
PCA-based Multi-Task Learning: a Random Matrix Approach

Malik Tiomoko 1 Romain Couillet 2 Frédéric Pascal 3

Abstract
The article proposes and theoretically analyses
a computationally efficient multi-task learning
(MTL) extension of popular principal compo-
nent analysis (PCA)-based supervised learning
schemes (Barshan et al., 2011; Bair et al., 2006).
The analysis reveals that (i) by default, learning
may dramatically fail by suffering from negative
transfer, but that (ii) simple counter-measures on
data labels avert negative transfer and necessarily
result in improved performances. Supporting ex-
periments on synthetic and real data benchmarks
show that the proposed method achieves compara-
ble performance with state-of-the-art MTL meth-
ods but at a significantly reduced computational
cost.

1. Introduction
From single to multiple task learning. Advanced super-
vised machine learning algorithms require large amounts
of labelled samples to achieve high accuracy, which is of-
ten too demanding in practice. Multi-task learning (MTL)
(Caruana, 1997; Zhang & Yang, 2018; 2021) and transfer
learning provide a potent workaround by appending extra
somewhat similar datasets to the scarce available dataset of
interest. The additional data possibly being of a different
nature, MTL effectively solves multiple tasks in parallel
while exploiting task relatedness to enforce collaborative
learning.

State-of-the-art of MTL. To proceed, MTL solves mul-
tiple related tasks and introduces shared hyperparameters
or feature spaces optimized to improve the performance
of the individual tasks. The crux of efficient MTL lies
in both enforcing and, most importantly, evaluating task
relatedness: this, in general, is highly non-trivial as this
implies theoretically identifying the common features of the
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datasets. Several heuristics have been proposed, which may
be split into two groups: parameter- versus feature-based
MTL. In parameter-based MTL, the tasks are assumed to
share common hyperparameters (Evgeniou & Pontil, 2004;
Xu et al., 2013) (e.g., separating hyperplanes in a support
vector machine (SVM) flavor) or hyperparameters derived
from a common prior distribution (Zhang & Yeung, 2012;
2014). Classical learning mechanisms (SVM, logistic re-
gression, etc.) can be appropriately turned into an MTL
version by enforcing parameter relatedness: (Evgeniou &
Pontil, 2004; Xu et al., 2013; Parameswaran & Weinberger,
2010) respectively adapt the SVM, least square-SVM (LS-
SVM), and large margin nearest neighbor (LMNN) methods
into an MTL paradigm. In feature-based MTL, the data
are instead assumed to share a common low-dimensional
representation, which needs to be identified: through sparse
coding, deep neural network embeddings, principal compo-
nent analysis (PCA) (Argyriou et al., 2008; Maurer et al.,
2013; Zhang et al., 2016; Pan et al., 2010) or simply by
feature selection (Obozinski et al., 2006; Wang & Ye, 2015;
Gong et al., 2012).

The negative transfer plague. A strong limitation of
MTL methods is their lack of theoretical tractability: as
a result, the biases inherent to the base methods (SVM,
LS-SVM, deep nets) are exacerbated in MTL. A major
consequence is that many of these heuristic MTL schemes
suffer from negative transfer, i.e., cases where MTL per-
forms worse than a single-task approach (Rosenstein et al.,
2005; Long et al., 2013); this often occurs when task relat-
edness is weaker than assumed, and MTL enforces fictitious
similarities.

A large dimensional analysis to improve MTL. To fill
these gaps, this work focuses on a large dimensional ran-
dom matrix setting (El Karoui, 2018) to provide an exact
(asymptotic) performance evaluation of an elementary (yet
powerful) PCA-based MTL approach. It is worth noticing
that although the proposed framework is asymptotic, it has
shown to be very efficient for small dimensions/small num-
bers of data in practice (see e.g. (Couillet & Liao, 2022)).
This analysis conveys insights into the MTL inner workings,
providing an optimal data labelling scheme to avert negative
transfer fully.

More fundamentally, the choice of investigating PCA-based
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MTL results from realizing that the potential gains incurred
by a proper theoretical adaptation of simple algorithms
vastly outweigh the losses incurred by biases and nega-
tive transfer in more complex and elaborate methods (see
performance tables in the article). As a result, the article’s
main contribution lies in achieving high-performance MTL
at low computational cost when compared to competitive
methods.

This finding goes in the direction of the compellingly needed
development of cost-efficient and environment-friendly AI
solutions (Lacoste et al., 2019; Strubell et al., 2019; Hender-
son et al., 2020).

Article contributions. In detail, our main contributions
may be listed as follows:

• We theoretically compare the performance of two
natural PCA-based single-task supervised learning
schemes (PCA and SPCA) and justify the uniform
superiority of SPCA. As a by-product result, this work
formally provides the optimal choice of dimension for
PCA and SPCA;

• As a consequence, we propose a natural extension of
SPCA to multi-task learning, for which we also provide
an asymptotic performance analysis;

• The latter analysis (i) theoretically grasps the transfer
learning mechanism at play, (ii) exhibits the relevant
information being transferred, and (iii) harnesses the
sources of negative transfer;

• This threefold analysis unfolds in a counter-intuitive
improvement of SPCA-MTL based on an optimal data
label adaptation (not set to ±1, which is the very source
of negative transfer); the label adaptation depends on
the optimization target, changes from task to task, and
can be efficiently computed before running the SPCA-
MTL algorithm;

• Synthetic and real data experiments support the com-
petitive SPCA-MTL results compared to state-of-the-
art MTL methods; these experiments most crucially
show that high-performance levels can be achieved at
significantly lower computational costs.

Supplementary material. The proofs and Matlab codes
to reproduce our main results and simulations, along with
theoretical extensions and additional supporting results, are
provided in the supplementary material.

Notation. p stands for the data dimension while n corre-
sponds to the data number, m is the number of classes and
k stands for the tasks. Vectors (resp. matrices) are denoted
by bold-faced lowercase letters (resp. uppercase letters).

e
[n]
m ∈ Rn is the canonical vector of Rn with [e

[n]
m ]i = δmi.

Moreover, e[mk]
ij = e

[mk]
m(i−1)+j .

2. Related works
A series of supervised (single-task) learning methods were
proposed which rely on PCA (Barshan et al., 2011; Ritchie
et al., 2019; Zhang et al., 2021; Ghojogh & Crowley, 2019):
the central idea is to project the available data onto a shared
low-dimensional space, thus ignoring individual data varia-
tions. These algorithms are generically coined supervised
principal component analysis (SPCA). Their performances
are, however, difficult to grasp as they require understand-
ing the statistics of the PCA eigenvectors: only recently
have large dimensional statistics, and specifically random
matrix theory, provided the first insights into the behav-
ior of eigenvalues and eigenvectors of sample covariance
and kernel matrices (Benaych-Georges & Nadakuditi, 2012;
Johnstone, 2001; Baik & Silverstein, 2006; Lee et al., 2010;
Paul, 2007). To the best of our knowledge, none of these
works have drawn an analysis of SPCA: the closest work
is likely (Ashtiani & Ghodsi, 2015) which however only
provides statistical bounds on performance rather than exact
results.

On the MTL side, several methods were proposed under
unsupervised (Long et al., 2016; Saito et al., 2018; Bak-
tashmotlagh et al., 2013), semi-supervised (Rei, 2017; Liu
et al., 2007) and supervised (parameter-based (Tiomoko
et al., 2020; Evgeniou & Pontil, 2004; Xu et al., 2013; Ando
& Zhang, 2005) or feature-based (Argyriou et al., 2008;
Liu et al., 2012)) flavors. Although most of these works
generally achieve satisfying performances on both synthetic
and real data, few theoretical analyses and guarantees exist
so instances of negative transfer are likely to occur.

To be exhaustive, we must mention that, for specific types
of data (images, text, time-series) and under the availability
of numerous labelled samples, deep learning MTL meth-
ods have recently been devised (Ruder, 2017). These are,
however, at odds with the article’s requirement to leverage
scarce labelled samples and to be valid for generic inputs
(beyond images or texts). These methods cannot be com-
pared on even grounds with those discussed in the present
study.1

3. Supervised principal component analysis:
single task preliminaries

Before delving into PCA-based MTL, first results on large
dimensional PCA-based single-task learning for a training
set X = [x1, . . . ,xn] ∈ Rp×n of n samples of dimension

1But nothing prevents us from exploiting data features extracted
from pre-trained deep nets.
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p are needed. To each xi ∈ Rp is attached a (possibly mul-
tivariate) label yi: in a binary class setting, yi ∈ {−1, 1},
while for m ≥ 3 classes, yi = e

[m]
j ∈ Rm, the canonical

vector of the corresponding class j.

PCA in supervised learning. Let us first recall that, ap-
plied to X, PCA identifies a subspace of Rp, say the span of
the columns of U = [u1, . . . ,uτ ] ∈ Rp×τ (τ ≤ p), which
maximizes the variance of the data when projected on the
subspace, i.e., U solves:

max
U∈Rp×τ

tr

(
UTXXT

p
U

)
subject to UTU = Iτ .

The solution is the collection of the eigenvectors associated
with the τ largest eigenvalues of XXT

p .

To predict the label y of a test data vector x, a simple
method to exploit PCA consists in projecting x onto the
PCA subspace U and in performing classification in the
projected space. This has the strong advantage of providing
a (possibly dramatic) dimensionality reduction (from p to
τ ) to supervised learning mechanisms, thus improving cost
efficiency while mitigating the loss incurred by the dimen-
sion reduction. Yet, the PCA step is fully unsupervised and
does not exploit the available class information. It is instead
proposed in (Barshan et al., 2011; Chao et al., 2019) to trade
U for a more representative projector V which “maximizes
the dependence” between the projected data VTX and the
output labels Y = [y1, . . . ,yn]

T ∈ Rn×m. To this end,
(Barshan et al., 2011) exploits the Hilbert-Schmidt indepen-
dence criterion (Gretton et al., 2005), with corresponding
optimization

max
V∈Rp×τ

tr

(
VTXYYTXT

np
V

)
subject to VTV = Iτ .

This results in the Supervised PCA (SPCA) projector, the
solution V = V(Y) of which being the concatenation
of the τ dominant eigenvectors of XYYTXT

np . Subsequent
learning (by SVMs, empirical risk minimizers, discriminant
analysis, etc.) is then applied to the projected training VTxi

and test VTx data.

Large dimensional analysis of SPCA. To best grasp the
performance of PCA-or SPCA-based learning, assume the
data arise from a large dimensional m-class Gaussian mix-
ture.2

Assumption 3.1 (Distribution of X). The columns of X
are independent random vectors with X = [X1, . . . ,Xm],

2To obtain simpler intuitions, we consider here an isotropic
Gaussian mixture model (i.e., with identity covariance). This
strong constraint is relaxed in the supplementary material, where
arbitrary covariances are considered; the results only marginally
alter the main conclusions.

Xj = [x
(j)
1 , . . . ,x

(j)
nj ] ∈ Rp×nj for x(j)

i ∼ N (µj , Ip), also
denoted x

(j)
i ∈ Cj and M ≡ [µ1, . . . ,µm] ∈ Rp×m. Note

that
∑m

j=1 nj = n.

Recent works in random matrix (Seddik et al., 2020; Louart
& Couillet, 2018) suggests that the technical arguments used
in this paper are extendable to the broader family of random
vectors known as concentrated random vectors in which a
wide range of realistic random vectors can be found, includ-
ing Generative Adversarial Network images. Moreover, the
experiments on image and text classification suggest the
robustness of the intuitions drawn on real data.

Assumption 3.2 (Growth Rate). As n → ∞, p/n → c0 >
0, the feature dimension τ is constant and, for 1 ≤ j ≤ m,
nj/n → cj > 0; we denote c = [c1, . . . , cm]T and Dc =
diag(c). Besides,

(1/c0)D
1
2
c M

TMD
1
2
c → M ∈ Rm×m.

The growth rate assumption assumes that p and n are of the
same order of magnitude. This is different and more realistic
than assumptions usually considered in classical statistics,
where n is very large compared to p. More importantly, the
technical results are obtained at a convergence rate of order
of 1/

√
p , which allows a smooth application to finite p, n.

The assumption on the existence of the matrix M states the
difficulty of the problem when p evolves. Any other rate for
the order of M (scaling with p for example) will lead to a
trivial problem (tasks too easy or too difficult to solve).

Let us now show that, under this setting, SPCA is uni-
formly more discriminative on new data than PCA. As
n, p → ∞, the spectrum of 1

pXXT is subject to a phase
transition phenomenon now well established in random ma-
trix theory (Baik & Silverstein, 2006; Benaych-Georges &
Nadakuditi, 2012). This result is crucial as the PCA vectors
of 1

pXXT are only informative beyond the phase transition
and otherwise can be considered pure noise.

Proposition 3.3 (Eigenvalue Phase transition). Under As-
sumptions 3.1-3.2, as n, p → ∞, the empirical spectral
measure 1

p

∑p
i=1 δλi of the eigenvalues λ1 ≥ . . . ≥ λp

of XXT

p converges weakly, with probability one, to the
Marc̆enko-Pastur law (Marchenko & Pastur, 1967) sup-
ported on [(1 −

√
1/c0)

2, (1 +
√
1/c0)

2]. Besides, for
1 ≤ i ≤ m, and for ℓ1 > . . . > ℓm the eigenvalues of M,3

λi
a.s.−→

{
λ̄i ≡ 1 + 1

c0
+ ℓi +

1
c0ℓi

≥ (1 + 1√
c0
)2, ℓi ≥ 1√

c0

(1 +
√
1/c0)

2, otherwise

λm+1
a.s.−→ (1 +

√
1/c0)

2.

3We implicitly assume the ℓi’s distinct for simplicity of exposi-
tion.

3



PCA-based Multi-Task Learning

Proposition 3.3 states that, if ℓi ≥ 1/
√
c0, the i-th largest

eigenvalue of 1
pXXT separates from the main bulk of eigen-

values. These isolated eigenvalues are key to the proper
functioning of PCA-based classification as their correspond-
ing eigenvectors are non-trivially related to the class discrim-
inating statistics (here, the µj’s). Consequently, UTx ∈ Rτ

also exhibits a phase transition phenomenon.

Theorem 3.4 (Asymptotic behavior of PCA projectors).
Let x ∼ N (µj , Ip) independent of X. Then, under As-
sumptions 3.1-3.2, with (ℓi, ūi) the decreasing (distinct)
eigenpairs of M, as p, n → ∞,

UTx−Gj → 0, Gj ∼ N (m
(pca)
j , Iτ ), in probability,

where [m
(pca)
j ]i ={√

c0ℓi−1
ℓ2i (ℓi+1)

ūT
i MD− 1

2
c e

[m]
j , i ≤ min(m, τ) and ℓi ≥ 1√

c0

0, otherwise.

As such, only the projections on the eigenvectors of 1
pXXT

attached to isolated eigenvalues carry informative discrimi-
nating features. Practically, for all n, p large, it is thus use-
less to perform PCA on a larger dimension than the num-
ber of isolated eigenvalues, i.e., τ ≤ argmax1≤i≤m{ℓi ≥
1/
√
c0}.

Consider now SPCA. Since XYYTXT

np only has m non-zero
eigenvalues, no phase transition occurs: all eigenvalues are
“isolated”. Thus, one may take τ = m principal eigenvectors
for the SPCA projection matrix V, which is quite likely
informative.

Theorem 3.5 (Asymptotic behavior of SPCA projectors).
Let x ∼ N (µj , Ip) independent of X. Then, under Assump-
tions 3.1-3.2, as p, n → ∞, in probability,

VTx− gj → 0, gj ∼ N (m
(spca)
j , Iτ ),

[m
(spca)
j ]i =

√
1/(ℓ̃i) v̄

T
i D

1
2
c MD− 1

2
c e

[m]
j

for ℓ̃1 ≥ . . . ≥ ℓ̃m the eigenvalues of Dc + D
1
2
c MD

1
2
c and

v̄1, . . . , v̄m their associated eigenvectors.

Since both PCA and SPCA data projections UTx and VTx
are asymptotically Gaussian and isotropic (i.e., with iden-
tity covariance), the oracle-best supervised learning perfor-
mance only depends on the differences m

(×)
j − m

(×)
j′ (×

being pca or spca). Being small dimensional (of dimension
τ ), the vectors m

(×)
j can be consistently estimated from

their associated empirical means, and are known in the large
n, p limit (with probability one).
Remark 3.6 (Consistent estimate of sufficient statistics).
From Assumption 3.2, cj can be empirically estimated by

nj/n. This, in turn, provides a consistent estimate for Dc.
Besides, as n, p → ∞,

1

njnj′
1T
nj
XT

j Xj′1nj′
a.s.−→ [MTM]jj′ , ∀j ̸= j′ and

4

n2
j

1T
nj
2

XT
j,1Xj,21nj

2

a.s.−→ [MTM]jj , ∀j

where Xj = [Xj,1,Xj,2] ∈ Rp×nj , with Xj,1,Xj,2 ∈
Rp×(nj/2). Combining the results provides a consistent
estimate for M as well as an estimate m̂(×)

j for the quantities

m
(×)
j , by replacing c and M by their respective estimates

in the definition of m(×)
j .

These results ensure the (large n, p) optimality of the classi-
fication decision rule for a test data x:

argmax
j∈{1,...,m}

∥UTx− m̂
(pca)
j ∥2, (1)

argmax
j∈{1,...,m}

∥VTx− m̂
(spca)
j ∥2. (2)

As a consequence, the discriminating power of both PCA
and SPCA directly relates to the limiting (squared) distances
∆m

(×)
(j,j′) ≡ ∥m(×)

j − m
(×)
j′ ∥2, for all pairs of class indices

1 ≤ j ̸= j′ ≤ m, and the classification error P (x →
Cj′ |x ∈ Cj) satisfies

P (x → Cj′ |x ∈ Cj) = Q
(
1

2

√
∆m

(×)
(j,j′)

)
+ o(1),

for Q(t) =
1√
2π

∫ ∞

t

e−x2

dx.

In particular, and as confirmed by Figure 1, when cj = cj′ ,
SPCA uniformly dominates PCA:

∆m
(spca)
(j,j′) −∆m

(pca)
(j,j′) =

τ∑
i=1

(
v̄T
i MD− 1

2
c (e

[τ ]
j − e

[τ ]
j′ )
)2

ℓ2i (ℓi + 1)
≥ 0.

For m = 2 classes, irrespective of c1, c2, one even finds in
explicit form

∆m
(spca)
(1,2) −∆m

(pca)
(1,2) =

16
n
p ∥∆µ∥2 + 4

,

∆m
(spca)
(1,2) −∆m

(pca)
(1,2)

∆m
(spca)
(1,2)

=
16

n
p ∥∆µ∥4

where ∆µ ≡ µ1 − µ2, conveniently showing the influence
of n/p and of ∥∆µ∥2 in the relative performance gap, which
vanishes as the task gets easier or as n/p increases (so with
more data).

In summarizing, under a large dimensional setting, we
showed that SPCA-based classification uniformly outper-
forms the PCA alternative, thus motivating the design of
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Figure 1. Theoretical (Th) vs. empirical (Emp) error for PCA- and
SPCA-based binary classification: x(ℓ)

i ∼ N ((−1)ℓµ, Ip) (ℓ ∈
{1, 2}), µ = e

[p]
1 , n1 = n2 = 500. Averaged over 1 000 test

samples.

an SPCA-based MTL approach. Furthermore, the section
not only justifies the superiority of SPCA over PCA qualita-
tively but, more importantly quantitatively by quantifying
the gap and highlighting the elements that influence it (the
norm of the means of the data ∥µ∥2 and the ratio p

n notably).

4. From single- to multi-task SPCA-based
learning

4.1. Multi-task setting

Let now X = [X[1], . . . ,X[k]] ∈ Rp×n be a collec-
tion of n independent p-dimensional data vectors, divided
into k subsets attached to individual “tasks”. Task t
is an m-class classification problem with training sam-
ples X[t] = [X[t]1, . . . ,X[t]m] ∈ Rp×nt with X[t]j =

[x
(j)
t1 , . . . ,x

(j)
tntj

] ∈ Rp×ntj the ntj vectors of class j ∈
{1, . . . ,m}. In particular, n =

∑k
t=1 nt for nt ≡∑m

j=1 ntj .

To each x
(j)
tℓ ∈ Rp is attached a corresponding “la-

bel” (or score) y
(j)
tℓ ∈ Rm. We denote in short Yt =

[y
(1)
t1 , . . . ,y

(m)
tnt

]T ∈ Rnt×m and Y = [YT
1 , . . . ,Y

T
k ]

T ∈
Rn×m the matrix of all labels. The natural MTL extension
of SPCA would default y(j)

tℓ ∈ Rm to the canonical vectors
e
[m]
j (or to ±1 in the binary case). We disrupt here from

this approach by explicitly not imposing a value for y(j)
tℓ :

this will be seen to be key to avert the problem of negative
transfer. We only let y(j)

tℓ = ỹtj , for all 1 ≤ ℓ ≤ ntj and
for some generic matrix Ỹ = [ỹ11, . . . , ỹkm]T ∈ Rmk×m,
i.e., we impose that

Y = JỸ, for J = [j11, . . . , jmk],

where jtj = (0, . . . , 0,1ntj
, 0, . . . , 0)T.

As with the single-task case, we work under a Gaussian
mixture model for each class Ctj .

Assumption 4.1 (Distribution of X). For class j of task t,
denoted Ctj , x(j)

tℓ ∼ N (µtj , Ip), for some µtj ∈ Rp. We
further denote M ≡ [µ11, . . . ,µkm] ∈ Rp×mk.

Assumption 4.2 (Growth Rate). As n → ∞, p/n →
c0 > 0 and, for 1 ≤ j ≤ m, ntj/n → ctj > 0. De-
noting c = [c11, . . . , ckm]T ∈ Rkm and Dc = diag(c),

(1/c0)D
1
2
c MTMD

1
2
c → M ∈ Rmk×mk.

We are now able to present the article’s main technical result.

Theorem 4.3 (MTL Supervised Principal Component Anal-
ysis). Let x ∼ N (µtj , Ip) independent of X and V ∈
Rp×τ be the collection of the τ ≤ mk dominant eigenvec-
tors of XYYTXT

np ∈ Rp×p. Then, under Assumptions 4.1-4.2,
as p, n → ∞, in probability,

VTx− gtj → 0, gtj ∼ N (mtj , Iτ )

for [mtj ]i =

√
1/(c0ℓ̃i) v̄

T
i (ỸỸT)

1
2 D

1
2
c MD− 1

2
c e

[mk]
tj

with ℓ̃1 > . . . > ℓ̃mk the eigenvalues of
(ỸỸT)

1
2 (D

1
2
c MD

1
2
c + Dc)(ỸỸT)

1
2 and v̄1, . . . , v̄mk

their eigenvectors.4

As in the single task case, despite the high dimension of
the data statistics appearing in V, the asymptotic perfor-
mance only depends on the (small) mk × mk matrices
M and Dc, which here leverages the inter-task inter-class
products µT

tjµt′j′ . This correlation between tasks together
with the labelling choice Ỹ (importantly recall that here
V = V(Y)) influences the MTL performance. The next
section discusses how to optimally align Ỹ and M so to
maximize this performance. This, in addition to Remark 3.6
being still valid here (i.e., c and M can be a priori consis-
tently estimated), will unfold into our proposed asymptoti-
cally optimal MTL SPCA algorithm.

4.2. Binary classification and optimal labels

Let us focus on a binary classification to obtain more con-
vincing conclusions (m = 2). In this case, y = Jỹ,
with ỹ ∈ R2k (rather than in R2k×2) unidimensional.
Here XyyTXT

np has for unique non-trivial eigenvector v =

Xy/∥Xy∥ and vTx is scalar.

Corollary 4.4 (Binary MTL Supervised Principal Com-
ponent Analysis). Let x ∼ N (µtj , Ip) independent of X.
Then, under Assumptions 4.1-4.2 and the above setting, as

4For simplicity, we avoid the scenario where the eigenvalues
ℓ̃j appear with multiplicity, which would require to gather the
eigenvectors into eigenspaces. This would, in effect, only make
the notations more cumbersome.
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p, n → ∞,

vTx− gtj → 0, gtj ∼ N (m
(bin)
tj , 1)

where m
(bin)
tj =

ỹTD
1
2
c MD− 1

2
c etj√

ỹT(D
1
2
c MD

1
2
c + Dc)ỹ

.

From Corollary 4.4, denoting m̂
(bin)
t1 the natural consistent

estimate for m(bin)
t1 (as per Remark 3.6), the optimal class

allocation decision for x reduces to the “averaged-mean”
test

vTx = v(y)Tx
Ct1

≷
Ct2

1

2

(
m̂

(bin)
t1 + m̂

(bin)
t2

)
(3)

with corresponding classification error rate ϵt ≡ 1
2P (x →

Ct2|x ∈ Ct1) + 1
2P (x → Ct1|x ∈ Ct2) (assuming equal

prior class probability) given by

ϵt ≡ P

(
vTx

Ct1

≷
Ct2

1

2
(m̂

(bin)
t1 + m̂

(bin)
t2 )

)
= Q

(
1

2
(m

(bin)
t1 −m

(bin)
t2 )

)
+ o(1). (4)

From the expression of m(bin)
tj , the asymptotic performance

clearly depends on a proper choice of ỹ. This expression
being quadratic in ỹ, the ϵt minimizer ỹ = ỹ⋆

[t] assumes a
closed-form:

ỹ⋆
[t] ≡ argmax

ỹ∈R2k

(m
(bin)
t1 −m

(bin)
t2 )2

= D− 1
2

c (M+ I2k)
−1 MD− 1

2
c (et1 − et2). (5)

Letting ˆ̃y⋆
[t] be the natural consistent estimator of ỹ⋆

[t] (again
from Remark 3.6), and updating v = v(ỹ[t]) accordingly,
the corresponding (asymptotically) optimal value ϵ⋆t of the
error rate ϵt is

ϵ⋆t = Q
(
1

2

√
(e

[2k]
t1 − e

[2k]
t2 )TH(e

[2k]
t1 − e

[2k]
t2 )

)
+ o(1),

(6)

with H = D− 1
2

c M (M+ I2k)
−1 MD− 1

2
c

This formula is instructive to discuss: under strong or weak
task correlation, ỹ⋆

[t] implements differing strategies to avoid
negative transfers. For instance, if µT

tjµt′j′ = 0 for all t′ ̸=
t and j, j′ ∈ {1, . . . ,m}, then the two rows and columns of
M associated to task t are all zero, but on the 2×2 diagonal
block: ỹ⋆

[t] is then all zeros but on its two task-t elements;
any other value at these zero-entry locations (such as the
usual ±1) is suboptimal and possibly severely detrimental
to classification. Letting ỹ[t] = [1,−1, . . . , 1,−1]T is even
more detrimental when µT

tjµt′j′ < 0 for some t′ ̸= t′:
when the mapping of classes across tasks is reversed, these
tasks work against the classification.

Remark 4.5 (On Bayes optimality). Under the present MTL
setting of a mixture of two isotropic random Gaussian vec-
tors, the authors recently established that the Bayes optimal
error rate (associated to the decision rule infg P (g(x) >
0 | x ∈ Ct1)) precisely coincides with ε⋆t1.5 This proves that,
at least under the present data configuration, the proposed
SPCA-MTL framework is optimal.

4.3. Binary-based multi-class classification

With an optimal binary classification framework for every
task and every pair of classes, one may expect to reach
high-performance levels in generic multi-class settings by
resorting to a one-versus-all extension of the binary case.
For every target task t, one-versus-all implements m bi-
nary classifiers: classifier ℓ ∈ {1, . . . ,m} separates class
Ctℓ – locally renamed “class C(ℓ)

t1 ” – from all other classes
– gathered as a unique “class C(ℓ)

t2 ”. Each binary classifier
is then “optimized” using labels ỹ⋆(ℓ)

[t] as per Equation (5);

however, the joint class C(ℓ)
t2 is here composed of a Gaussian

mixture: this disrupts with our optimal framework, thereby
in general leading to suboptimal labels; in practice though,
for sufficiently distinct classes, the (suboptimal) label ỹ⋆(ℓ)

[t]

manages to isolate the value m
(bin)
tℓ = m

(bin,ℓ)
t1 for class

Ctℓ = C(ℓ)
t1 from the values m(bin)

tj of all other classes Ctj ,
j ̸= ℓ, to such an extent that (relatively speaking) these
m

(bin)
tj can be considered quite close, and so close to their

mean m
(bin,ℓ)
t2 , without much impact on the classifier per-

formance. Finally, the class allocation for unknown data
x is based on the largest classifier score. But, to avoid
biases that naturally arise in the one-versus-all approach
(Bishop, 2006, Section 7.1.3), this imposes that the m dif-
ferent classifiers be “comparable and aligned”. To this end,
we exploit Corollary 4.4 and Remark 3.6, which give a con-
sistent estimate of all classifier statistics: the test scores
for each classifier can be centered so that the asymptotic
distribution for class C(ℓ)

t1 is a standard normal distribution
for each 1 ≤ ℓ ≤ m, thereby automatically discarding bi-
ases. Thus, instead of selecting the class with the largest
score argmaxℓ v(y

⋆(ℓ)
[t] )Tx (as conventionally performed

(Bishop, 2006, Section 7.1.3)), the class allocation is based
on the centered scores argmaxℓ{V (y

⋆(ℓ)
[t] )Tx−m

(bin,ℓ)
t1 }.6

These discussions result in Algorithm 1.

5The result builds on recent advances in physics-inspired (spin
glass models) large dimensional statistics; see for instance (Lelarge
& Miolane, 2019) for a similar result in a single task semi-
supervised learning setting. Being a parallel work of the same
authors, the reference is concealed in the present version to main-
tain anonymity.

6More detail and illustrations are provided in the supplementary
material.
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Algorithm 1. Proposed multi-class MTL SPCA algorithm.

Input: Training X = [X[1], . . . ,X[k]], X[t′] =
[X[t′]1, . . . ,X[t′]m], X[t′]ℓ ∈ Rp×nt′ℓ and test x.
Output: Estimated class ℓ̂ ∈ {1, . . . ,m} of x for target
task t.
for ℓ = 1 to m do

Estimate c and M (from Remark 3.6) using X[t′]ℓ

as data of class C(ℓ)
t′1 for each t′ ∈ {1, . . . , k} and

{X[t′]1, . . . ,X[t′]m} \ {X[t′]ℓ} as data of class C(ℓ)
t′2 .

Evaluate labels

ỹ
⋆(ℓ)
[t] = D− 1

2
c (M+ I2k)

−1 MD− 1
2

c (e
[2k]
t1 − e

[2k]
t2 ).

Compute the classification score

g
(ℓ)
x,t = ỹ

⋆(ℓ)T
[t] JTXTx/∥ỹ⋆(ℓ)T

[t] JTXT∥.

Estimate m
(bin,ℓ)
t1 as m̂(bin,ℓ)

t1 from Corollary 4.4.
end for
Output: ℓ̂ = argmaxℓ∈{1,...,m}(g

(ℓ)
x,t − m̂

(bin,ℓ)
t1 ).

5. Supporting experiments
We here compare the performance of Algorithm 1 (MTL
SPCA), on both synthetic and real data benchmarks, to
competing state-of-the-art methods, such as MTL-LSSVM
(Tiomoko et al., 2020) and CDLS (Hubert Tsai et al., 2016).7

Transfer learning for binary classification. First con-
sider a two-task two-class (k,m = 2) scenario with x

(j)
tℓ ∼

N ((−1)jµt, Ip), µ2 = βµ1 +
√

1− β2µ⊥
1 for µ⊥

1 any
vector orthogonal to µ1 and β ∈ [0, 1] controlling inter-
task similarity. Figure 2 depicts the empirical and the-
oretical classification error ϵ2 for the above methods for
p = 100 and n = 2200; for completeness, the single-task
SPCA (ST-SPCA) of Section 3 (which disregards data from
other tasks), as well as its naive MTL extension with labels
ỹ[t] = [1,−1, . . . , 1,−1]T (N-SPCA), were added. MTL
SPCA properly tracks task relatedness, while CDLS fails
when both tasks are similar. MTL LSSVM shows identical
performances but at the cost of setting optimal hyperparam-
eters. Probably most importantly, when not optimizing the
labels y, the performance (of N-SPCA) is strongly degraded
by negative transfer, particularly when tasks are not related.
Figure 2 also provides typical computational times for each

7We insist that MTL SPCA is intended to function under the
constraint of scarce data and does not account for the very nature
of these data: to avoid arbitrary conclusions, image- or language-
dedicated MTL and transfer learning methods (e.g., modern adap-
tions of deep nets for transfer learning (Tan et al., 2018)) are not
used for comparison.

algorithm when run on a modern laptop and confirms that
Algorithm 1 scales very favorably with the data dimension p.
At the same time, MTL LSSVM and CDLS quickly become
prohibitively expensive.

Transfer learning for multi-class classification. We next
experiment on the ImageClef dataset (Ionescu et al., 2017)
made of 12 common categories shared by 3 public data “do-
mains”: Caltech-256 (C), ImageNet ILSVRC 2012 (I), and
Pascal VOC 2012 (P). Every pair of domains is successively
selected as “source” and a “target” for binary (transfer)
multi-task learning, resulting in 6 transfer tasks S→T for
S,T∈ {I,C,P}. Table 1 supports the stable and competitive
performance of MTL-SPCA, on par with MTL LSSVM (but
much cheaper).

Increasing the number of tasks. We now investigate the
comparative gains induced when increasing the number of
tasks. To best observe the reaction of each algorithm to
the additional tasks, we here consider both a tunable syn-
thetic Gaussian mixture and (less tractable) real-world data.
The synthetic data consist of two Gaussian classes with
means µtj = (−1)jµ[t] with µ[t] = β[t]µ+

√
1− β2

[t]µ
⊥

for β[t] drawn uniformly at random in [0, 1] and with
µ = e

[p]
1 , µ⊥ = e

[p]
p . The real-world data are the Ama-

zon review (textual) dataset8 (Blitzer et al., 2007) and the
MNIST (image) dataset (Deng, 2012). For Amazon review,
the positive vs. negative reviews of “books”, “dvd” and
“electronics” products are added to help classify the
positive vs. negative reviews of “kitchen” products. For
MNIST, additional digit pairs are added progressively to
help classify the target pair (1, 4). The results are shown
in Figure 3 which confirms that (i) the naive extension of
SPCA (N-SPCA) with labels ±1 can fail to the point of
being bested by (single task) ST-SPCA, (ii) MTL-SPCA
never decays with more tasks.

Multi-class multi-task classification. We finally turn to
the full multi-task multi-class setting of Algorithm 1. Fig-
ure 4 simultaneously compares running time and error rates
of MTL-SPCA and MTL-LSSVM9 on a variety of multi-
task datasets, and again confirms the overall computational
gains (by decades!) of MTL-SPCA for approximately the
same performance levels.

6. Conclusion
Following recent works on large-dimensional statistics for
the design of simple, cost-efficient, and tractable machine

8Encoded in p = 400-dimensional tf*idf feature vectors of
bag-of-words unigrams and bigrams.

9CDLS only handles multi-task learning with k = 2 and cannot
be used for comparison.
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CDLS (Emp)

p MTL SPCA MTL LSSVM CDLS
16 0.34 s 4.15 s 7.16 s
32 0.34 s 4.46 s 7.43 s
64 0.39 s 5.38 s 8.61 s
128 0.40 s 8.28 s 8.80 s
256 0.55 s 12.2 s 11.9 s
512 0.57 s 48.3 s 17.5 s
1024 0.88 s 315.6 s 27.1 s
2048 2.02 s 1591.8 s 73.5 s

Figure 2. (Left) Theoretical (Th)/empirical (Emp) error rate for 2-class Gaussian mixture transfer with means µ1 = e
[p]
1 , µ⊥

1 = e
[p]
p ,

µ2 = βµ1 +
√

1− β2µ⊥
1 , p = 100, n1j = 1000, n2j = 50; (Right) running time comparison (in sec); n = 2p, ntj/n = 0.25.

Averaged over 1 000 test samples.

S/T P→ I P→C I→P I→C C→P C→ I Average
ST SPCA 91.84 96.24 82.26 96.24 82.26 91.84 90.11
N-SPCA 92.21 96.37 84.34 95.97 81.34 90.47 90.12
MTL LSSVM 93.03 97.24 84.79 97.74 83.74 94.92 91.91
CDLS 92.03 94.62 84.82 95.72 81.04 92.54 90.13
MTL SPCA 93.39 96.61 85.24 96.68 83.76 93.39 91.51

Table 1. Transfer learning accuracy for the ImageClef database: P(Pascal), I(Imagenet), C(Caltech); different “Source to target” task pairs
(S→T) based on Resnet-50 features.

101 102

0.2

0.25

Number of tasks

’MTL SPCA’

’N-SPCA’

’ST-SPCA’

Books DVD Elec

0.18

0.2

0.22

0.24

Added task

’MTL SPCA’

’N-SPCA’

’ST-SPCA’

[7-9] [3-8] [5-6] [2-9] [3-5]

0.1

0.2

0.3

Added task

’MTL SPCA’

’N-SPCA’

’ST-SPCA’

Figure 3. Empirical classification error vs. number of tasks; (Left) Synthetic Gaussian with random task correlation: p = 200, n11 =
n12 = 50, n21 = n22 = 5, 10 000 test samples; (Center) Amazon Review: n11 = n12 = 100, n21 = n22 = 50, 2 000 test samples;
(Right) MNIST: initial p = 100-PCA preprocessing, n11 = n12 = 100, n21 = n22 = 50, 500 test samples.

0.1 0.2 0.3

10−1

101

102

ϵt

time (s)
Datasets (Features) Tasks Classes Mark

Synthetic (Gaussian) 3 10 ◦
Office-Caltech (VGG) 4 10 ⋄
Office 31 (Resnet-50) 4 31 □

Office-Home (Resnet-50) 3 65 △
Image-Clef (Resnet-50) 3 12 ⊖

Figure 4. (Left) Runtime vs. classification error (ϵt) for multi-task multi-class MTL-LSSVM (filled marks) and MTL-SPCA (empty
marks). (Right) Datasets. Synthetic: µj = 2e

[p]
j , µ⊥

j = 2e
[p]
p−j , β1 = 0.2, β2 = 0.4, β3 = 0.6; p = 200, n1j = n2j = 100, n3j = 50;

1 000 test sample averaging.

learning algorithms (Couillet et al., 2021), the article con-
firms the possibility of achieving high-performance levels
while theoretically averting the main sources of biases, here
for the a priori difficult concept of multi-task learning. The
article, we hope, will be followed by further investigations

of sustainable AI algorithms driven by modern mathemat-
ical tools. In the present multi-task learning framework,
practical extensions to semi-supervised learning (when la-
belled data are scarce) with possibly missing, unbalanced,
or incorrectly labelled data are being considered.
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Abstract

This document contains the main technical arguments omitted in the article’s core due to space limitations and is
organized as follows. Section A details the large dimensional analysis of PCA. Section B provides the asymptotic
performance of SPCA in the most general case of a Gaussian mixture model (with arbitrary means and covariances)
in a multi-task setting. The single-task setting is retrieved as a special case. Section C details and illustrates the
binary-based multi-class classification and proposes alternative schemes to the one-versus-all approach covered in
the main article. Supplementary experiments are provided in Section D. Finally, Section E explains how to use the
code to implement the paper’s main results.

A. Large dimensional analysis of Single Task PCA
We recall that the solution U of PCA is explicitly given by collecting the eigenvectors associated with the τ largest
eigenvalues of 1

pXXT. This section aims to compute the isolated eigenvalues of 1
pXXT and to study the behavior of the

projection of new test data on the feature space spanned by PCA under the large dimensional regime.

Assumption A.1 (Distribution of X and x). The columns of X are independent random vectors with X = [X1, . . . ,Xm],
Xj = [x

(j)
1 , . . . ,x

(j)
nj ] ∈ Rp×nj where x

(j)
i ∼ N (µj , Ip). As for x, it follows an independent N (µx, Ip) distribution. We

will further denote x ∈ Cj to indicate that data vector x belongs to class j, i.e., x ∼ N (µj , Ip).

Assumption A.2 (Growth Rate). As n → ∞, p/n → c0 > 0 and, for 1 ≤ j ≤ m, nj

n → cj > 0; we will denote
c = [c1, . . . , cm]T. Furthermore, the latent feature space dimension τ is constant with respect to n, p.

A.1. Isolated eigenvalues

To retrieve the isolated eigenvalues of 1
pXXT, we simply aim to solve the determinant equation in z ∈ R+

det

(
1

p
XXT − zIp

)
= 0.

Writing X = MJT +W with M = [µ1, . . . ,µm] ∈ Rp×m, J = [j1, . . . , jm], where jj = (0, . . . , 0,1nj , 0, . . . , 0)
T

and where W is a random matrix with independent standard Gaussian entries, this becomes

det

(
1

p
WWT + UVT − zIp

)
= 0, (7)

where U = 1√
p [M,WJ] ∈ Rp×2m and V = 1√

p [MJTJ+WTJ,M] ∈ Rp×2m are low rank matrices (as n, p → ∞); as

for 1
pWWT, its limiting eigenvalue distribution under Assumption 3.2 is known as the Marc̆enko-Pastur law (Marchenko &

Pastur, 1967), recalled next in whole generality:

Theorem A.3. Let W be a p× n matrix with i.i.d. real- or complex-valued entries with zero mean and unit variance. Then,
as n, p → ∞ such that p/n a.s.−→ c0, the empirical spectral measure µĈ = 1

p

∑p
i=1 δλ̂i

of the eigenvalues λ̂1 ≥ . . . ≥ λ̂p of
1
pWWT, converges weakly, with probability one, to a nonrandom distribution, known as the Marc̆enko–Pastur law and
denoted µc0

MP. If c0 ∈ (0, 1), µc0
MP has density:

µc0
MP(dx) =

√
(λ+ − x)(x− λ−)

2πc0x
dx

where λ± = (1 ±
√
1/c0)

2. If c0 ∈ (1,∞), µMP is the weighted sum of a point mass at 0 and of the density µ
1/c0
MP with

weights 1− (1/c0) and 1/c0.

The spectrum of 1
pWWT, which contains no structural information (generally referred to as a “noise bulk”), will not be

useful for classification. The challenge is to determine which observed eigenvalues represent the class structure. Specifically,
let us seek for the presence of an eigenvalue λj of 1

pXXT asymptotically greater than the limit (1 +
√
1/c0)

2 of the largest
eigenvalue of 1

pWWT. Following the initial ideas of (Baik & Silverstein, 2006; Benaych-Georges & Nadakuditi, 2012), the

12
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approach is to isolate the low-rank contribution UVT from the noise matrix 1
pWWT. Factoring out 1

pWWT − zIp and
using Sylverster’s identity (det(AB+ I) = det(BA+ I)), Equation (7) is equivalent to:

det
(
VTQ(z)U + I2m

)
= 0, with Q(z) =

(
1

p
WWT − zIp

)−1

.

We next retrieve the large dimensional limit (or, more specifically, a deterministic equivalent (Couillet & Debbah, 2011,
Chapter 6)) of VTQ(z)U + I2m under Assumptions A.1 and A.2. Defining the resolvents and co-resolvents Q(z) =
( 1pWWT − zIp)

−1 and Q̃(z) = ( 1pW
TW − zIn)

−1 , as n, p → ∞ with p/n → c ∈ (0,∞), we have

Q(z) ↔ Q̄(z), Q̄(z) = δ(z)Ip

Q̃(z) ↔ ¯̃Q(z), ¯̃Q(z) = δ̃(z)In

where (δ̃(z), δ(z)) are defined as

δ(z) =
c0 − 1− c0z +

√
(c0 − 1− c0z)2 − 4z

2z
, δ̃(z) =

1

c0

(
δ(z) +

1− c0
z

)
and the notation F ↔ F̄ stands for the fact that, under Assumption A.2, for any deterministic linear functional f : Rn×p → R,
f(F− F̄) → 0 almost surely (for instance, for u,v of unit norm, uT(F− F̄)v

a.s.−→ 0 and, for A ∈ Rp×n deterministic of
bounded operator norm, 1

n trA(F− F̄)
a.s.−→ 0).

In particular, developing the definitions of V and U ,

det
(
VTQ(z)U + I2m

)
= det

(
Im + 1

pJ
TJMTQ(z)M+ 1

pJ
TWTQ(z)M 1

pJ
TJMTQ(z)WJ+ 1

pJ
TWTQ(z)WJ

1
pM

TQ(z)M Im + 1
pM

TQ(z)WJ

)
and we then have, from the above deterministic equivalents, that

det
(
VTQ(z)U + I2m

)
= det

(
Im + δ(z)J

TJ
p MTM (1 + zδ̃(z))JTJ

δ(z) 1pM
TM Im

)
+ o(1)

= det

(
Im − zδ̃(z)δ(z)

JTJ

p
MTM

)
+ o(1).

The limiting position of the (hypothetical) isolated eigenvalues z is, therefore, the solution of:

det
(
Im − zδ̃(z)δ(z)M

)
= 0

where M = lim
p→∞

1
c0

D
1
2
c MTMD

1
2
c . Denoting ℓ1 ≥ . . . ≥ ℓm the eigenvalues of M, the eigenvalues z = λ̂i such that

λ̂i > (1 +
√

1/c0)
2 are explicit and pairwise associated to ℓi whenever:

λ̂i =
1

c0
+ 1 + ℓi +

1

c0ℓi
> (1 +

√
1/c0)

2

which occurs if and only if ℓi ≥ 1√
c0

. This completes the proof of Proposition 1.

A.2. PCA projectors

In this section, the goal is to study the asymptotic behavior of uT
i x|x ∈ Cj , for i ≤ τ . Since conditionally on the training

data X, uT
i x is expressed as the projection of the deterministic vector ui on the isotropic Gaussian random vector x, it

follows that uT
i x is asymptotically Gaussian.

13
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Computation of the mean. Since ui is independent from x, we have conditionally to the training data X that E[uT
i x] =

µT
j ui. It then remains to compute the expectation with respect to X. First, since ui is defined up to a sign, we may impose

µT
j ui =

µT
j uiu

T
i 1p/p√

1T
puiuT

i 1p/p2
(8)

Using Cauchy’s integral formula, we have for any vector a ∈ Rp of the bounded norm (i.e., lim
p→∞

∥a∥ < ∞),

aTuiu
T
i

1p

p
=

−1

2πı

∮
γi

aT
(
1

p
WWT + UVT − zIp

)−1 1p

p

=
−1

2πı

∮
γi

aT
(
Q(z)−Q(z)U

(
I2m + VTQ(z)U

)−1 VTQ(z)
) 1p

p

=
1

2πı

∮
γi

aTQ(z)U
(
I2m + VTQ(z)U

)−1 VTQ(z)
1p

p

with γi a contour surrounding only the isolated eigenvalues λ̂i of 1
pXXT.

Using the deterministic equivalents of Q̃(z) and Q(z), we have

aTQ(z)U ↔ 1
√
p
[δ(z)aTM,01×m]

Im + VTQ(z)U ↔

(
Im + δ(z)J

TJ
p MTM (1 + zδ̃(z))JTJ

δ(z) 1pM
TM Im

)

VTQ(z)
1p

p
↔ 1

√
p

(
δ(z)JTJMT 1p

p

δ(z)MT 1p

p

)
.

Altogether, this gives :

aTuiu
T
i

1p

p
↔ −1

2πı

∮
γi

zδ̃(z)δ(z)2aTMD
1
2
c

ūiū
T
i

1− zδ(z)δ̃(z)ℓi
D

1
2
c M

T 1p

p
dz

with ūi the eigenvector of M associated to the eigenvalue ℓi. The only pole of the integrand inside γi is the isolated
eigenvalue λ̂i. From the residue theorem, this gives

aTuiu
T
i

1p

p
↔ c0ℓi − 1

ℓ2i (ℓi + 1)
aTMD

1
2
c ūiū

T
i D

1
2
c M

1p

p
.

Finally, using Equation (8), we conclude

µT
j ui

a.s.−→

√
c0ℓi − 1

ℓ2i (ℓi + 1)
ūT
i MD− 1

2
c e

[m]
j .

Computation of the variance. The computation is immediate since U is orthonormal, therefore Var(uT
i x) = 1.

B. Large dimensional analysis of Multi-Task SPCA
We recall that the solution V of SPCA is explicitly given by the collection of the eigenvectors associated with the τ largest
eigenvalues of 1

pX
YYT

n XT. This section aims to evaluate the position of these isolated eigenvalues and to study the behavior
of the projection of new test data on the feature space spanned by SPCA under the large dimensional regime.

Assumption B.1 (Distribution of X). For class j of task t, denoted Ctj , x(j)
tℓ ∼ N (µtj ,Σtj), for some µtj ∈ Rp. We

further denote M ≡ [µ11, . . . ,µkm] ∈ Rp×mk.
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Assumption B.2 (Growth Rate). As n → ∞, p/n → c0 > 0 and, for 1 ≤ j ≤ m, ntj/n → ctj > 0; we denote
c = [c11, . . . , ckm]T ∈ Rkm, and Dc = diag(c). Besides,

(1/c0)D
1
2
c M

TMD
1
2
c → M ∈ Rmk×mk,

lim sup
p

max

(
1

p
trΣtjΣt′j′ ,

1

p
trΣtj

)
< ∞

B.1. Isolated eigenvalues

The eigenvalues of 1
pX

YYT

n XT are solutions of

det

(
1

p
XJ

ỸỸT

n
JTXT − zIp

)
= det

(
1

p
(ỸỸT)

1
2JTX

TX

n
J(ỸỸT)

1
2 − zIm

)

Besides, we have

1

n
JTX

TX

p
J ↔ 1

n
JTDṽJ+

1

c0
DcM

TMDc

with ṽ = [ṽ11, . . . , ṽk2], ṽtj = lim
p→∞

1
p trΣtj .

Therefore, the isolated eigenvalues are, in the large n, p limit, the eigenvalues of H =

(ỸỸT)
1
2

(
1
nJ

TDṽJ+ D
1
2
c MD

1
2
c

)
(ỸỸT)

1
2 . In the case of identity covariance structure treated in the main arti-

cle, ṽtj = 1, ∀t, j and therefore

H = (ỸỸT)
1
2

(
Dc + D

1
2
c MD

1
2
c

)
(ỸỸT)

1
2 .

B.2. SPCA projectors

Computation of the mean. Since the eigenvector vi is defined up to sign, we may, as above, impose that

µT
tjvi =

µT
tjviv

T
i 1p/p√

1T
pvivT

i 1p/p2
. (9)

We have for any vector a ∈ Rp such that lim
p→∞

∥a∥ < ∞,

aTviv
T
i

1p

p
=

−1

2πı

∮
γi

aT

(
1

p
XJ

ỸỸT

n
JTXT − zIp

)−1
1p

p

=
1

2πı

∮
γi

1

z
aT

1

np
XJ(ỸỸT)

1
2

(
zIm − 1

np
(ỸỸT)

1
2JTXTXJ(ỸỸT)

1
2

)−1

(ỸỸT)
1
2JTXT 1p

p

=
1

2πıc0

∮
γi

1

z
aTMDc(ỸỸT)

1
2 (zIm −H)

−1
(ỸỸT)

1
2 DcM

T 1p

p
+ o(1)

=
1

c0

1

λ̄i
aTMDc(ỸỸT)

1
2 v̄iv̄

T
i (ỸỸT)

1
2 DcM

T 1p

p
+ o(1)

with γi the contour surrounding the eigenvalue λ̄i of H and v̄i the eigenvector of H associated to λ̄i.

Therefore,

µT
tjvi

a.s.−→
√

1

λ̄i
v̄T
i (ỸỸT)

1
2 D

1
2
c MD− 1

2
c e

[mk]
tj .
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Computation of the variance For the variance, conditionally to the training data X, Var(vT
i x) = vT

i Σtjvi. Furthermore,
it then remains to compute the expectation with respect to the training data X:

vT
i Σtjvi = tr

(
viv

T
i Σtj

)
=

−1

2πı
tr

Σtj

∮
γi

(
1

p
XJ

ỸỸT

n
JTXT − zIp

)−1


=
1

2πı
tr

(
Σtj

∮
γi

1

npz
XJ(ỸỸT)

1
2

(
zIm − 1

np
(ỸỸT)

1
2JTXTXJ(ỸỸT)

1
2

)−1

(ỸỸT)
1
2JTXT

)

=
1

2πı
tr

(∮
γi

1

npz
(ỸỸT)

1
2JTXTΣtjXJ(ỸỸT)

1
2

(
zIm − 1

np
(ỸỸT)

1
2JTXTXJ(ỸỸT)

1
2

)−1
)

=
1

λ̄i
(ỸỸT)

1
2 Ttj(ỸỸT)

1
2 + o(1)

where Ttj = 1
nJ

TDv̄J+ D
1
2
c MD

1
2
c and v̄ab = lim

p→∞
1
p tr (ΣtjΣab).

When Σtj = Ip, as treated in the main article, it is immediate that Var(uT
i x) = 1.

C. Binary-based multi-class classification
This section provides various applications and optimizations of the proposed MTL-SPCA framework in the context of
multi-class classification.

C.1. One-versus-all multi-class preliminary

The literature (Bishop, 2006) describes broad groups of approaches to deal with classification with m > 2 classes. We
focus here on the most common method, namely the one-versus-all approach. The complete optimization of one-versus-all
being theoretically heavy to handle and demanding prior knowledge on the decision output statistics, the method inherently
suffers from sometimes severe practical limitations; these are partly tackled here exploiting the large dimensional analysis
performed in this article.

In the one-versus-all method, focusing on Task t, m individual binary classifiers, indexed by ℓ = 1, . . . ,m, are trained,
each of them separating Class Ctℓ from the other m− 1 classes Ctℓ′ , ℓ′ ̸= ℓ. Each test sample is then allocated to the class
index corresponding to the classifier reaching the highest of the m classifier scores. Although quite used in practice, the
approach first suffers a severe unbalanced data bias when using binary (±1) labels as the set of negative labels in each binary
classification is on average m − 1 times larger than the set of positive labels, and also suffers a center-scale issue when
ultimately comparing the outputs of the m decision functions, the average locations and ranges of which may greatly differ;
these issues lead to undesirable effects, as reported in (Bishop, 2006, section 7.1.3)).

These problems are here simultaneously addressed: specifically, having access to the large dimensional statistics of the
classification scores allows us to appropriately center and scale the scores. Each centered-scaled binary classifier is then
further optimized by appropriately selecting the class labels (different from ±1) so to minimize the resulting classification
error. See Figure 5 for a convenient illustration of the improvement induced by this centering-scaling and label optimization
approach.

C.2. One-versus-all multi-class optimization

For each target task t, in a one-to-all approach, m MTL-SPCA binary classifications are solved with the target class Ctℓ
(renamed “class Cℓ

t1"), against all other Cℓ
t2 classes (combined into a single “Cℓ

t2 class”). Calling g
(ℓ)
x,t the output of the

classifier ℓ for a new datum x in Task t, the class allocation decision is traditionally based on the largest among all scores
g
(1)
x,t , . . . , g

(m)
x,t . However, this presumes that the distribution of the scores g(1)x,t when x ∈ C1, g(2)x,t when x ∈ C2, etc., more or

less have the same statistical mean and variance. This is not the case in general, as depicted in the first column of Figure 5,
where data from class C1 are more likely to be allocated to class C3 (compare the red curves).
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By providing an accurate estimate of the distribution of the scores g(ℓ)x,t for all ℓ’s and all genuine classes of x, Theorem 3 of
the main article allows us to predict the various positions of the Gaussian curves in Figure 5. In particular, it is possible,
for each binary classifier ℓ to center and scale g

(ℓ)
x,t when x ∈ Ctℓ. This operation averts the centering and scaling biases

depicted in the first column of Figure 5: the result of the center-scale operation appears in the second column of Figure 5.

This first improvement step simplifies the algorithm which now boils down to determining the index of the largest
g
(ℓ)
x,t −m

(bin,ℓ)
t1 , ℓ ∈ {1, . . . ,m}, while limiting the risks induced by the center-scale biases.

This being said, our theoretical analysis further allows to adapt the input labels ỹ(ℓ)[t] in such a way to optimize the expected
output. Ideally, assuming x genuinely belongs to class Ctℓ, one may aim to increase the distance between the output score
g
(ℓ)
x,t and the other output scores g(ℓ

′)
x,t for ℓ′ ̸= ℓ. This however raises two technical questions:

1. Corollary 1 of the main article is derived under a 2-class Gaussian mixture model while for classifier ℓ of the one-
versus-all approach, the data are composed of m Gaussians, of which one belongs to class Cℓ

t1 and the other m− 1
to class Cℓ

t2 (which remains a mixture when m > 2). In this case, the labels express as y = Jỹ, with now ỹ ∈ Rmk

(instead of R2k) for J =

1n11 . . .
1nmk

;

2. the procedure demands to simultaneously adapt all input scores ỹ(1)
[t] , . . . , ỹ

(m)
[t] .

To solve Item 1., we extend Corollary 1 to a one-versus-all-based binary classification.

Corollary C.1 (One-versus-all Binary MTL Supervised Principal Component Analysis). Let x ∼ N (µtj , Ip) independent
of X. Then, under Assumptions B.1-4.2 and the above setting, as p, n → ∞,

VTx− gtj → 0, gtj ∼ N (m
(bin)
tj , 1), where m

(bin)
tj =

ỹTD
1
2
c MD− 1

2
c etj√

ỹT(D
1
2
c MD

1
2
c + Dc)ỹ

.

Note that Corollary C.1 is similar to Corollary 1 of the main article but now with ỹ ∈ Rmk and M,Dc ∈ Rmk×mk.

A first option to solve Item 2. consists in maximizing the distance between the output score g
(ℓ)
x,t for x ∈ Ctℓ and the scores

g
(ℓ)
x,t for x ̸∈ Ctℓ. By “mechanically” pushing away all wrong decisions, this ensures that, when x ∈ Ctℓ, g(ℓ)x,t is greater than

g
(ℓ′)
x,t for ℓ′ ̸= ℓ. This is visually seen in the third column of Figure 5, where the distances between the rightmost Gaussians

and the other two are increased when compared to the second column, and we retrieve the desired behavior. Specifically,
the proposed (heuristic) label “optimization” here consists in solving, for a target task t and each ℓ ∈ {1, . . . ,m} the
optimization problem:

ỹ
⋆(ℓ)
[t] = max

ỹ
(ℓ)

[t]
∈Rkm

min
j ̸=ℓ

(
m

(bin),ℓ
tℓ −m

(bin),ℓ
tj

)
(10)

Being a non-convex and non-differentiable (due to the max) optimization, Equation (10) cannot be solved straightforwardly.
An approximated solution consists in relaxing the max operator max(x1, . . . , xn) into the differentiable soft-max operator
1
γn log(

∑n
j=1 exp(γxj)) for some γ > 0, and use a standard gradient descent optimization scheme, here initialized at

ỹ
(ℓ)
[t] ∈ Rmk filled with 1’s at every m(i′ − 1) + ℓ, for i′ ∈ {1, . . . ,m}, and with −1’s everywhere else.

An alternative option to tackle Item 2. (the one developed in the core article) consists in reducing the dimension of the labels
to ỹ

(ℓ)
[t] ∈ R2k by “merging” all Gaussians of class Ctj with j ̸= ℓ into a unique approximated Gaussian class with mean∑

j ̸=ℓ
ntj

n−ntℓ
µtj . We may then (abusively) apply Corollary 1, leading to an explicit expression of the optimal label ỹ⋆(ℓ)

[t] ,
from which Algorithm 1 in the main article unfolds.

Figure 6 compares the “Min-Max” optimization scheme with the scheme assuming the Gaussian approximation for class 2
(denoted “Gaussian Approx”). The two methods interestingly have comparable performance. The synthetic data considered
for this experiment consists of 2-tasks with ten Gaussian classes with means µ1j = µj and µ2j = βµj +

√
1− β2µ⊥

j .
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Figure 5. Test score distribution in a 2-task and 3 classes-per-task setting, using a one-versus-all multi-class classification. Every graph
in row ℓ depicts the limiting distributions of g(ℓ)x,t for x in different classes. Column 1 (Classical) is the standard implementation of the
one-versus-all approach. Column 2 (Scaled scores) is the output for centered and scaled g

(ℓ)
x,t for x ∈ Cℓ. Column 3 (Optimized labels) is

the same as Column 2 but with optimized input scores (labels) ỹ⋆(ℓ)

[t] . Under the “classical” approach, data from C1 (red curves) will often
be misclassified as C2. With “optimized labels”, the discrimination of scores for x in either class C2 or C3 is improved (blue curve in 2nd
row further away from the blue curve in 1st row; and similarly for the green curve in 3rd versus 1st row).
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Figure 6. Empirical accuracy as function of the relatedness parameter β on Synthetic Gaussian with p = 500, µj = 3e
[p]
j , µ⊥

j = 3e
[p]
p−j ,

n1j = 100, n2j = 50 for 1 ≤ j ≤ 10; 10 000 test sample averaging

D. Supplementary experiments
We next experiment on two transfer learning datasets:

• the Office31 dataset (Saenko et al., 2010) which contains 31 object categories in three domains: Amazon (A), DSLR
(D), and Webcam (W). The Amazon images were captured from a website of online merchants (clean background
and unified scale). The DSLR domain contains low-noise high-resolution images. For Webcam, the images of low
resolution exhibit significant noise and color. Every pair of domains is successively selected as “source” and a “target”
for binary (transfer) multi-task learning, resulting in 6 transfer tasks S→T for S,T∈ {A,D,W};

• the OfficeHome dataset (Venkateswara et al., 2017) which consists of images from 4 different domains: Artistic images
(A), Clip Art (C), Product images (P), and Real-World images (R). For each domain, the dataset contains images of 65
object categories found typically in Office and Home settings.

Table 2 reports the comparative performances of the various algorithms and, while exhibiting a slight superiority for the
MTL-LSSVM scheme, supports the stable and competitive performance of MTL-SPCA.

S/T w→ a w→ d a→w a→ d d→w d→ a Mean
score

ST-SPCA 77.63 93.72 90.09 90.51 91.33 75.43 86.45
CDLS 76.47 92.52 91.57 90.07 91.43 74.99 86.17
N-SPCA 74.10 96.44 79.59 81.94 95.10 73.15 83.39
MTL-LSSVM 80.85 97.63 93.11 91.91 95.12 79.41 89.67
MTL SPCA 77.67 96.70 90.72 91.09 94.83 76.90 87.99

Table 2. Classification accuracy over Office31 database. w(Webcam), a(Amazon), d(dslr), for different “Source to target” task pairs
(S → T ) based on Resnet-50 features.
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S/T A→
R

A→
P

A→
C

R→
A

R→
P

R→
C

P→
A

P→
R

P→
C

C→
A

C→
R

C→
P

Mean
score

ST-SPCA 91.07 92.19 74.05 77.61 92.64 72.84 75.66 90.38 71.48 72.26 86.47 89.20 82.15
CDLS 88.30 90.24 75.71 78.04 91.28 75.29 75.59 88.20 73.86 73.43 85.12 88.91 82.00
N-SPCA 89.73 89.26 69.47 76.77 89.90 66.63 71.13 87.41 63.01 70.50 84.30 82.98 78.42
MTL LSSVM 91.82 92.85 80.09 79.39 93.63 79.13 75.94 90.67 78.19 74.39 88.61 91.56 84.69
MTL SPCA 91.10 92.28 77.44 79.57 92.79 73.64 76.36 90.39 76.90 74.23 87.01 89.37 83.42

Table 3. Classification accuracy over Office+Home database. Art (A), RealWorld (R), Product (P), Clipart (C), for different “Source to
target” task pairs (S → T ) based on Resnet-50 features.

E. Readme Code
This document explains how to use the code implementing the Random Matrix Improved Multi-Task Learning Supervised
Principal Component Analysis (RMT-MTLSPCA) proposed in the core of the article.

E.1. Archive content

• The function implementing the binary version of our method is called RMTMTLSPCA_binary_train.m which
trains the MTL SPCA proposed algorithm.

• The function implementing our method is called RMTMTLSPCA_multiclass_train.m which trains the MTL
SPCA proposed algorithm in the multi-class classification.

• The main script comparing the performance of SPCA and PCA in a single task setting
PCA_versus_SPCA_single_task.

• The main script comparing all algorithms for synthetic data for binary transfer learning compareTL_binary.

• The main script comparing all algorithms for synthetic data/real data for multi-class transfer learning is
CompareTL_multiclass.m.

• The main script illustrating the benefit of adding more tasks to the MTL framework Increased_tasks.m.

• The main script illustrating the tradeoff performance versus running time in the multi-task multi-class classification
TradeOff_performance_running_time.m

• Folder utils: containing alternative MTL algorithms among which MMDT algorithm from (Hoffman et al., 2013),
and MTL-LSSVM algorithm(Tiomoko et al., 2020)10 and other functions used for the proposed method.

• Folder datasets: containing Office+Caltech dataset, OfficeHome, ImageClef, Office31 and Amazon review dataset.
Due to space limitations, the dataset is not included but can be downloaded and put in the corresponding folder. Codes
and datasets used are publicly accessible and under free licenses.

E.2. Reproducing the results of the article

The following sections detail the parameter set to reproduce the experiments of the main article.

E.2.1. FIGURE 1

Script → PCA_versus_SPCA_single_task.m

E.3. Figure 2

Script → compareTL_binary.m

10To use these codes, one needs to have a Matlab compiler for Mex files
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E.3.1. TABLE 1

Script → CompareTL_multiclass.m
number_trials → 20
dataset → ’synthetic’ (for synthetic data)
dataset → ’officehome’ (for OfficeHome dataset)
dataset → ’ImageClef’ (for ImageClef dataset)

E.3.2. FIGURE 3

Script → Increased_tasks.m
dataset → ’synthetic’ (for synthetic data)
dataset → ’nlp’ (for amazon-review dataset)
dataset → ’mnist’ (for MNIST dataset)

E.3.3. FIGURE 4

Script → TradeOff_performance_running_time.m
dataset → ’synthetic’ (for synthetic data)
dataset → ’officehome’ (for OfficeHome dataset)
dataset → ’ImageClef’ (for ImageClef dataset)
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