
Provable Data Subset Selection For Efficient Neural Networks Training

Murad Tukan * 1 Samson Zhou 2 Alaa Maalouf 1 3 Daniela Rus 3 Vladimir Braverman 2 Dan Feldman 4

Abstract
Radial basis function neural networks (RBFNN)
are well-known for their capability to approximate
any continuous function on a closed bounded set
with arbitrary precision given enough hidden neu-
rons. In this paper, we introduce the first algo-
rithm to construct coresets for RBFNNs, i.e., small
weighted subsets that approximate the loss of the
input data on any radial basis function network
and thus approximate any function defined by an
RBFNN on the larger input data. In particular, we
construct coresets for radial basis and Laplacian
loss functions. We then use our coresets to ob-
tain a provable data subset selection algorithm for
training deep neural networks. Since our coresets
approximate every function, they also approxi-
mate the gradient of each weight in a neural net-
work, which is a particular function on the input.
We then perform empirical evaluations on func-
tion approximation and dataset subset selection
on popular network architectures and data sets,
demonstrating the efficacy and accuracy of our
coreset construction.

1. Introduction
Radial basis function neural networks (RBFNNs) are ar-
tificial neural networks that generally have three layers:
an input layer, a hidden layer with a radial basis func-
tion (RBF) as an activation function, and a linear output
layer. In this paper, the input layer receives a d-dimensional
vector x ∈ Rd of real numbers. The hidden layer then
consists of various nodes representing RBFs, to compute
ρ(∥x − ci∥2) := exp

(
−∥x− ci∥22

)
, where ci ∈ Rd is

the center vector for neuron i across, say, N neurons in

* This research was first carried out during the Ph.D. studies
at the department of computer science of the University of Haifa
1DataHeroes, Israel. 2Department of Computer science, Rice uni-
versity. 3CSAIL, MIT, Cambridge, USA. 4Department of computer
science, University of Haifa, Israel. Correspondence to: Murad
Tukan <murad@dataheroes.ai>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

the hidden layer. The linear output layer then computes∑N
i=1 αiρ(∥x − ci∥2), where αi is the weight of neuron i

in the linear output neuron. Therefore, RBFNNs are feed-
forward neural networks because the edges between the
nodes do not form a cycle, and enjoy advantages such
as simplicity of analysis, faster training time, and inter-
pretability, compared to alternatives such as convolutional
neural networks (CNNs) and even multi-layer perceptrons
(MLPs) (Padmavati, 2011).

Function approximation via RBFNNs. RBFNNs are uni-
versal approximators in the sense that an RBFNN with a suf-
ficient number of hidden neurons (large N) can approximate
any continuous function on a closed, bounded subset of Rd

with arbitrary precision (Park & Sandberg, 1991), i.e., given
a sufficiently large input set P of n points in Rd and given its
corresponding label function y : P → R, an RBFNN, can be
trained to approximate the function y. Therefore, RBFNNs
are commonly used across a wide range of applications,
such as function approximation (Park & Sandberg, 1991;
1993; Lu et al., 1997), time series prediction (Whitehead
& Choate, 1996; Leung et al., 2001; Harpham & Dawson,
2006), classification (Leonard & Kramer, 1991; Wuxing
et al., 2004; Babu & Suresh, 2012), and system control (Yu
et al., 2011; Liu, 2013), due to their faster learning speed.

For a given RBFNN size, i.e., the number of neurons in
the hidden layer, and an input set, the aim of this paper is
to compute a small weighted subset that approximates the
loss of the input data on any radial basis function neural
network of this size and thus approximates any function
defined (approximated) by such an RBFNN on the big input
data. This small weighted subset is called a coreset.

Coresets. Consider a prototypical machine/deep learning
problem in which we are given an input set P ⊆ Rd of n
points, its corresponding weights function w : P → R, a set
of queries X (a set of candidate solutions for the involved
optimization problem), and a loss function f : P ×X →
[0,∞). The tuple (P,w,X, f) is called the query space, and
it defines the optimization problem at hand — where usually,
the goal is to find x∗ ∈ argminx∈X

∑
p∈P w(p)f(p, x).

Given a query space (P,w,X, f), a coreset is a small
weighted subset of the input P that can provably approxi-
mate the cost of every query x ∈ X on P (Feldman, 2020);
see Definition 2.1. In particular, a coreset for a RBFNN can

1

Provable Data Subset Selection For Efficient Neural Network Training

approximate the cost of an RBFNN on the original training
data for every set of centers and weights that define the
RBFNN (see Section 4). Hence, the coreset approximates
also the centers and weights that form the optimal solution
of the RBFNN (the solution that approximates the desired
function). Thus a coreset for a RBFNN would facilitate
training data for function approximation without reading
the full training data and more generally, a strong coreset
for an RBFNN with enough hidden neurons would give a
strong coreset for any function that can be approximated to
some precision using the RBFNN.

To this end, in this paper, we aim to provide the first
coreset for RBFNNs, and thus provably approximating
(providing a coreset to) any function that can be approx-
imated by a given RBFNN.

Furthermore, we can use this small weighted subset (core-
set) to suggest a provable data subset selection algorithm
for training deep neural networks efficiently (on the small
subset). Since our coreset approximates every function that
can be approximated by an RBFNN of this size, it also ap-
proximates the gradient of each weight in a neural network
(if it can be approximated by the RBFNN).

Training neural networks on data subset. Although deep
learning has become widely successful with the increasing
availability of data (Krizhevsky et al., 2017; Devlin et al.,
2019), modern deep learning systems have correspondingly
increased in their computational resources, resulting in sig-
nificantly larger training times, financial costs (Sharir et al.,
2020), energy costs (Strubell et al., 2019), and carbon foot-
prints (Strubell et al., 2019; Schwartz et al., 2020). Data
subset selection (coresets) allows for efficient learning at
several levels (Wei et al., 2014; Kaushal et al., 2019; Cole-
man et al., 2019; Har-Peled & Mazumdar, 2004; Clarkson,
2010). By employing a significantly smaller subset of the
big dataset, (i) we enable learning on relatively low resource
computing settings without requiring a huge number of
GPU and CPU servers, (ii) we may greatly optimize the
end-to-end turnaround time, which frequently necessitates
many training runs for hyper-parameter tweaking, and (iii)
because a large number of deep learning trials must be done
in practice, we allow for considerable reductions in deep
learning energy usage and CO2 emissions (Strubell et al.,
2019). Multiple efforts have recently been made to improve
the efficiency of machine learning models using data subset
selection (Mirzasoleiman et al., 2020a; Killamsetty et al.,
2021b;a; Pooladzandi et al., 2022). However, existing tech-
niques either (i) employ proxy functions to choose data
points, (ii) are specialized to specific machine learning mod-
els, (iii) use approximations of parameters such as gradient
error or generalization errors, (iv) lack provable guarantees
on the approximation error, or (v) require an inefficient gra-
dient computation of the whole data. Most importantly, all

of these methods are model/network dependent, and thus
computing the desired subset of the data after several train-
ing epochs (for the same network) takes a lot of time and
must be repeated each time the network changes.

To this end, in this paper, we introduce a provable and
efficient model-independent subset selection algorithm
for training neural networks. This will allow us to com-
pute a subset of the training data, that is guaranteed to
be a coreset for training multiple neural network archi-
tectures/models.

1.1. Our Contributions

In this paper, we introduce a coreset that approximates
any function can be represented by an RBFNN architec-
ture. Specifically:

(i) We provide a coreset for the RBF and Laplacian cost
functions; see Algorithm 1, and Section 3.1.2.

(ii) We generate a coreset for any RBFNN model, in turn
approximating any function that can be represented by
the RBFNN; see Figure 1 for illustration, and Section 4
for more details.

(iii) We then exploit the properties of RBFNNs to approxi-
mate the gradients of any deep neural networks (DNNs),
leading towards provable subset selection for learn-
ing/training DNNs. We also show the advantages of
using our coreset against previous subset selection tech-
niques; see Section 5 and Section 7.

(iv) Finally, we provide an open-source code implementa-
tion of our algorithm for reproducing our results and
future research (ope, 2023).

1.2. Related Work

A long line of active work has studied efficient coreset con-
structions for various problems in computational geometry
and machine learning, such as k-means and k-median clus-
tering (Har-Peled & Mazumdar, 2004; Chen, 2009; Braver-
man et al., 2016; Huang & Vishnoi, 2020; Jubran et al.,
2020; Cohen-Addad et al., 2022), regression (Dasgupta
et al., 2008; Chhaya et al., 2020; Tolochinsky et al., 2022;
Meyer et al., 2022; Maalouf et al., 2019; 2022b), low-rank
approximation (Cohen et al., 2017; Braverman et al., 2020;
Maalouf et al., 2020; 2021), volume maximization (Indyk
et al., 2020; Mahabadi et al., 2020; Woodruff & Yasuda,
2022), projective clustering (Feldman et al., 2020; Tukan
et al., 2022c), support vector machines (SVMs) (Clarkson,
2010; Tukan et al., 2021; Maalouf et al., 2022a), Bayesian
inference (Campbell & Broderick, 2018), and sine wave fit-
ting (Maalouf et al., 2022c). In addition, recently, coresets
were leveraged for boosting sampling-based path planners

2

Provable Data Subset Selection For Efficient Neural Network Training

Figure 1. Our contribution in a nutshell.

in the field of Robotics (Tukan et al., 2022a), as well as in
marine applications (Tukan et al., 2023)

Baykal et al. (2022) suggested coreset-based algorithms for
compressing the parameters of a trained fully-connected
neural network by using sensitivity sampling on the weights
of neurons after training, though without pruning full neu-
rons. (Mussay et al., 2020; Liebenwein et al., 2019; Tukan
et al., 2022b) sidestepped this issue by identifying the neu-
rons that can be compressed regardless of their weights, due
to the choice of the activation functions, thereby achieving
coreset-based algorithms for neural pruning.

These approaches use coresets to achieve an orthogonal goal
to data subset selection in the context of deep learning – they
greatly reduce the number of neurons in the network while
we greatly reduce the number of samples in the dataset that
need to be read by the neural network. Correspondingly, we
reduce the effective size of the data that needs to be stored or
even measured prior to the training stage. Moreover, we re-
mark that even if the number of inputs to the input layer was
greatly reduced by these neural compression approaches,
the union of the inputs can still consist of the entire input
dataset and so these approaches generally cannot guarantee
any form of data distillation.

Toward the goal of data subset selection, (Mirzasoleiman
et al., 2020a;b) introduced algorithms for selecting repre-
sentative subsets of the training data to accurately estimate
the full gradient for tasks in both deep learning and classical
machine learning models such as logistic regression and
these approaches were subsequently refined by (Killamsetty
et al., 2021a;b). Data distillation has also received a lot of at-
tention in image classification (Bohdal et al., 2020; Nguyen
et al., 2021; Dosovitskiy et al., 2021), natural language
processing (Devlin et al., 2019; Brown et al., 2020), and
federated learning (Ozkara et al., 2021; Zhu et al., 2021).

On coresets for any function. To the best of our knowledge,

the only other coresets eligible for handling a wide family of
functions without the need to devise a problem-dependent
sensitivity are (Claici & Solomon, 2018; Claici et al., 2018).
While such coresets are interesting and related, (i) both
works provide coreset constructions resulting in an additive
approximation, (ii) the coresets’ theoretical applications
seem quite a bit restrictive as they intend to handle mainly
a family of functions that are either k-Lipschitz (functions
with bounded gradient, usually k), having a bounded Dual-
Sobolev distance, or functions satisfying the properties of
reproducing kernel Hilbert space (RKHS). In addition, the
running time in the worst-case scenario is not practical, i.e.,
exponential in the dimension of the points.

On the other hand, our coreset under mild assumptions can
satisfy any function approximated by RBFNN (Wu et al.,
2012), in time that is polynomial in the dimension of the
points and linear in the number of nonzero entries of the
points (Clarkson & Woodruff, 2017).

2. Preliminaries
For an integer n > 0, we use [n] to denote the set
{1, 2, . . . , n}. A weighted set of points is a pair (P,w),
where P ⊆ Rd is a set of points and w : P → [0,∞) is a
weight function.

We now formally provide the notion of ε-coreset for the RBF
loss. This will be later extended to a coreset for RBFNN.
Definition 2.1 (RBF ε-coreset). Let (P,w) be a weighted of
n points in Rd, X ⊆ Rd be a set of queries, ε ∈ (0, 1). For
every x ∈ X and p ∈ P let f(p, x) := exp

(
−∥p− x∥22

)
denote the RBF loss function between p and x. An ε-coreset
for (P,w) with respect to f , is a pair (S, v) where S ⊆ P ,
v : S → (0,∞) is a weight function, such that for every

x ∈ X ,
∣∣∣1− ∑

q∈S v(q)f(q,x)∑
p∈P w(p)f(p,x)

∣∣∣ ≤ ε.

We say the RBF coreset is strong if it guarantees correctness

3

Provable Data Subset Selection For Efficient Neural Network Training

over all x ∈ X . Otherwise, we say the coreset is weak if it
only provides guarantees for all x only in some subset of X .

Sensitivity sampling. To compute our RBF ε-coreset, we
utilize the sensitivity sampling framework (Braverman et al.,
2016). In short, the sensitivity of a point p ∈ P corre-
sponds to the “importance” of this point with respect to
the other points and the problem at hand. In our context
(with respect to the RBF loss), the sensitivity is defined as
s(p) = supx∈X

w(p)f(p,x)∑
q∈P w(q)f(q,x) , where the denominator is

nonzero. Once we bound the sensitivities for every p ∈ P ,
we can sample points from P according to their correspond-
ing sensitivity bounds, and re-weight the sampled points to
obtain an RBF ε-coreset as in Definition 2.1. The size of the
sample (coreset) is proportional to the sum of these bounds
– the tighter (smaller) these bounds, the smaller the coreset
size; we refer the reader to Section A in the appendix.

Sensitivity bounding. We now present our main tool for
bounding the sensitivity of each input point with respect to
the RBF and Laplacian loss functions.

Definition 2.2 (ℓ1-SVD – Special case of Definition
4 (Tukan et al., 2020)). Let

(
P,w,Rd, f

)
be a query space

(see Definition A.1) where for every p ∈ P and x ∈ Rd,
f(p, x) =

∣∣pTx∣∣. Let D ∈ [0,∞)d×d be a diagonal
matrix of full rank and let V ∈ Rd×d be an orthogo-
nal matrix, such that for every x ∈ Rd,

∥∥DV Tx
∥∥
2

≤∑
p∈P

w(p)
∣∣pTx∣∣ ≤ √

d
∥∥DV Tx

∥∥
2
. Define U : P → Rd

such that U(p) = D−1V T p for every p ∈ P . The tuple
(U,D, V) is the ∥·∥1-SVD of P .

Using the above tool, the sensitivity with respect to the RBF
loss function can be bounded using the following.

Lemma 2.3 (Special case of Lemma 35, (Tukan et al.,
2020)). Let

(
P,w,Rd, f

)
be query space as in Defini-

tion A.1 where for every p ∈ P and x ∈ Rd, f(p, x) =∣∣pTx∣∣. Let (U,D, V) be the ∥·∥1-SVD of (P,w) with re-
spect to |·| (see Definition 2.2). Then: (i) for every
p ∈ P , the sensitivity of p with respect to the query space
(P,w,Rd, |·|) is bounded by s(p) ≤ ∥U(p)∥1, and (ii) the
total sensitivity is bounded by

∑
p∈P

s(p) ≤ d1.5.

3. Method
In this section, we provide coresets for the Gaussian and
Laplacian loss functions. We detail our coreset construction
for the Gaussian loss function and Laplacian loss function
in Section 3.1.2.

Overview of Algorithm 1. Algorithm 1 receives as input, a
set P of n points in Rd, a weight function w : P → [0,∞),
a bound R on the radius of the ball containing query space
X , and a sample size m > 0. If the sample size m is

Algorithm 1 CORESET(P,w,R,m)

input A set P ⊆ Rd of n points, a weight function w :
P → [0,∞), a bound on radius
of the query space X , and a sample size m ≥ 1

output A pair (S, v) that satisfies Theorem 3.2
1: Set d′ := the VC dimension of quadruple

(P,w,X, ρ (·)) {See Definition A.2}
2: P ′ :=

{
qp =

[
∥p∥22 ,−2pT , 1

]T | ∀p ∈ P
}

3: (U,D, V) := the f -SVD of (P ′, w, |·|) {See Defini-
tion 2.2}

4: for every p ∈ P do

5: s(p) := η ·

(
w(p)∑

q∈P

w(q) + w(p) ∥U(qp)∥1

)
{bound

on the sensitivity of p as in Lemma B.1 in the ap-
pendix, where η := e12R

2 (
1 + 8R2

)
}

6: end for
7: t :=

∑
p∈P s(p)

8: Set c̃ ≥ 1 to be a sufficiently large constant {Can be
determined from Theorem 3.2}

9: Pick an i.i.d sample S of m points from P , where each
p ∈ P is sampled with probability s(p)

t
10: set v : Rd → [0,∞] to be a weight function such that

for every q ∈ S, v(q) = t
s(q)·m .

return (S, v)

sufficiently large, then Algorithm 1 outputs a pair (S, v)
that is an ε-coreset for RBF cost function; see Theorem 3.2.

First, d′ is set to be the VC dimension of the quadruple
(P,w,X, ρ (·)); see Definition A.2. The heart of our algo-
rithm lies in formalizing the RBF loss function as a variant
of the regression problem, specifically, a variant of the ℓ1-
regression problem. The conversion requires manipulation
of the input data as presented at Line 2. We then com-
pute the f -SVD of the new input data with respect to the
ℓ1-regression problem followed by bounded the sensitivity
of such points (Lines 3–5). Now we have all the needed
ingredients to obtain an ε-coreset (see Theorem A.3), i.e.,
we sample i.i.d m points from P based on their sensitivity
bounds (see Line 9), followed by assigning a new weight
for every sampled point at Line 10.

3.1. Analysis

3.1.1. LOWER BOUND ON THE CORESET SIZE FOR THE
GAUSSIAN LOSS FUNCTION

We first show the lower bound on the size of coresets, to
emphasize the need for assumptions on the data and the
query space.

Theorem 3.1. There exists a set of n points P ⊆ Rd such
that

∑
p∈P s(p) = Ω(n).

4

Provable Data Subset Selection For Efficient Neural Network Training

Proof. Let d ≥ 3 and let P ⊆ Rd be a set of n points
distributed evenly on a 2 dimensional sphere of radius√

lnn

2 cos (π
n)

. In other words, using the law of cosines, ev-

ery p ∈ P ,
√
lnn = minq∈P\{p} ∥p− q∥2; see Figure C.

Observe that for every p ∈ P ,

s(p) := max
x∈Rd

e−∥p−x∥2
2∑

q∈P

e−∥q−x∥2
2

≥ e−∥p−p∥2
2∑

q∈P

e−∥p−q∥2
2

=
1

1 +
∑

q∈P\{p}
e−∥p−q∥2

2

≥ 1

1 +
∑

q∈P\{p}

1
n

≥ 1

2
,

(1)

where the first equality holds by definition of the sensitivity,
the first inequality and second equality hold trivially, the
second inequality follows from the assumption that

√
lnn ≤

minq∈P\{p} ∥p− q∥2, and finally the last inequality holds
since

∑
q∈P\{p}

1
n ≤ 1.

3.1.2. REASONABLE ASSUMPTIONS LEAD TO
EXISTENCE OF CORESETS

Unfortunately, it is not immediately straightforward to
bound the sensitivities of either the Gaussian loss function or
the Laplacian loss function. Therefore, we first require the
following structural properties in order to relate the Gaus-
sian and Laplacian loss functions into more manageable
quantities. We shall ultimately relate the function e−|p

T x|
to both the Gaussian and Laplacian loss functions. Thus, we
first relate the function e−|p

T x| to the function |pTx| + 1.
Let p ∈ Rd such that ∥p∥2 ≤ 1, and let R > 0 be posi-

tive real number. Then for every x ∈
{
x ∈ Rd

∣∣∥x∥2 ≤ R
}

,
1

eR(1+R)

(
1 +

∣∣pTx∣∣) ≤ e−|p
T x| ≤

∣∣pTx∣∣+ 1.

In what follows, we provide the analysis of coreset construc-
tion for the RBF and Laplacian loss functions, considering
an input set of points lying in the unit ball. We refer the
reader to the supplementary material for generalization of
our approaches towards general input set of points.

Theorem 3.2 (Coreset for RBF). Let R ≥ 1 be a positive
real number, X =

{
x ∈ Rd

∣∣∥x∥2 ≤ R
}

, and let ε, δ ∈
(0, 1). Let (P,w,X, f) be query space as in Definition A.1
such that every p ∈ P satisfies ∥p∥2 ≤ 1. For every x ∈ X
and p ∈ P , let f(p, x) := ρ (∥p− x∥2). Let (S, v) be a
call to CORESET(P,w,R,m) where S ⊆ P and v : S →
[0,∞). Then (S, v) ε-coreset of (P,w) with probability at

least 1− δ, if m = O
(

e12R
2
R2d1.5

ε2

(
R2 + log d+ log 1

δ

))
.

Coreset for Laplacian loss function. In what follows, we
provide a coreset for the Laplacian loss function. Intuitively
speaking, leveraging the properties of the Laplacian loss
function, we were able to construct a coreset that holds for
every vector x ∈ Rd unlike the RBF case where the coreset

holds for a ball of radius R. We emphasize that the reason
for this is due to the fact that the Laplacian loss function is
less sensitive than the RBF.

Theorem 3.3 (Coreset for the Laplacian loss function). Let(
P,w,Rd, f

)
be query space as in Definition A.1 such that

every p ∈ P satisfies ∥p∥2 ≤ 1. For x ∈ Rd and p ∈ P , let
f(p, x) := e−∥p−x∥2 . Let ε, δ ∈ (0, 1). Then there exists an
algorithm which given P,w, ε, δ return a weighted set (S, v)

where S ⊆ P of size O
(√

nd1.25

ε2

(
log n+ log d+ log 1

δ

))
and a weight function v : S → [0,∞) such that (S, v) is an
ε-coreset of (P,w) with probability at least 1− δ.

4. Radial Basis Function Networks
In this section, we consider coresets for RBFNNs. Consider
an RBFNN with L neurons in the hidden layer and a single
output neuron. First note that the hidden layer uses radial
basis functions as activation functions so that the output is a
scalar function of the input layer, ϕ : Rd → R defined by
ϕ(x) =

∑L
i=1 αiρ(∥x− c(i)∥2), where c(i) ∈ Rn for each

i ∈ [d].

For an input dataset P and a corresponding desired out-
put function y : P → R, RBFNNs aim to optimize∑
p∈P

(
y(p)−

∑L
i=1 αie

−∥p−c(i)∥2

2

)2
. Expanding the cost

function, we obtain that RBFNNs aim to optimize

∑
p∈P

y(p)2 − 2

L∑
i=1

αi

α︷ ︸︸ ︷∑
p∈P

y(p)e−∥p−c(i)∥2

2

+
∑
p∈P

(
L∑

i=1

αie
−∥p−c(i)∥2

2

)2

︸ ︷︷ ︸
β

.

(2)

Bounding the α term in equation 2. We first define for
every x ∈ Rd:

ϕ+(x) =
∑

p∈P,y(p)>0

y(p)e−∥p−x∥2
2

ϕ−(x) =
∑

p∈P,y(p)<0

|y(p)| e−∥p−x∥2
2 .

Observe that
∑

p∈P y(p)ρ(∥p − c(i)∥2) = ϕ+
(
c(i)
)
−

ϕ− (c(i)). Thus the α term in equation 2 can be approx-
imated using the following.

Theorem 4.1. There exists an algorithm that sam-

ples O
(

e8R
2
R2d1.5

ε2

(
R2 + log d+ log 2

δ

))
points to form

weighted sets (S1, w1) and (S2, w2) such that with proba-

5

Provable Data Subset Selection For Efficient Neural Network Training

bility at least 1− 2δ,∣∣∣∣∣∣∣
∑
p∈P

y(p)ϕ(p)−

 ∑
i∈[L]
αi>0

αiγS1 +
∑

j∈[L]
αj<0

αjγS2

∣∣∣∣∣∣∣∑

i∈[L]

|αi|
(
ϕ+
(
c(i)
)
+ ϕ−

(
c(i)
)) ≤ ε,

where γS1 :=
∑

p∈S1

w1(p)e
−∥p−c(i)∥2

2 and γS2 :=∑
q∈S2

w2(q)e
−∥q−c(j)∥2

2 .

Bounding the β term in equation 2. By Cauchy’s inequal-
ity, it holds that

∑
p∈P

(
L∑

i=1

αie
−∥p−c(i)∥2

2

)2

≤ L
∑
p∈P

L∑
i=1

α2
i e

−2∥p−c(i)∥2

2

= L

L∑
i=1

α2
i

∑
p∈P

e−2∥p−c(i)∥2

2 ,

where the equality holds by simple rearrangement.

Using Theorem 3.2, we can approximate the upper bound
on β with an approximation of L(1 + ε). However,
if for every i ∈ [L] it holds that αi ≥ 0, then we

also have the lower bound
∑L

i=1 α
2
i

∑
p∈P

e−2∥p−c(i)∥2

2 ≤

∑
p∈P

(∑L
i=1 αie

−∥p−c(i)∥2

2

)2
.

Since we can generate a coreset that yields a multiplicative
approximation error to the full data for the left-hand side
term of the above inequality, then we obtain also a coreset
with multiplicative approximation error in a sense for β as
well.

Thus by combining all of the above, we obtain the following
corollary.
Corollary 4.2. Let RFBNN be a sufficiently large (RBF)
neural network, P ⊂ Rd, and let f(p) : P → R be a func-
tion that can be approximated by a set of centers and weights
q (the learned parameters that define the RBFNN) assigned
to RFBNN such that, for every p ∈ P : RFBNN(p, q) ≈

f(p), and

∥∥∥∥∥ ∑p∈P

RFBNN(p, q)−
∑
p∈P

f(p)

∣∣∣∣∣ ≤ ε, where

each center of the RBFNN lies in ball centered at the
origin with radius R (to satisfy our coreset’s assumption).
Let (S, v) be the output of a call to Algorithm 1, i.e., (S, v)
is coreset for P is an RBF coreset; see Definition 2.1. Then,∣∣∣∣∣∣
∑
p∈P

f(p)−
∑
s∈S

v(s)RBFNN(s, q)

∣∣∣∣∣∣ ≤ ε
∑
p∈P

f(p) + ε.

5. Advantages of our Methods
One coreset for all networks. Our coreset is model-
independent, i.e., we aim at improving the running time
of multiple neural networks. Contrary to other methods that
need to compute the coreset after each gradient update to
support their theoretical proofs, our method gives the ad-
vantage of computing the sensitivity (or the coreset) only
once, for all of the required networks. This is because our
coreset can approximate any function that can be defined
(approximated) using a RBFNN model.

Efficient coreset per epoch. Practically, our competing
methods for data selection are not applied before each epoch,
but every Υ epochs. This is since the competing methods
require a lot of time to compute a new coreset since they
compute the gradients of the network with respect to each
input training data. However, our coreset can be computed
before each epoch in a negligible time (∼ 0 seconds), since
we compute the sensitivity of each point (image) in the
data once at the beginning, and then whenever we need to
create a new coreset, we simply sample from the input data
according to the sensitivity distribution.

6. On the Novelty of Our Approach
First, note that we have established a lower bound of Ω(n)
for the coreset size when the problem of RBF fitting is
handled with no assumptions; see Theorem 3.1, which con-
sequently means that the RBF fitting problem is considered
hard from the perspective of coresets. With this in mind,
the assumption of boundness on the query space (R) aims
to eliminate cases similar depicted by Theorem 3.1 that are
deemed redundant since almost all points are needed. Our
results were generalized to account for any general set of
points P ⊂ Rd with modified bounds; see Section B. On the
positive side of things, these bounds are usually pessimistic,
and such a phenomenon can be seen in Figure 3.

In addition, from a practical point of view, the centers that
the RBFNN aims to find are usually contained in (or in
the vicinity of) the convex hull of the points (when setting
for example the standard deviation of each neuron to 1).
Combining this with the insights above, to ensure the exis-
tence of small coresets (in general), we need to lower the
diameter of the data (the maximal distance between any
pair of input points), which can be done using normaliza-
tion/standardization. Thus, R can be chosen to be small
such that the optimal RBFNN centers with respect to fitting
the entire data are contained in a ball of radius R. Hence,
our coreset will have a small size in such settings. We note
that in machine learning, normalization, and standardiza-
tion techniques are very common preprocessing used for
improving the quality of the classifier/predictor. Thus, the
centers will be contained in a small ball around the origin

6

Provable Data Subset Selection For Efficient Neural Network Training

Table 1. Data Selection Results for CIFAR10 using ResNet-18.

Top-1 Test accuracy of the Model(%) Model Training time(in hrs)
Budget(%) 5% 10% 20% 30% 5% 10% 20% 30%

FULL (skyline for test accuracy) 95.09 95.09 95.09 95.09 4.34 4.34 4.34 4.34
RANDOM (skyline for training time) 71.2 80.8 86.98 87.6 0.22 0.46 0.92 1.38

GLISTER 85.5 91.92 92.78 93.63 0.43 0.91 1.13 1.46
CRAIG 82.74 87.49 90.79 92.53 0.81 1.08 1.45 2.399

CRAIGPB 83.56 88.77 92.24 93.58 0.4466 0.70 1.13 2.07
GRADMATCH 86.7 90.9 91.67 91.89 0.40 0.84 1.42 1.52

GRADMATCHPB 85.4 90.01 93.34 93.75 0.36 0.69 1.09 1.38
RBFNN CORESET (OURS) 86.9 91.4 93.61 94.44 0.28 0.52 0.98 1.38

Table 2. Data Selection Results for CIFAR10 using ResNet-18 with warm start
Top-1 Test accuracy of the Model(%) Model Training time(in hrs)

Budget(%) 5% 10% 20% 30% 5% 10% 20% 30%
FULL (skyline for test accuracy) 95.09 95.09 95.09 95.09 4.34 4.34 4.34 4.34

RANDOM-WARM (skyline for training time) 83.2 87.8 90.9 92.6 0.21 0.42 0.915 1.376
GLISTER-WARM 86.57 91.56 92.98 94.09 0.42 0.88 1.08 1.40
CRAIG-WARM 84.48 89.28 92.01 92.82 0.6636 0.91 1.31 2.20

CRAIGPB-WARM 86.28 90.07 93.06 93.8 0.4143 0.647 1.07 2.06
GRADMATCH-WARM 87.2 92.15 92.11 92.01 0.38 0.73 1.24 1.41

GRADMATCHPB-WARM 86.37 92.26 93.59 94.17 0.32 0.62 1.05 1.36
RBFNN CORESET-WARM (OURS) 87.82 91.44 93.81 94.6 0.27 0.51 0.99 1.36

Table 3. Data Selection Results for CIFAR100 using ResNet-18

Top-1 Test accuracy of the Model(%) Model Training time(in hrs)
Budget(%) 5% 10% 20% 30% 5% 10% 20% 30%

FULL (skyline for test accuracy) 75.37 75.37 75.37 75.37 4.871 4.871 4.871 4.871
RANDOM (skyline for training time) 19.02 31.56 49.6 58.56 0.2475 0.4699 0.92 1.453

GLISTER 29.94 44.03 61.56 70.49 0.3536 0.6456 1.11 1.5255
CRAIG 36.61 55.19 66.24 70.01 1.354 1.785 1.91 2.654

CRAIGPB 38.95 54.59 67.12 70.61 0.4489 0.6564 1.15 1.540
GRADMATCH 41.01 59.88 68.25 71.5 0.5143 0.8114 1.40 2.002

GRADMATCHPB 40.53 60.39 70.88 72.57 0.3797 0.6115 1.09 1.56
RBFNN CORESET (OURS) 54.17 64.59 71.17 73.58 0.346 0.5699 1.01 1.552

Table 4. Data Selection Results for CIFAR100 using ResNet-18 with warm start
Top-1 Test accuracy of the Model(%) Model Training time(in hrs)

Budget(%) 5% 10% 20% 30% 5% 10% 20% 30%
FULL (skyline for test accuracy) 75.37 75.37 75.37 75.37 4.871 4.871 4.871 4.871

RANDOM-WARM (skyline for training time) 58.2 65.95 70.3 72.4 0.242 0.468 0.921 1.43
GLISTER-WARM 57.17 64.95 62.14 72.43 0.3185 0.6059 1.06 1.452
CRAIG-WARM 57.44 67.3 69.76 72.77 1.09 1.48 1.81 2.4112

CRAIGPB-WARM 57.66 67.8 70.84 73.79 0.394 0.6030 1.10 1.5567
GRADMATCH-WARM 57.72 68.23 71.34 74.06 0.3788 0.7165 1.30 1.985

GRADMATCHPB-WARM 58.26 69.58 73.2 74.62 0.300 0.5744 1.01 1.5683
RBFNN CORESET-WARM (OURS) 59.22 67.8 72.79 75.04 0.352 0.5710 1.03 1.56

when using these preprocessing tools.

7

Provable Data Subset Selection For Efficient Neural Network Training

Table 5. Data Selection Results for ImageNet2012 using ResNet-18

Top-1 Test accuracy of the Model(%) Model Training time(in hrs)
Budget(%) 5% 5%

FULL (skyline for test accuracy) 70.36 276.28
RANDOM (skyline for training time) 21.124 14.12

CRAIGPB 44.28 22.24
GRADMATCH 47.24 18.24

GRADMATCHPB 45.15 16.12
RBFNN CORESET (OURS) 47.26 15.24

4
2

0
2

4 4
2

0
2

4

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

(a)

4
2

0
2

4 4
2

0
2

4

1.5
1.0
0.5
0.0
0.5
1.0

(b)

4
2

0
2

4 4
2

0
2

4

1

0

1

2

(c)

Figure 2. (a) is the function we wish to approximate by training an RBFNN on: (b) a uniformly sampled subset, and (c) our coreset.

(a) (b) (c) (d)

Figure 3. (a) and (b) are depictions of the additive and relative error with respect to RBF fitting problem concerning the dataset ,
respectively. (c) and (d) re depictions of the additive and relative error with respect to RBF fitting problem concerning the dataset ,
respectively.

7. Experimental Results
In this section, we practically demonstrate the efficiency
and stability of our RBFNN coreset approach for training
deep neural networks via data subset selection. We mainly
study the trade-off between accuracy and efficiency.

Competing methods. We compare our method against
many variants of the proposed algorithms in (Killamsetty
et al., 2021a) (denoted by, GRAD-MATCH), in (Mirza-
soleiman et al., 2020a) (denoted by CRAIG), and in (Kil-

lamsetty et al., 2021b) (denoted by GLISTER). For each
of these methods, we report the results for 4 variants: (i)
the “vanilla” method, denoted by its original name, (ii)
applying a warm start i.e., training on the whole data for
50% of the training time before training the other 50% on
the coreset, where such methods are denoted by adding
the suffix -WARM. (iii) a more efficient version of each
of the competing methods denoted by adding the suffix
PB (more details are given at (Killamsetty et al., 2021a)),
and finally, a combination of both (ii) and (iii). In other

8

Provable Data Subset Selection For Efficient Neural Network Training

words, the competing methods are GRAD-MATCH, GRAD-
MATCHPB, GRAD-MATCH-WARM, GRAD-MATCHPB-
WARM, CRAIG, CRAIGPB, CRAIG-WARM, CRAIGPB-
WARM, and GLISTER-WARM. We also compare against
randomly selecting points (denoted by RANDOM).

Datasets and model architecture. We performed our exper-
iments for training CIFAR10 and CIFAR100 (Krizhevsky
et al., 2009) on ResNet18 (He et al., 2016), MNIST (LeCun
et al., 1998) on LeNet, and ImageNet-2012 (Deng et al.,
2009) on Resnet18 (He et al., 2016).

The setting. We adapted the same setting of (Killamsetty
et al., 2021a), where we used SGD optimizer for training
initial learning rate equal to 0.01, a momentum of 0.9, and a
weight decay of 5e−4. We decay the learning rate using co-
sine annealing (Loshchilov & Hutter, 2016) for each epoch.
For MNIST, we trained the LeNet model for 200 epochs.
For CIFAR10 and CIFAR100, we trained the ResNet18 for
300 epochs - all on batches of size 20 for the subset selection
training versions. We train the data selection methods and
the entire data training with the same number of epochs; the
main difference is the number of samples used for training
a single epoch. All experiments were executed on V100
GPUs. The reported test accuracy in the results is after
averaging across five runs.

Subset sizes and the Υ parameter. For MNIST, we use
sizes of {1%, 3%, 5%, 10%}, while for CIFAR10 and CI-
FAR100, we use {5%, 10%, 20%, 30%}, and for ImageNet
we use 5%.Since the competing methods require a lot of
time to compute the gradients, we set Υ = 20. We note that
for our coreset we can test it with Υ = 1 without adding
run-time since once the sensitivity vector is defined, com-
muting a new coreset requires ∼ 0 seconds. However, we
test it with Υ = 20, to show its robustness.

Discussion. Tables 1–4 report the results for CIFAR10 and
CIFAR100. It is clear from Tables 1 and 2 that our method
achieves the best accuracy, with and without warm start,
for 5%, 20%, and 30% subset selection on CIFAR10. For
CIFAR100, our method drastically outperforms all of the
methods that do not apply a warm start. When applying a
warm start, we still win in half of the cases. Note that, we
outperform all of the other methods in terms of accuracy vs
time. The same phenomenon is witnessed in the ImageNet
experiment (Table 5) as our coreset achieves the highest
accuracy. We refer the reader to the MNIST experiment
(Table 6 in the appendix). We note that our sensitivity
sampling vector is computed once during our experiments
for each dataset. This vector can be used to sample coresets
of different sizes, for different networks, at different epochs
of training, in a time that is close to zero seconds. In all
tables, the best results are highlighted in bold.

Function Approximations. We now compare our coreset

to uniform for function approximation. Specifically, we
generate around 10, 000 points in 3D, while setting the third
entry of each point to be a function of the first 2 entries,
f(x) = e−∥x∥2

2 + 0.2 cos (4 ∥x∥2). We train an RBFNN
to reproduce the function using only 400 points, where
we saw that our coreset (Figure 2(c)) is closer visually to
the true function (Figure 2(a)) using uniform sampling for
reproducing the image (Figure 2(b)).

RBF fitting problem. Finally, we show for the RBF fitting
task on the HTRU and CreditCard datasets (Dua et al., 2017),
where, our coreset is better than uniform sampling by at max
a multiplicative factor of 1.5. In this experiment, we show
the additive and multiplicative approximation associated
with our method compared to uniform sampling with respect
to the quality of solving the RBF fitting problem on the
entire data. We refer the reader to Figure 3.

8. Conclusion and Future Work
In this paper, we have introduced a coreset that provably ap-
proximates any function that can be represented by RBFNN
architectures. Our coreset construction can be used to
approximate the gradients of any deep neural networks
(DNNs), leading towards provable subset selection for learn-
ing/training DNNs. We also empirically demonstrate the
value of our work by showing significantly better perfor-
mances over various datasets and model architectures. As
the first work on using coresets for data subset selection with
respect to RBFNNs, our results lead to a number of interest-
ing possible future directions. It is natural to ask whether
there exist smaller coreset constructions that also provably
give the same worst-case approximation guarantees. Fur-
thermore, RKHS methods (Claici & Solomon, 2018; Claici
et al., 2018) may be investigated in this context either by
boosting their implementation or by merging ideas with
this work. In addition, can our results be extended to more
general classes of loss functions? Finally, we remark that
although our empirical results significantly beat state-of-the-
art, they nevertheless only serve as a proof-of-concept and
have not been fully optimized with additional heuristics.

9. Acknowledgements
Support for this project has been provided in part by the
Office of Naval Research (ONR) Grant N00014-18-1-2830.
We are grateful for it.

References
Open source code for all the algorithms presented in this

paper, 2023. Link for open-source code.

Babu, G. S. and Suresh, S. Sequential projection-based
metacognitive learning in a radial basis function network

9

https://github.com/muradtuk/Provable-Data-Subset-Selection-For-Efficient-Neural-Network-Training

Provable Data Subset Selection For Efficient Neural Network Training

for classification problems. IEEE transactions on neural
networks and learning systems, 24(2):194–206, 2012.

Baykal, C., Liebenwein, L., Gilitschenski, I., Feldman, D.,
and Rus, D. Sensitivity-informed provable pruning of
neural networks. SIAM J. Math. Data Sci., 4(1):26–45,
2022.

Bohdal, O., Yang, Y., and Hospedales, T. M. Flexible
dataset distillation: Learn labels instead of images. CoRR,
abs/2006.08572, 2020.

Braverman, V., Feldman, D., and Lang, H. New frameworks
for offline and streaming coreset constructions. arXiv
preprint arXiv:1612.00889, 2016.

Braverman, V., Drineas, P., Musco, C., Musco, C., Upad-
hyay, J., Woodruff, D. P., and Zhou, S. Near optimal
linear algebra in the online and sliding window models.
In 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS, pp. 517–528, 2020.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2020.

Campbell, T. and Broderick, T. Bayesian coreset construc-
tion via greedy iterative geodesic ascent. In Proceedings
of the 35th International Conference on Machine Learn-
ing, ICML, pp. 697–705, 2018.

Chen, K. On coresets for k-median and k-means clustering
in metric and euclidean spaces and their applications.
SIAM J. Comput., 39(3):923–947, 2009.

Chhaya, R., Dasgupta, A., and Shit, S. On coresets for
regularized regression. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML, 2020.

Claici, S. and Solomon, J. Wasserstein coresets for lipschitz
costs. stat, 1050:18, 2018.

Claici, S., Genevay, A., and Solomon, J. Wasserstein mea-
sure coresets. arXiv preprint arXiv:1805.07412, 2018.

Clarkson, K. L. Coresets, sparse greedy approximation, and
the frank-wolfe algorithm. ACM Trans. Algorithms, 6(4):
63:1–63:30, 2010.

Clarkson, K. L. and Woodruff, D. P. Low-rank approxima-
tion and regression in input sparsity time. Journal of the
ACM (JACM), 63(6):1–45, 2017.

Cohen, M. B., Musco, C., and Musco, C. Input sparsity
time low-rank approximation via ridge leverage score
sampling. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 1758–1777, 2017.

Cohen-Addad, V., Larsen, K. G., Saulpic, D., and
Schwiegelshohn, C. Towards optimal lower bounds for
k-median and k-means coresets. In STOC ’22: 54th An-
nual ACM SIGACT Symposium on Theory of Computing,
pp. 1038–1051, 2022.

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B.,
Bailis, P., Liang, P., Leskovec, J., and Zaharia, M. Selec-
tion via proxy: Efficient data selection for deep learning.
arXiv preprint arXiv:1906.11829, 2019.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Ma-
honey, M. W. Sampling algorithms and coresets for lp
regression. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 932–941, 2008.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT, pp. 4171–4186, 2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference on
Learning Representations, ICLR, 2021.

Dua, D., Graff, C., et al. Uci machine learning repository,
2017.

Feldman, D. Core-sets: An updated survey. WIREs Data
Mining Knowl. Discov., 10(1), 2020.

Feldman, D., Schmidt, M., and Sohler, C. Turning big
data into tiny data: Constant-size coresets for k-means,
pca, and projective clustering. SIAM J. Comput., 49(3):
601–657, 2020.

Har-Peled, S. and Mazumdar, S. On coresets for k-means
and k-median clustering. In Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, pp.
291–300, 2004.

10

Provable Data Subset Selection For Efficient Neural Network Training

Harpham, C. and Dawson, C. W. The effect of different
basis functions on a radial basis function network for time
series prediction: A comparative study. Neurocomputing,
69(16-18):2161–2170, 2006.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, L. and Vishnoi, N. K. Coresets for clustering in
euclidean spaces: importance sampling is nearly optimal.
In Proccedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC, pp. 1416–1429,
2020.

Indyk, P., Mahabadi, S., Gharan, S. O., and Rezaei, A. Com-
posable core-sets for determinant maximization problems
via spectral spanners. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA, pp.
1675–1694, 2020.

Jubran, I., Tukan, M., Maalouf, A., and Feldman, D. Sets
clustering. In International Conference on Machine
Learning, pp. 4994–5005. PMLR, 2020.

Kaushal, V., Iyer, R., Kothawade, S., Mahadev, R., Doctor,
K., and Ramakrishnan, G. Learning from less data: A uni-
fied data subset selection and active learning framework
for computer vision. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1289–1299.
IEEE Computer Society, 2019.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G.,
De, A., and Iyer, R. K. GRAD-MATCH: gradient match-
ing based data subset selection for efficient deep model
training. In Proceedings of the 38th International Con-
ference on Machine Learning, ICML, pp. 5464–5474,
2021a.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G.,
and Iyer, R. K. GLISTER: generalization based data sub-
set selection for efficient and robust learning. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI,
2021b.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Leonard, J. A. and Kramer, M. A. Radial basis function
networks for classifying process faults. IEEE Control
Systems Magazine, 11(3):31–38, 1991.

Leung, H., Lo, T. K. Y., and Wang, S. Prediction of noisy
chaotic time series using an optimal radial basis function
neural network. IEEE Trans. Neural Networks, 12(5):
1163–1172, 2001.

Liebenwein, L., Baykal, C., Lang, H., Feldman, D., and Rus,
D. Provable filter pruning for efficient neural networks.
In International Conference on Learning Representations,
2019.

Liu, J. Radial Basis Function (RBF) neural network control
for mechanical systems: design, analysis and Matlab
simulation. Springer Science & Business Media, 2013.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Lu, Y., Sundararajan, N., and Saratchandran, P. A sequen-
tial learning scheme for function approximation using
minimal radial basis function neural networks. Neural
Comput., 9(2):461–478, 1997.

Maalouf, A., Jubran, I., and Feldman, D. Fast and accurate
least-mean-squares solvers. In Proceedings of the 33rd
International Conference on Neural Information Process-
ing Systems, pp. 8307–8318, 2019.

Maalouf, A., Statman, A., and Feldman, D. Tight sensitivity
bounds for smaller coresets. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2051–2061, 2020.

Maalouf, A., Jubran, I., Tukan, M., and Feldman, D. Core-
sets for the average case error for finite query sets. Sen-
sors, 21(19):6689, 2021.

Maalouf, A., Eini, G., Mussay, B., Feldman, D., and Osad-
chy, M. A unified approach to coreset learning. IEEE
Transactions on Neural Networks and Learning Systems,
2022a.

Maalouf, A., Jubran, I., and Feldman, D. Fast and accu-
rate least-mean-squares solvers for high dimensional data.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2022b.

Maalouf, A., Tukan, M., Price, E., Kane, D. G., and Feld-
man, D. Coresets for data discretization and sine wave
fitting. In International Conference on Artificial Intelli-
gence and Statistics. PMLR, 2022c.

Mahabadi, S., Razenshteyn, I. P., Woodruff, D. P., and Zhou,
S. Non-adaptive adaptive sampling on turnstile streams.

11

Provable Data Subset Selection For Efficient Neural Network Training

In Proccedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC, pp. 1251–1264,
2020.

Meyer, R. A., Musco, C., Musco, C., Woodruff, D. P., and
Zhou, S. Fast regression for structured inputs. In The
Tenth International Conference on Learning Representa-
tions, ICLR, 2022.

Mirzasoleiman, B., Bilmes, J. A., and Leskovec, J. Coresets
for data-efficient training of machine learning models.
In Proceedings of the 37th International Conference on
Machine Learning, ICML, pp. 6950–6960, 2020a.

Mirzasoleiman, B., Cao, K., and Leskovec, J. Coresets
for robust training of deep neural networks against noisy
labels. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems, NeurIPS, 2020b.

Mussay, B., Osadchy, M., Braverman, V., Zhou, S., and Feld-
man, D. Data-independent neural pruning via coresets.
In 8th International Conference on Learning Representa-
tions, ICLR, 2020.

Nguyen, T., Novak, R., Xiao, L., and Lee, J. Dataset dis-
tillation with infinitely wide convolutional networks. In
Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing
Systems, NeurIPS, pp. 5186–5198, 2021.

Ozkara, K., Singh, N., Data, D., and Diggavi, S. N. Quped:
Quantized personalization via distillation with applica-
tions to federated learning. In Advances in Neural In-
formation Processing Systems 34: Annual Conference
on Neural Information Processing Systems, NeurIPS, pp.
3622–3634, 2021.

Padmavati, J. A comparative study on breast cancer predic-
tion using rbf and mlp. International Journal of Scientific
& Engineering Research, 2(1):1–5, 2011.

Park, J. and Sandberg, I. W. Universal approximation using
radial-basis-function networks. Neural Comput., 3(2):
246–257, 1991.

Park, J. and Sandberg, I. W. Approximation and radial-
basis-function networks. Neural Comput., 5(2):305–316,
1993.

Pooladzandi, O., Davini, D., and Mirzasoleiman, B. Adap-
tive second order coresets for data-efficient machine learn-
ing. In International Conference on Machine Learning,
pp. 17848–17869. PMLR, 2022.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green
AI. Commun. ACM, 63(12):54–63, 2020.

Sharir, O., Peleg, B., and Shoham, Y. The cost of
training NLP models: A concise overview. CoRR,
abs/2004.08900, 2020.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in NLP. In Pro-
ceedings of the 57th Conference of the Association for
Computational Linguistics, ACL, pp. 3645–3650, 2019.

Tolochinsky, E., Jubran, I., and Feldman, D. Generic coreset
for scalable learning of monotonic kernels: Logistic re-
gression, sigmoid and more. In International Conference
on Machine Learning, ICML, 2022.

Tukan, M., Maalouf, A., and Feldman, D. Coresets for
near-convex functions. Advances in Neural Information
Processing Systems, 33, 2020.

Tukan, M., Baykal, C., Feldman, D., and Rus, D. On
coresets for support vector machines. Theor. Comput.
Sci., 890:171–191, 2021.

Tukan, M., Maalouf, A., Feldman, D., and Poranne, R.
Obstacle aware sampling for path planning. In 2022
IEEE RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2022a.

Tukan, M., Mualem, L., and Maalouf, A. Pruning neural
networks via coresets and convex geometry: Towards no
assumptions. In Proceedings of the 36th International
Conference on Neural Information Processing Systems,
2022b.

Tukan, M., Wu, X., Zhou, S., Braverman, V., and Feldman,
D. New coresets for projective clustering and applications.
In International Conference on Artificial Intelligence and
Statistics, AISTATS, pp. 5391–5415, 2022c.

Tukan, M., Biton, E., and Diamant, R. An efficient drifters
deployment strategy to evaluate water current velocity
fields. arXiv preprint arXiv:2301.04216, 2023.

Wei, K., Iyer, R., and Bilmes, J. Fast multi-stage submodular
maximization. In International conference on machine
learning, pp. 1494–1502. PMLR, 2014.

Whitehead, B. A. and Choate, T. D. Cooperative-
competitive genetic evolution of radial basis function
centers and widths for time series prediction. IEEE Trans.
Neural Networks, 7(4):869–880, 1996.

Woodruff, D. P. and Yasuda, T. High-dimensional geometric
streaming in polynomial space. CoRR, abs/2204.03790,
2022.

Wu, Y., Wang, H., Zhang, B., and Du, K.-L. Using radial
basis function networks for function approximation and
classification. International Scholarly Research Notices,
2012, 2012.

12

Provable Data Subset Selection For Efficient Neural Network Training

Wuxing, L., Peter, W. T., Guicai, Z., and Tielin, S. Clas-
sification of gear faults using cumulants and the radial
basis function network. mechanical systems and signal
processing, 18(2):381–389, 2004.

Yu, H., Xie, T., Paszczyñski, S., and Wilamowski, B. M.
Advantages of radial basis function networks for dynamic
system design. IEEE Transactions on Industrial Electron-
ics, 58(12):5438–5450, 2011.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge distilla-
tion for heterogeneous federated learning. In Proceedings
of the 38th International Conference on Machine Learn-
ing, ICML, pp. 12878–12889, 2021.

13

Provable Data Subset Selection For Efficient Neural Network Training

A. Coreset Constructions
In what follows, we provide the necessary tools to obtain a coreset; see Definition 2.1.

Definition A.1 (Query space). Let P be a set of n ≥ 1 points in Rd, w : P → [0,∞) be a non-negative weight function,
and let f : P × Rd → [0,∞) denote a loss function. The tuple (P,w,Rd, f) is called a query space.

Definition A.2 (VC-dimension (Braverman et al., 2016)). For a query space (P,w,Rd, f) and r ∈ [0,∞), we define

ranges(x, r) = {p ∈ P | w(p)f(p, x) ≤ r} ,

for every x ∈ Rd and r ≥ 0. The dimension of (P,w,Rd, f) is the size |S| of the largest subset S ⊂ P such that∣∣{S ∩ ranges(x, r) | x ∈ Rd, r ≥ 0
}∣∣ = 2|S|,

where |A| denotes the number of points in A for every A ⊆ Rd.

The following theorem formally describes how to construct an ε-coreset based on the sensitivity sampling framework.

Theorem A.3 (Restatement of Theorem 5.5 in (Braverman et al., 2016)). Let
(
P,w,Rd, f

)
be a query space as in

Definition A.1. For every p ∈ P define the sensitivity of p as supx∈Rd
w(p)f(p,x)∑

q∈P w(q)f(q,x) , where the sup is over every x ∈ Rd

such that the denominator is non-zero. Let s : P → [0, 1] be a function such that s(p) is an upper bound on the sensitivity
of p. Let t =

∑
p∈P s(p) and d′ be the VC dimension of the triplet

(
P,w,Rd, f

)
; see Definition A.2. Let c ≥ 1 be a

sufficiently large constant, ε, δ ∈ (0, 1), and let S be a random sample of

|S| ≥ ct

ε2

(
d′ log t+ log

1

δ

)
i.i.d points from P , such that every p ∈ P is sampled with probability s(p)/t. Let v(p) = tw(p)

s(p)|S| for every p ∈ S. Then,
with probability at least 1− δ, (S, v) is an ε-coreset for P with respect to f .

Remark A.4 (VC dimension w.r.t. RBF/Laplacian fitting problems). In the context of RBF and Laplacian fitting problems,
the corresponding VC dimension is O(d) where d denotes the dimensionality (number of features) of the queries.

B. Proofs for our Main Theorems
B.1. Proof of Claim 3.1.2

Let p ∈ Rd such that ∥p∥2 ≤ 1, and let R > 0 be positive real number. Then for every x ∈
{
x ∈ Rd

∣∣∥x∥2 ≤ R
}

,
1

eR(1+R)

(
1 +

∣∣pTx∣∣) ≤ e−|p
T x| ≤

∣∣pTx∣∣+ 1.

Proof. Put x ∈
{
x ∈ Rd

∣∣∥x∥2 ≤ R
}

and note that if pTx = 0 then the claim is trivial. Otherwise, we observe that

e−|p
T x| ≥ 1

eR
≥

1 +
∣∣pTx∣∣

(1 +R) eR
.

B.2. Proof of Theorem 3.2

Let a, b ≥ 0 be pair of nonnegative real numbers and let c, d > 0 be a pair of positive real numbers. Then

a+ b

c+ d
≤ a

c
+

b

d
.

Proof. Observe that
a+ b

c+ d
=

a

c+ d
+

b

c+ d
≤ a

c
+

b

d

where the inequality holds since c, d > 0.

14

Provable Data Subset Selection For Efficient Neural Network Training

Lemma B.1 (Sensitivity bound w.r.t. the RBF loss function). Let R ≥ 1 be a positive real number, and let X ={
x ∈ Rd

∣∣∥x∥2 ≤ R
}

. Let
(
P,w,Rd, f

)
be query space as in Definition A.1 where for every p ∈ P and x ∈ Rd,

f(p, x) = e−∥p−x∥2
2 . Let P ′ :=

{
qp =

[
∥p∥22 ,−2pT , 1

]T | ∀p ∈ P
}

and let q∗ ∈ arg sup
q∈P ′

e3R
2∥q∥2

(
1 + 3R2 ∥q∥2

)
. Let

u(p) := w(p)

e
3R2∥qp∥2(1+3R2∥qp∥2)

and let (U,D, V) be the ∥·∥1-SVD of (P ′, u(·)). Then for every p ∈ P ,

s(p) ≤ e3R
2∥qp∥2

(
1 + 3R2 ∥qp∥2

) u(p)∑
p′∈P

u (p′)
+ u(p) ∥U (qp)∥1

 ,

and ∑
q∈P

s(q) ≤ e3R
2∥q∗∥2

(
1 + 3R2 ∥q∗∥2

) (
1 + (d+ 2)

1.5
)
.

Proof. Let X =
{
x ∈ Rd

∣∣∥x∥2 ≤ 1
}

, and observe that for every p ∈ P and x ∈ Rd, it holds that

∥p− x∥22 =
∣∣qTp y∣∣ , (3)

where qp =
[
∥p∥22 ,−2pT , 1

]T
and y =

[
1, x, ∥x∥22

]T
.

Let Y =
{[

1, x, ∥x∥22
]T ∣∣∣x ∈ X

}
. Following the definition of Y , for every y ∈ Y , we obtain that ∥y∥2 ≤ 3R2. Hence, by

plugging p :=
qp

∥qp∥ and R := 3R2 ∥qp∥ for every p ∈ P into Claim 3.1.2, we obtain that the for every y ∈ Y and p ∈ P ,

1

e3R
2∥qp∥2

(
1 + 3R2 ∥qp∥2

) (1 + ∣∣qTp y∣∣) ≤ e−|q
T
p y| ≤ 1 +

∣∣qTp y∣∣ . (4)

Note that for every p ∈ P , u(p) := w(p)

e
3∥qp∥2(1+3∥qp∥2)

. Thus

sup
x∈X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)

= sup
y∈Y

w(p)e−|q
T
p y|∑

p′∈P ′
w(q)

∣∣∣qTp′y
∣∣∣

≤ e3R
2∥qp∥2

(
1 + 3R2 ∥qp∥2

)
sup
y∈Y

u(p)
∣∣qTp y∣∣+ u(p)∑

p′∈P

u (p′)
∣∣∣qTp′y

∣∣∣+ ∑
p′∈P

u (p′)

≤ e3R
2∥qp∥2

(
1 + 3R2 ∥qp∥2

) u(p)∑
p′∈P

u (p′)
+ sup

y∈Y

u(p)
∣∣qTp y∣∣∑

p′∈P

u (p′)
∣∣∣qTp′y

∣∣∣
 ,

(5)

where the first inequality holds by Claim 3.1.2 and the second inequality is by Claim B.2.

Let f : P ′ × Y → [0,∞) be a function such that for every q ∈ P ′ and y ∈ Y , f(q, y) =
∣∣qT y∣∣. Plugging in P := P ′,

w := u, d := d+ 2, and f := f into Lemma 2.3 yields for every p ∈ P

sup
x∈X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
≤ e3R

2∥qp∥2

(
1 + 3R2 ∥qp∥2

) u(p)∑
p′∈P

u (p′)
+ u(p) ∥U (qp)∥1

 . (6)

15

Provable Data Subset Selection For Efficient Neural Network Training

Note that by definition, q∗ ∈ arg sup
q∈P ′

e3R
2∥q∥2

(
1 + 3R2 ∥q∥2

)
. Then the total sensitivity is bounded by

∑
q∈P

sup
x∈X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
≤ e3R

2∥q∗∥2
(
1 + 3R2 ∥q∗∥2

) (
1 + (d+ 2)

1.5
)
. (7)

Theorem 3.2 (Coreset for RBF). Let R ≥ 1 be a positive real number, X =
{
x ∈ Rd

∣∣∥x∥2 ≤ R
}

, and let ε, δ ∈ (0, 1).
Let (P,w,X, f) be query space as in Definition A.1 such that every p ∈ P satisfies ∥p∥2 ≤ 1. For every x ∈ X and p ∈ P ,
let f(p, x) := ρ (∥p− x∥2). Let (S, v) be a call to CORESET(P,w,R,m) where S ⊆ P and v : S → [0,∞). Then (S, v)

ε-coreset of (P,w) with probability at least 1− δ, if m = O
(

e12R
2
R2d1.5

ε2

(
R2 + log d+ log 1

δ

))
.

Proof. First , by plugging in the query space (P,w,Rd, f) into Lemma B.1, we obtain that a bound on the sensitivities s(p)
for every p ∈ P and a bound on the total sensitivities t := e12R

2 (
1 + 12R2

) (
1 + (d+ 2)

1.5
)

, since the maxq∈P ∥q∥2 ≤ 1.
Notice that the analysis done in Lemma B.1 is analogues to the steps done in Algorithm 1.

By plugging the bounds on the sensitivities, the bound on the total sensitivity t, probability of failure δ ∈ (0, 1), and
approximation error ε ∈ (0, 1) into Theorem A.3, we obtain a subset S′ ⊆ Q and v′ : S′ → [0,∞) such that the tuple
(S′, v′) is an ε-coreset for (P,w) with probability at least 1− δ.

B.3. Proof of Theorem 3.3

Lemma B.2 (Sensitivity bound w.r.t. the Laplacian loss function). Let
(
P,w,Rd, f

)
be query space as in Definition A.1

where for every p ∈ P and x ∈ Rd, f(p, x) = e−∥p−x∥2 . Let P ′ :=
{
qp =

[
∥p∥22 ,−2pT , 1

]T | ∀p ∈ P
}

and let

q∗ ∈ arg supq∈P ′ e3
√

∥q∥2
(
1 + 3

√
∥q∥2

)
. Let u(p) := w(p)

e
3
√

∥qp∥2(1+3
√

∥qp∥2)
and let (U,D, V) be the ∥·∥1-SVD of(

P ′, u2(·)
)
. Then for every p ∈ P ,

s(p) ≤ e3
√

∥qp∥2

(
1 + 3

√
∥qp∥2

) u(p)∑
p′∈P

u (p′)
+ u(p)

√
∥U (qp)∥1

+
e∥p∥2+

√
∥q∗∥2w(p)∑

q∈P

w(q)
,

and ∑
q∈P

s(q) ≤ 2e3
√

∥q∗∥2 + e3
√

∥q∗∥2

(
1 + 3

√
∥q∗∥2

)(
1 +

√
n (d+ 2)

1.25
)
.

Proof. Let X =
{
x ∈ Rd

∣∣∥x∥2 ≤ 1
}

, and observe that for every p ∈ P and x ∈ Rd, it holds that

∥p− x∥2 =
√∣∣qTp y∣∣, (8)

where qp =
[
∥p∥22 ,−2pT , 1

]T
and y =

[
1, x, ∥x∥22

]T
.

Let Y =
{[

1, x, ∥x∥22
]T ∣∣∣x ∈ X

}
. Hence, following Theorem A.3, the sensitivity of each point p ∈ P , can be rewritten as

sup
x∈Rd

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
≤ sup

x∈X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
+ sup

x∈Rd\X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
. (9)

From here, we bound the sensitivity with respect to subspaces of Rd.

16

Provable Data Subset Selection For Efficient Neural Network Training

Handling queries from X . Following the definition of Y , for every y ∈ Y , we obtain that ∥y∥2 ≤ 3. Hence, by plugging
p := qp for every p ∈ P and R := 3 ∥qp∥2 into Claim 3.1.2, we obtain that the for every y ∈ Y and p ∈ P ,

1

e3
√

∥qp∥2

(
1 + 3

√
∥qp∥2

) (1 +√∣∣qTp y∣∣) ≤ e
−
√
|qTp y| ≤ 1 +

√∣∣qTp y∣∣. (10)

Note that for every p ∈ P , u(p) := w(p)

e
3
√

∥qp∥2(1+3
√

∥qp∥2)
. Combining equation 9 and equation 10, yields that

sup
x∈X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
≤ e3

√
∥qp∥2

(
1 + 3

√
∥qp∥2

)
sup
y∈Y

u(p)
√∣∣qTp y∣∣+ u(p)∑

p′∈P

u (p′)

√∣∣∣qTp′y
∣∣∣+ ∑

p′∈P

w (p′)

≤ e3
√

∥qp∥2

(
1 + 3

√
∥qp∥2

) u(p)∑
p′∈P

u (p′)
+ sup

y∈Y

u(p)
√∣∣qTp y∣∣∑

p′∈P

u (p′)

√∣∣∣qTp′y
∣∣∣
 ,

(11)

where the first inequality holds by Claim 3.1.2 and the second inequality is by Claim B.2.

By Cauchy-Schwartz inequality,

sup
y∈Y

u(p)
√∣∣qTp y∣∣∑

p′∈P

u (p′)

√∣∣∣qTp′y
∣∣∣ = sup

y∈Y

√
u(p)2

∣∣qTp y∣∣∑
p′∈P

√
u (p′)

2
∣∣∣qTp′y

∣∣∣
≤ sup

y∈Y

√
u(p)

2 ∣∣qTp y∣∣√ ∑
p′∈P

u(q)2
∣∣∣qTp′y

∣∣∣
≤ sup

y∈Rd+2

√
u(p)

2 ∣∣qTp y∣∣√ ∑
p′∈P

u(q)2
∣∣∣qTp′y

∣∣∣ , (12)

where the last inequality follows from the properties associated with the supremum operation.

Let u′ : P ′ → [0,∞) be a weight function such that for every p ∈ P , u′ (qp) = u(p)
2, f : P ′ × Y → [0,∞) be a function

such that for every q ∈ P ′ and y ∈ Y , f(q, y) =
∣∣qT y∣∣. Plugging in P := P ′, w := u, d := d + 2, and f := f into

Lemma 2.3 yields for every p ∈ P

sup
x∈X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
≤ e3

√
∥qp∥2

(
1 + 3

√
∥qp∥2

) u(p)∑
p′∈P

u (p′)
+ u(p)

√
∥U (qp)∥1

 . (13)

Note that by definition, q∗ ∈ arg sup
q∈P ′

e3
√

∥qp∥2

(
1 + 3

√
∥qp∥2

)
. Then the total sensitivity is bounded by

∑
q∈P

sup
x∈X

w(p)f(p, x)∑
q∈P

w(q)f(q, x)
≤ e3

√
∥q∗∥2

(
1 + 3

√
∥q∗∥2

)(
1 +

√
n (d+ 2)

1.25
)
, (14)

where the
√
n follows from

∑
p′∈P

√
∥U (qp′)∥1 ≤

√
n
√∑

p′∈P ∥U (qp′)∥1, which is used when using Lemma 2.3. This
inequality is a result of Cauchy-Schwartz’s inequality.

17

Provable Data Subset Selection For Efficient Neural Network Training

Handling queries from Rd \X . First, we observe that for any integer m ≥ 1 and x, y ∈ Rm,

−∥x∥2 − ∥y∥2 ≤ −∥x− y∥2 ≤ ∥x∥2 − ∥y∥2 , (15)

where the first inequality holds by the triangle inequality, and the second inequality follows from the reverse triangle
inequality.

Thus, by letting xp ∈ arg sup
x∈Rd\X

w(p)f(p,x)∑
q∈P

w(q)f(q,x) for every p ∈ P , we obtain that

w(p)f (p, xp)∑
q∈P

w(q)f (q, xp)
≤ w(p)e∥p∥2−∥xp∥2∑

q∈P

w(q)e−∥q∥2−∥xp∥2

≤ w(p)e∥p∥2−∥xp∥2∑
q∈P

w(q)e−
√

∥q∗∥2−∥xp∥2

=
e∥p∥2+

√
∥q∗∥2w(p)∑

q∈P

w(q)
, (16)

where the first inequality holds by equation 15, and the second inequality holds since
√
∥q∗∥2 ≥ ∥p∥2 for every p ∈ P .

Combining equation 9, equation 13, equation 14, and equation 16, yields that for every p ∈ P

s(p) ≤ e3
√

∥qp∥2

(
1 + 3

√
∥qp∥2

) u(p)∑
p′∈P

u (p′)
+ u(p)

√
∥U (qp)∥1

+
e∥p∥2+

√
∥q∗∥2w(p)∑

q∈P

w(q)

and ∑
p∈P

s(p) ≤ 2e3
√

∥q∗∥2 + e3
√

∥q∗∥2

(
1 + 3

√
∥q∗∥2

)(
1 +

√
n (d+ 2)

1.25
)
.

Theorem 3.3 (Coreset for the Laplacian loss function). Let
(
P,w,Rd, f

)
be query space as in Definition A.1 such that

every p ∈ P satisfies ∥p∥2 ≤ 1. For x ∈ Rd and p ∈ P , let f(p, x) := e−∥p−x∥2 . Let ε, δ ∈ (0, 1). Then there exists an

algorithm which given P,w, ε, δ return a weighted set (S, v) where S ⊆ P of size O
(√

nd1.25

ε2

(
log n+ log d+ log 1

δ

))
and a weight function v : S → [0,∞) such that (S, v) is an ε-coreset of (P,w) with probability at least 1− δ.

Proof. Plugging in the query space (P,w,Rd, f) into Lemma B.2, we obtain that a bound on the sensitivities s(p) for every
p ∈ P and a bound on the total sensitivities t := 2e5 + 3e5 (1 + 5)

(
1 +

√
n (d+ 2)

1.5
)

, since the maxq∈P ∥q∥2 ≤ 1.
By plugging the bounds on the sensitivities, the bound on the total sensitivity t, probability of failure δ ∈ (0, 1), and
approximation error ε ∈ (0, 1) into Theorem A.3, we obtain a subset S′ ⊆ Q and v′ : S′ → [0,∞) such that the tuple
(S′, v′) is an ε-coreset for (P,w) with probability at least 1− δ.

B.4. Proof of Theorem 4.1

To prove Theorem 4.1, we first prove the following theorem.

Theorem B.3. There exists an algorithm that samples O
(

e8R
2
R2d1.5

ε2

(
R2 + log d+ log 2

δ

))
points to form weighted sets

(S1, w1) and (S2, w2) such that with probability at least 1− 2δ,∣∣∣∣∣ ∑p∈P

y(p)ρ(∥p− c(i)∥2)−

(∑
p∈S1

w1(p)e
−∥p−c(i)∥2

2 +
∑

q∈S2

w2(q)e
−∥q−c(j)∥2

2

)∣∣∣∣∣∣∣ϕ+
(
c(i)
)
+ ϕ−

(
c(i)
)∣∣ ≤ ε.

Proof. We first construct strong coresets for both ϕ+ and ϕ−. If ∥ci∥2 ≤ R for all i ∈ [n], then by Theorem 3.2, it

suffices to sample a weighted weight S of size O
(

e12R
2
R2d1.5

ε2

(
R2 + log d+ log 2

δ

))
to achieve a strong coreset S1 with

corresponding weighting function w1 for ϕ+ with probability at least 1− δ
2 . Similarly, we obtain a strong coreset for ϕ−

with probability at least 1− δ
2 by sampling a set S2 with weights w2 of size O

(
e8R

2
R2d1.5

ε2

(
R2 + log d+ log 2

δ

))
.

18

Provable Data Subset Selection For Efficient Neural Network Training

Hence by the definition of a strong coreset, we have that∣∣∣∣∣∣∣∣
∑
p∈P

y(p)>0

y(p)ρ(∥p− c(i)∥2)−
∑
p∈S1

w1(p)ρ(∥p− c(i)∥2)

∣∣∣∣∣∣∣∣ ≤ ε
∑
p∈P

y(p)>0

y(p)ρ(∥p− c(i)∥2)

= εϕ+(c(i))

and ∣∣∣∣∣∣∣∣
∑
p∈P

y(p)<0

y(p)ρ(∥p− c(i)∥2)−
∑
q∈S2

w2(q)ρ(∥q − c(i)∥2)

∣∣∣∣∣∣∣∣ ≤ ε
∑
p∈P

y(p)<0

|y(p)|ρ(∥p− c(i)∥2)

= εϕ−(c(i))

for any input x ∈ Rn.

Thus by triangle inequality and a slight rearrangement of the inequality, we have that with probability at least 1− δ,∣∣∣∣∣ ∑p∈P

y(p)ρ(∥p− c(i)∥2)−

(∑
p∈S1

w1(p)e
−∥p−c(i)∥2

2 +
∑

q∈S2

w2(q)e
−∥q−c(j)∥2

2

)∣∣∣∣∣∣∣ϕ+
(
c(i)
)
+ ϕ−

(
c(i)
)∣∣ ≤ ε.

To prove Theorem 4.1, we split αi into the sets {i|αi > 0} and {i|αi < 0} and apply Theorem B.3 to each of the sets. We
emphasize that this argument is purely for the purposes of analysis so that the algorithm itself does not need to partition the
αi quantities (and so the algorithm does not need to recompute the coreset when the values of the weights αi change over
time). We thus get the following guarantee:

Theorem 4.1. There exists an algorithm that samples O
(

e8R
2
R2d1.5

ε2

(
R2 + log d+ log 2

δ

))
points to form weighted sets

(S1, w1) and (S2, w2) such that with probability at least 1− 2δ,∣∣∣∣∣∣∣
∑
p∈P

y(p)ϕ(p)−

 ∑
i∈[L]
αi>0

αiγS1 +
∑

j∈[L]
αj<0

αjγS2

∣∣∣∣∣∣∣∑

i∈[L]

|αi|
(
ϕ+
(
c(i)
)
+ ϕ−

(
c(i)
)) ≤ ε,

where γS1
:=

∑
p∈S1

w1(p)e
−∥p−c(i)∥2

2 and γS2
:=

∑
q∈S2

w2(q)e
−∥q−c(j)∥2

2 .

B.5. Proof sketch of Corollary 4.2

Corollary B.4. Let RFBNN be a sufficiently large (RBF) neural network, P ⊂ Rd, and let f(p) : P → R be a function
that can be approximated by a set of centers and weights q (the learned parameters that define the RBFNN) assigned to

RFBNN such that, for every p ∈ P : RFBNN(p, q) ≈ f(p), and

∥∥∥∥∥ ∑p∈P

RFBNN(p, q)−
∑
p∈P

f(p)

∣∣∣∣∣ ≤ ε, where each

center of the RBFNN lies in ball centered at the origin with radius R (to satisfy our coreset’s assumption). Let (S, v) be
the output of a call to Algorithm 1, i.e., (S, v) is coreset for P is an RBF coreset; see Definition 2.1. Then,∣∣∣∣∣∣

∑
p∈P

f(p)−
∑
s∈S

v(s)RBFNN(s, q)

∣∣∣∣∣∣ ≤ ε
∑
p∈P

f(p) + ε.

19

Provable Data Subset Selection For Efficient Neural Network Training

Proof. First using our RBF coreset properties and the definition of RBFNN which is a weighted sum of RBFs, we easily
show that

∣∣∣∑s∈S v(s)RBFNN(s, q)−
∑

p∈P RBFNN(p, q)
∣∣∣ ≤ ε

∑
p∈P RBFNN(p, q).

Combing the above with the fact that
∑

p∈P RBFNN(p, q) approximates
∑

p∈P f(p) yields our result.

C. Lower bound on the coreset size for the Gaussian loss function - illustration
Here, we illustrate one dataset such that for any approximation ε, the ε-coreset must contain at least half the points to ensure
the desired approximation from a theoretical point of view.

p1

p2 p3

p4

p5

p6

p7p8

p9

p10

Figure 4. Evenly distributed points on some circle where the minimal distance between each point and any other point is at least
√
lnn,

where in this example n = 10.

D. Coresets and Function Approximation
The weight function w in the query space refers to a function that assigns weights to each input in the input set. These
weights can be used to indicate the relative importance of each input in the analysis or experiment.

In traditional supervised learning, the weight function is not typically used, as the focus is on learning a function that maps
inputs x to outputs y. Usually, all input examples are equally important. Notably, in some cases, such as when dealing
with imbalanced datasets or when certain inputs are more informative than others, the use of weights can improve the
performance of the learning algorithm. In general, the role of the weight function in analysis and experiments is to provide a
mechanism for incorporating prior knowledge into the learning process. By assigning weights to the input set, we can guide
the learning algorithm to focus on certain inputs of the input space (or certain features of the inputs in other cases), which
can lead to improved performance.

In the context of function approximation via coresets, the weight function is used to give greater weight to some chosen
coreset points that represent a larger quantity of the input data for the task at hand. For example, if the function being
approximated has many points (denoted by Q) with a similar cost on the given queries, then, a point from this set Q will
hopefully be chosen in the coreset as a representative for the whole set Q, and the weight function may assign a greater
weight to this point to ensure that the approximation captures the other points not included in the coreset, that are close to
this coreset point. In the deep learning experiments, once we sample coresets and compute corresponding weights, we can
define the loss of the trained neural network, as the weighted mean of the losses of the computed coreset, instead of using
uniform weights when updating each batch.

E. Gradient Approximation via Our Coreset for RBFNNs
Radial basis function (RBF) neural networks are a type of neural network that use radial basis functions as activation
functions. Given a “large enough” RBF network, it can approximate any continuous function to arbitrary precision. In other
words, let RFBNN be a sufficiently large (RBF) neural network, and let f(p) : P ′ → R where P ′ ⊂ Rd, then, there exists
a set of centers and weights (the learned parameters that define the RBFNN) q to assign RFBNN such that for every x ∈ X ,
RFBNN(p, q) ≈ f(p).

Focusing on the derivative of single parameters/weight in a given DNN in a given step of the training process, the derivative
of this weight can be defined as function g(p), where p here is a vector representation of an input example for the deep

20

Provable Data Subset Selection For Efficient Neural Network Training

neural network. Thus, if RBFNN is large enough, then there exists a set of centers and weights q to assign RFBNN
such that:

• For every p ∈ P ′: RFBNN(p, q) ≈ g(p) —P ′ is the space where the input may come from. This leads to the
following.

• For every
∑

p∈P RFBNN(p, q) ≈
∑

p∈P g(p) — P is the input training data of size n.

Now, according to the definition of coreset for RBFNN, given a set of inputs P and an RBFNN (structure), a coreset for P
with respect to RBFNN, is a pair (S, v), where S ⊂ P , and v : S → R is a weight function such that for any set of centers
and weights q to assign RFBNN , we have∑

p∈P

RFBNN(p, q) ≈
∑
s∈S

v(s)RFBNN(s, q).

Finally, put q to be the set of centers and weights (of RBFNN) that approximates some desired derivative g(x) of a weight in
the neural network. Combining all of the above yields∑

p∈P

g(p) ≈
∑
p∈P

RFBNN(p, q) ≈
∑
s∈S

v(s)RFBNN(s, q).

F. Experimental Results - Extended
F.1. Intuition behind re-sampling the coreset

Theoretically speaking, our coreset is independent of the model and can be computed once to all epochs. However, practically
speaking, to improve the practical results we construct a new coreset after Υ epochs to expose the model to new samples
and thus ensure a model with better generalization capabilities. We note the following very important comments:

• Once we compute the sensitivity, the sampling process takes ∼ 0 time. Thus, it is free to sample a new coreset, even
after each epoch.

• Since we rely on sensitivity sampling, then our samples across different epochs should be similar, as high sensitivity
points, will be sampled with a high probability. However, the sampled points which have low sensitivity may be
changed across different samples/epochs, thus, making sure we still capture the real important samples, while we get a
wider diversity in the less important samples.

Finally, we note that we could have conducted experiments for sampling after each epoch, as it takes zero time to do that, and
we would have achieved higher test accuracy results. However, we did not report these results to ensure a fair comparison
with our competitors that cannot afford to compute a new coreset every epoch due to time constraints.

F.2. MNIST results

In what follows, we present our subset selection results on the MNIST dataset at Table 6.

F.3. Standard deviation and statistical significance results

Tables 7–9 show the standard deviation results over five training runs on CIFAR10, CIFAR100, and MNIST datasets,
respectively.

21

Provable Data Subset Selection For Efficient Neural Network Training

Table 6. Data Selection Results for MNIST using LeNet
Top-1 Test accuracy of the Model(%) Model Training time(in hrs)

Budget(%) 1% 3% 5% 10% 1% 3% 5% 10%
FULL (skyline for test accuracy) 99.35 99.35 99.35 99.35 0.82 0.82 0.82 0.82

RANDOM (skyline for training time) 94.55 97.14 97.7 98.38 0.0084 0.03 0.04 0.084
RANDOM-WARM (skyline for training time) 98.8 99.1 99.1 99.13 0.0085 0.03 0.04 0.085

GLISTER 93.11 98.062 99.02 99.134 0.045 0.0625 0.082 0.132
GLISTER-WARM 97.63 98.9 99.1 99.15 0.04 0.058 0.078 0.127

CRAIG 96.18 96.93 97.81 98.7 0.3758 0.4173 0.434 0.497
CRAIG-WARM 98.48 98.96 99.12 99.14 0.2239 0.258 0.2582 0.3416

CRAIGPB 97.72 98.47 98.79 99.05 0.08352 0.106 0.1175 0.185
CRAIGPB-WARM 98.47 99.08 99.01 99.16 0.055 0.077 0.0902 0.1523

GRADMATCH 98.954 99.174 99.214 99.24 0.05 0.0607 0.097 0.138
GRADMATCH-WARM 98.86 99.22 99.28 99.29 0.046 0.057 0.089 0.132

GRADMATCHPB 98.7 99.1 99.25 99.27 0.04 0.051 0.07 0.11
GRADMATCHPB-WARM 99.0 99.23 99.3 99.31 0.038 0.05 0.065 0.10

RBFNN CORESET (OURS) 98.98 99.2 99.31 99.32 0.028 0.051 0.062 0.098

Table 7. Data Selection Results for CIFAR10 using ResNet-18: Standard deviation of the Model (for 5 runs)

Standard deviation of the Model(for 5 runs)
Budget(%) 5% 10% 20% 30%

FULL (skyline for test accuracy) 0.032 0.032 0.032 0.032
RANDOM (skyline for training time) 0.483 0.518 0.524 0.538

RANDOM-WARM (skyline for training time) 0.461 0.348 0.24 0.1538
GLISTER 0.453 0.107 0.046 0.345

GLISTER-WARM 0.325 0.086 0.135 0.129
CRAIG 0.289 0.2657 0.1894 0.1647

CRAIG-WARM 0.123 0.1185 0.1058 0.1051
CRAIGPB 0.152 0.1021 0.086 0.064

CRAIGPB-WARM 0.0681 0.061 0.0623 0.0676
GRADMATCH 0.192 0.123 0.112 0.1023

GRADMATCH-WARM 0.1013 0.1032 0.091 0.1034
GRADMATCHPB 0.0581 0.0571 0.0542 0.0584

GRADMATCHPB-WARM 0.0542 0.0512 0.0671 0.0581
RBFNN CORESET (OURS) 0.25 0.2 0.17 0.13

RBFNN CORESET-WARM (OURS) 0.21 0.16 0.13 0.12

22

Provable Data Subset Selection For Efficient Neural Network Training

Table 8. Data Selection Results for CIFAR100 using ResNet-18: Standard deviation of the Model (for 5 runs)

Standard deviation of the Model(for 5 runs)
Budget(%) 5% 10% 20% 30%

FULL (skyline for test accuracy) 0.051 0.051 0.051 0.051
RANDOM (skyline for training time) 0.659 0.584 0.671 0.635

RANDOM-WARM (skyline for training time) 0.359 0.242 0.187 0.175
GLISTER 0.463 0.15 0.061 0.541

GLISTER-WARM 0.375 0.083 0.121 0.294
CRAIG 0.3214 0.214 0.195 0.187

CRAIG-WARM 0.18 0.132 0.125 0.115
CRAIGPB 0.12 0.134 0.123 0.115

CRAIGPB-WARM 0.1176 0.1152 0.1128 0.111
GRADMATCH 0.285 0.176 0.165 0.156

GRADMATCH-WARM 0.140 0.134 0.142 0.156
GRADMATCHPB 0.104 0.111 0.105 0.097

GRADMATCHPB-WARM 0.093 0.101 0.100 0.098
RBFNN CORESET (OURS) 0.3 0.19 0.18 0.16

RBFNN CORESET-WARM (OURS) 0.19 0.14 0.11 0.1

Table 9. Data Selection Results for MNIST using LeNet: Standard deviation of the Model (for 5 runs)

Standard deviation of the Model(for 5 runs
Budget(%) 1% 3% 5% 10%

FULL (skyline for test accuracy) 0.012 0.012 0.012 0.012
RANDOM (skyline for training time) 0.215 0.265 0.224 0.213

RANDOM-WARM (skyline for training time) 0.15 0.121 0.110 0.103
GLISTER 0.256 0.218 0.145 0.128

GLISTER-WARM 0.128 0.134 0.119 0.124
CRAIG 0.186 0.178 0.162 0.125

CRAIG-WARM 0.0213 0.0223 0.0196 0.0198
CRAIGPB 0.021 0.0209 0.0216 0.0204

CRAIGPB-WARM 0.023 0.0192 0.0212 0.0184
GRADMATCH 0.156 0.128 0.135 0.12

GRADMATCH-WARM 0.087 0.084 0.0896 0.0815
GRADMATCHPB 0.0181 0.0163 0.0147 0.0129

GRADMATCHPB-WARM 0.0098 0.012 0.0096 0.0092
RBFNN CORESET (OURS) 0.18 0.13 0.11 0.1

RBFNN CORESET-WARM (OURS) 0.09 0.08 0.05 0.01

23

