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Abstract

Simplicity bias is the concerning tendency of deep
networks to over-depend on simple, weakly pre-
dictive features, to the exclusion of stronger, more
complex features. This is exacerbated in real-
world applications by limited training data and
spurious feature-label correlations, leading to bi-
ased, incorrect predictions. We propose a direct,
interventional method for addressing simplicity
bias in DNNs, which we call the feature sieve. We
aim to automatically identify and suppress easily-
computable spurious features in lower layers of
the network, thereby allowing the higher network
levels to extract and utilize richer, more meaning-
ful representations. We provide concrete evidence
of this differential suppression & enhancement of
relevant features on both controlled datasets and
real-world images, and report substantial gains on
many real-world debiasing benchmarks (11.4%
relative gain on Imagenet-A; 3.2% on BAR, etc).
Crucially, we do not depend on prior knowledge
of spurious attributes or features, and in fact out-
perform many baselines that explicitly incorpo-
rate such information. We believe that our feature
sieve work opens up exciting new research direc-
tions in automated adversarial feature extraction
and representation learning for deep networks.

1. Introduction
Deep networks are known to be vulnerable to a num-
ber of failure modes; in particular, simplicity bias is the
tendency of DNNs to prioritize weak predictive features
over stronger, more difficult-to-extract features (Shah et al.,
2020). This bias has been studied analytically (Pezeshki
et al., 2021) as well as empirically using natural images
(texture bias (Geirhos et al., 2018)) and carefully con-
trolled synthetic datasets (Hermann & Lampinen, 2020)
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Figure 1. Simplicity bias and spurious features. a) DNNs focus on
color to the exclusion of shape when both are predictive. b) Image
misclassified as elephant due to overdependence on texture features
(adapted from (Geirhos et al., 2018)). c) Classifiers mislabel blond-
haired male faces as female.

that independently manipulate feature complexity and pre-
dictive power. Such learning biases have significant real-
world consequences too, resulting for instance in biased
decision-making in AI-assisted workflows for face recog-
nition, healthcare, credit rating, etc. Figure 1 illustrates
the idea behind simplicity bias, and some real-world con-
sequences. As a result, much recent work aims to debias
neural network models via a variety of approaches to achieve
more equitable outcomes (Mehrabi et al., 2021; Zafar et al.,
2017; Dwork et al., 2012; Russell et al., 2017).

Previous approaches towards debiasing DNNs include
data manipulation via augmentation & adversarial train-
ing (Duboudin et al., 2022; Niu et al., 2022), data reweight-
ing (Nam et al., 2020), multiple training environments (Ar-
jovsky et al., 2019; Zhou et al., 2022), robust learn-
ing (Pezeshki et al., 2021), and fairness objectives (Li et al.,
2022). Other researchers have proposed diversity-enhanced
ensembles (Kim et al., 2022; Teney et al., 2022; Niu et al.,
2022) and architecture optimization (Bai et al., 2021b).

We propose a novel, direct approach towards addressing
simplicity bias in neural networks: an adversarial learning
challenge that forces the network to learn sophisticated fea-
ture representations. We refer to this learning challenge as a
feature sieve, and enforce it through the use of an auxiliary
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Figure 2. SIFER workflow and results. a) We use an auxiliary network to alternately identify predictive features and erase them only at
lower network layers. By positioning the auxiliary network at different depths, we control the complexity of erased features. See Section 3
for details. b) Our approach successfully suppresses digit and enhances CIFAR decodability at higher layers for CIFAR MNIST dataset.
c) We show significant gains over other approaches on many real-world debiasing benchmarks.

network (Figure 2a;b). Our primary intuition is that simple
features are computable early in the neural network, and
proliferate throughout the deeper layers, thereby hindering
the learning of complex features. We therefore propose to
use the auxiliary network to alternately predict labels using
available features at some intermediate level (i.e., identify
simple predictive features), and erase those features from
the early layers of the network, using a “forgetting loss”
(see Section 3 for details). Critically, our proposal does not
depend on any specific definition or complexity class of
“simple features”, and instead automatically adapts to data
characteristics using generalization error estimates.

We explicate our approach and its inner workings us-
ing experiments on controlled datasets (CMNIST, CI-
FAR MINST), and demonstrate its practical value on real-
world debiasing benchmarks including BAR (Nam et al.,
2020), CelebA (Liu et al., 2018), NICO (He et al., 2021),
ImageNet-9 (Xiao et al., 2020) and ImageNet-A (Hendrycks
et al., 2021); in nearly all experiments we show substantial
gains over other competitive approaches. Figure 2c provides
a quick visual summary of our findings.

Summing up, we propose SIFER: Sieving Features for
Robust learning, a novel approach towards mitigating sim-
plicity bias, thereby debiasing neural networks from spuri-
ous correlations in data. Our contributions are listed below.

• We propose and formalize the idea of a feature sieve for
mitigating simplicity bias, and provide an automated
learning recipe to control feature complexity based on
validation set.

• We show, using controlled datasets, the effectiveness
of our approach in enhancing the decodability of com-
plex features. We also demonstrate the customizability
of our approach–our work is not restricted only to
suppressing “simple” features, but is more broadly a
controllable feature tradeoff tool.

• We show significant gains in debiasing classifiers on
real-world datasets: 3.2%, 4%, 11.1% relative gains
over baselines on BAR, ImageNet-9, ImageNet-A (Fig-
ure 2c). Crucially, we do not use foreknowledge of
biased features / input dimensions in obtaining these
results, unlike many of the baselines we outperform.

• Finally, we show using feature importance visualiza-
tions that SIFER is able to correctly identify important
visual features of a scene, while suppressing irrelevant
but spuriously-label-correlated background features
(Figure 4); this underscores the relevance of SIFER to
real-world feature understanding.

We hope that our work with SIFER1 encourages further
work in designing interesting computational barriers for
neural networks; by automating the extraction and combina-
tion of diverse features ordered by complexity and predic-
tive power, we could make significant progress towards the
debiasing of machine learning models.

2. Related Work
2.1. Simplicity Bias

Shah et al. (2020) showed that neural networks trained with
SGD are biased to learn the simplest predictive features
in the data while ignoring others. Numerous studies have
attempted to investigate the correlation and impact of such
shortcuts, yielding a wealth of intriguing findings (Nagara-
jan et al., 2020; Hermann & Lampinen, 2020).

2.2. Debiasing Spurious Correlations

Unlike our work, the majority of previous work on mitigat-
ing simplicity bias uses explicit biased-attribute labels (Kim

1Code available at https://github.com/google-research/google-
research/sifer
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et al., 2019; Li & Vasconcelos, 2019; Sagawa et al., 2019;
Teney et al., 2020; Krueger et al., 2021; Bai et al., 2021a) in
their debiasing recipes. This reduces their practicality since
both identifying, and manually labeling biased instances and
dimensions in real-life data are significant barriers. Only
recently, the focus has shifted towards debiasing without
using explicit attribute labels (Teney et al., 2022; Kim et al.,
2022; Niu et al., 2022; Shrestha et al., 2022; Nam et al.,
2020). Here we discuss different technical approaches used
by previous work in both of the above directions:

Alternate Networks: LfF (Nam et al., 2020) and
LWBC (Kim et al., 2022) initially train a prejudiced net-
work and try to debias the second network by focusing on
samples that go against the bias.
Ensemble: LWBC (Kim et al., 2022) and ESB (Teney et al.,
2022) both create a classifier ensemble; the former enforces
debiasing via reweighting of training instances, and the lat-
ter incorporates a diversity constraint in the ensemble.
Architecture Design: NAS-OoD (Bai et al., 2021b) adds an
OOD generalization criterion to network architecture search
training to select inherently more robust network architec-
tures. OccamNet (Shrestha et al., 2022) adds a few inductive
biases in the network–for instance, explaining the dataset
with simple hypotheses and bounded network depth, and
applying spatial localization assumptions about unbiased
(visual) features in order to filter spurious features.
Multiple Environments: IRM (Arjovsky et al., 2019) uses
the theory of causal bayesian networks to find an invariant
feature representation using multiple training environments
with different bias correlations. REx (Krueger et al., 2021)
tries to improve on the worst linear combinations of risks
from different training environments. CaaM (Wang et al.,
2021) learns causal attention by partitioning the data on-the-
go to break correlation with bias.
Augmentations: DecAug (Bai et al., 2021a) proposed a se-
mantic augmentation and feature decomposition approach to
disentangle context features from category related features.
Niu et al. (2022) adds adversarial augmentations to the im-
age while training to avoid over-reliance on spurious visual
cues. This work is conceptually closest to our work, in that
it builds an ensemble where previous components compete
with a new classifier to encourage it to learn diverse hy-
potheses. Our approach directly addresses the competitive
development of features within a network (the “heart” of
the simplicity bias challenge); we also outperform them on
the BAR dataset (Nam et al., 2020) (Table 3), while being
more computationally parsimonious.

3. SIFER: a Feature Sieve for Bias Mitigation
3.1. Preliminaries & Intuition

We start from the assumption that simple features are (by
definition) quickly learned, available early in the neural net-

work stack (i.e., in layers closer to the input), and more
easily proliferate throughout the subsequent layers (see
e.g., Hermann & Lampinen (2020) for substantial support-
ive evidence for these assumptions). Further, the ubiqui-
tous presence of simple features actively prevents acquisi-
tion of more complex hypotheses by subsequent NN layers,
due to the so-called simplicity bias inherent in NN training
methods–see e.g., Shah et al. (2020); Pezeshki et al. (2021)
for theoretical results supporting these claims.

Thus, our primary goal is to identify and actively suppress
simple / spurious predictive features, so as to create room for
the learning of complex predictive features at higher layers
of the NN–an approach we refer to as a “feature sieve”.

We include another key consideration in the design of our
approach: do not leverage any a priori information of simple
features, or even the function class / degree of complexity
of simple features. To support this design goal, we a) build
into our design the knobs that control tradeoffs between
simpler- and more complex-to-compute features, and b)
focus on reducing generalization error as the objective in
setting these knobs. This allows us to not only automatically
discover useful tradeoffs, but also to ensure that our trained
classifiers are overall more accurate than standard baselines.

As a final remark, we note that the distinctions between sim-
ple / complex, spurious / accurate, early-layer / late-layer,
and early-acquisition / late-acquisition are likely substan-
tially more nuanced than a simple one-to-one correspon-
dence, even though they are often used interchangeably for
ease of exposition. For instance, depending on the dataset,
a “simple” feature may in fact be the best / most unbiased
predictive feature. For this reason, too, depending upon gen-
eralization error for controlling the feature sieve is strongly
preferred to the use of any stronger inductive bias along the
dimensions mentioned above.

3.2. The Alternating Identify-and-Erase Workflow

Figure 2(a) provides an overview of SIFER. Briefly, we use
an auxiliary network, working at an intermediate level of
representation in the neural network, to identify predictive
features (simple / spurious) in the representation, and sub-
sequently to erase them at the lower layers of the primary
network. This is a direct operationalization of our primary
goal stated above.

Identifying simple features: The training of the primary
network proceeds in conventional fashion via forward- and
back-propagation (Figure 2(a), left panel, black & blue ar-
rows respectively), with an additional auxiliary layer that
learns to predict the label from an intermediate representa-
tion. Note that feedback from the auxiliary layer does not
back-propogate to the main network. This is a conscious
decision choice to force the auxiliary layer to learn from
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already-available features rather than create or reinforce
them in the main network. By controlling the auxiliary
network’s capacity and the layer of the primary network to
which it is attached, we can control the complexity of the
predictive features it can identify.

Applying the feature sieve: We aim to erase the identified
features in the early layers of the neural network, by the
combination of the following steps: a) The parameters of
auxiliary layer (A) are frozen, and only that portion of the
main network (Md) which is before the auxiliary layer is
kept trainable– this is the region where we wish to “forget”
the simple features, and b) We apply a forgetting loss (Lf )
at the output layer of the auxiliary network.

ŷaux = A(Md(x)) (1)

yep = [
1

n
,
1

n
, ...] (n entries) (2)

Lf = CE(ŷaux,yep) (3)

where x, yep, ŷaux and n represent input images, a pseudo-
label with uniform probability across classes, the prediction
from auxiliary layer, and number of classes respectively.

Iterative optimization: A challenge is that this process of
identification and sieving is dynamic in nature; in particular,
the two steps may interfere with each other. In order to han-
dle this challenge, we interleave the two steps such that each
forgetting step happens after regular intervals of some mini-
batch iterations (F) which is treated as a hyperparameter
selected using the validation set.

The entire learning recipe is summed up in Algorithm 1

Algorithm 1 SIFER: Mitigating simplicity bias
Input :Pretrained Model Weights W;

training data D; training iters N
Hparams :Aux Depth AD; Aux Position AP

main lr weight α1; aux lr weight α2

aux forget weight α3; forget after iters F
Output :robust model weights W
for k = 1 . . . N do

(x,y)← sample(D)
ŷ, ŷaux ← Forward with aux(x,AD,AP ,W)
L1 ← CE(ŷ,y)
L2 ← CE(ŷaux,y)
Lf ← CE(ŷaux,U)
L ← α1L1 + α2L2

if k % F == 0 then
L ← L+ α3Lf

end
∇W← Backward(L)
W← OptimizeStep(∇W)

end

3.3. Controllability of the Feature Sieve

As remarked earlier, we aim to automatically discover no-
tions of and tradeoffs between so-called simple and complex
features, as relevant for the specific dataset at hand. The
feature sieve approach described here allows for many mech-
anisms to control this discovery & tradeoff. The primary
parameters are the position & depth of the auxiliary network
(AP ,AD) which implicitly control the function complexity
of the features available for discovery by the auxiliary net-
work; and the auxiliary forgetting weight α3, which controls
the degree to which the discovered features are suppressed.
The interleaving of the feature identifying & feature sieving
steps is controlled by the parameter F–again, based on the
specific dataset and the nature of the features contained, this
controls the dynamics of the training procedure.

Finally, we set these hyperparameters based on the goal of
minimizing validation error–this ensures not only that the
parameters are chosen using unbiased estimates of general-
ization, but also that at a minimum, we perform better than
the standard training baseline (which, as the trivial solution
of not-forgetting, is included in the search space for the
feature sieve).

4. Experiment Setup
4.1. Datasets for Studying Simplicity Bias

CMNIST: Colored-MNIST is a 2-class synthetic dataset
used to study simplicity bias. We use digits 0 & 1 respec-
tively from the MNIST dataset, with an added color channel
(red for 0 images, green for 1).

CIFAR-MNIST: Similar to CMNIST, this binary classifi-
cation dataset has paired-composite images–Class 0 pairing
MNIST 0s with CIFAR automobiles, and Class 1 pairing
MNIST 1s with CIFAR truck images.

Both datasets contain perfectly predictive simple and com-
plex features; by training a classifier and manipulating the
test set to break one of these correlations, one can examine
which features are being used by the trained classifier.

4.2. Real-World Debiasing Benchmarks

BAR: Biased Activity Recognition (Nam et al., 2020) is a
real-world image benchmark for classifying human actions
(images) into 6 classes; each training image contains spuri-
ous correlations with background features (e.g., rocks with
climbing). The test set contains the same set of actions but
with different backgrounds (e.g., ice with climbing). The
training data has no bias-conflicting examples (i.e., exam-
ples which violate the spurious correlation), which makes
this a challenging benchmark.

CelebA: CelebA (Liu et al., 2018) contains human faces,
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each labelled with 40 attributes. Following Kim et al. (2022),
we focus on predicting HairColor, an attribute heavily
correlated with Gender in the dataset. Specifically, most
CelebA images with blond-hair (more than 99% of
them in the training set) are women.

NICO: NICO (He et al., 2021) is a real-world benchmark
for out-of-distribution robustness. Following Bai et al.
(2021a), we used its Animal subset containing 10 object
classes and 10 context labels. The training set only contains
7 contexts for each object class while the validation and
test set contains 3 extra unseen contexts (total 10). Unlike
the majority of the baselines, we don’t use context label
attributes in train, validation, or test.

ImageNet-9: ImageNet-9 (Xiao et al., 2020) is a subset of
ImageNet (Deng et al., 2009) containing 9 super classes. It
has been established that this subset has a spurious correla-
tion between object labels and image texture. We followed
the setting used by (Kim et al., 2022) and (Bahng et al.,
2020) for creating train and val split. We report the average
accuracy on the validation split.

ImageNet-A: ImageNet-A (Hendrycks et al., 2021) con-
tains handpicked real-world images misclassified by models
trained on ImageNet. Since these misclassifications are due
to over-reliance on spurious features like color&texture, we
use this dataset for evaluating models trained on ImageNet-9
as a robustness challenge (i.e., OOD test set).

4.3. Training Procedure & Metrics

For all our real-world experiments we consistently used
ResNet-18, an auxiliary layer that uses the same layer struc-
ture as of BasicBlock of ResNet with varying depth, opti-
mized using SGD optimizer with a fixed learning rate of
0.001. For real-world experiments the model is loaded with
ImageNet pre-trained weights. We repeat the experiments
with 5 different random seeds and report the mean and std
deviation of results. Refer Appendix A.1 for more details.

Choice of Validation Set: For BAR, since there is no vali-
dation data provided, we study it under two settings. In the
first, we use 20% of images from the test set and call it OOD-
validation. In the second setting, which is harder and more
realistic, we use 20% images from the train set, calling it
In-Domain (ID) validation. For NICO-Animal, CelebA Hair
and ImageNet-9, we use the already supplied validation data.
Table 1 shows the percentage of “bias-conflicting” examples,
i.e., examples that violate the spurious feature correlation or
training domain, for each portion of each dataset. Note that
BAR-ID val setting, NICO and ImageNet-9/ImageNet-A
experiments do not have any bias conflicting examples in
the train set, and methods that rely on attribute labels and/or
reweighting of training data will perform poorly on them.

Evaluation Metrics: Accuracy means average accu-

Table 1. Composition of conflicting examples in different datasets.

Dataset % Conflict Examples hparam goal
Train Val Test

BAR-ID val 0 0 100 Avg Acc
BAR-OOD val 0 100 100 Avg Acc
CelebA 0.8 0.9 0.9 Unbiased Acc
NICO 0 10 10 Avg Acc
IN-9/IN-A 0 0 100 Avg Acc

racy on all examples. Unbiased means accuracy aver-
aged over each label-context group. This metric is more
fair when there is a huge imbalance between the groups.
Conflicting means accuracy only on the bias conflict-
ing examples.

We used Accuracy for BAR, NICO and Imagenet-9 /
ImageNet-A and Unbiased for CelebA-Hair dataset as the
performance metric on validation data for hyperparameter
search and early stopping (Table 1).

Feature decodability: To measure the “decodability” of a
chosen feature in a classifier at a given layer, we freeze the
classifier and train a linear decoder on its network repre-
sentation at the specified layer. The decoder is trained on
validation data, with each instance being assigned as label
the value of its feature. For example, to check decodabil-
ity of shape in a CMNIST classifier, input instances are
assigned the label of the shape they contain, while ignoring
their color. This decoder’s accuracy is then reported on the
test set.

5. Results
5.1. Suppressing Simple Features

We first studied the effectiveness of SIFER on targeted sup-
pression of specific features. To do this, we experimented
with the CIFAR MNIST dataset, which consists of com-
posite pairings of MNIST & CIFAR images, each fully
predictive of the assigned label (see Section 4 for more
details). DNNs are known to entirely ignore the CIFAR
feature on this training dataset–when the CIFAR component
is randomized at test-time, accuracy is unaffected, but when
the MNIST component is randomized, accuracy drops to
chance. We refer to the MNIST component as the simple
feature, and CIFAR as the complex feature.

Figure 3 shows layerwise decodability (Section 4.3) of sim-
ple and complex features, tracked across epochs in the train-
ing process. We contrast standard training (top row) against
SIFER (bottom row). Standard training overemphasizes the
simple feature at higher layers, and ignores the complex
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Figure 3. Decodability of Simple (MNIST) and Complex (CIFAR) features across layers of ResNet-50 with a) Normal ERM training b)
with SIFER

Table 2. Feature Controllability.

DataSet Target Feature SIFER (Ours) ERM
SR CR SR CR

CMNIST Complex (Digit) 99.54±0.19 58.14±10.69 56.96±6.59 92.21±3.92
Simple (Color) 52.44±1.22 99.64±1.30 49.20±2.60 96.27±0.99

CIFAR MNIST Complex (CIFAR) 62.37±4.62 48.93±1.92 58.14±1.60 100
Simple (Digit) 47.17±0.14 99.83±0.29 49.20±2.60 100

feature. The complex CIFAR feature is in fact decodable
to some extent in earlier layers of the ERM classifier, but
is suppressed in later layers, due to the preponderance of
the simple feature. In contrast, the auxiliary forgetting loss
in SIFER effectively suppresses the simple feature in the
earlier layers, and thereby enhances the decodability of the
complex feature in the higher layers. This shows that remov-
ing the availability of spurious simple features is a direct
method of overcoming simplicity bias.

These findings are more remarkable given that no prior
knowledge of “simple”/“complex” features was used in any
way whatsoever during training. SIFER organically dis-
covers and suppresses the by-design simple feature purely
through the use of the strategically placed auxiliary network,
and its configuration via the training recipe.

5.2. Feature Controllability using SIFER

We described in Section 3.3 the various degrees of free-
dom in SIFER for identifying and suppressing features, and
choosing them by the use of a validation set (i.e., using gen-
eralization error). This gives us a simple, powerful method
for certain kinds of domain generalization, by simply using
domain-shift data as the validation set. We demonstrate
this capability by conducting studies on controlled datasets

CMNIST & CIFAR MNIST. In each, the training data were
designed to have pairings of simple and complex features
where both simple and complex features were fully predic-
tive. We then trained a SIFER classifier for different choices
of validation set, representing which feature we actually
wanted the classifier to focus on. This was achieved by
randomizing the “non-relevant” feature in the validation
dataset, and choosing all our hyperparameters based on that
validation dataset. This represents a real-world scenario
where small amounts of vetted data are available for opti-
mization of a model, but (re)-labeling or manipulating all
training data is infeasible. Table 2 shows the results compar-
ing SIFER against ERM. SIFER shows higher accuracy for
chosen features (higher diagonal terms) than for spurious
features (off-diagonal terms), driven by the choice of the
validation data. In contrast, ERM primarily focuses on the
simple features, irrespective of the choice of validation set
(higher second column numbers). Thus, our method is in
fact able to focus on the relevant feature–be it simple or
complex–in an easily controllable manner.
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Figure 4. Examples of SIFER’s focus on relevant features while suppressing irrelevant background information. Top row: Input images;
Middle row: GRAD-CAM-derived feature importance visualizations for the ERM classifier; Bottom row: feature importance for SIFER.
First 3 columns from BAR (Nam et al., 2020), and last 3 columns from NICO-Animal (He et al., 2021).

5.3. Debiasing Real-World Datasets

Our method outperforms baselines on four different real
world datasets–BAR (Nam et al., 2020), CelebA Hair (Liu
et al., 2018), NICO (He et al., 2021) and Imagenet-
A (Hendrycks et al., 2021), by large margins (upto 11%,
see Figure 2c for a quick summary). Critically, we chose
in all our experiments to not use any knowledge of which
attribute labels are considered spurious in each dataset–this
is because in real-world scenarios, it is difficult to know
in advance which attributes may end up containing biased
information, or to label data according to those attributes in
order to do targeted debiasing of models. Nevertheless, we
outperform the other baselines, including many that do use
attribute labels as part of their training procedure.

Mitigating Spurious Correlations: Biased Activity
Recognition (BAR) and CelebA Hair Dataset represent back-
ground and gender bias in real life. In the BAR training set,
human activity (image categories) is spuriously correlated
with the background in which those activities are performed;
in CelebA Hair, hair color is strongly correlated with gender.
Both BAR and CelebA are heavily biased and contain no
or very few conflicting examples–eg. CelebA Hair has only
1% of men with blond hair in the train set.

2ESB uses R50 architecture unlike other baseline which uses
R18.

3Architecture design optimization based method, hence unfair
to compare directly against other methods.

For BAR, since no validation set is provided, we show re-
sults both using in-distribution and out-distribution valida-
tion sets to compare against both sets of baselines: those
that do and do not require conflicting examples in the val-
idation set4. We outperform baselines in both settings by
more than 1-2% absolute accuracy, refer Table 3. Table 4
shows results on CelebA dataset, we get almost the same
unbiased accuracy as LWBC and improve upon conflicting
accuracy.

Domain-shift Generalization: NICO introduces three new
contexts in which object classes appear in the validation and
test set, that are absent in the training set. Table 5 shows
that SIFER beats all baselines on classification accuracy for
the test set; this is despite our not using context information,
unlike a majority of the baselines. Thus, SIFER is valuable
for zero-shot domain generalization.

Robustness to Texture bias: Table 6 shows results on
ImageNet-9, which is known to be biased towards texture,
and ImageNet-A, which consists of natural images that have
bias-conflicting features. This setting is closest to real-world
scenarios for texture bias. We improve the previous best
baseline by 3% absolute on ImageNet-9 validation set and
by 4% absolute on ImageNet-A test set. Thus, SIFER en-

4For instance, methods that work on the principle of reweight-
ing conflicting samples in the trainset (eg LWBC (Kim et al., 2022))
typically add 1% of conflicting samples from the test set to the
training data
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Table 3. Classification Accuracy (%) on test set of BAR Dataset.

Method Used OOD Val Accuracy

ERM 3 51.85± 5.92

BiaSwap (Kim et al., 2021) 3 52.44
LfF (Nam et al., 2020) 3 62.98± 2.76

PGI (Ahmed et al., 2021) 3 65.19± 1.32

EIIL (Creager et al., 2021) 3 65.44± 1.17

ESB2
(Teney et al., 2022) 3 67.10± 0.30

Roadblock (Niu et al., 2022) 3 69.51± 2.43

Debian (Li et al., 2022) 3 69.88± 2.92

SIFER (Ours) 3 72.08± 0.38

ERM 7 35.32± 0.46

ReBias (Bahng et al., 2020) 7 37.02± 0.26

LfF (Nam et al., 2020) 7 48.15± 0.93

SSL+ERM (Kim et al., 2022) 7 60.88± 0.80

LWBC (Kim et al., 2022) 7 62.03± 0.74

ESB (Teney et al., 2022) 7 64.40± 0.20

SIFER (Ours) 7 65.75± 1.84

Table 4. Unbiased and Conflicting Accuracy metrics (%) on Test
set of CelebA Hair Dataset

Method
Spurious
Attribs Unbiased Conflict

DRO (Sagawa et al., 2019) 3 85.43± 0.53 83.40± 0.67

EnD (Tartaglione et al., 2021) 3 91.21± 0.22 87.45± 1.06

CSAD (Zhu et al., 2021) 3 89.36 87.53

ERM 7 70.25± 0.35 52.52± 0.19

LfF (Nam et al., 2020) 7 84.24± 0.37 81.24± 1.38

SSL+ERM (Kim et al., 2022) 7 80.48± 0.91 66.79± 2.20

LWBC (Kim et al., 2022) 7 88.90± 1.55 87.22± 1.14

SIFER (Ours) 7 89.00± 0.92 88.04± 1.25

courages learning features robust to texture bias, improving
performance on both the in-distribution validation set as
well as bias-conflicting test set. Two critical findings here
are a) that SIFER did not sacrifice in-distribution accuracy
through the process of sieving simple features, and b) the
learned classifier robustly transfers over to a novel test set,
where it provides even larger gains.

5.4. SIFER: Debiasing without Extra Information

Table 3 (BAR dataset, bottom half) shows that SIFER with
only in-distribution validation data (cf. Table 1) outperforms
most baselines that leverage an additional OOD validation
set (top half). Further, without using either attribute knowl-
edge or conflicting examples in the validation set, we show

Table 5. Classification Accuracy (%) on test set of NICO Dataset.
Most of the baselines (DecAug, DRO, etc) use spurious attribute
labels for training, while we do not.

Method Accuracy

ERM 75.87
IRM (Arjovsky et al., 2019) 59.17
REx (Krueger et al., 2021) 74.31
JiGen (Carlucci et al., 2019) 84.95
Mixup (Zhang et al., 2017) 80.27
Cumix (Mancini et al., 2020) 76.78
MTL (Blanchard et al., 2021) 78.89
DANN (Ganin et al., 2016) 75.59
CORAL (Sun & Saenko, 2016) 80.27
MMD (Li et al., 2018) 70.91
DRO (Sagawa et al., 2019) 77.61
CNBB (He et al., 2021) 78.16
DecAug (Bai et al., 2021a) 85.23
SIFER (Ours) 86.20± 0.85

NAS-OoD3
(Bai et al., 2021b) 88.72

huge gains over ERM (65.7% accuracy vs 35.3%), demon-
strating that SIFER does not critically depend on such addi-
tional information for debiasing, although we can certainly
leverage such information for additional gains (72.8% vs
65.7% accuracy when using OOD validation data).

5.5. Feature Decodability in Real-world Datasets

Figure 5 shows feature decodability (Section 4.3) on the real
world dataset CelebA, where the target label is hair color,
and previous work has shown that gender is a spuriously
correlated attribute. Results show that SIFER suppresses
gender decodability, particularly in upper layers, with color
feature achieving stronger decodability (unlike ERM where
gender is more easily decodable than color). This mirrors
the results on synthetic datasets that were presented in Fig-
ure 3, and shows that SIFER can automatically identify and
suppress featural information related to abstract concepts
such as gender, in support of better generalization accuracy.

5.6. SIFER focuses on Relevant Information

We visualize the information in an image that is relevant to
a given classifier (Selvaraju et al., 2017), in order to verify
whether our feature sieving results in semantically relevant
modifications to learned classifiers. Figure 4 shows this
evaluation, contrasting ERM classifier’s regions of focus
(middle row) and SIFER’s regions of focus (bottom row)
on a range of input images (top row, drawn from BAR &
NICO). Interestingly, not only does SIFER correctly focus

8
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Figure 5. Decodability of Spurious (Gender) and Target (Hair Color) features across layers of ResNet-18 while training on CelebA with a)
Normal ERM training and b) with SIFER.

Table 6. Classification Accuracy (%) on Validation set of
ImageNet-9 and test set of ImageNet-A.

Method
Spurious
Attribs ImageNet-9 ImageNet-A

Accuracy Accuracy

StylisedIN (Geirhos et al., 2018) 3 88.4± 0.5 24.6± 1.4

LearnedMixin (Clark et al., 2019) 3 64.1± 4.0 15.0± 1.6

RUBi (Cadene et al., 2019) 3 90.5± 0.3 27.7± 2.1

ERM 7 90.8± 0.6 24.9± 1.1

BagNet18 (Brendel & Bethge, 2019) 7 67.7± 0.3 18.8± 1.15

ReBias (Bahng et al., 2020) 7 91.9± 1.7 29.6± 1.6

LfF (Nam et al., 2020) 7 86.00 24.60
CaaM (Wang et al., 2021) 7 95.70 32.80
SSL+ERM (Kim et al., 2022) 7 94.18± 0.07 34.21± 0.49

LWBC (Kim et al., 2022) 7 94.03± 0.23 35.97± 0.49

SIFER 7 97.78± 0.12 39.98± 0.81

on the central object of interest, but also it is able to effec-
tively suppress the (spuriously label-correlated) background
information, which is highly valued by the ERM classifier.
This undercores SIFER’s ability to carefully differentiate
between relevant and irrelevant features, rather than some
notion of simple vs complex features alone.

6. Discussion & Conclusion
We proposed SIFER–a novel feature sieve approach towards
addressing simplicity bias and spurious correlations in deep
neural networks. Our proposal introduces an auxiliary net-
work attached to the deep network which alternately iden-
tifies and suppresses predictive features. The approach is
controllable through the use of configuration parameters op-

timized using validation data; thus, it requires no foreknowl-
edge or hand-coding of the notion of “simple features”. We
demonstrated on controlled datasets the ability of SIFER
to automatically identify and suppress features; further, we
showed that, strictly speaking, SIFER rebalances the role
of various features in a controllable manner driven by the
needs of generalization. We showed using extensive ex-
periments on real-world data that our approach provides
significant gains–3-11% relative accuracy improvements
on BAR, NICO, and Imagenet-A. We believe our work is
a small, important first step in a fruitful new direction of
research. We hope that follow-up work will build on the no-
tion of the feature sieve, developing effective computational
barriers that encourage deep networks to discover and utilize
richer, more powerful featural representations. Our current
approach strikes a balance between various competing fea-
tures, guided by generalization error estimates (validation
error). One could potentially extract even more value if
different feature classes could be isolated into (relatively)
independent predictors, then combined effectively. This is,
for instance, the approach taken by Niu et al. (2022). Thus,
a straightforward next step we aim to explore is the study
of ensembling approaches to combine a range of features
of varying complexity & predictive power, and methods for
efficiently learning them. We also hope to develop a system-
atic theoretical understanding of feature sieve approaches
and their role in supervised learning using DNNs.
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Appendix

A. Additional Details
A.1. Training Details

For all experiments we consistently used ResNet-18, an auxiliary layer that uses the same layer structure as of BasicBlock of
ResNet with varying depth. The ResNet network is composed of 4 layers modules (each itself is made up of 2 BasicBlocks).
We apply auxiliary layer only at the end of the of layers except layer 4, this gives us 3 different choice for aux position(AP )
which we treat as hyperparameter. The network is optimized using SGD optimizer with a fixed learning rate of 0.001. For
real-world experiments the model is loaded with ImageNet pre-trained weights. We repeat the experiments with 5 different
random seeds and report the mean and std deviation of results. Table 7 shows the hyperparamters search space for all the
hyperparameters that we tune on the basis of validation set. To reduce hyperparameter search space we fixed the value of α1
to 10. Table 8 shows the hyperparameter values obtained from the hyperparamter tuning.

Table 7. Range for hyperparameters search.

Hparam Range

AD [1, 9]
AP [1, 3]
α2 loguniform(10−1, 102)
α3 loguniform(10−1, 102)
F [1, 9] ∗ 10

Table 8. Hyperparameter values obtained from the tuning.

Dataset AD AP α2 α3 F
BAR - ID val 4 2 2 4.5 70
BAR - OD val 2 2 1 3 30
CelebA 2 2 25 15 50
NICO 2 1 1 75 70
IN-9/IN-A 4 3 1 4.5 70

B. Baselines
Here we list and briefly explain all the baselines that we compare against on real world datasets:
BiaSwap (Kim et al., 2021) proposes a bias-tailored augmentation-based approach for learning debiased representation
without requiring supervision on the bias type. they divide the data into bias-guiding and bias-conflicting groups and then
swaps the bias in bias guiding group.
LfF (Nam et al., 2020) uses generalized cross-entropy initially trains a prejudiced net-work and tries to debias the second
network by focusing weighing on samples that go against the bias.
IRM (Arjovsky et al., 2019) uses theory of causal bayesian networks to find an invariant feature representation using
multiple training environments with different bias correlations.
REx (Krueger et al., 2021) proposed a min-max algorithm to optimize for the worst linear combination of risks on different
environments.
EIIL (Creager et al., 2021) optimizes for bias group assignment to automatically identify the bias groups to maximize IRM.
PGI (Ahmed et al., 2021) follows EIIL to identify bias groups by training a small neural network.
Evading Simplicity Bias (ESB) (Teney et al., 2022) creates a ensemble of diverse classifiers by incorporating a diversity
regularizer between the gradients while training.
Roadblock (Niu et al., 2022) adds adversarial augmentations to the image while training to avoid over-reliance on spurious
visual cues.
Debian (Li et al., 2022) trains two networks in alternate manner namely discoverer and classifier, the discoverer tries to find
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multiple unknown biases of the classifier without any annotations of biases, and the classifier aims at unlearning the biases
identified by the discoverer.
ReBias (Bahng et al., 2020) propose a novel framework to train a de-biased representation by encouraging it to be different
from a set of representations that are biased by design.
LWBC (Kim et al., 2022) employs a committee of classifiers as an auxiliary module that identifies bias-conflicting data and
assigns large weights to them when training the main classifier.
Group-DRO (Sagawa et al., 2019) minimizes for worst-case training loss over a set of pre-defined groups.
EnD (Tartaglione et al., 2021) proposes a regularization technique that uses the bias attributes to prevent deep models from
learning spurious biases by inserting an information bottleneck.
CSAD (Zhu et al., 2021), given the bias attributes, explicitly extracts target and bias features disentangled from the latent
representation generated by a feature extractor and then learns to discover and remove the correlation between the target and
bias features.
JiGen (Carlucci et al., 2019) jointly classifies objects and solves unsupervised jigsaw tasks.
Cumix (Mancini et al., 2020) mixes up data and labels from different domains to be able to recognize unseen categories in
unseen domains.
MTL (Blanchard et al., 2021) argue that problem of Domain Generalization can be viewed as a kind of supervised learning
problem by augmenting the original feature space with the marginal distribution of feature vectors.
DANN (Ganin et al., 2016) proposes a representation learning approach such that features are not predictive of the domain
from which the model is being trained on.
CORAL (Sun & Saenko, 2016) proposes an unsupervised domain adaptation method that aligns the second-order statistics
of the source and target distributions with a linear transformation.
MMD (Li et al., 2018) extend adversarial autoencoders by imposing the Maximum Mean Discrepancy measure to align the
distributions among different domains, and matching the aligned distribution to an arbitrary prior distribution via adversarial
feature learning.
CNBB (He et al., 2021) is an OoD learning method that based on sample reweighting inspired by causal inference.
DecAug (Bai et al., 2021a) proposed a semantic augmentation and feature decomposition approach to distangle context
features from category related features.
NAS-OoD (Bai et al., 2021b) adds an OOD generalization criterion to network architecture search training to construct
inherently more robust network architectures.
StylisedIN (Geirhos et al., 2018) showed that ImageNet is texture biased and works on improving shape bias.
LearnedMixin (Clark et al., 2019) trains a robust model as part of an ensemble with the naive one in order to encourage it
to focus on other patterns in the data that are more likely to generalize.
CaaM (Wang et al., 2021) learns causal attention by partitioning the data on-the-go to break correlation with bias.
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