h(s, a))

nth(s, a)

+
54H2Rmaxβ

KL(δ, nt
h(s, a))

nth(s, a)
+

(
1 +

10

H

)
ph[π

t+1
h+1G

t
h+1](s, a).

Notice that his inequality could be rewritten in the following form

Gt
h(s, a) ≤ Eπt+1

[
12

√
Varph

[V πt+1

λ,h+1](s, a)
βconc(δ, nth(s, a))

nth(s, a)
+ 2κ

√
2βH(δ, nth(s, a))

nth(s, a)

+
54H2Rmaxβ

KL(δ, nth(s, a))

nth(s, a)
+

(
1 +

10

H

)
Gt

h+1(sh+1, ah+1)

∣∣∣∣(sh, ah) = (s, a)

]
,

thus by rolling out we have

πt+1
1 Gt

1(s1) ≤ Eπt+1

[
12

H∑
h=1

(
1 +

10

H

)h
√

Varph
[V πt+1

λ,h+1](sh, ah)
βconc(δ, nt

h(sh, ah))

nth(sh, ah)︸ ︷︷ ︸
(A)

+ 2κ

H∑
h=1

(
1 +

10

H

)h
√

2βH(δ, nth(sh, ah))

nth(sh, ah)︸ ︷︷ ︸
(B)

+

H∑
h=1

(
1 +

10

H

)h
54H2Rmaxβ

KL(δ, nth(sh, ah))

nth(sh, ah)︸ ︷︷ ︸
(C)

∣∣∣∣s1],

where (1 + 10/H)h ≤ e10 for any h ∈ [H]. Now we bound each term separately.

Term (A). To bound this term, we apply Cauchy-Schwarz inequality

(A) ≤ 12e10
∑

(h,s,a)∈[H]×S×A

dπ
t+1

h (s, a)

√
Varph

[V πt+1

λ,h+1](s, a)
βconc(δ, nth(s, a))

nth(s, a)

≤ 12e10
√ ∑

(h,s,a)∈[H]×S×A

dπ
t+1

h (s, a)Varph
[V πt+1

λ,h+1](s, a) ·
√√√√ ∑

(h,s,a)∈[H]×S×A

dπ
t+1

h (s, a)
βconc(δ, nth(s, a))

nth(s, a)
.

For the first multiplier we apply the law of total variance (Lemma C.3)∑
h,s,a

dπ
t+1

h (s, a)Varph
[V πt+1

λ,h+1](s, a) ≤
∑
h,s,a

dπ
t+1

h (s, a)Varph
[V πt+1

λ,h+1](s, a) +
∑
h,s

dπ
t+1

h (s)Varπt+1
h

[Qπt+1

λ,h ](s)

= σV H,πt+1

1 (s1) ≤ H2R2
max.

Therefore,

(A) ≤ 24e10HRmax

√√√√ ∑
(h,s,a)∈[H]×S×A

dπ
t+1

h (s, a)
βconc(δ, nth(s, a))

nth(s, a)
.
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Term (B). For this term we may apply Jensen’s inequality

(B) ≤ 2κHe10Eπt+1

[
1

H

H∑
h=1

√
2βH(δ, nth(sh, ah))

nth(sh, ah)

∣∣∣∣s1
]
≤ κ
√
8He10

√√√√∑
h,s,a

dπ
t+1

h (s, a)
βH(δ, nt

h(s, a))

nth(s, a)
.

By summing up and replacing counts by pseudo-counts by Lemma H.5 we obtain

πt+1
1 Gt

1(s1) ≤ 48e10HRmax

√√√√ ∑
(h,s,a)∈[H]×S×A

dπ
t+1

h (s, a)
βconc(δ, nth(s, a))

nth(s, a) ∨ 1

+ 4κe10
√
2H

√√√√∑
h,s,a

dπ
t+1

h (s, a)
βH(δ, nth(s, a))

nth(s, a) ∨ 1

+ 4e10H2Rmax

∑
h,s,a

dπ
t+1

h (s, a)
βKL(δ, nth(s, a))

nth(s, a) ∨ 1
.

The last step is to notice that for t < τ we have πt+1
1 Gt

1(s1) ≥ ε, thus summing over all t < τ we have

(τ − 1)ε ≤ 48e10HRmax

τ−1∑
t=1

√√√√ ∑
(h,s,a)∈[H]×S×A

dπ
t+1

h (s, a)
βconc(δ, nth(s, a))

nth(s, a) ∨ 1

+ 4κe10
√
2H

τ−1∑
t=1

√√√√∑
h,s,a

dπ
t+1

h (s, a)
βH(δ, nth(s, a))

nth(s, a) ∨ 1

+ 4e10H2Rmax

τ−1∑
t=1

∑
h,s,a

dπ
t+1

h (s, a)
βKL(δ, nth(s, a))

nth(s, a) ∨ 1
.

Also we notice that βKL(δ, ·), βconc(δ, ·), βH(δ, ·) are monotone, thus we may replace nth(s, a) with a stopping time τ .
Thus, by Jensen’s inequality

(τ − 1)ε ≤ 48e10HRmax

√
(τ − 1) · βconc(δ, τ − 1)

√√√√τ−1∑
t=1

∑
(h,s,a)∈[H]×S×A

dπ
t+1

h (s, a)
1

nth(s, a) ∨ 1

+ 4κe10
√
2HβH(δ, τ) · (τ − 1)

√√√√τ−1∑
t=1

∑
h,s,a

dπ
t+1

h (s, a)
1

nth(s, a) ∨ 1

+ 4e10H2Rmaxβ
KL(δ, τ − 1)

τ−1∑
t=1

∑
h,s,a

dπ
t+1

h (s, a)
1

nth(s, a) ∨ 1
.

Furthermore, notice
τ−1∑
t=1

dπ
t+1

h (s, a)
1

nth(s, a) ∨ 1
=

τ−1∑
t=1

nt+1
h (s, a)− nth(s, a)
nth(s, a) ∨ 1

,

thus Lemma H.6 is applicable:

(τ − 1)ε ≤ 96e10Rmax

√
(τ − 1)H3SA log(τ) · βconc(δ, τ − 1)

+ 2κe10
√
2H2SA log3(τ)βH(δ, τ) · (τ − 1)

+ 8e10H3SA log(τ)Rmaxβ
KL(δ, τ − 1).
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By the definitions of βKL, βconc, βH we have the following inequality

(τ − 1)ε ≤ 96e10Rmax

√
(τ − 1)H3SA log(τ) · (log(16SAH/δ) + 2 log(eτ))

+ 12κe10
√
H2SA(τ − 1) log3(τ) · (log(4SAH/δ) + 2 log(eτ))

+ 16e10H3SA log(τ)Rmax(log(4SAH/δ) + S log(eτ)).

Under assumption τ ≥ 2 we can proceed with the further simplifications

τε ≤ 216e10Rmax

√
τH3SA log3(τ) · (log(16SAH/δ) + 2 log(eτ))

+ 32e10H3SA log(τ)Rmax(log(16SAH/δ) + S log(eτ)).
(18)

Let us define the following constants

A = 216e10Rmax ·
√
H3SA

ε2
, B = log(16SAH/δ), C =

32e10 ·H3SARmax

ε
.

Then inequality (18) has the following form

τ ≤ A
√
τ(B + 2 log(eτ)) · log3(τ) + C(B + S log(eτ)) log τ.

First, we obtain a loose inequality on τ . Let us use the inequality log(x) ≤ xβ/β for any x > 0, β > 0 with different β for
each logarithm

τ ≤ A
√
216τ(B + 4(eτ)1/4)τ1/2 + 4C(B + 8S/3(eτ)3/8)τ1/4

⇒ τ3/4 ≤ τ3/8
(
6A
√

6(B + 4e1/4) + 12CSe3/8
)
+ 4CB.

Notice that the solution to the inequality x2 ≤ ax+ b could be upper-bounded as follows

x ≤ a+
√
a2 + 4b

2
≤ a+

√
b,

thus

τ3/8 ≤
(
6A
√
6(B + 4e1/4) + 12CSe3/8

)
+ 2
√
CB.

Define L = 8/3 log
(
6A
√
6(B + 4e1/4) + 12CSe3/8 + 2

√
CB

)
= O(log(SAHRmax/ε) + log log(SAH/δ)) and we

have log(τ) ≤ L. Then we have that the solution to (18) is a subset of solutions to

τ ≤ A
√
τ(B + 2(1 + L)) · L3 + C(B + S(1 + L))L,

solving this inequality we obtain the bound

τ ≤ 2A2(B + 2(1 + L))L3 + 2CB(S(1 + L))L.

After this general result we state the bound for the MTEE problem that was stated in the main text.
Theorem D.10. For all ε > 0 and δ ∈ (0, 1) the UCBVI-Ent algorithm is (ε, δ)-PAC for MTEE. Moreover, with probability
at least 1− δ

τ ≤ O
(
H3SA log2(SA) log(SAH/δ) · L4

ε2
+
H3SA(log(SAH/δ) + SL) · L

ε

)
,

where L = log(SAH/ε) + log log(SAH/δ).

Proof. Fix Φ(π) = −H(π), κ = λ = 1 and rmax = 0. SinceH(π) is 1-strongly convex with respect to ℓ1-norm, we have
rA = 1. Also we automatically have Rmax = log(SA). In this setting, Theorem D.9 yields the desired statement.
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E. Fast Rates for MTEE and Regularized MDPs

In this section we describe an algorithm that will achieve Õ(poly(S,A,H)/ε) sample complexity for regularized MDPs.
Additionally, we show that this algorithm could be used for reward-free exploration under regularization.

E.1. RL-Explore-Ent Algorithm

We leverage the reward-free exploration approach by Jin et al. (2020). Our algorithm is split into two phases: the first phase
is devoted to reward-free exploration, and on the second phase the collected samples are used to build estimates of transition
probabilities and entropy of transitions. The main idea is that regularization allows us to collect much smaller number of
samples to control the policy error.

Exploration phase We first learn a policy that visit uniformly the MDP. To this aim for each state s′ ∈ S at each step
h′ ∈ [H] we build the reward that put one on this state at step h and zeros everywhere else rh(s, a) = 1{(s, h) = (s′, h′)}.
We note that the reward function does not depend on action taken. We then run the EULER algorithm for N0 episodes in the
MDP equipped with the reward r and denote by Π̃s′,h′ the set of N0 policies used by EULER to interact with the MDP. We
modify this set of policies by forcing to act uniformly at the goal state s′ into the set

Πs′,h′ =

{
π′
h(a|s) =

{
1/A if s = s′, h = h′

πh(s, a) else
: π ∈ Π̃s′,h′

}
.

We define the (non-Markovian) policy πmix as the uniform mixture of the policies {π ∈ Πs,h, (s, h) ∈ S × [H]} we just
constructed. As proved by Jin et al. (2020) the policy πmix is built such that it will visit almost uniformly all the states
that can be reached in the MDP from the initial state. Before precising this property we need to introduce the notion of
significant state.
Definition E.1. A state s at step h is called ε′-significant if there exists a policy π such that the visitation probability of s
under policy π is greater than ε′:

max
π

dπh(s) ≥ ε′.

The set of all ε′-significant state-step pairs is called Sε′ .

We reproduce here the result by Jin et al. (2020) that shows that the policy πmix will visit any significant state with a large
enough probability.
Theorem E.2 (Theorem 3.3 by Jin et al. 2020). There exists an absolute constant c > 0 such that for any ε′ > 0 and
δ ∈ (0, 1), if we set the parameter N0 ≥ cS2AH4L/ε′ where L = log(SAH/(δε′)), then with probability at least 1− δ/3
the following event holds

ERF-RL-Explore(δ, ε′) =

{
∀(s, h) ∈ Sε′ ,∀a ∈ A,∀π :

dπh(s, a)

µh(s, a)
≤ 2SAH

}
,

where we denote the visitation distribution of policy πmix by µh(s, a) = dπ
mix

h (s, a).

Remark E.3. Note that the space complexity of RL-Explore-Ent is very large since we need to store all the intermediate
policies in order to construct πmix.

This policy πmix is then used to collect N new independent trajectories (zn)n∈[N ] where zn = (sn1 , a
n
1 , . . . , s

n
H , a

n
H , s

n
H+1)

by following the policy πmix in the original MDP. Next define the set D = {(snh, anh, snh+1), h ∈ [H], n ∈ [N ]} consisting
of the transitions in the sampled trajectories.

Planning phase Given the transitions collected in the exploration phase we estimate the transition probability distributions
and then plan in the estimated MDP with the Bellman equations for MTEE to obtain a maximum trajectory entropy policy.

Using the dataset D, we construct estimates of transition probabilities {p̂h}h∈[H]. We first define the number of visits of a
state action pair (s, a) at step h and the number of transitions for (s, a) at step h to a states s′ observed in the dataset D,

nh(s, a) =

N∑
n=1

1{(snh, anh) = (s, a)} nh(s
′|s, a) =

N∑
n=1

1{(snh, anh, snh+1) = (s, a, s′)},
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The transitions are estimated using the maximum likelihood method:

p̂h(s
′|s, a) =

{
nh(s

′|s,a)
nh(s,a)

nh(s, a) > 0
1
S nh(s, a) = 0

. (19)

Given these estimates, we can define an empirical version of the regularized Bellman equations for MTEE

Q̂π
λ,h(s, a) = rh(s, a) + κH(p̂h(s, a)) + p̂hV̂

π
λ,h+1(s, a)

V̂ π
λ,h(s) = πQ̂π

λ,h(s)− λΦ(π).
(20)

Then the output policy π̂ is the solution to the optimal regularized Bellman equations

Q̂⋆
λ,h(s, a) = rh(s, a) + κH(p̂h(s, a)) + p̂hV̂

⋆
λ,h+1(s, a)

V̂ ⋆
λ,h(s) = max

π

{
πQ̂⋆

λ,h(s)− λΦ(π)
}

π̂h(s) = argmax
π

{
πQ̂⋆

λ,h(s)− λΦ(π)
}
.

(21)

We call this algorithm RL-Explore-Ent. Notably, we can extend this algorithm to the setting of the changing rewards by
solving (21) with new reward functions rh(s, a). The detailed description of the algorithm is presented in Algorithm 2. The
only difference between our algorithm and RF-RL-Explore by Jin et al. (2020) is the use of a smaller number of trajectories
N and solving regularized Bellman equations instead of usual one.

E.2. Concentration Events

In this section we describe all required concentration events.

Let βconc : (0, 1) × N → R+ and βcnt : (0, 1) → R+ be some functions defined later on in Lemma E.4. We define the
following favorable events

Econc(N, δ) ≜
{
∀h ∈ [H],∀G : S → [0, HRmax],∀ν : S → A :

E(s,a)∼µh

[
([p̂h′ − ph′ ]G(s, a))

2
1{ν(s) = a}

]
≤ CH2R2

maxS · βconc(δ,N)

N

}
,

EH(N, δ) ≜

{
∀h ∈ [H] : E(s,a)∼µh

[
(H(p̂h(s, a))−H(ph(s, a)))2

]
≤ 12S2A log2(SN) · βH(δ)

N

}
,

where C is a some absolute constant. We also introduce two intersections of these events of interest and ERF-RL-Explore(δ),
defined in Theorem E.2: G(N, δ, ε′) ≜ Econc(N, δ) ∩ EH(δ) ∩ ERF-RL-Explore(δ, ε′). We prove that for the right choice of
the functions βconc, βH the above events hold with high probability.

Lemma E.4. For any δ ∈ (0, 1), ε′ > 0, N ∈ N and for the following choices of functions β,

βconc(δ,N) ≜ log(3AHRmaxN/δ),

βH(δ) ≜ log(12SAH/δ),

it holds that

P[Econc(δ)] ≥ 1− δ/3, P[EH(δ)] ≥ 1− δ/3.

In particular, P[G(δ,N, ε′)] ≥ 1− δ.

Proof. Holds from an application of Lemma G.6, Lemma G.5, Theorem E.2 and union bound.
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E.3. Sample Complexity Proof

In this section we provide the sample complexity result of RL-Explore-Ent algorithm in the simple BPI setting and in the
reward free setting.

Theorem E.5. Algorithm RL-Explore-Ent with parameters N0 = Ω
(

H7S3Ar2A·R2
max·L

ελ

)
and N ≥ Ω

(
H6S3Ar2AR2

maxL
3

ελ

)
is (ε, δ)-PAC for the best policy identification in regularized MDPs, where L = log(SAH/(ελδ)). The sample complexity
is bounded by

Õ
(
H8S4Ar2AR

2
max

ελ

)
.

Proof. Let us start from exploiting the strong convexity of the regularizer. This property is given by Lemma E.8

V ⋆
λ,1(s1)− V π̂

λ,1(s1) ≤
r2A
2λ

H∑
h=1

Eπ̂

[
max
a∈A

(
Q̂π̂

λ,h −Q⋆
λ,h

)2
(sh, a)

∣∣∣∣s1].
Next we study each separate term in this decomposition. By the definition of π̂ and π⋆ we have

Q̂π⋆

λ,h(s, a)−Qπ⋆

λ,h(s, a) ≤ Q̂π̂
λ,h(s, a)−Q⋆

λ,h(s, a) ≤ Q̂π̂
λ,h(s, a)−Qπ̂

λ,h(s, a),

thus (
Q̂π⋆

λ,h(s, a)−Qπ⋆

λ,h(s, a)
)2
≤ max

{(
Q̂π̂

λ,h(s, a)−Q⋆
λ,h(s, a)

)2
,
(
Q̂π̂

λ,h(s, a)−Qπ̂
λ,h(s, a)

)2}
,

and by an inequality max{a, b} ≤ a+ b for positive a, b we have(
Q̂π̂

λ,h(s, a)−Q⋆
λ,h(s, a)

)2
≤
(
Q̂π̂

λ,h(s, a)−Qπ̂
λ,h(s, a)

)2
+
(
Q̂π⋆

λ,h(s, a)−Qπ⋆

λ,h(s, a)
)2
.

Therefore, the policy error decomposes as follows

V ⋆
λ,1(s1)− V π̂

λ,1(s1) ≤
r2A
2λ

H∑
h=1

(
Eπ̂

[
max
a∈A

(
Q̂π̂

λ,h(sh, a)−Qπ̂
λ,h(sh, a)

)2
| s1
]

+ Eπ̂

[
max
a∈A

(
Q̂π⋆

λ,h(sh, a)−Qπ⋆

λ,h(sh, a)
)2
| s1
])
.

Next we assume that the event G(N, δ, ε′) holds for the values N and ε′ that will be specified later. Then Lemma E.9 applied
2H times yields

V ⋆
λ,1(s1)− V π̂

λ,1(s1) ≤
r2A
λ

(
48S3H4AR2

max log
2(N) log(12SAH/δ)

N

+
4CH6R2

maxS
2A · (log(3AHRmax/δ) + log(N))

N
+ 2SH3R2

max · ε′
)
.

Next we take
ε′ =

λε

4r2ASH
3R2

max

,

that requires to take N0 ≥ cH7S3Ar2A·R2
max·L

ελ for an absolute constant c > 0 and L = log(SAH/δ) + log(1/(ελ)). This
yields Õ(H8S4Ar2AR

2
max/(ελ)) sample complexity of the first phase, since we need N0 samples for each (s, h) ∈ S × [H].

Under this choice, we have

V ⋆
λ,1(s1)− V π̂

λ,1(s1) ≤ ε/2 +
r2A
λN
·
(
(48 + 4C)S3AH6R2

max log
2(N) · log(12SAHRmax/δ)

)
.

To make the second part smaller than ε, we have to analyze the following inequality

log2(N)/N ·B ≤ ε
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and upper bound its minimal solution that we will call N⋆. To do it, we first use a simple numeric bound log(N) ≤ 4N1/4

and obtain a simple estimate N ≥ 256B2/ε2, thus the minimal solution N⋆ ≤ 256B2/ε2. Therefore, we can assume that
log(N⋆) ≤ 2 log(16B/ε) = O(log(SAHRmax/ε+ log(1/δ)), thus taking

N ≥ N⋆ = Ω

(
H6S3Ar2AR

2
max log

2(SAHRmax/ε+ log(1/δ)) · log(SAHRmax/δ)

ελ

)
.

is enough to guarantee that the policy error is smaller than ε.

Notice that in the proof we do not rely on one particular reward function, since the only we need is conditioning on event
G(δ) that does not depend on the particular reward function.

Corollary E.6. Algorithm RL-Explore-Ent for a choice N0 = Ω
(

H7S3Ar2A·R2
max·L

ελ

)
and N ≥ Ω

(
H6S3Ar2AR2

maxL
3

ελ

)
outputs ε-optimal policies for an arbitrary number of reward functions in regularized MDPs. The sample complexity is
bounded by

Õ
(
H8S4Ar2AR

2
max

ελ

)
.

Finally, we provide a formal proof for application of this algorithm to the MTEE problem, that is a simple application of the
results above.

Theorem E.7. Algorithm RL-Explore-Ent with parameters N0 = Ω
(

H7S3A·L3

ε

)
and N = Ω

(
H6S3AL5

ε

)
is (ε, δ)-PAC

for the MTEE problem, where L = log(SAH/(εδ)). The total sample complexity SHN0 +N is bounded by

Õ
(
H8S4A

ε

)
.

Proof. Fix Φ(π) = −H(π), κ = λ = 1 and rmax = 0. By 1-strong convexity of −H(π) with respect to ℓ1-norm, its dual is
1-strongly convex with respect to ℓ∞ norm, yielding rA = 1. Also we have Rmax = log(SA), thus by Theorem E.5 we
conclude the statement.

E.4. Technical Lemmas

Lemma E.8. Let π be a greedy policy with respect to regularized Q-values Qλ,h(s, a) : πh(s) = argmaxπ{πQλ,h(s)−
λΦ(π)}. Then the following error decomposition holds

V ⋆
λ,1(s1)− V π

λ,1(s1) ≤
r2A
2λ

Eπ

[
H∑

h=1

max
a∈A

(
Qλ,h −Q⋆

λ,h

)2
(sh, a) | s1

]
,

where rA is a constant defined in (11).

Proof. First, we formulate the statement dependent of h

V ⋆
λ,h(s)− V π

λ,h(s) ≤
r2A
2λ

Eπ

[
H∑

h′=h

max
a∈A

(
Qλ,h′ −Q⋆

λ,h′

)2
(sh′ , a) | sh = s

]
. (22)

Notice that for h = 1 and s = s1 the initial statement is recovered. We proceed by induction over h. The initial case
h = H + 1 is trivial, next we assume that the statement (22) is true for any h′ > h.

We start the analysis from understanding the policy error by applying the smoothness of Fλ for any h.

V ⋆
λ,h(s)− V π

λ,h(s) = Fλ(Q
⋆
λ,h(s, ·))−

(
πhQ

π
λ,h(s, ·)− λΦ(πh(s))

)
≤ Fλ(Qh)(s) + ⟨∇Fλ(Qh(s, ·)), Q⋆

λ,h(s, ·)−Qh(s, ·)⟩+
1

2λ
∥Qh −Q⋆

λ,h∥2∗(s)
−
(
πhQ

π
λ,h(s, ·)− λΦ(πh(s))

)
.
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Next we recall that
πh(s) = ∇F (Qh(s, ·)), F (Qh)(s) = πhQh(s)− λΦ(πh(s)),

thus we have
F (Qh)(s)−

(
πhQ

π
λ,h(s, ·)− λΦ(πh(s))

)
= πh[Qh −Qπ

λ,h](s)

and, by Bellman equations

V ⋆
λ,h(s)− V π

λ,h(s) ≤ πh
[
Q⋆

λ,h −Qπ
λ,h

]
(s) +

1

2λ
∥Qh −Q⋆

λ,h∥2∗(s)

≤ πhph
[
V ⋆
λ,h+1 − V π

λ,h+1

]
(s) +

1

2λ
∥Qh −Q⋆

λ,h∥2∗(s).

Applying norm equivalence (11) we have

V ⋆
λ,h(s)− V π

λ,h(s) ≤ Eπ

[
r2A
2λ
∥Qh −Q⋆

λ,h∥2∞(sh) + V ⋆
λ,h+1(sh+1)− V π

λ,h+1(sh+1) | sh = s

]
.

By induction hypothesis we conclude the statement.

Lemma E.9. For any policy π the following holds on event G(N, δ, ε′) defined in Lemma E.4 for any h ∈ [H]

Eπ̂

[
max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(sh, a) | s1

]
≤ 48S3H3AR2

max log
2(N)βH(δ)

N
+

4CH5R2
maxS

2A · βconc(δ,N)

N

+ 2SH2R2
max · ε′.

Proof. By performance-difference Lemma C.4 and form of the rewards stated in (20) we have for any (s, a, h) ∈ S×A×[H]

Q̂π
λ,h(s, a)−Qπ

λ,h(s, a) = κEπ

[
H∑

h′=h

H(p̂h′(sh′ , ah′))−H(ph′(sh′ , ah′)) | (sh, ah) = (s, a)

]

+ Eπ

[
H∑

h′=h

[p̂h′ − ph′ ]V̂ π
λ,h′+1(sh′ , ah′) | (sh, ah) = (s, a)

]
.

Next we analyze all required expectation for one fixed value h ∈ [H]. By Jensen’s inequality and a simple algebraic
inequality (a+ b)2 ≤ 2a2 + 2b2

(
Q̂π

λ,h(s, a)−Qπ
λ,h(s, a)

)2
≤ 2κ2Eπ

( H∑
h′=h

H(p̂h′(sh′ , ah′))−H(ph′(sh′ , ah′)

)2∣∣∣∣(sh, ah) = (s, a)


+ 2Eπ

( H∑
h′=h

[p̂h′ − ph′ ]V̂ π
λ,h′+1(sh′ , ah′)

)2∣∣∣∣(sh, ah) = (s, a)

.
By Cauchy–Schwarz inequality we have the final form(

Q̂π
λ,h(s, a)−Qπ

λ,h(s, a)
)2
≤ 2HEπ

[ H∑
h′=h

κ2(H(p̂h′(sh′ , ah′))−H(ph′(sh′ , ah′)))
2

+

H∑
h′=h

(
[p̂h′ − ph′ ]V̂ π

λ,h′+1

)2
(sh′ , ah′) | (sh, ah) = (s, a)

] (23)

To connect this conditional expectation in the right-hand side of (23) with conditional expectation over π̂, we define the
following policy

π̃h′(a|s) =


π̂h′(a|s) h′ < h

1{a = argmaxa∈A

{(
Q̂π

h(s, a)−Qπ
h(s, a)

)2}
h′ = h

πh(a|s) h′ > h.
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Since we do not change the policy π for steps greater than h, we can replace π with π̃ in (23). Additionally, since this policy
is equal to π̂ for the first h− 1 steps, the distribution dπ̂h(sh) is equal to dπ̃h(sh):

dπ̂h(sh) =
∑

s1,a1,...,sh−1,ah−1

π̂1(a1|s1)
(

h−1∏
h′=1

ph′−1(sh′ |sh′−1, ah′−1)π̂h′(ah′ |sh′)

)
· ph−1(sh|sh−1, ah−1)

=
∑

s1,a1,...,sh−1,ah−1

π̃1(a1|s1)
(

h−1∏
h′=1

ph′−1(sh′ |sh′−1, ah′−1)π̃h′(ah′ |sh′)

)
· ph−1(sh|sh−1, ah−1) = dπ̃h(sh).

Therefore

Eπ̂

[
max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(sh, a) | s1

]
=
∑
s

dπ̂h(s)max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(s, a)

=
∑
s

dπ̃h(s)max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(s, a)

= Eπ̃

[
max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(sh, a) | s1

]
= Eπ̃

[(
Q̂π

λ,h −Qπ
λ,h

)2
(sh, ah) | s1

]
.

Next we show that in (23) we can make a change of policy from π to π̃. It is enough to show that the required marginal
distributions are equal for all h′ ≥ h, i.e. for any (s, a) ∈ S ×A it holds Pπ[(sh′ , ah′)|(sh, ah)] = Pπ̃[(sh′ , ah′)|(sh, ah)].
For h′ = h this probability is an indicator on (sh, ah), so it does not depend on policy. For the general case h′ > h we can
use Markov property and imply

Pπ[(sh′ , ah′)|(sh, ah)] =
∑

(sh+1,ah+1,...,sh′−1,ah′−1)

h′−1∏
i=h

πi+1(ai+1|si+1)pi(si+1|si, ai)

=
∑

(sh+1,ah+1,...,sh′−1,ah′−1)

h′−1∏
i=h

π̃i+1(ai+1|si+1)pi(si+1|si, ai) = Pπ̃[(sh′ , ah′)|(sh, ah)].

Therefore, we can make change of measure in (23) and obtain

Eπ̂

[
max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(sh, a) | s1

]
≤ 2HEπ̃

[
Eπ̃

[
H∑

h′=h

κ2(H(p̂h′(sh′ , ah′))−H(ph′(sh′ , ah′)))
2 | sh, ah

]

+ Eπ̃

[
H∑

h′=h

(
[p̂h′ − ph′ ]V̂ π

λ,h′+1

)2
(sh′ , ah′) | sh, ah

] ∣∣∣∣ s1].
By the properties of conditional expectation we can eliminate the inner expectation and obtain the following upper bound

Eπ̂

[
max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(sh, a) | s1

]
≤ 2Hκ2

H∑
h′=h

Eπ̃

[
(H(p̂h′(sh′ , ah′))−H(ph′(sh′ , ah′)))

2 ∣∣ s1]
+ 2H

H∑
h′=h

Eπ̃

[(
[p̂h′ − ph′ ]V̂ π

λ,h′+1

)2
(sh′ , ah′)

∣∣∣∣ s1].
Applying Lemma E.10 and the definition of EH(δ) we have

Eπ̃

[
(H(p̂h′(sh′ , ah′))−H(ph′(sh′ , ah′)))

2 | s1
]
≤ 2SAHE(s,a)∼µh′

[
(H(p̂h′(s, a))−H(ph′(s, a)))

2
]
+ S log2(S)ε′

≤ 24S3HA log2(SN)βH(δ)

N
+ S log2(S)ε′.
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In the same way by Lemma E.10 and the definition of event Econc(N, δ)

Eπ̃

[(
[p̂h′ − ph′ ]V̂ π

λ,h′+1

)2
(sh′ , ah′) | s1

]
≤ 2SAHE(s,a)∼µh′

[(
[p̂h′ − ph′ ]V̂ π

λ,h′+1

)2
(s, a)

]
+ SH2R2

maxε
′

≤ 2CH3R2
maxS

2A · βconc(δ,N)

N
+ SH2R2

maxε
′.

Combining these two upper bounds, we have

Eπ̂

[
max
a∈A

(
Q̂π

λ,h −Qπ
λ,h

)2
(sh, a) | s1

]
≤ 48S3H3Aκ2 log2(SN)βH(δ)

N
+

4CH5R2
maxS

2A · βconc(δ,N)

N

+ S(H2R2
max + κ2 log2(S))ε′.

Since κ2 log2(s) ≤ R2
max and H ≥ 1, we conclude the statement.

Lemma E.10. For any bounded function f : S × A → R+, f(s, a) ≤ B for any policy π and step h on event
ERF-RL-Explore(δ, ε′) the following holds

Eπ[f(sh, ah)|s1] ≤ 2SAHE(s,a)∼µh
[f(s, a)] +BSε′.

Proof. Recall Sε′,h be a set of all ε′-significant states (see Definition E.1) at step h. Then we can rewrite this expectation as
follows

Eπ[f(sh, ah)|s1] =
∑

a∈A,s∈Sε′,h

dπh(s, a)f(s, a) +
∑

a∈A,s̸∈Sε′,h

dπh(s, a)f(s, a).

For the first sum by Theorem E.2 we have dπh(s, a) ≤ 2SAHµh(s, a), thus∑
a∈A,s∈Sε′,h

dπh(s, a)f(s, a) ≤ 2SAH
∑

(s,a)∈S×A

µh(s, a)f(s, a) = 2SAHE(s,a)∼µh
[f(s, a)].

For the second sum we apply f(s, a) ≤ B and the fact that for all states that are not ε′-significant under any policy
dπh(s) ≤ ε′: ∑

a∈A,s̸∈Sε′,h

dπh(s, a)f(s, a) ≤ B
∑

a∈A,s ̸∈Sε′,h

dπh(s, a) = B
∑

s̸∈Sε′,h

dπh(s) ≤ BSε′.
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F. Faster Rates for Visitation Entropy
F.1. Algorithm description

Let us start from the description of the modified algorithm RegEntGame. It has a similar game-theoretical foundation as it
aims at solving the following minimax game

max
d∈Kp

Hvisit(d) = max
d∈Kp

min
d̄∈K

∑
(h,s,a)

dh(s, a) log
1

d̄h(s, a)
= min

d̄∈K
max
d∈Kp

∑
(h,s,a)

dh(s, a) log
1

d̄h(s, a)
.

As for usual EntGame, there are two players in the game. On the one hand, the min player, or forecaster player, tries to
predict which state-action pairs the max player will visit to minimize KL(dh, d̄h). On the other hand, the max player, or
sampler player, is rewarded for visiting state-action pairs that the forecaster player did not predict correctly.

We now describe the algorithm RegEntGame for MVEE. In this algorithm, we let a forecaster player and a sampler player
compete for T episodes long. Let us first define the two players.

Forecaster-player The forecaster player remains exactly the same as for usual EntGame algorithm, see the corresponding
section in the main text.

Regularized Sampler-player For the sampler player we exploit strong convexity of visitation entropy. The running time
of the sampler player will be divided onto two stages, as it was done in RL-Explore-Ent algorithm.

Exploration phase Before the start of the game, the sampler-player uses some preprocessing time in order to explore the
environment to learn a simple (non-markovian) preliminary exploration policy πmix. This policy is used to construct an
accurate enough estimates of transition probabilities. This policy is obtained, as in RF-RL-Explore and RL-Explore-Ent,
by learning for each state-action pair (s, ah), a policy that reliably reaches this action pair (s, a) at step h. This can be done
by running any regret minimization algorithm for the sparse reward function putting reward one at state s at step h and zero
otherwise. The policy πmix is defined as the mixture of the aforementioned policies.

Planning phase The second phase is starting during the running time of the algorithm. Since RL-Explore-Ent algorithm
is essentially reward-free in a sense of working with an arbitrary reward functions.

For each episode t during the game we define the empirical regularized Bellman equations

Q̂t
h(s, a) = log

1

d̄t+1
h (s)

+ p̂ t
hV̂

t
h+1(s, a)

V̂ t
h(s) = max

π∈∆A
{πQ̂t

h(s, a) +H(π)},
(24)

where V̂ t
H+1 = 0. The sampler player then follows dπ

t+1

where πt+1 is greedy with respect to the regularized Q-values,
that is, πt+1

h (s) ∈ argmaxπ∈∆A
{πQ̂t

h(s) +H(π)}. This choice of sampler player will be clear in the analysis below.

Sampling rule At each episode t, the policy πt of the sampler-player is used as a sampling rule to generate a new
trajectory.

Decision rule After T episodes we output a non-Markovian policy π̂ defined as the mixture of the policies {πt}t∈[T ], that
is, to obtain a trajectory from π̂ we first sample uniformly at random t ∈ [T ] and then follow the policy πt. Note that the
visitation distribution of π̂ is exactly the average dπ̂ = (1/T )

∑
t∈[T ] d

πt

.

Remark that the stopping rule of RegEntGame is deterministic and equals to τ = T . The complete procedure is detailed in
Algorithm 4.
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Algorithm 4 RegEntGame
1: Input: Number of episodes T , number of exploration episodes N0, number of transition samples N , prior counts n0.
2: # Preliminary exploration
3: for (s′, h′) ∈ S × [H] do
4: Form rewards rh(s, a) = 1{s = s′, h = h′}.
5: Run EULER (Zanette & Brunskill, 2019) with rewards rh over N0 iterates and collect all policies Πs′,h′ .
6: Modify π ∈ Πs′,h′ : πh′(a|s′) = 1/A for all a ∈ A.
7: end for
8: Construct a uniform mixture policy πmix over all {Πs,h : (s, h) ∈ S × [H]}.
9: Sample N independent trajectories {zn}n∈[N ] using πmix in the original MDP.

10: Construct from {zn}n∈[N ] the estimates p̂h as in (19).
11: for t ∈ [T ] do
12: # Forecaster-player
13: Update pseudo counts n̄t−1

h (s, a) and predict d̄th(s, a).
14: # Sampler-player
15: Compute πt by regularized planning (24) with rewards log

(
1/d̄th(s)

)
and entropy regularization.

16: # Sampling
17: for h ∈ [H] do
18: Play ath ∼ πt

h(s
t
h)

19: Observe sth+1 ∼ ph(sth, ath)
20: end for
21: Update counts and transition estimates.
22: end for
23: Output π̂ the uniform mixture of {πt}t∈[T ].

F.2. Analysis

We first define the regrets of each players obtained by playing T times the games. For the forecaster-player, for any d̄ ∈ K,
we define

RT
Fore(d̄) ≜

T∑
t=1

∑
h,s,a

d̃th(s, a)

(
log

1

d̄th(s, a)
− log

1

d̄h(s, a)

)

where d̃th(s, a) ≜ 1
{
(sth, a

t
h) = (s, a)

}
is a sample from dπ

t

h (s, a). Similarly for the sampler-player, for any d ∈ Kp, we
define a regularized regret

RT
Samp(d) ≜

T∑
t=1

∑
h,s,a

[
dh(s, a)− dπ

t

h (s, a)
]
log

1

d̄th(s, a)
−
∑
h,s

[
dh(s)KL(π(s), π̄t

h(s))− dπ
t

h (s)KL(πt
h(s), π̄

t
h(s))

] ,

where corresponding policies are defined as πh(a|s) = dh(s, a)/dh(s) and π̄t
h(a|s) = d̄th(s, a)/d̄

t
h(s) for dh(s) =∑

a dh(s, a) and d̄th(s) =
∑

a d̄
t
h(s, a).

Recall that the visitation distribution of the policy π returned by RegEntGame is the average of the visitation distributions of
the sampler-player dπ̂h(s, a) = d̂T

h (s, a) ≜ (1/T )
∑T

t=1 d
πt

h (s, a). We also denote by d̊Th (s, a) ≜ (1/T )
∑T

t=1 d̃
t(s, a) the

average of the ’sample’ visitation distributions.

We now relate the difference between the optimal visitation entropy and the visitation entropy of the outputted policy π̂ to
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the regrets of the two players. Indeed, usingH(p) =∑i∈[n] pi log(1/qi)−KL(p, q) for all (p, q) ∈ (∆n)
2 and

KL(dπ
⋆

h , d̄th) =
∑
s,a

dπ
⋆

h (s, a) log

(
dπ

⋆

h (s, a)

d̄th(s, a)

)

=
∑
s

dπ
⋆

h (s) log

(
dπ

⋆

h (s)

d̄th(s)

)
+
∑
s

dπ
⋆

h (s)
∑
a

π⋆
h(a|s) log

(
π⋆
h(a|s)
π̄t
h(a|s)

)
≥
∑
s

dπ
⋆

h (s)KL(π⋆
h(s), π̄

t
h(s)) .

This inequality could be treated as a strong convexity of visitation entropy with respect to trajectory entropy since
KL(dπ

⋆

h , d̄th) is a Bregman divergence with respect to Hvisit, and the final average of KL(π⋆
h(s), π̄

t
h(s)) is a Bregman

divergence with respect toHtraj (up to linearities).

Applying this inequality, we have

T
(
Hvisit(d

π⋆

)−Hvisit(d
π̂)
)
≤

T∑
t=1

∑
h,a,s

dπ
⋆

h (s, a) log
1

d̄th(s, a)
−
∑
h,s

dπ
⋆

h (s)KL(π⋆
h(s), π̄

t
h(s))


−

T∑
t=1

d̃th(s, a) log
1

d̊T
h (s, a)

+ T
(
Hvisit(d̊

T )−Hvisit(d̂
T )
)

≤ RT
Samp(d

π⋆

) +

T∑
t=1

∑
h,s,a

(
dπ

t

h (s, a)− d̃th(s, a)
)
log

1

d̄th(s, a)︸ ︷︷ ︸
Bias1

+RT
Fore(d̊

T ) + T
(
Hvisit(d̊

T )−Hvisit(d̂
T )
)︸ ︷︷ ︸

Bias2

.

It remains to upper bound each terms separately in order to obtain a bound on the gap. Notably, only the sampler player
result changes in comparison to EntGame.

F.3. Regret of the Sampler-Player

We start from introducing new notation. LetMt = (S,A, {ph}h∈[H], {rth}h∈[H], s1) be a sequence of entropy-regularized
MDPs where reward defined as rth(s, a) = log(1/d̄th(s)). Define Qπ,t

h (s, a) and V π,t
h (s, a) as a action-value and value

functions of a policy π on a MDPMt. Notice that the value-function of initial state in this case could be written as follows
(see Appendix C)

V π,t
1 (s1) =

∑
h,s,a

dπh(s, a) log

(
1

d̄th(s, a)

)
−
∑
h,s

dπh(s)KL(πh(s), π̄
t
h(s))

=
∑
h,s,a

dπh(s, a) log

(
1

d̄th(s)

)
+
∑
h,s

dπh(s)H(πh(s)),

also see Appendix D for more exposition. Therefore, the regret for the sampler-player could be rewritten in the terms of the
regret for this sequence of entropy-regularized MDPs

RT
Samp(d

π) =

T∑
t=1

V π,t
1 (s1)− V πt,t

1 (s1).

We notice that our approach does not gives a regret minimizer algorithm in a classical sense, however analysis shows us that
we can control the sum of policy error with respect to any reward function.
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Lemma F.1. Let N0 = Ω
(

H7S3A·log2(T+SA)·L
ε

)
and N = Ω

(
H6S3A log2(T+SA)L3

ε

)
. Then with probability at least

1− δ/2, the regret of the sampler player is bounded as

RT
Samp(d

π⋆

) ≤ ε/2 · T

after

Õ
(
H8S4A

ε

)
episodes of pure exploration.

Proof. From Corollary E.6 under the choice of parameters λ = 1, κ = 0 and reward function rth(s, a) = log(1/d̄th(s)) for
each iteration, that is bounded by log(T + SA), we have that for any reward function the sub-optimality gap is bounded by
ε/2. The total number of episodes of pure exploration is equal to N0SH +N .

F.4. Proof of Theorem 5.1

We state the version of this theorem with all prescribed dependencies factors.

Theorem F.2. Fix some ε > 0 and δ ∈ (0, 1). Then for n0 = 1,

N0 = Ω

(
H7S3A · L3

ε

)
, N = Ω

(
H6S3AL5

ε

)
, T = Ω

(
H2SAL3

ε2
+
H2S2A2L2

ε

)
with L = log(SAH/δε), the algorithm RegEntGame is (ε, δ)-PAC. Its total sample complexity is equal to SH ·N0+N+T,
that is,

τ = Õ
(
H2SA

ε2
+
H8S4A

ε

)
.

Proof. We start from writing down the decomposition defined in the beginning of the appendix

T (Hvisit(d
π⋆,VE

)−Hvisit(d
π̂)) ≤ RT

Samp(d
π⋆,VE

) +RT
Fore(d̊

T ) + Bias1 +Bias2.

By Lemma F.1 with probability at least 1− δ/2 it holds

RT
Samp(d

π⋆,VE
) ≤ εT/2.

By Lemma B.1
RT

Fore(d̊
T ) ≤ HSA log

(
e(T + 1)

)
.

By Lemma B.6 with probability at least 1− δ/2

Bias1 +Bias2 ≤ 3 log(SAT )
(√

TH log(4/δ) +H
√
SAT log(3T )

)
.

By union bound all these inequalities hold simultaneously with probability at least 1− δ. Combining all these bounds we get

T (Hvisit(d
π⋆,VE

)−Hvisit(d
π̂)) ≤ 3 log(SAT )

(√
TH log(4/δ) +H

√
SAT log(3T )

)
+HSA log(e(T + 1)) + εT/2.

Therefore, it is enough to choose T such that Hvisit(d
π⋆,VE

) − Hvisit(d
π̂) is guaranteed to be less than ε. In this case

RegEntGame become automatically (ε, δ)-PAC. It is equivalent to find a maximal T such that

εT/2 ≤ 3 log(SAT )
(√

TH log(4/δ) +H
√
SAT log(3T )

)
+HSA log(e(T + 1))).

and add 1 to it. We start from obtaining a loose bound to eliminate logarithmic factors in T .
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First, we assume that T ≥ 1, thus T + 1 ≤ 2T . Additionally, let us use inequality log(x) ≤ xβ/β for any x > 0 and β > 0.
We obtain

εT ≤ 48(SAT )1/8
(√

T 3/2H log(4/δ) +H
√

4SAT 3/2

)
+ 16/7 ·HSA(2eT )7/8

that could be relaxed as follows

εT 1/8 ≤ 48(SA)1/8(H log(4/δ)1/2 +H(SA)5/8 + 11HSA

thus we can define γ = 8 log
(
(48(SA)1/8(H log(4/δ)1/2 +H(SA)5/8 + 11HSA)/ε

)
= O(L) for which log(T ) ≤ γ.

Therefore
εT/2 ≤ 3(log(SA) + γ)

√
T
(√

H log(4/δ) +
√
SAH2(log(3) + L)

)
+HSA(1 + 2γ).

Solving this quadratic inequality, we obtain the minimal required T to guaranteeHvisit(d
π⋆,VE

)−Hvisit(d
π̂) ≤ ε. In particular,

T = Ω

(
H2SAL3

ε2
+
H2S2A2L2

ε

)
.
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G. Deviation Inequalities
G.1. Deviation Inequality for Categorical Distributions

Next, we state the deviation inequality for categorical distributions by Jonsson et al. (2020, Proposition 1). Let (Xt)t∈N⋆

be i.i.d. samples from a distribution supported on {1, . . . ,m}, of probabilities given by p ∈ ∆m−1, where ∆m−1 is the
probability simplex of dimension m− 1. We denote by p̂n the empirical vector of probabilities, i.e., for all k ∈ {1, . . . ,m},

p̂n,k ≜
1

n

n∑
ℓ=1

1{Xℓ = k}.

Note that an element p ∈ ∆m−1 can be seen as an element of Rm−1 since pm = 1−∑m−1
k=1 pk. This will be clear from the

context.

Theorem G.1. For all p ∈ ∆m−1 and for all δ ∈ [0, 1],

P(∃n ∈ N⋆, nKL(p̂n, p) > log(1/δ) + (m− 1) log(e(1 + n/(m− 1)))) ≤ δ.

G.2. Deviation Inequality for Shannon Entropy

We denote byH(p) the (Shannon) entropy of p ∈ ∆m−1,

H(p) ≜
m∑

k=1

pk log

(
1

pk

)
.

We will follow the ideas of Paninski (2003).

Theorem G.2. For all p ∈ ∆m−1 and for all δ ∈ [0, 1]

P

|H(p̂n)−H(p)| ≥
√

2 log2(n) · log(2/δ)
n

+

(
(m− 1) log(e(1 + n/(m− 1))) + 1

n
∧ log(m)

) ≤ δ.
Moreover,

P

∃n : |H(p̂n)−H(p)| ≥

√
2 log2(n) · (log(2/δ) + log(n(n+ 1)))

n
+

(
m log(e(1 + n))

n
∧ log(m)

) ≤ δ.
Proof. We start from application of McDiarmid’s inequality to entropy by Antos & Kontoyiannis (2001). For all p ∈ ∆m−1

with probability at least 1− δ we have

P

|H(p̂n)− E[H(p̂n)]| ≥

√
2 log2(n) · log(2/δ)

n

 ≤ δ.
To relate E[H(p̂n)] andH(p) we use the following observation

H(p̂n)−H(p) = −KL(p̂n, p) +
∑

k:pk>0

(p̂n,k − pk) log(1/pk),

therefore by taking expectation we have

E[H(p̂n)]−H(p) = −E[KL(p̂n, p)].

In the following our analysis differs from (Paninski, 2003) since we obtain a direct estimate on the KL-divergence using
Theorem G.1,

E[nKL(p̂n, p)] =

∫ ∞

0

P[nKL(p̂n, p) > t]dt ≤ (m− 1) log(e(1 + n/(m− 1))) +

∫ ∞

0

e−tdt.
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At the same time we have a trivial bound that concludes the first statement

E[H(p̂n)]−H(p) ≤ log(m).

To show the second statement of Theorem G.2, we apply the first part with δ′(n) = δ/(n(n+ 1)),

P

[
|H(p̂n)−H(p)| ≥

√
2 log2(n) · log(2/δ′(n))

n
+

(
(m− 1) log(e(1 + n/(m− 1))) + 1

n
∧ log(m)

)]
≤ δ

n(n+ 1)
,

thus by union bound over n ∈ N we conclude the statement.

G.3. Deviation Inequality for Sequence of Bernoulli Random Variables

Below, we state the deviation inequality for Bernoulli distributions by Dann et al. (2017, Lemma F.4). Let Ft for t ∈ N
be a filtration and (Xt)t∈N⋆ be a sequence of Bernoulli random variables with P(Xt = 1|Ft−1) = Pt with Pt being
Ft−1-measurable and Xt being Ft-measurable.
Theorem G.3. For all δ > 0,

P

(
∃n :

n∑
t=1

Xt <

n∑
t=1

Pt/2− log
1

δ

)
≤ δ.

G.4. Deviation Inequality for Bounded Distributions

Below, we state the self-normalized Bernstein-type inequality by Domingues et al. (2021b). Let (Yt)t∈N⋆ , (wt)t∈N⋆ be two
sequences of random variables adapted to a filtration (Ft)t∈N. We assume that the weights are in the unit interval wt ∈ [0, 1]
and predictable, i.e. Ft−1 measurable. We also assume that the random variables Yt are bounded |Yt| ≤ b and centered
E[Yt|Ft−1 ] = 0. Consider the following quantities

St ≜
t∑

s=1

wsYs, Vt ≜
t∑

s=1

w2
s · E

[
Y 2
s |Fs−1

]
, and Wt ≜

t∑
s=1

ws

and let h(x) ≜ (x+ 1) log(x+ 1)− x be the Cramér transform of a Poisson distribution of parameter 1.
Theorem G.4 (Bernstein-type concentration inequality). For all δ > 0,

P
(
∃t ≥ 1, (Vt/b

2 + 1)h

(
b|St|
Vt + b2

)
≥ log(1/δ) + log(4e(2t+ 1))

)
≤ δ.

The previous inequality can be weakened to obtain a more explicit bound: if b ≥ 1 with probability at least 1− δ, for all
t ≥ 1,

|St| ≤
√

2Vt log(4e(2t+ 1)/δ) + 3b log(4e(2t+ 1)/δ) .

G.5. Deviation Inequalities for Expectation over Sampling Measure

In this section we describe two inequalities that shows the deviations of quantities of empirical transition kernels constructed
by an independent samples from some base distribution over states. Let {zk}k∈[N ] be a set of independent trajectories using
a fixed policy π in the original MDP: ∀i ∈ [H] : ai ∼ π(si), si+1 ∼ p(si, ai), and let µh(s, a) ≜ dπh(s, a) be its state-action
visitation distribution.

Using this data, we construct an estimates of transition probabilities {p̂h}h∈[H]: for each state-action-step triple (s, a, h) we
define nh(s, a) as a number of visits in these N trajectories:

nh(s, a) =

N∑
k=1

1{(skh, akh) = (s, a)} nh(s
′|s, a) =

N∑
k=1

1{(skh, akh, skh+1) = (s, a, s′)},

where zk = (sk1 , a
k
1 , . . . , s

k
H , a

k
H , s

k
H+1), and then the model constructed in a usual way as a maximum likelihood estimate

p̂h(s
′|s, a) =

{
nh(s

′|s,a)
nh(s,a)

nh(s, a) > 0
1
S nh(s, a) = 0

.
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Lemma G.5. Suppose that p̂h is the empirical transitions formed using N independent trajectories {zk}k∈[N ] sampled
independently using policy π in the original MDP. Then we probability at least 1− δ the following holds

∀h ∈ [H] : E(s,a)∼µh

[
(H(p̂h(s, a))−H(ph(s, a)))2

]
≤ 12S2A log2(SN) · log(4SAH/δ)

N
,

where µh(s, a) = dπh(s, a).

Proof. Define nh(s, a) be a number of samples from a fixed state-action pair s, a. Then by Theorem G.2 we have with
probability at least 1− δ/2 for all triples (s, a, h) ∈ S ×A× [H]

(H(p̂h(s, a))−H(ph(s, a)))2 ≤
2 log2(nh(s, a)) · log(4SAH/δ)

nh(s, a)
+
S log(S) log(nh(s, a))

nh(s, a)
.

From other point of view, we have a trivial upper bound log2(S). Thus, we obtain

(H(p̂h(s, a))−H(ph(s, a)))2 ≤
2 log2(Snh(s, a)) · log(4SAH/δ) + S log(S) log(nh(s, a)

nh(s, a)
∧ 1.

Next we define the following event

Ecnt(δ) =
{
∀(s, a, h) ∈ S ×A× [H] : nh(s, a) ≥

N

2
µh(s, a)− log(2SAH/δ)

}
.

By Theorem G.3 it holds with probability at least 1− δ/2, then we can apply Lemma H.5 and obtain the following bound
with probability at least 1− δ by union bound

(H(p̂h(s, a))−H(ph(s, a)))2 ≤ 4
2 log2(SN) · log(4SAH/δ) + S log(S) log(N)

(Nµh(s, a)) ∨ 1
.

Thus, taking expectation we have

E(s,a)∼µh

[
(H(p̂h(s, a))−H(ph(s, a)))2

]
≤
∑
s,a

µh(s, a)

(Nµh(s, a)) ∨ 1
· 4
(
2 log2(SN) log(4SAH/δ) + S log(S) log(N)

)
≤ 12S2A · log2(SN) · log(4SAH/δ)

N
.

Lemma G.6. [Lemma C.2 by Jin et al. 2020] Suppose that p̂h is the empirical transitions formed using N independent
trajectories {zk}k∈[N ] sampled independently using policy π in the original MDP. Then there is an absolute constant C > 0
such that with probability at least 1− δ the following holds for all h ∈ [H]

max
G : S→[0,HRmax]

max
ν : S→A

E(s,a)∼µh

[(
[p̂h′ − ph′ ]G(s, a)

)2
1{ν(s) = a}

]
≤ CH2R2

maxS

N
log

(
AHRmaxN

δ

)
,

where µh(s, a) = dπh(s, a).
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H. Technical Lemmas
H.1. Entropy Properties

Lemma H.1. For any reward-free MDPM = (S,A, {ph}h∈[H], s1) the following holds

max
d∈Kp

Hvisit(d) = max
d∈Kp

min
d̄∈K

∑
(h,s,a)

dh(s, a) log
1

d̄h(s, a)

= min
d̄∈K

max
d∈Kp

∑
(h,s,a)

dh(s, a) log
1

d̄h(s, a)

Proof. The first equality is due to

Hvisit(d) =

H∑
h=1

H(dh) =
H∑

h=1

H(dh) + KL(dh, dh) = min
d̄∈K

H∑
h=1

(H(dh) + KL(dh, d̄h)) = min
d̄∈K

∑
(h,s,a)

dh(s, a) log
1

d̄h(s, a)

and the second equality uses Sion’s theorem (Sion, 1958) with the fact that K,Kp are compact convex sets and (d, d̄) 7→
−∑h,s,a dh(s, a) log d̄h(s, a) is concave-convex.

Lemma H.2. The trajectory entropyHtraj(π) has the following representation

Htraj(π) =
∑
m∈T

qπ(m) log
1

qπ(m)
= Eπ

[
H∑

h=1

H(ph(sh, ah)) +H(πh(sh))|s1
]
.

Proof. By a definition of qπ(m):

qπ(m) = π1(a1|s1)
H∏

h=2

ph−1(sh|sh−1, ah−1)πh(ah|sh),

thus

∑
m∈T

qπ(m) log
1

qπ(m)
= −

∑
m∈T

qπ(m)

(
log(π1(a1|s1) +

H∑
h=2

log(ph−1(sh|sh−1, ah−1) + log(πh(ah|sh))
)
.

By rearranging the terms we have

Htraj(π) =

H∑
h=1

∑
m∈T

qπh(m)

(
log

1

ph(sh+1|sh, ah)
+ log

1

πh(ah|sh)

)
,

where under convention pH is a deterministic transition to s1. Marginalizing qπh(m) over sh, ah, sh+1 we get

Htraj(π) =

H∑
h=1

∑
s,a,s′

dπ(s, a)ph(s
′|s, a)

(
log

1

ph(s′|s, a)
+ log

1

πh(a|s)

)

=
∑
s,a

dπh(s, a)

H∑
h=1

H(ph(s, a)) +
∑
s

dπh(s)H(πh(s)).

Lemma H.3. For any reward-free MDPM = (S,A, {ph}h∈[H], s1) and any policy π it holds

Htraj(q
π) ≤ Hvisit(d

π) ≤ HHtraj(q
π).
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Proof. The first inequality is a result of the non-negativity of mutual information, specifically the differenceHvisit(d
π)−

Htraj(q
π) is equal to the Kullback-Leibler divergence between qπ and the product distribution ⊗H

h=1d
π
h,

Hvisit(d
π) =

∑
s,a,h

dπh(s, a) log
1

dπh(s, a)

=
∑
s,a,h

∑
m=(s1,a1,...,sH ,aH)∈T

1{(s, a) = (sh, ah)}qπ(m) log
1

dπh(s, a)

=

H∑
h=1

∑
m=(s1,a1,...,sH ,aH)∈T

qπ(m) log
1

dπh(sh, ah)

=
∑

m=(s1,a1,...,sH ,aH)∈T

qπ(m) log
1∏H

h=1 d
π
h(sh, ah)

= KL(qπ,⊗H
h=1d

π
h) +Htraj(q

π)

≥ Htraj(q
π).

The second inequality is simply a consequence of the monotonicity of logarithm

Htraj(q
π) =

∑
m∈T

qπ(m) log
1

qπ(m)

=
∑
s,a,h

1

H

∑
m=(s1,a1,...,sH ,aH)∈T

1{(s, a) = (sh, ah)}qπ(m) log

(
1

qπ(m)

)
≥
∑
s,a,h

1

H

∑
m=(s1,a1,...,sH ,aH)∈T

1{(s, a) = (sh, ah)}qπ(m)

· log
(

1∑
m′=(s′1,a

′
1,...,s

′
H ,a′

H)∈T 1{(s, a) = (s′h, a
′
h)}qπ(m′)

)

=
1

H
Hvisit(d

π),

where we used that log(1/x) = − log(x) is monotonically decreasing, and∑
m′=(s′1,a

′
1,...,s

′
H ,a′

H)∈T

1{(s, a) = (s′h, a
′
h)}qπ(m′) ≥ qπ(m)

for any m = (s1, a1, . . . , sH , aH) such that (sh, ah) = (s, a).

Lemma H.4. In a deterministic MDP, i.e. the transition probability distributions are deterministic, the maximum trajectory
entropy policy is the uniform policy over actions

π⋆,TE
h (s, a) = 1/A .

Proof. The proof is straightforward by using the Bellman equations for MTEE. By induction over the step h we prove
that π⋆,TE

h (s, a) = 1/A and V ⋆
h (s) = (H + 1 − h) log(A). Assume the induction hypothesis at step h + 1. Then we get

Q⋆
h(s, a) = 0 + phV

⋆
h+1(s, a) = (H − h) log(A) which yields π⋆,TE

h (s, a) = 1/A and V ⋆
h (s) = log

(∑
a∈AA

H−h
)
=

(H + 1− h) log(A). The base case h = H is immediate.

H.2. Counts to Pseudo-counts

Here we state Lemma 8 and Lemma 9 by Ménard et al. (2021).
Lemma H.5. On event Ecnt, for any β(δ, ·) such that x 7→ β(δ, x)/x is non-increasing for x ≥ 1, x 7→ β(δ, x) is
non-decreasing ∀h ∈ [H], (s, a) ∈ S ×A,

∀t ∈ N⋆,
β(δ, nth(s, a))

nth(s, a)
∧ 1 ≤ 4

β(δ, n̄th(s, a))

n̄th(s, a) ∨ 1
·
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Lemma H.6. For T ∈ N⋆ and (ut)t∈N⋆ , for a sequence where ut ∈ [0, 1] and Ut ≜
∑t

l=1 uℓ, we get

T∑
t=0

ut+1

Ut ∨ 1
≤ 4 log(UT+1 + 1).

H.3. On the Bernstein Inequality

We restate here a Bernstein-type inequality by Talebi & Maillard (2018).

Lemma H.7 (Corollary 11 by Talebi & Maillard, 2018). Let p, q ∈ ∆S , where ∆S denotes the probability simplex of
dimension S. For all functions f : S 7→ [0, b] defined on S,

pf − qf ≤
√

2Varq(f)KL(p, q) +
2

3
bKL(p, q)

qf − pf ≤
√
2Varq(f)KL(p, q) .

where use the expectation operator defined as pf ≜ Es∼pf(s) and the variance operator defined as Varp(f) ≜ Es∼p

(
f(s)−

Es′∼pf(s
′)
)2

= p(f − pf)2.
Lemma H.8. Let p, q ∈ ∆S and a function f : S 7→ [0, b], then

Varq(f) ≤ 2Varp(f) + 4b2 KL(p, q) ,

Varp(f) ≤ 2Varq(f) + 4b2 KL(p, q).

Lemma H.9. For p, q ∈ ∆S , for f, g : S 7→ [0, b] two functions defined on S, we have that

Varp(f) ≤ 2Varp(g) + 2bp|f − g| and

Varq(f) ≤ Varp(f) + 3b2∥p− q∥1,

where we denote the absolute operator by |f |(s) = |f(s)| for all s ∈ S.
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I. Additional Experiments
In this section we provide details on experiments and additional experiments. The code for experiments could be found by
the following link: https://github.com/d-tiapkin/max-entropy-exploration.

First, we describe our baselines in details.

• Random policy πh(a|s) = 1/A for any h ∈ [H], (s, a) ∈ S ×A;

• Optimal MVEE policy. First we compute the solution to the following convex program

max
d∈Kp

∑
(s,a)∈S×A

−
(

1

H

H∑
h=1

dh(s, a)

)
log

(
1

H

H∑
h=1

dh(s, a)

)
,

where Kp is a polytope of admissible visitation distributions defined in Section 2. This problem exactly corresponds to
the setting visitation entropy by Hazan et al. (2019). Then we compute the optimal MVEE policy by normalization of
the visitation distribution πh(a|s) = dh(s,a)∑

a∈A dh(s,a)
.

• Optimal MTEE policy that was computed by solving regularized Bellman equations with λ = 1 and the entropy of
transition kernels as rewards.

The last two baselines requires the knowledge of the true transition kernel ph(s′|s, a). Additionally, we perform experiments
with RF-UCRL algorithm by Kaufmann et al. (2021) but the final visitation numbers were very close to the visitation numbers
of EntGame algorithm and we do not report them. The data collection procedure for EntGame and UCBVI-Ent is following.

• For EntGame algorithm we report visitation counts of states of the algorithm during the learning. It is an appropriate
choice since this counts corresponds to the empirical density d̊Th (s, a) = 1

T

∑T
t=1 1{(sth, ath) = (s, a)} which

converges to dπ̂h(s, a) =
1
T

∑T
t=1 d

πt

h (s, a).

• For UCBVI-Ent algorithm we have to separate stages. At the first stage the algorithm interacts with environment to
learn the final policy during N interactions with the environment, and all the plots present the visitations counts only
for the final policy during another N interactions when the policy is fixed.

Remark I.1. We do not compare EntGame with MaxEnt and Toc-UCRL2 because of their similarity. The only difference in
the these algorithms is the way how density estimation is performed. More precisely, in the MaxEnt algorithm the average
of state-action visitation distributions of all the policies played is estimated from scratch at the end of each epoch with
additional trajectories. In EntGame we also estimate this average but with all trajectories collected until now and without
need of additional fresh trajectories. Thus, EntGame can be seen as a version of MaxEnt that reuses past trajectories instead
of collecting new ones. The latter feature is helpful in practice but will not change the rate. That is why we decided not to
include MaxEnt in the experiments. Similar comments hold for Toc-UCRL2.

Double Chain. The experiment described in Section 6 was preformed on Double Chain environment described by
Kaufmann et al. (2021). This MDP consists of states S = {0, . . . , L− 1}, where L is the length of the chain, the actions
A = {l, r} which corresponds to the transition to the left (action l) or to the right (action r). Additionally, while taking
the actions, there is 10% probability of moving to the opposite direction. The agent starts at the middle of the chain
s1 = (L − 1)/2. For experiments we run each algorithm to collect N = 100000 samples during episodes of horizon
H = 20 and then report the average and confidence intervals over 48 random seeds.

In Section 6 we conclude that the exploration bonuses have the important role in the state visitations of UCBVI-Ent algorithm
and make it close to RF-UCRL by Kaufmann et al. (2021). As an ablation study we preform the same experiments for
algorithms without bonuses. The results are presented in Figure 2.

In particular, we see that EntGame algorithm without bonuses converges to the optimal MVEE policy in terms of the
visitation densities that is slightly more spread than EntGame algorithm with bonuses. Notice that algorithm has its own
exploration mechanism since the rewards are equal to log((t+ SA)/(nt(s, a) + 1)) that is tightly connected to exploration
bonuses. UCBVI-Ent algorithm also has its own exploration method that induced by soft-max policies. In particular,
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Figure 2. Number of state visits for N = 100000 samples in the Double Chain MDP for EntGame and UCBVI-Ent algorithms with and
without bonuses.

soft-max policies are tightly connected to the Boltzmann exploration with step-size equal to 1 (Sutton, 1990). However, it is
well-known (Cesa-Bianchi et al., 2017) that the Boltzmann exploration with fixed step-size did not provide efficient way to
explore.
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Figure 3. Number of state visits for N = 50000 samples in the Double Chain MDP with resampling for the UCBVI-Ent algorithm with
and without bonuses.

Double Chain with Resampling To test the exploration mechanism of UCBVI-Ent without bonuses, we slightly modify
Double Chain environment: now the visitation of the left end of the chain leads to uniform resampling over all states. The
result is presented in Figure 3.

In particular, we observe that in this situation UCBVI-Ent algorithm without bonuses still acts like a random policy due
to low exploration for the ends of the chain, whereas the optimal MTEE policy visits the left part of the chain more often.
This observation imply that the additional exploration mechanism for UCBVI-Ent algorithm is required and the exploration
problem in regularized MDPs is non-trivial.

GridWorld As an additional experiment to verify our findings we perform additional experiments on the environment
Grid World as it presented in Figure 4. The state space is a set of discrete points in a 21× 21 grid. For each state there are 4
possible actions: left, right, up or down, and for each action there is a 5% probability to move to the wrong direction. The
initial state s1 is the middle of the grid. For this experiment we use N = 60000 samples and report the average over 12
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random seeds.

Random Policy RF-UCRL MTEE Policy EntGame

EntGame No Bonus UCBVI-Ent UCBVI-Ent No Bonus

0102

103

104

Figure 4. Number of state visits for N = 60000 samples in the GridWorld MDP for EntGame and UCBVI-Ent algorithms with and
without bonuses.

Here we see the similar effect as on simpler environment: the UCBVI-Ent algorithm produces slightly less "spread" policy
than EntGame or RF-UCRL algorithms. It is connected to the fact that in this case the limiting MTEE policy of UCBVI-Ent
is again almost uniform policy due to near-deterministic structure of the MDP. Additionally, we remark that in this case
the optimal MVEE policy is much harder to compute due to numerical issues, however, the EntGame algorithm without
bonuses produces slightly more uniform distribution that coincides with the effect we observe during experiments with a
Double Chain environment.
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