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Abstract
In this paper, we derive a semi-dual formulation
for the problem of unbalanced quadratic optimal
transport and we study its stability properties,
namely we give upper and lower bounds for the
Bregman divergence of the new objective that
hold globally. We observe that the new objective
gains even more convexity than in the balanced
case. We use this formulation to prove the first
results on statistical estimation of UOT potentials
and we leverage the extra convexity to recover
super-parametric rates. Interestingly, unlike in the
balanced case, we do not require the potentials to
be smooth. Then, use variable metric descent to
solve the semi-dual problem for which we prove
convergence at a 1/k rate for strongly convex
potentials and exponential convergence in the bal-
anced case when potentials are also smooth. We
emphasize that our convergence results has an
interest on its own as it generalizes previous con-
vergence results to non-equivalent metrics. Last,
we instantiate a proof-of-concept tractable version
of our theoretical algorithm that we benchmark
on a 2D experiment in the balanced case and on
a medium dimension synthetic experiment in the
unbalanced case.

1. Introduction
In its original formulation, OT is a tool to compare proba-
bility distributions: it seeks a map that optimally transports
one distribution µ to an other distribution ν with respect to
some fixed cost c and it returns the associated transport cost.
This problem was later relaxed into a linear program by Kan-
torovitch and its primal formulation consists into seeking
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a coupling instead of a map with minimal cost and whose
marginals are constrained to be µ and ν. Quite recently, OT
was extended to arbitrary positive measures (Chizat, 2017),
with possibly different masses, thus the name Unbalanced
Optimal Transport (UOT). On the primal problem, the hard
marginal constraints are relaxed by soft entropic penalties.

Currently, the methods to estimate UOT potentials mostly
rely on the dual formulation of the problem (Chizat, 2017;
Séjourné et al., 2019). Yet, just as in the balanced case, the
raw dual formulations suffers two major drawback: first
the discretisation of the infinite cost inequality constraint
strongly bias the estimators, especially when the dimen-
sion is large (Vacher et al., 2021) and second, the lack of
strong convexity of the objective leads to algorithms that
require many iterations (Léger, 2021; Pham et al., 2020).
One way to circumvent this issue is to pre-optimize on one
potential in the dual formulation to get rid of the cost con-
straint and obtain the so-called semi-dual formulation of
optimal transport. From a statistical point of view, this new
formulation now benefits from the underlying regularity of
the problem, even leading to superparametric rates of es-
timation under smoothness hypothesis (Hütter & Rigollet,
2021). Concerning numerical experiments, it was shown
empirically to produce very sharp transport maps on grids
with algorithms converging in just a few iterations (Jacobs &
Léger, 2020). The key element behind these successes is the
fact that the semi-dual formulation gains in convexity with
respect to the previous linear objective of OT; around the
optimum, its controls the L2 distance between the gradient
of the potential and the gradient of the optimal solution.

In this article, we propose to continue this line of study and
derive a semi-dual formulation for quadratic UOT. Unlike
previous works (Hütter & Rigollet, 2021; Manole et al.,
2021), we derive stability bounds that hold globally and not
simply around the optimum. First, we observe that in the
unbalanced case, there is a gain of convexity with respect
to the balanced case that allows us to derive fast statisti-
cal rates (van de Geer, 2002) even when the potentials are
not assumed to be smooth. As a corollary, we obtain the
first statistical rates for the problem for UOT potentials es-
timation. Then we derive a provably convergent algorithm
to solve theoretically our semi-dual formulation. To this
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end, we extend the convergence results on gradient descents
with variable, yet equivalent, metrics (also known as pre-
conditioned gradient descent) to the infinite dimensional
case, with non-equivalent metrics. As a result, we obtain
a O(1/k) convergence when the potentials are assumed to
be strongly convex and exponential convergence in the bal-
anced case for smooth strongly convex potentials; crucially,
we relied on the global nature of our estimates to obtain
those rates. Finally, we instantiate a tractable version of
our algorithm that we benchmark in the balanced case on a
stochastic 2D shape matching experiment and on a medium
dimension experiment in the unbalanced case that aims to
recover potentials from samples. For these tasks, our model
is competitive (UOT) Sinkhorn.

Assumptions and notations In what follows, µ and ν are
two positive Radon measures supported on X,Y subsets of
Rd included in BR, the euclidean ball of radius R centered
in 0. The support of a measure µ is denoted supp(µ). The
duality pairing between a Radon measure α and a contin-
uous function f is denoted ⟨f, α⟩ =

∫
f(x)dα(x); when

f is squared integrable and α is positive, we shall denote
∥f∥2β = ⟨f2, β⟩. The quadratic function x 7→ ∥x∥2/2
is denoted q and for any Gateaux differentiable function
h with differential Dh, we shall denote ∆h the Breg-
man divergence associated to h, defined as ∆h(x, y) =
h(x)− h(y)−Dh(y)(x− y). For any convex function f
we shall denote by ∇f a subgradient of f , by f∗ the con-
jugate (or Legendre transform) f∗(y) = supx x

⊤y − f(x)
and we call f an M -smooth function whenever the gradient
of f is M -lipschitz. Given µ a positive Radon measure
and a map T differentiable on the support of µ, we de-
note T#(µ) the pushforward of the measure µ by the map
T , defined as T#(µ)(A) = µ(T−1(A)) for all Borel sets
A. Finally, for a positive Radon measure µ and a positive
function h, µ · h is the measure such that for all Borel A,
(µ · h)(A) =

∫
A
h(x)µ(dx).

2. Semi-dual Unbalanced Quadratic Optimal
Transport

2.1. Semi-dual formulation

Unbalanced optimal transport is a relaxation of the hard
marginal constraints of optimal transport with so called
Csizár divergences Dϕ associated to some entropy function
ϕ defined as follows.

Definition 2.1 (Csizár divergences). An entropy function
ϕ : R+ 7→ R+ ∪ {+∞} is a convex lower semicontinuous
function such that ϕ(1) = 0. Its recession constant is ϕ

′

∞ =

lim∞
ϕ(r)
r . Let µ, ν be nonnegative Radon measures on a

convex domain Ω in Rd. The Csiszàr divergence associated
with ϕ is Dϕ(µ, ν) =

∫
Ω
ϕ
(

dµ(x)
dν(x)

)
dν(x) + ϕ

′

∞
∫
Ω
dµ⊥

where µ⊥ is the orthogonal part of the Lebesgue decompo-
sition of µ with respect to ν.

For instance, if one takes the entropy ϕ(t) = t log(t)−t+1,
we recover the Kulback Leibler case Dϕ(µ, ν) = KL(µ, ν).
The primal formulation of Unbalanced Optimal transport
reads

UOT(µ, ν) = inf
π∈M+(X×Y )

Dϕ(π0, µ)+Dϕ(π1, ν)+⟨c, π⟩ ,

where c is the ground cost, M+(X×Y ) is the space of posi-
tive Radon measures over X×Y and πi is the i-th marginal
of π; note that standard OT is recovered for the entropy
function ϕ(x) = ι{1}(x) the convex indicator function of
{1} and that the Gaussian-Hellinger metric is recovered for
ϕ(t) = t log(t)− t+ 1 and a quadratic cost. When strong
duality holds (Chizat, 2017), the dual formulation of UOT
reads

UOT(µ, ν) = sup
z0,z1

− ⟨ϕ∗(−z0), µ⟩ − ⟨ϕ∗(−z1), µ⟩

+ ι(z0 ⊕ z1 ≤ c) ,
(1)

where for all (x, y) ∈ X×Y, z0⊕z1(x, y) = z0(x)+z1(y)
and where the functions (z0, z1) will be referred as poten-
tials throughout the rest of the paper. We shall assume
throughout the paper that the cost c is the quadratic cost
c(x, y) = ∥x−y∥2

2
:= q(x− y). Similarly to standard opti-

mal transport, UOT often leads to a transport map between
(rescaled) versions of the marginals, as shown in the Propo-
sition below.
Proposition 2.2 (Gallouët et al. (2021)). Assuming that
ϕ∗ is differentiable and that the optimum of problem (1)
is attained for the potentials (z0, z1), the measures µ̃ =
µ·(ϕ∗)

′◦(z0−q) and ν̃ = ν·(ϕ∗)
′◦(z1−q) have equal mass.

Furthermore, if (z0, z1) are differentiable, these measures
are related by µ̃ = ∇(q−z1)#(ν̃) and ν̃ = ∇(q−z0)#(µ̃).

One can check that at optimum, the potentials (z0, z1) are
related as z1 = q − (q − z0)

∗. If one plugs this optimality
condition in the dual formulation, one obtains the semi-dual
formulation of UOT.
Proposition 2.3. The semi-dual formulation reads
UOT(µ, ν) = − infz Jµ,ν(z) with Jµ,ν(z) := ⟨ϕ∗(z −
q), µ⟩+ ⟨ϕ∗(z∗−q), ν⟩+ ι(z ∈ CVX) where CVX is the set
of convex functions over Rd. The functional Jµ,ν is convex
and furthermore, if g is strongly convex and ϕ∗ is differen-
tiable, its differential reads DJµ,ν(g) = µ · (ϕ∗)

′ ◦ (g −
q)− (∇g∗)#(ν · (ϕ∗)

′ ◦ (g∗ − q)).

The proof is left in Appendix. When confusion is possible
we shall denote Jµ,ν by J . We shall make the assumption
that ϕ∗ is differentiable throughout the rest of the paper;
note that this assumption is standard and is fulfilled for
balanced OT where ϕ∗ = id and for unbalanced OT with
Dϕ = KL.
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2.2. Stability estimates

Just as in the balanced case, the semi-dual formulation gains
stability with respect to the dual-formulation; namely, under
certain regularity conditions on the potentials (f, g), one can
bound from under and below ∆J(f, g) by some quadratic
function of f − g. While previous works mainly focus on
stability around the optimum (Manole et al., 2021; Hütter &
Rigollet, 2021), that is ∆J(f, g0) with g = g0 the ground
truth balanced transport potential, we focus on global sta-
bility: for any (f, g), we derive upper and lower bounds of
∆J(f, g) in the unbalanced case. As we shall demonstrate
in Sec. 4, we need our estimates to hold globally to derive
provably convergent algorithms.

Proposition 2.4. Let g be a strongly convex function such
that (f, g) are bounded by KR over BR and (f∗, g∗) are
bounded by K∗

R over BR. If f is λ-strongly convex and ϕ∗

is twice differentiable then, denoting K = max(KR,K
∗
R),

the Bregman divergence ∆J(f, g) = J(f) − J(g) −
⟨DJ(g), f − g⟩ is bounded as

λ

2
∥∇(f∗ − g∗)∥2[ν]g∗ +

IK
2
Hµ,ν(f, g)

2 ≤ ∆J(f, g)

≤ 1

2λ
∥∇(f − g)∥2T ([ν]g∗ )

+
SK

2
Hµ,ν(f, g)

2 ,

(2)

where T (ν) = (∇g∗)#(ν), [β]h = β · (ϕ∗)
′ ◦ (h− q) with

Iζ := inf (ϕ∗)
′′
(Bζ+R2/2), Sζ := sup (ϕ∗)

′′
(Bζ+R2/2)

and Hµ,ν(f, g)
2 = ∥f − g∥2µ + ∥f∗ − g∗∥2ν . Conversely, if

f is convex and M -smooth, then ∆J(f, g) is bounded as

1

2M
∥∇(f − g)∥2T ([ν]g∗ )

+
IK
2
Hµ,ν(f, g)

2 ≤ ∆J(f, g)

≤ M

2
∥∇(f∗ − g∗)∥2[ν]g∗ +

SK

2
Hµ,ν(f, g)

2 .

In particular, for balanced OT, we have ϕ∗ = id, hence
IK = SK = 0 and we recover the (standard) estimates

λ

2
∥∇(f∗−g∗)∥2L2(ν) ≤ ∆J(f, g) ≤

∥∇(f − g)∥2L2(T (ν))

2λ
,

in the λ-strongly convex case.

The proof is left in Appendix. In the case of balanced
OT, when f is only assumed to be λ-strongly convex, ∆J

only controls ∇f∗ − ∇g∗ while in unbalanced OT, if we
pick a locally strongly convex entropy ϕ, which occurs in
the standard case Dϕ = KL, we have IK > 0 hence ∆J

also controls the difference of conjugates f∗ − g∗ and the
potentials themselves f − g; unlike balanced OT, we do not
need to make a smoothness assumption on f to gain control
over f − g.

In the following corollary, we derive an upper-bound on
∆J(f, g) that only depends on f − g and no longer on the
difference of the conjugates f∗ − g∗. Indeed, as we show

in Sec. 4, removing this dependency is necessary to derive
provably convergent algorithms.

Corollary 2.5. Under the same assumptions as in Prop.
2.4, if f is λ-strongly convex and if there exists R∗ such
that ∇f∗(BR),∇g∗(BR) ⊂ BR∗ with f being L-lipschitz
on BR∗ then, denoting H̃g

µ,ν(h) = ∥h∥2µ + ∥h∥2(∇g∗)#(ν),
∆J(f, g) is upper-bounded as

∆J(f, g) ≤
∥∇(f − g)∥2(∇g∗)#([ν]g∗ )

2λ
+

3SK

2
H̃g

µ,ν(f − g)

+
3SK

2

R2 + L2

λ2
∥∇(f − g)∥2(∇g∗)#(ν) .

The proof is left in Appendix. Whether a similar lower
bound on ∆J depending only on the difference f − g still
holds is an open question that we postpone for future works.

3. Statistical Rates
In this section, we restrict ourselves to the case where µ, ν
are measures that we can only access in a stochastic setting
through their (possibly weighted) n-independent samples
denoted by µ̂, ν̂. In this setting, a natural way to estimate
UOT map is to solve the empirical semi-dual over some
space C.

Definition 3.1 (Stochastic Semi-Dual Unbalanced OT). Let
C be a set of real-valued function, we define ÛOTC =
− infz∈C Ĵ(z), where Ĵ = Jµ̂,ν̂ . Conversely, we define
an empirical potential ẑC = argminz∈C Ĵ(z). When no
confusion is possible, we shall simply denote it ẑ.

Defining the pseudo distance dλϕ(z, z0)
2 = λ

2 ∥∇(z∗ −
z∗0)∥2[ν]z∗0

+ IK
2 H2

µ,ν(z, z0) where IK and H2
µ,ν(z, z0) are

defined in Proposition 2.4, we shall prove under suitable
assumptions detailed below that, in the absence of bias i.e.
if z0 ∈ C, ẑ converges toward z0 with respect to dλϕ. For the
sake of simplicity, we chose to make an unbiased analysis,
which are known to be sub-optimal. Similar results do hold
with a bias measured in terms of dλϕ.

Assumption 3.2. (i) The measures µ, ν have support in-
cluded in BR for some R > 0. (ii) The measures µ, ν have
continuous densities with respect to the Lebesgue measure
on BR. (iii) There exists z̃0 ∈ C such that z̃0 coincides with
z0 on supp(µ) and with z̃∗0 coincides with z∗0 on supp(ν).
(iv) The functions in C are uniformly bounded by b(r) over
Br, uniformly lower bounded by l and are λ-strongly con-
vex. (v) The conjugate of the entropy ϕ∗ is strongly convex
on every compact.

Note that assumptions (i), (ii) are standard in statistical OT
estimation (Hütter & Rigollet, 2021; Pooladian & Niles-
Weed, 2021) and that assumption (iii) ensures the absence
of bias in the model. While (ii) can hardly be removed
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as it ensures the existence of optimal solutions in (1) and
that these solutions can be extended outside the support of
the measures, we believe that under a finer analysis, (iv)
can re replaced by a sub-gaussian assumption. The goal
of assumptions (iv) and (v) is to avoid the smoothness as-
sumption previously made in classical OT to attain fast
statistical rates; note that assumption (v) is verified for the
standard UOT case Dϕ = KL. However, similar results
would hold if (iv) and (v) were replaced by smoothness and
strong-convexity.

Theorem 3.3. Under Assumptions (i)-(iv), it holds for all
δ ≤ M ′

L

E[dλϕ(ẑC , z0)2] ≲ δ+
1√
n

∫ b′
P

δ
4

√
n(C,L∞(BR′), Pu)du ,

where n(C, ∥ · ∥, u) is the logarithm of the covering number,
also called the metric entropy, of C with respect to the
∥ · ∥ (semi)-norm at scale u, b′ = (b, R, λ, l, ϕ), R′ =
(b, R, λ, l), L∞(BR′) is the supremum norm restricted to
BR′ , P = (b, R, λ, l, ϕ) and ≲ hides a factor 64. If we
further assume (v) and that there exists (Pµ, Pν) and α < 2
such that for every u ∈ R≥0, n(C,L2(µ), u) ≤ Pµu

−α

and n(C,L2(ν), u) ≤ Pνu
−α then ∀n ≥ 1,

E[dλϕ(ẑ, z0)2] ≲ n− 1
1+α/2 , (3)

where ≲ hides constants that do not depend on n.

The proof is left in Appendix. First we observe that in
both cases the speed of convergence does improve when
the metric entropy of C decreases. As shown in Vacher
et al. (2021), had we relied on the raw dual formulation
of UOT, we would have obtained rates scaling in n−2/d

independently of C because of the discretization of the cost
constraint. Second, we note that if the metric entropy of
C is sufficiently low, we can recover rates that are faster
than 1/

√
n and up to O(1/n): again this is thanks to the

semi-dual formulation, which brings extra convexity and
can localize the solution as it was observed in the balanced
case by Hütter & Rigollet (2021) (see the proof for more
details on the localization technique). Finally, note that
unlike previous works (Hütter & Rigollet, 2021; Pooladian
& Niles-Weed, 2021; Manole et al., 2021), we do not require
the functions in C to be smooth. An interesting example
is the case of Input Convex Neural Networks (Amos et al.,
2017). To go further, an analysis including a bias term is
necessary as z0 may not be represented by an ICNN. We
postpone this interesting question for future work and derive
instead upper-bounds for the problem estimating smooth
UOT potentials where we leverage the recent results of
Gallouët et al. (2021).

Corollary 3.4. Assume that µ and ν have compact and con-
vex support with densities (ρ1, ρ2) bounded away from zero

and infinity and assume that ϕ is strictly convex with infinite
slope at 0. If (ρ1, ρ2) are k-times continuously differen-
tiable with k ∈ N⋆ then, denoting z0 an optimal unbalanced
OT potential and αk,d = k+2

d , there exists C such that the
empirical potential ẑC satisfiesE[dλϕ(ẑC , z0)2] ≲ n−αk,d if αk,d ≤ 1/2,

E[dλϕ(ẑC , z0)2] ≲ n
− 1

1+α
−1
k,d

/2 if αk,d > 1/2 .

Figure 1. Comparison of our rates
against the statistical lower bounds
of Hütter & Rigollet (2021): on the
left for d = 12 and on the right for
d = 100.

The proof is left in
Appendix. Note that
in that setting, dλϕ
is finer than h 7→
∥∇h∥L2(µ), hence it
is legit to compare
our rates to the ones
of Hütter & Rigollet
(2021) who study the
problem of minimax
estimation of smooth
balanced transport map w.r.t. the latter pseudo-distance. As
shown on Fig. 1, our rates are very close to their statistical
lower bounds. Whether these lower bounds are still sharp
in the unbalanced case is an open question yet we believe
that their proof method remains valid in this setting. As
a consequence, we conjecture that our estimator is nearly
statistically optimal under the hypothesis of Corollary 3.4
in the highly smooth regime αk,d > 1/2. We claim that the
larger gap in the lowly smooth regime αk,d << 1/2 is an
artefact of our proof which relies on an unbiased analysis.
We postpone this question for future work.

4. A Provably Convergent Algorithm
In this section, we provide a theoretical algorithm to esti-
mate unbalanced transport potentials and solve for arbitrary
positive measures µ, ν the problem minf∈C Jµ,ν(f) where
C is a convex set of functions. Had we been in a finite
dimensional setting, we could have directly applied gradi-
ent based methods to solve this problem with updates of
the form fk+1 = fk − βDJ(fk). However in our infinite
dimensional setting, the gradient DJ(fk) is a measure, not
a function. Frank-Wolfe algorithm provides implicit up-
dates of the form of a convex combination of linear oracles
argminf∈C⟨f,DJ(fk)⟩. This scheme provably converges
(Dunn, 1980) yet it can be slow in practice. One way to
improve convergence in practice is to recall the variational
formulation of gradient descent and generate updates as
fk+1 = argminf∈C⟨f,DJ(fk)⟩+β∥f −fk∥2 where ∥ · ∥
is a well-chosen fixed norm. Under the relative smooth-
ness assumption (Bauschke et al., 2017; Lu et al., 2018)
∆J(f, g) ≤ 1

β ∥f − g∥2, this scheme provably converges
at a O(1/k) rate. Yet in our setting ∆J(f, fk) depends on
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the varying pseudo-norm L2(∇f∗
k (ν)). Hence we study the

guarantees we can obtain with a variable metric scheme
(Frankel et al., 2015)

fk+1 = argmin
f∈C

⟨f,DJ(fk)⟩+
β

2
∥f − fk∥2fk . (4)

0.4 0.2 0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Ground Truth
Bregman potential (2 steps)
FW potential (10 steps)

Figure 2. Potential gen-
erated by Frank-Wolfe
with 10 steps (in green) vs
generated by our algorithm
with 2 steps (in orange) vs
ground truth (in blue).

Note that formally, (4) is a
particular case of the forward-
backward algorithm with vari-
able metric (Chen & Rockafel-
lar, 1997) that minimizes func-
tions of the form F = f +
g and for which convergence
rates were proven. Yet to the
best of our knowledge, all the
previous works either made
the assumption that the met-
rics ∥ · ∥fk are all equivalent
to some fixed metric (Chen
& Rockafellar, 1997; Uschma-
jew & Vandereycken, 2022), either they assume that the
metrics remain at least as fine throughout the iterations
∥ · ∥fk ≲ ∥ · ∥fk+1

(Combettes & Vũ, 2014; Cui et al.,
2019). As none of these assumptions hold in our setting,
we give convergence guarantees for the more general case
of non-equivalent and non-monotone metrics. We prove
in Appendix that under the assumption of variable relative
smoothness ∆J(f, g) ≤ β

2 ∥f−g∥2g where ∥·∥g is a pseudo-
norm depending on g, we obtain a O(1/k) convergence of
(4); under the additional assumption that there exists α > 0
such that ∆J(f, g) ≥ α

2 ∥f − g∥2g, we obtain exponential
convergence.

In what follows, we focus on the instantiation of (4) and the
guarantees we obtain for the minimization of the semi-dual.
Nevertheless, for a general result, we encourage the reader
interested in convex optimization in Banach spaces to read
Appendix 9.1.
Theorem 4.1 (Strongly convex case). Let C be a closed
convex set of λ-strongly convex functions, L(r)-Lipschitz
over Br and such that for all f ∈ C, |f(0)| ≤ b. The
minimum f̄ = argminf∈C J(f) exists. Furthermore, for

∥h∥2g = 3SK

[
R2 + L(R∗)2

λ2
∥∇h∥2(∇g∗)#(ν) + H̃g

µ,ν(h)

]
+

1

λ
∥∇h∥2(∇g∗)#([ν]g∗ )

,

where R∗ = R
λ + 2

√
b
λ , K = max(b + LR,R∗(R +

b + L)) and SK , [·]g are defined in Proposition 2.4 and
H̃g

µ,ν(h) is defined in Corollary 2.5, the iterates fk+1 =

argminf∈C⟨DJ(fk), f − fk⟩+ 1
2∥f − fk∥2fk are well de-

fined and they verify

J(fk)− J(f̄) ≤ I(µ(Rd) + ν(Rd))

kλ2
,

where I is a constant that does not depend on k, λ, µ, ν.

The proof is left in Appendix. The main argument consists
into remarking with this choice of varying pseudo-norm
∥h∥g, the global estimates of Sec.2 show that J is variably
relatively smooth with respect to ∥ · ∥g. In particular, the
quantity minimized at each step is an upper-bound of J .
Since this upper bound is quadratic, each iteration should be
at least as good as Frank-Wolfe which uses a linear proxy.
In practice, we observe on Fig. 2 that in the convergence of
our scheme is actually faster than Frank-Wolfe.

We emphasize that our algorithm converges at a O(1/k) rate.
As a comparison, for the Sinkhorn algorithm (Cuturi, 2013),
the best known rates in the balanced case are O(1/(kε))
(Léger, 2021) or O((1− e−1/ε)2k) (Peyré et al., 2019); in
particular, when ε is small (which is the case in practice),
our algorithm requires fewer iterations to converge for a
fixed precision.

In the next theorem, we show that in the balanced case, when
the potentials of C are both strongly convex and smooth,
the convergence is further improved to an exponential rate.

Theorem 4.2 (Balanced case). Let C be a set of λ-strongly
convex, M -smooth function that are L(r)-Lipschitz over
Br and such that for all f ∈ C, |f(0)| ≤ b. The minimum
minf∈C J(f) is attained at f̄ ∈ C. Furthermore, using the
pseudo-norm ∥h∥2g = ∥h∥2(∇g∗)#(ν), the iterates fk+1 =

argminf∈C⟨DJ(fk), f − fk⟩ + 1
2λ∥f − fk∥2fk are well

defined and verify J(fk)−J(f̄) ≤ (1− α
β )

k(J(f0)−J(f̄)).

Figure 3. Convergence of
log(∥∇fk −∇f̄∥2L2(µ)) in
the strongly convex case (in
blue) vs the smooth and
strongly convex case (in or-
ange).

The proof is left in Appendix.
Again, the global stability re-
sults shown in Sec. 2 are
the key to prove the conver-
gence rate: the additional
lower bound that we proved in
the balanced case enables us
to prove that the semi-dual is
Polyak-Lojaseiwicz in a gen-
eralized sense (Karimi et al.,
2016) which gives the expo-
nential convergence. Indeed,
Sinkhorn algorithm also en-
joys exponential convergence
yet with rate e−1/ϵ →ε→0 0 as shown above whereas in
our case, the rate is α/β = O(1). In comparison with the
strongly convex case, Fig.3 shows that when we explicitly
constrain our potentials to also be smooth (orange curve),
we observe an exponential convergence up to the numer-
ical precision. On the other hand we observe that when
the potentials are only constrained to be strongly convex
(blue curve), there is a first phase where the convergence
is exponential and then the convergence slows down to a
sublinear rate. More details on the practical instantiation of
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the algorithm are provided in the next section.

Whether exponential convergence can hold
in the unbalanced case is an open question.

Figure 4. Convergence of
log(∥∇fk −∇f̄∥2L2(µ)) in
the balanced case (blue
curve) vs in the unbalanced
case (orange curve).

On a simple example where µ
a one dimensional uniform dis-
tribution and z0 is quadratic,
Fig.4 shows that convergence
does occur at a linear rate in
the unbalanced case (orange
curve) yet significantly slower
than in balanced case (blue
curve) for which only several
steps are necessary to reach
numerical precision. This dis-
crepancy might be due to the
conditioning of the semi-dual
in the unbalanced case which
involves a ratio of the form sup(ϕ∗)′′

inf(ϕ∗)′′ that can be very large,
in the KL case for instance where ϕ∗(t) = et−1. For future
works, we plan to investigate other semi-dual formulations
of unbalanced OT that may be better suited to the choice of
the entropy function ϕ and improve the conditioning of the
problem.

5. Our Tractable Model
At first glimpse, even when the measures µ and ν are dis-
crete, problem (4) seems hard to compute: though it is
convex and quadratic, it nevertheless optimizes over C,
a possibly infinite dimensional functional space. In this
section, relying on the results of Taylor et al. (2017) on
convex interpolation, we provide a tractable version of our
algorithm when C is chosen to be the space of λ-strongly
convex, possibly M -smooth functions.

We place ourselves in the setting where µ̂, ν̂ are n-samples
discrete empirical measures with weights (ωµ, ων) and we
chose C to be the set of λ-strongly convex functions with
other minor regularity conditions detailed below. We show
how to solve (4) to compute this model as well as its result-
ing algorithmic complexity and statistical behavior.

Algorithmic resolution We remind the reader that the
iterates of the algorithm are generated as fk+1 =
argminf∈C⟨f,DJ(fk)⟩+α∥f−fk∥2fk . Now recall that for
f∗ differentiable on ν̂, the gradient of the semi-dual reads
DJ(f) = µ̂ ·(ϕ∗)

′ ◦(f−q)−(∇f∗)#(ν̂ ·(ϕ∗)
′ ◦(f∗−q)).

In particular, when f is convex, (∇f∗)#(ν̂ ·(ϕ∗)
′ ◦(f∗−q))

can be computed pointwise. Conversely, the term ∥f−fk∥2fk
can also be computed exactly for a given f as it is simply an
integral over the discrete measures (∇g∗)#(ν̂) and µ̂ (see
Sec. 4). Hence, the objective can be computed exactly for
any given (convex) f yet the constraint f ∈ C may remain
infinite dimensional. We show in the next proposition that

when Cλ,L,b = {g + λq | g convex, L− lipschitz, |g(0)| ≤
b}, the problem admits a finite quadratic reformulation.

Proposition 5.1 (Taylor et al. (2017)). For C = Cλ,L,b,
problem (4) can be reformulated as

inf
y∈R2n+1

z∈R(2n+1)×d

c⊤y +
1

2
[y − f, z− g]⊤Q[y − f, z− g] ,

yi − yj ≥ z⊤j (xi − xj) (5)

∥zi∥ ≤ L, |y0| ≤ b

where f = fk(µ̂) − λq(µ̂), c = [0, ωµ(ϕ∗)
′
((fk −

q)(µ̂)),−ων(ϕ∗)
′
((f∗

k − q)(ν̂))], g = [⃗0, ν̂ − λ∇f∗
k (ν̂)]

and Q is a diagonal matrix with diagonal
3SK [0, ωµ, ων , 0⃗, (ωνζ)∗d] with ζ := 1

3SKλ + (ϕ∗)
′
((f∗

k −
q)(ν̂))(R2 + L(R∗)2)/λ2 where for some vector v ∈ Rp

we define (v)∗d = (v1, · · · , v1, · · · , vp, · · · vp) ∈ Rd×p;
in the balanced case, the diagonal of Q is simply [⃗0, ων

λ ].
Furthermore, the cost to solve (5) with an Interior Point
Method (Nemirovski, 2004) requires O(n3) operations.

The proof is left in Appendix where we also show how
to compute pointwise the potential fk+1 and its conjugate,
given (yk+1, zk+1) the solution of (5). Furthermore, we
also prove in Appendix the same type of reformulation when
the potentials are also constrained to be smooth; the result-
ing reformulation is a Quadratically Constrained Quadratic
Program with the same complexity.
Remark 5.2. In the case where we are in a low dimensional
setting (d = 1, d = 2), it was shown that the convexity
constraint can be reduced to Õ(n) sparse inequalities (Mire-
beau, 2016) instead of O(n2), reducing the IPM complexity
to Õ(n

√
n), where the notation Õ hides polylog factors.

Statistical behavior We give the statistical behavior of the
estimator ẑ = argminz∈Cλ,L,b

Ĵ(z) under the assumptions
made in Sec. 3.

Proposition 5.3. Under Assumption 3.2 (i)-(iv), it holds
E[dλϕ(ẑ, z0)2] ≲ 1/

√
n if d < 4

E[dλϕ(ẑ, z0)2] ≲
log(n)√

n
if d = 4

E[dλϕ(ẑ, z0)2] ≲ n−2/d if d > 4 .

If we further assume (v), we recover for d < 4:
E[dλϕ(ẑ, z0)2] ≲ n−1/(1+d/4).

Note that the no-bias assumption (iii) is not empty since
when ν has a density with compact and convex support, z0
is strongly convex (Gallouët et al., 2021) and in particular,
there exists z̃0 ∈ Cλ,L,b such that z̃0 coincides with z0 on
the support of µ and z̃∗0 coincides with z∗0 on the support of
ν for λ sufficiently small and L, b sufficiently large.
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Overall performance comparison with Sinkhorn Using
the two previous paragraphs, let us compare the performance
of our model with Sinkhorn in the smooth, strongly convex
balanced case 1. In the case of balanced optimal transport,
the performance of a model can be measured as the number
of operations necessary to compute an estimator ẑ of the
original transport potential z0 than achieves an error τ in av-
erage: E[∥∇(ẑ−z0)∥2L2(µ)] ≤ τ . Denoting ẑεn the estimator
obtained when using Sinkhorn with regularization ε on n-
samples empirical measures µ̂, ν̂, Pooladian & Niles-Weed
(2021) showed that E[∥∇(ẑεn − z0)∥2L2(µ)] = O(ε+ εd/2√

n
).

Hence, after optimizing on ε w.r.t. n, we recover an aver-
age error E[∥∇(ẑεn − z0)∥2L2(µ)] = O(n−1/d+2) while the
error of our model is no worse than O(n−2/d). In partic-
ular, if we denote nm

τ (resp. nS
τ ) the number of samples

required to reach an average τ error with our model (resp.
with Sinkhorn), we have nm

τ << nS
τ thanks to the better

statistical behavior of our model. However, in order to com-
pute our estimator from these samples, we need O((nm

τ )3)
operations per iteration and few iterations (see Sec. 4) while
Sinkhorn requires O((nS

τ )
2) operations per iteration yet

many iterations (see Sec. 4). As often in computational
statistics, there is a trade-off between computational and
statistical efficiency. The following result quantifies this
trade-off for our model and for Sinkhorn.

Proposition 5.4 (Overall performance, informal). Under
Assumption 3.2 (i)-(iv) and the additional assumption that z0
is M -smooth, then our model requires Õ(τ−max(7, 3d2 +1))
operations to compute an estimator ẑ such that ∇ẑ is a τ
approximation in squared L2(µ) norm of the original OT
map ∇z0 in average, i.e., E[∥∇(ẑ − z0)∥2L2(µ)] ≤ τ . If we
further assume that integrated Fisher information is bonded
along the Wasserstein-2 geodesic between µ and ν (see
Chizat et al. (2020)[Equation 5] for a formal definition),
the Sinkhorn model requires O(τ−2(d+1)−7) to compute a
τ approximation of the original OT map in average.

The proof is left in Appendix. Proposition 5.4 shows that
for any dimension, our estimator has a better performance
than Sinkhorn yet, in order to fulfill the no-bias assumption
(iii), it requires a priori knowledge on z0: indeed the strong
convexity parameter λ must satisfy λ ≥ inf ∥∇2z0∥ and the
parameter L must satisfy L ≥ ∥∇(z0 − λq)∥L∞(supp(µ));
we postpone these questions for future works. In the next
section, our numerical experiments shall only focus on the
analysis of the statistical error of the models, that is comput-
ing E[dλϕ(ẑ, z0)2] for different models when given the same
amount of samples, without consideration for the computa-
tions time.

1The statistical properties of Sinkhorn are only well studied
in the balanced, smooth and strongly convex regime, hence our
restriction.

6. Numerical Experiments
In this section we first present two other popular model of
(unbalanced) OT potentials. Then, we compare our model
and the two others on a 2D shape matching experiment and
on a medium dimension experiment.

6.1. Other models

Sinkhorn The well-known Sinkhorn model (Cuturi, 2013)
can be extended to the unbalanced case and its primal
objective reads Sϕ

ε (µ, ν) = infπ≥0⟨π,C⟩ + Dϕ(π1|µ) +
Dϕ(π2|ν)+ εKL(π|µ⊗ ν) where C is the ground cost (see
Chizat (2017)). We use Séjourné et al. (2019, Proposition
7) to extend the discrete Sinkhorn potentials to the whole
domain Rd.

SSNB The Smooth Strongly convex Nearest Bre-
nier model (Paty et al., 2020) was only defined
for balanced optimal transport and is formulated as
argminf∈Cλ,M

W 2
2 (∇f(µ), ν) where Cλ,M is the space

of λ-strongly convex, M -smooth functions and W 2
2 is the

squared Wasserstein distance. Indeed, there is a strong con-
nection between this model and ours as the search space of
the potentials is the same. However the objective differs
and crucially, while the semi-dual is convex, the function
f 7→ W 2

2 (∇f(µ), ν) is not. The authors propose a sequence
of two stages optimization to solve the problem yet no con-
vergence guarantees are provided and as we shall see in the
first experiment, their method performs less well than ours,
probably because the algorithm is stuck in a local minimum.

6.2. 2D shape matching

0.2 0.4 0.6 0.8 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ellipse 
Saxophone 

Figure 5. 2D experiment:
Ellipse (in blue) and
Saxophone (in orange).

In this experiment the mod-
els are trained on µ̂t (that
we shall refer to as the el-
lipse) and ν̂t (that we shall re-
fer to as the saxophone) with
700 points each. The dis-
tributions are represented on
Fig. 5 2. As we can ob-
serve, since the ellipse is con-
vex, we expect the pushfor-
ward from the saxophone to
be smooth and conversely, we
expect the pushforward from the ellipse to be strongly
convex. On the other hand, we expect the pushforward
from the ellipse to be discontinuous on its center to match
the upper and lower parts of the saxophone respectively.
We train the models on (µ̂t, ν̂t) and we recover potentials
f̂ . Then we sample 2000 points from the ellipse µ̂test and
we visualize on Fig. 6 the pushforwards ∇f̂(µ̂test). We
observe that for a large value of ε, the potential given by

2This data is borrowed from Feydy et al. (2017).
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Sinkhorn is too smooth and cannot sufficiently deform the
ellipsoid to obtain the curved shape of the saxophone. For
the SSNB model, the shape of the pushforward roughly cor-
responds to the saxophone however the top of quite fuzzy.
The shape is sharper for the semi-dual model and holes start
to appear. We emphasize that for the semi-dual and SSNB
models, the same search space was used yet we suspect that
because of the non-convexity of its objective, the SSNB was
stuck in a suboptimal local minimum; indeed, when we com-
puted W 2

2 (∇f̂sd(µ̂t), ν̂t) we obtained a smaller value than
W 2

2 (∇f̂SSNB(µ̂t), ν̂t). Finally, when ε is small enough,
the Sinkhorn model recovers a very sharp pushforward. We
believe that the discrepancy between the performance of our
model and Sinkhorn can be explained by the O(1/k) con-
vergence rate of the semi-dual for the non-smooth case. In
particular, when we computed Jµ̂t,ν̂t

(f̂ε + λq) with λ > 0,
we managed to slightly decrease the value of the semi-dual,
thus proving that the optimal potential was not recovered yet.
In future works, we hope to derive more efficient algorithms
when smoothness is not assumed.

6.3. Medium dimension synthetic experiment
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Figure 6. Pushforwards
∇f̂(µ̂test). From top left to
bottom right: Sinkhorn (ε = 0.1),
SSNB (λ = 0.2, M = +∞),
Semi-dual OT (λ = 0.2, L = 1),
Sinkhorn (ε = 0.0001).

In this paragraph, we
study the ability of
models to recover
the ground truth un-
balanced transport
potential z0 between
µ̃ and ν̃ from sampled
measures (̂̃µ, ̂̃ν). Using
Proposition 2.2, if we
take µ a Lebesgue
continuous probability
distribution and z0 a
strongly convex func-
tion, we have that z0 is
the solution of the un-
balanced problem infz Jµ̃,ν̃(z) with µ̃ = µ/(ϕ∗)

′ ◦ (z0− q)

and ν̃ = (∇z0)#(µ)/(ϕ
∗)

′ ◦ (z∗0 − q). In this example,
we take µ ∼ U([−0.5, 0.5]6), z0(x) = |x| + q(x) and
Dϕ = ρKL. We chose ρ = 5 to avoid extreme values of
(ϕ∗)

′
(t) = et/ρ. Because of the low scalabilty of our model,

we sampled only n = 400 from µ̃ and n = 400 from ν̃. We
trained an unbalanced Sinkhorn model ẑε for several values
of ε and an unbalanced semi-dual model ẑλ for several
values of λ; the parameters L and R were set as 1.1∥̂̃µ∥∞
and 1.1∥̂̃µ∥2 respectively and S was set to 0.5. Fig. 7
plots the error ∥ẑ − z0∥2µ̃ computed on 5000 samples of µ̃;
the training and computation of the error were repeated
20 independent times and the vertical bars represent the
confidence interval. It shows that for λ = 0.2, 0.5, 1.0, the
semi-dual model consistently outperforms Sinkhorn for any
value of ε. Indeed as we could expect, the value λ = 2.0

performs the least well as it generates 2-strongly convex
solutions while z0 is only 1-strongly convex. Conversely,
the value of ε needs to be sufficiently small to recover the
discontinuity of |x| and to reduce the bias of the model yet
it should not be too small in order to mitigate the variance
that behaves poorly as the dimension grows.

Despite the superiority of our model in terms of statis-
tical error, we acknowledge that it was much slower to
compute in practice than Sinkhorn. While the training
of Sinkhorn took at worse one minute for the lowest val-
ues of ε, our model took about 30 minutes. In particu-
lar we reckon that, whenever a reasonable precision τ is
sought after, Sinkhorn achieves in practice a better statis-
tical/computational trade-off than our model (see Overall
performance paragraph in Sec. 5 for more details on the
notion of statistical/computational trade-off). However we
highlight the fact that our choice of search space C should
be thought as a proof-of-concept model rather than as the
new golden standard for UOT. It aims at illustrating the con-
crete usage of the semi-dual functional and what benefits
we can expect when relying on this formulation instead of
the vanilla dual formulation. We hope that this work will
encourage UOT practitioners to design more computation-
ally efficient, yet expressive, models C while retaining the
nice properties offered by the semi-dual tool: namely, a
potentially superparametric rate of statistical estimation in
O(1/n) and a fast algorithmic scheme (see Appendix 9.2
for an example).

7. Conclusion
In this article, we derived a semi-dual formulation of unbal-
anced optimal transport and provided stability bounds for
its associated Bregman divergence, generalizing the results
known in the balanced case. This new objective provides
a natural and well-behaved estimator of unbalanced trans-
port potentials, leading to superparametric rates of estima-
tion even when the search space is not assumed to contain
smooth functions. From an optimization point of view, our
global stability results allowed to derive O(1/k) and expo-
nential rates for the balanced case using a variable metric
gradient scheme with non equivalent metrics, a result that
has an interest of its own. Finally, we instantiated a tractable,
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Figure 7. 6D experiment: On the left, ∥ẑλ − z0∥2µ̃ (our model) and
on the right, ∥ẑε − z0∥2µ̃ (Sinkhorn).
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proof-of-concept version of our algorithm that has a more
favorable statistical behavior than the well-known Sinkhorn
algorithm. For future works, we shall focus on the design
of a more computationally efficient search space C and the
generalization of the unbalanced semi-dual to other costs.
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8. Proofs
8.1. Proposition 2.3

Proof. The dual formulation of UOT reads

UOT(µ, ν) = sup
z0,z1

⟨−ϕ∗(−z0), µ⟩+ ⟨−ϕ∗(−z1), ν⟩

s.t. z0(x) + z1(y) ≤ q(x− y) ,
(6)

Defining z̃i = q − zi, we rewrite the problem as

UOT(µ, ν) = sup
z̃0,z̃1

⟨−ϕ∗(z̃0 − q), µ⟩+ ⟨−ϕ∗(z̃1 − q), ν⟩

s.t. z̃0(x) + z̃1(y) ≥ x⊤y .
(7)

Recalling that ϕ∗ is non-decreasing (Séjourné et al., 2019, Proposition 2), we can replace at the optimum z̃1 by z̃∗0 the
Legendre of z̃0. Hence we obtain the semi-dual reformulation

UOT(µ, ν) = sup
z̃0

⟨−ϕ∗(z̃0 − q), µ⟩+ ⟨−ϕ∗(z̃∗0 − q), ν⟩ (8)

Conversely, we can replace z̃0 by its double Legendre transform z̃∗∗0 which is convex. Hence, we can enforce the convexity
constraint at the optimum and obtain

UOT(µ, ν) = sup
z̃0

⟨−ϕ∗(z̃0 − q), µ⟩+ ⟨−ϕ∗(z̃∗0 − q), ν⟩+ ιCVX(z0) (9)

The Legendre transform z 7→ z∗ is itself pointwise convex. Indeed (tz0 + (1 − t)z1)
∗(y) = supx x

⊤y − tz0(y) − (1 −
t)z1(y) = supx t(x

⊤y − z0(x)) + (1 − t)(x⊤y − z1(x)) ≤ tz∗0(y) + (1 − t)z∗1(y). Using again the fact that ϕ∗ is
non-decreasing, we have

J(tz0 + (1− t)z1) = ⟨ϕ∗(tz0 + (1− t)z1 − q), µ⟩+ ⟨ϕ∗((tz0 + (1− t)z1)
∗ − q), ν⟩

≤ ⟨ϕ∗(t(z0 − q) + (1− t)(z1 − q)), µ⟩+ ⟨ϕ∗(t(z∗0 − q) + (1− t)(z∗1 − q)), ν⟩ .

Using the convexity of ϕ∗, we recover

J(tz0 + (1− t)z1) ≤ tJ(z0) + (1− t)J(z1) . (10)

The formula for the first derivative comes from the differentiation of the Legendre transform w.r.t. to z, the envelope
theorem gives the result. Indeed, one has z∗(p) = supx p

⊤x− z(x). Assuming that z is strongly convex, it defines a unique
supremum ∇z∗(p) and the envelope theorem gives

δz∗

δz
= −(δz)(∇z∗(p)) . (11)

Now, one has, ϕ being differentiable, DJ(z)(δz) = ⟨ϕ∗(z − q)δz, µ⟩ + ⟨−ϕ∗(z∗ − q)(δz)(∇z∗(p)), ν⟩ = ⟨δz, ϕ∗(z −
q)µ− (∇z∗)#(ϕ

∗(z∗ − q)ν)⟩ . Note that the measures ϕ∗(z∗ − q)ν and ϕ∗(z − q)µ are well defined since ϕ∗(z − q) and
ϕ∗(z∗ − q) are continuous functions and ν, µ Radon measures.
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8.2. Proposition 2.4

Proof. Let us start by computing the Bregman divergence ∆J(f, g). Since we assumed g∗ differentiable over the support of
ν, we have DJ(g) = [µ]g −∇g∗([ν]g∗) where for a measure β we denote [β]h = (ϕ∗)

′
(h− q). Hence, we can write

∆J(f, g) = J(f)− J(g)− ⟨DJ(g), f − g⟩
= ⟨ϕ∗(f − q), µ⟩+ ⟨ϕ∗(f∗ − q), ν⟩ − ⟨ϕ∗(g − q), µ⟩+ ⟨ϕ∗(g∗ − q), ν⟩
− ⟨f − g, [µ]g − (∇g∗)#([ν]g∗)⟩

= ⟨ϕ∗(f − q)− ϕ∗(g − q), µ⟩+ ⟨ϕ∗(f∗ − q)− ϕ∗(g∗ − q), ν⟩
− ⟨f − g, (ϕ∗)′(g − q) · µ− (∇g∗)#([ν]g∗)⟩ .

Recall that µ, ν have their support included in some (centered) ball BR and that (f, g) (resp. (f∗, g∗)) are bounded by
KR (resp. K∗

R) on BR. Denoting K = max(KR,K
∗
R), the Taylor-Lagrange theorem applied to ϕ∗ at order 2 gives the

upper-bounds {
ϕ∗(f − q)− ϕ∗(g − q) ≤ (ϕ∗)′(g − q)(f − g) + SK

2 (f − g)2

ϕ∗(f∗ − q)− ϕ∗(g∗ − q) ≤ (ϕ∗)′(g∗ − q)(f∗ − g∗) + SK

2 (f∗ − g∗)2 ,

where SK = sup|t|≤K+q(R)(ϕ
∗)′′(t), and the lower bounds{

ϕ∗(f − q)− ϕ∗(g − q) ≥ (ϕ∗)′(g − q)(f − g) + IK
2 (f − g)2

ϕ∗(f∗ − q)− ϕ∗(g∗ − q) ≥ (ϕ∗)′(g∗ − q)(f∗ − g∗) + IK
2 (f∗ − g∗)2 ,

where IK = inf |t|≤K+q(R)(ϕ
∗)′′(t). We inject these bounds in ∆J and with the cancellation of the linear term (ϕ∗)′(g −

q)(f − g), we obtain as a lower bound on ∆J

IK
2
Hµ,ν(f, g)

2 + ⟨(ϕ∗)′(g∗ − q)(f∗ − g∗), ν⟩+ ⟨f − g, (∇g∗)#([ν]g∗)⟩ , (LB)

and the upper-bound

SK

2
Hµ,ν(f, g)

2 + ⟨(ϕ∗)′(g∗ − q)(f∗ − g∗), ν⟩+ ⟨f − g, (∇g∗)#([ν]g∗)⟩ , (UB)

where we denoted Hµ,ν(f, g)
2 = ∥f − g∥2µ + ∥f∗ − g∗∥2ν .

We now focus on the term ⟨(ϕ∗)′(g∗ − q)(f∗ − g∗), ν⟩+ ⟨f − g, (∇g∗)#([ν]g∗)⟩. We can re-write it as ⟨f∗ ◦ ∇g − g∗ ◦
∇g+(f −g), (∇g∗)#([ν]g∗)⟩ and we denote the pointwise integrand Γf,g(x) = f∗(∇g(x))−g∗(∇g(x))+(f(x)−g(x)).
Now recall that the Legendre identity gives g∗(∇g(x)) = ∇g(x)⊤x− g(x) and f(x) = x⊤∇f(x)− f∗(∇f(x)), hence
we have

Γf,g(x) = f∗(∇g(x))−∇g(x)⊤x+ g(x) + x⊤∇f(x)− f∗(∇f(x))− g(x)

= f∗(∇g(x))−∇g(x)⊤x+ x⊤∇f(x)− f∗(∇f(x))

= f∗(∇g(x))− f∗(∇f(x))− x⊤(∇g(x)−∇f(x)) .

Finally, recalling x = ∇f∗(∇f(x)), we can re-write Γf,g(x) as a Bregman divergence

Γf,g(x) = ∆f∗(∇g(x),∇f(x)) . (12)

Conversely, the term ⟨(ϕ∗)′(g∗ − q)(f∗ − g∗), ν⟩+ ⟨f − g, (∇g∗)#([ν]g∗)⟩ can be re-written as ⟨f∗ − g∗ + f ◦∇g∗ − g ◦
∇g∗, [ν]g∗⟩. We observe that the integrand can be written Γf∗,g∗(y) = ∆f (∇g∗(y),∇f∗(y)). Hence when f is λ-strongly
convex Γf,g(x) ≤ 1

2λ∥∇g(x)−∇f(x)∥2 and Γf∗,g∗(y) ≥ λ
2 ∥∇g∗(y)−∇f∗(y)∥2 which yields the following bound on

∆J

λ

2
∥∇f∗ −∇g∗∥2(∇g∗)#([ν]g∗ )

+
IK
2
Hµ,ν(f, g)

2 ≤ ∆J(f, g) ≤
1

2λ
∥∇f −∇g∥2(∇g∗)#([ν]g∗ )

+
SK

2
Hµ,ν(f, g)

2 .

Conversely, when f is M -smooth

1

2M
∥∇f −∇g∥2(∇g∗)#([ν]g∗ )

+
IK
2
Hµ,ν(f, g)

2 ≤ ∆J(f, g) ≤
M

2
∥∇f∗ −∇g∗∥2(∇g∗)#([ν]g∗ )

+
SK

2
Hµ,ν(f, g)

2 .

12
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8.3. Corollary 2.5

Proof. We derive an upper-bound of ∥f∗−g∗∥2ν that solely depends on the difference f−g. We start to re-write this quantity
as ∥f∗◦∇g−g∗◦∇g∥2(∇g∗)#(ν) and use the Legendre identities g∗(∇g(x)) = ∇g(x)⊤x−g(x) and f∗(y) = y⊤∇f∗(y)−
f(∇f∗(y)). Let us denote again the integrand Γ(x) = [∇g(x)⊤∇f∗(∇g(x)) − f(∇f∗(∇g(x))) − ∇g(x)⊤x + g(x)]2

and re-write Γ as

Γ(x) = [∇g(x)⊤∇f∗(∇g(x))− f(∇f∗(∇g(x)))−∇g(x)⊤x+ g(x)]2

= [∇g(x)⊤(∇f∗(∇g(x))− x) + g(x)− f(x) + f(x)− f(∇f∗(∇g(x)))]2

≤ 3[(∇g(x)⊤(∇f∗(∇g(x))− x))2 + (g(x)− f(x))2 + (f(x)− f(∇f∗(∇g(x))))2]

The integration middle term readily gives ∥f − g∥2(∇g∗)#(ν). Using Cauchy-Schwartz and the fact that measures are
supported over BR, the integration of the first term can be upper-bounded as∫

(∇g(x)⊤(∇f∗(∇g(x))− x))2( d∇g∗(ν))(x) =

∫
(y⊤(∇f∗(y)−∇g∗(y)))2 dν(y)

≤ R2∥∇f∗ −∇g∗∥2ν .

The previous results give in the balanced case ∥∇f∗ −∇g∗∥2ν ≤ 1
λ2 ∥∇f −∇g∥2(∇g∗)#(ν) which yields the upper bound on

the first term ∫
(∇g(x)⊤(∇f∗(∇g(x))− x))2( d∇g∗(ν))(x) ≤ R2

λ2
∥∇f −∇g∥2(∇g∗)#(ν) . (13)

Using the fact that ∇f∗(BR),∇g∗(BR) ⊂ BR∗ and that f is L lipschitz over BR∗ , we can bound the integration of the
third term of Γ(x) as∫

(f(x)− f(∇f∗(∇g(x))))2( d∇g∗(ν))(x) =

∫
(f(∇g∗(y))− f(∇f∗(y)))2 dν(y) (14)

≤ L2∥∇g∗ −∇f∗∥2ν (15)

≤ L2

λ2
∥∇f −∇g∥2(∇g∗)#(ν) . (16)

8.4. Theorem 3.3

In this paragraph, to avoid confusions, we shall denote ∥ · ∥L2(µ) the L2 norm and ∥ · ∥L∞(µ) the supremum norm over a
measure µ ; by abuse of notation, the supremum norm over some set S shall be denoted ∥ · ∥L∞(S).

Proof. To prove Theorem 3.3 we need to ensure that the Legendre transform is Lipschitz with respect to the supremum on a
certain ball. The following lemma explicitly gives the ball to consider.

Lemma 8.1. For all z that are λ-strongly convex and such that z ≥ l, ∥z∥L∞(BR) ≤ b(r), we have ∥∇z∗∥L∞(BR) ≤

G(r) := r
λ +

√
2(b(0)−l)

λ and ∥z∗∥L∞(BR) ≤ b′(r) := rG(r) + b(G(r)).

Proof. For z ∈ C, we have that z∗ is 1
λ -smooth. In particular, for x ∈ Br

∥∇z∗(x)∥ = ∥∇z∗(x)−∇z∗(0) +∇z∗(0)∥ (17)
≤ ∥∇z∗(x)−∇z∗(0)∥+ ∥∇z∗(0)∥ (18)

≤ r

λ
+ ∥∇z∗(0)∥ . (19)

Now recall that ∇z∗(0) = argminx∈Rd z(x). Since z is λ-strongly convex, we have the following inequality

z(0) ≥ z(x∗) +
λ

2
∥x∗∥2 , (20)

13



Semi Dual Unbalanced Quadratic Optimal Transport

where x∗ = argminx∈Rd z(x). Using that z(0) ≤ b(0) and −z ≤ −l, we recover

∥x∗∥ ≤
√

2(b(0)− l)

λ
. (21)

The bound on ∥z∗∥L∞(BR) follows the definition of the Fenchel-Legendre transform

z∗(x) = x⊤∇z∗(x)− z(∇z∗(x)) . (22)

Using the previous estimates, we can now prove that the Legendre transform is Lipschitz.

Lemma 8.2. Let z1, z2 be λ-strongly convex functions such that z1, z2 are lower-bounded by l and bounded by b(r) on Br.

We have ∥z∗1 − z∗2∥L∞(BR) ≤ ∥z1 − z2∥L∞(BG(R)), where G(r) := r
λ +

√
2(b(0)−l)

λ as in Lemma 8.1.

Proof. Let x ∈ BR. By definition of the Fenchel transform, we have for all y ∈ Rd

z∗1(x) ≥ x⊤y − z1(y) , (23)

with equality when y = ∇z∗1(x). Hence, we have for all y

z∗1(x)− z∗2(x) ≥ x⊤y − z1(y) + z2(∇z∗2(x))− x⊤∇z∗2(x) . (24)

In particular, for y = ∇z∗2(x), we obtain

z∗1(x)− z∗2(x) ≥ z2(∇z∗2(x))− z1(∇z∗2(x)) , (25)

and applying Lemma 8.1 yields z∗1(x)− z∗2(x) ≥ −∥z1 − z2∥L∞(BG(R)). Conversely, flipping the role of z1, z2, we obtain

z∗2(x)− z∗1(x) ≥ z1(∇z∗1(x))− z2(∇z∗1(x)) , (26)

which yields |z∗1(x)− z∗2(x)| ≤ ∥z1 − z2∥L∞(BG(R)).

We have now all the ingredients to prove the first part of Theorem 3.3.

Proof. We start by applying the strong convexity inequality of the semi-dual and the optimality conditions

dλϕ(ẑ, z0)
2 ≤ J(ẑ)− J(z0) (27)

= J(ẑ)− Ĵ(ẑ) + Ĵ(ẑ)− Ĵ(z̃0) + Ĵ(z0)− J(z0) . (28)

Using Assumption (iii), the term Ĵ(ẑ)− Ĵ(z̃0) is negative hence we have

dλϕ(ẑ, z0)
2 ≤ J(ẑ)− Ĵ(ẑ) + Ĵ(z0)− J(z0) (29)

≤ sup
z∈C

⟨ϕ∗(z − q), µ− µ̂⟩ (30)

+ sup
z∈C∗

⟨ϕ∗(z − q), ν − ν̂⟩ (31)

+ Ĵ(z0)− J(z0) , (32)

where we denoted C∗ = {z∗, z ∈ C}.

14
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Bound on term (30) Denoting C0 = {ϕ∗(g − q), g ∈ C}, we apply Luxburg & Bousquet (2004, Theorem 16) to bound
our empirical process

W := sup
z∈C

⟨ϕ∗(z − q), µ− µ̂⟩ ,

and we obtain for all δ > 0

W ≤ 2δ +
4
√
2√
n

∫ ∞

δ
4

√
n(C0, L2(µ̂), u) du . (33)

Noting that ∥g∥L2(µ̂) ≤ ∥g∥L∞(µ) almost surely, we recover the upper bound

E[W ] ≤ 2δ +
4
√
2√
n

∫ ∞

δ
4

√
n(C0, L∞(µ), u) du . (34)

Since the functions in C are uniformly bounded by b(R) on BR and that µ is supported on BR, we have ∀(g1, g2) ∈ C2,

∥ϕ∗(g1 − q)− ϕ∗(g2 − q)∥L∞(µ) ≤ L1
ϕ∗∥g1 − g2∥L∞(µ) , (35)

where L1
ϕ∗ is defined as

L1
ϕ∗ := sup

x∈[−M1,M1]

|∂ϕ∗(x)| , (36)

and M1 = 2b(R) +R2. In particular, we get the new upper-bound for all δ
4 ≤ 2b(R)

L1
ϕ∗

E[W ] ≤ 2δ +
4
√
2√
n

∫ 2b(R)

L1
ϕ∗

δ
4

√
n(C,L∞(µ), L1

ϕ∗u) du

≤ 2δ +
4
√
2√
n

∫ 2b(R)

L1
ϕ∗

δ
4

√
n(C,L∞(BR), L1

ϕ∗u) du .

Bound on term (31) Lemma 8.1 ensures that the functions in C∗ are uniformly bounded on every ball Br by some
constant b′(r). In particular, we can proceed as in the last paragraph and obtain

E[W ∗] ≤ 2δ +
4
√
2√
n

∫ 2b′(R)

L2
ϕ∗

δ
4

√
n(C∗, L∞(BR), L2

ϕ∗u) du ,

where W ∗ := supz∈C∗⟨z, ν − ν̂⟩ and L2
ϕ∗ is defined as

L2
ϕ∗ := sup

x∈[−M2,M2]

|∂ϕ∗(x)| , (37)

with M2 = 2b′(R) +R2. Using Lemma 8.2 that states

∥z∗1 − z∗2∥L∞(BR) ≤ ∥z1 − z2∥L∞(BG(R)) , (38)

for some constant G(R), we can control the covering number of C∗ with respect to the L∞(BR) and we have the
upper-bound for δ

4 ≤ 2b′(R)
L2

ϕ∗

E[W ∗] ≤ 2δ +
4
√
2√
n

∫ 2b′(R)

L2
ϕ∗

δ
4

√
n(C,L∞(BG(R)), L

2
ϕ∗u) du .

Final upper bound Since the term (32) is zero in average, we obtain our final bound

dλϕ(ẑ, z0)
2 ≤ 4δ +

8
√
2√
n

∫ M′
L

δ
4

√
n(C,L∞(BR′), Lu)du ,

where M ′ = 2max(b(R), b′(R)) and L = max(L1
ϕ∗ , L2

ϕ∗)
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We now prove the second part of Proposition 3.3. For this we need to control the localized empirical process

W (τ) := sup
z∈C∩B◦(z0,τ)

⟨ϕ∗(z − q)− ϕ∗(z0 − q), µ− µ̂⟩ , (39)

and
W ∗(τ) := sup

z∈C∩B◦(z0,τ)

⟨ϕ∗(z∗ − q)− ϕ∗(z∗0 − q), ν − ν̂⟩ , (40)

where B◦(z0, τ) is the ball centered on z0 of radius τ with respect to the dλϕ pseudo-norm.

Lemma 8.3. Under Assumptions (iv)-(v), if we assume that there exists (Pµ, Pν) and α < 2 such that for every u ∈ R≥0,
n(C,L2(µ), u) ≤ Pµu

−α and n(C,L2(ν), u) ≤ Pνu
−α, it holds with probability at least 1− e−t

W (τ) ≤
√

Pµ(Kτ)1−α/2

(1−α/2)
√

n(L1
ϕ∗ )α

(
1 +

M
√

Pµ

(1−α/2)
√

n(L1
ϕ∗ )α(Kτ)1+α/2

)
+Kτ

√
2t
n +

2b(R)L1
ϕ∗

n

W ∗(τ) ≤
√
Pν(K

′τ)1−α/2

(1−α/2)
√

n(L2
ϕ∗ )α

(
1 +

M
√

Pµ

(1−α/2)
√

n(L2
ϕ∗ )α(Kτ)1+α/2

)
+K ′τ

√
2t
n +

2b′(R)L2
ϕ∗

n ,
(41)

where L1
ϕ∗ , L2

ϕ∗ are defined in Equations (36) and (37) respectively and measure local lipschitz behaviors of φ∗, b(R) is
defined in Assumption (iv) and is a uniform bound over BR of the potentials in C, b′(R) is defined in Lemma 8.1 and is a
uniform bound over BR of the conjugate of the potentials in C, and K = K(R,M, ϕ∗), K ′ = K ′(R, b, ϕ∗, λ, l) are such
that for (f, g) ∈ C, ∥f − g∥L2(µ) ≤ Kdλϕ(f, g) and ∥f∗ − g∗∥L2(ν) ≤ K ′dλϕ(f, g).

Proof. The proof relies on the Lipschitz behavior of the Legendre transform that preserves the metric entropy of C and on
the Bousquet concentration inequality. We start by analyzing the term W (τ).

Term W (τ) Let us denote C0 = {ϕ∗(z − q) − ϕ∗(z0 − q), z ∈ C ∩ B◦(z0, τ)}. For g ∈ C0 of the form g =
ϕ∗(z − q)− ϕ∗(z0 − q) with z ∈ C ∩B◦(z0, τ), we have the pointwise bound for all x ∈ BR,

|g(x)| ≤ L1
ϕ∗ |z(x)− z0(x)| , (42)

where L1
ϕ∗ := supx∈[−M1,M1] |∂ϕ

∗(x)| with M1 = 2b(R) + R2 as in the previous proof. This implies ∥g∥L2(µ) ≤
L1
ϕ∗∥z − z0∥L2(µ). Since we assumed ϕ∗ strongly convex on every compact, there exists K = K(R,M, ϕ∗) > 0

such that ∥z − z0∥L2(µ) ≤ Kdλϕ(z, z0) and in particular, all g ∈ C0 verifies ∥g∥L2(µ) ≤ Kτ . Conversely, since the
functions in C are uniformly bounded over BR, we have for all g ∈ C0, ∥g∥ ≤ M where M is a constant. Defining
J(σ,C0, L

2(µ)) :=
∫ σ

0

√
1 + n(C0, L2(µ), u) du, we apply Hütter & Rigollet (2021)[Theorem 25] and we recover

E[W (τ)] ≲
J(Kτ,C0, L

2(µ))√
n

(
1 +

MJ(Kτ,C0, L
2(µ))√

nK2τ2

)
. (43)

Again, taking (g1, g2) ∈ C2
0 of the form g1 = ϕ∗(z1 − q) − ϕ∗(z0 − q) and g2 = ϕ∗(z2 − q) − ϕ∗(z0 − q) with

(z1, z2) ∈ (C ∩B◦(z0, τ))
2, we have

∥g1 − g2∥L2(µ) ≤ L1
ϕ∗∥z1 − z2∥L2(µ) , (44)

and in particular, we recover the upper-bound

E[W (τ)] ≲
J(L1

ϕ∗Kτ,C,L2(µ))
√
nL1

ϕ∗

(
1 +

MJ(L1
ϕ∗Kτ,C,L2(µ))

L1
ϕ∗
√
nK2τ2

)
. (45)

Now, we assumed that for all u ∈ R+ we had the upper-bound, n(C,L2(µ), u) ≤ Pµu
−α with α < 2, the term

J(L1
ϕ∗Kτ,C,L2(µ)) can be upper bounded by

√
Pµ(L

1
ϕ∗Kτ)1−α/2

1−α/2 hence we get

E[W (τ)] ≲

√
Pµ(Kτ)1−α/2

(1− α/2)
√
n(L1

ϕ∗)α

(
1 +

M
√

Pµ

(1− α/2)
√
n(L1

ϕ∗)α(Kτ)1+α/2

)
. (46)

There remains to bound the process W (τ) with high probability. We use for this the Bousquet concentration inequality.
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Lemma 8.4 (Bousquet, see Theorem 26 in Hütter & Rigollet (2021)). Let F be a class of functions such that for every
f ∈ F , ∥f∥2L2(µ) ≤ σ2 and ∥f∥L∞(µ) ≤ M , then for all t > 0, we have with probability at least 1− e−t

sup
f∈F

√
n|⟨f, µ− µ̂⟩| ≤ 2E[sup

f∈F

√
n|⟨f, µ− µ̂⟩|] + σ

√
2t+

M√
n
t . (47)

Applying this result to W (τ) yields that with probability at least 1− e−t,

W (τ) ≤
√
Pµ(Kτ)1−α/2

(1− α/2)
√

n(L1
ϕ∗)α

(
1 +

M
√
Pµ

(1− α/2)
√
n(L1

ϕ∗)α(Kτ)1+α/2

)
+Kτ

√
2t

n
+

2tb(R)L1
ϕ∗

n
, (48)

where we used the pointwise upper-bound (42) and where b(R) is the constant such that ∀z ∈ C, ∥z∥L∞(BR) ≤ b(R).

Term W ∗(τ) We can apply the same reasoning as previously. Indeed, as shown in Lemma 8.1, there exists a constant b′(R)
such that for all z ∈ C, ∥z∗∥L∞(BR) ≤ b′(R). In particular, since the potentials z∗ are bounded, we can also leverage the
local strong convexity of ϕ∗ that yields a constant K ′ = K ′(R,M, ϕ∗, λ, l) > 0 such that for every z ∈ C, ∥(z − z0)

∗∥ν ≤
K ′dλϕ(z, z0). Hence we recover that with probability at least 1− e−t,

W ∗(τ) ≤
√
Pν(K

′τ)1−α/2

(1− α/2)
√
n(L2

ϕ∗)α

(
1 +

M
√
Pµ

(1− α/2)
√

n(L2
ϕ∗)α(Kτ)1+α/2

)
+K ′τ

√
2t

n
+

2b′(R)L2
ϕ∗

n
. (49)

We can now prove the second part of Proposition 3.3.

Proof. For τ > 0, define s = τ
τ+dλ

ϕ(ẑ,z0)
and ẑs = (1− s)z0 + sẑ. By local strong convexity of J , we have

dλϕ(ẑs, z0)
2 ≤ J(ẑs)− J(z0) . (50)

Let us decompose the right hand side as J(ẑs)− Ĵ(ẑs)− (J(z0)− Ĵ(z0)) + Ĵ(ẑs)− Ĵ(z0). By convexity of Ĵ , the last
term can be upper-bounded by sĴ(ẑ)+ (1− s)Ĵ(z0)− Ĵ(z0) = s(Ĵ(ẑ)− Ĵ(z0)). Since ẑ is the minimizer of the empirical
semi-dual, we have in particular that s(Ĵ(ẑ)− Ĵ(z0)) ≤ 0 which gives

dλϕ(ẑs, z0)
2 ≤ J(ẑs)− Ĵ(ẑs)− (J(z0)− Ĵ(z0))

= ⟨ϕ∗(ẑs − q)− ϕ∗(z0 − q), µ− µ̂⟩+ ⟨ϕ∗(ẑ∗s − q)− ϕ∗(z∗0 − q), ν − ν̂⟩ .

Now, since dλϕ(ẑs, z0) =
τdλ

ϕ(ẑ,z0)

τ+dλ
ϕ(ẑ,z0)

≤ τ , we recover in the end dλϕ(ẑs, z0)
2 ≤ W (τ) +W ∗(τ).

Let us now consider A = {τ, dλϕ(ẑ, z0) ≥ τ}. We wish to recover an upper-bound on A. Remark that A = {τ, dλϕ(ẑs, z0) ≥
τ
2}. In particular, every τ ∈ A verifies with probability at least 1− e−t

τ2

4
≤ κ

τ1−α/2

√
n

+ κ′ τ
−α

n
+ (K +K ′)τ

√
2t

n
+

tκ′′

n
, (51)

where κ and κ′ are given in Lemma 8.3 defined as
κ = 8

√
2

(1−α
2 )

[√
PµK

1−α/2

(L1
φ∗ )

α
2

+
√
Pν(K

′)1−α/2

(L2
φ∗ )

α
2

]
κ′ = 8

√
2M

(1−α
2 )2

[
PµK

−α

(L1
φ∗ )α

+ Pν(K
′)−α

(L2
φ∗ )α

]
κ′′ = 2(M(R)L1

φ∗ +M ′(R)L2
φ∗) .

(52)
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Let An = {τ ∈ A, τ ≥ 1√
n
}. For τ ∈ An, we have

τ2

4
≤ κ

τ1−α/2

√
n

+
κ′τ−α

n
+ (K +K ′)τ

√
2t

n
+

tκ′′τ√
n

. (53)

Now since we assumed τ ≥ 1√
n

, we have in particular τ−α

n ≤ τ1−α
√
n

hence we get

τ2

4
≤ (κ+ κ′)

τ1−α/2

√
n

+ (K +K ′)τ

√
2t

n
+

tκ′′τ√
n

. (54)

Assuming that t ≥ 1, we have two cases

Case 1 If τ ≤ 1, we have
τ2

4
≤ tητ1−α/2

√
n

, (55)

where η = (κ+ κ′ + κ′′ +
√
2(K +K ′)) and we recover τ ≤ (4ηt)

1
1+α/2

n
1

2+α
.

Case 2 If τ ≥ 1, we have τ2

4 ≤ tητ√
n

i.e. τ ≤ 4tη√
n

.

In any case, for t ≥ 1, we have with probability at least 1− e−t

sup(A) ≤ (4η′t)
1

1+α/2 + (4η′t)

n
1

2+α

, (56)

where we defined η′ = max(η, 1). Now, by definition of A, we have for all ϵ > 0, dλϕ(ẑ, z0) ≤ sup(A) + ϵ. Taking ϵ → 0

gives that with probability at least 1− e−t, for t ≥ 1

dλϕ(ẑ, z0) ≤
(4η′t)

1
1+α/2 + (4η′t)

n
1

2+α

(57)

≤ 8η′t

n
1

2+α

. (58)

And in particular, dλϕ(ẑ, z0)
2 ≤ 64(η′)2t2

n
1

1+α/2
with probability at least 1 − e−t for t ≥ 1. We denote X the random variable

dλϕ(ẑ, z0)
2. Since X is non-negative almost surely, we can apply Fubini’s formula

E[X] =

∫ ∞

0

P (X > u) du . (59)

Let us make the change of variable u = 64(η′)2t2

n
1

1+α/2
,

E[X] =
128(η′)2

n
1

1+α/2

(∫ 1

0

tP (X >
64(η′)2t2

n
1

1+α/2

) dt+

∫ ∞

1

tP (X >
64(η′)2t2

n
1

1+α/2

) dt

)
.

The integrand in the first term is upper-bounded by 1 and the integrand on the second term is upper bounded by te−t. Hence
we obtain

E[dλϕ(ẑ, z0)2] ≤
128(η′)2

n
1

1+α/2

(1 +

∫ ∞

1

te−tdt)

=
128(1 + 2e−1)(η′)2

n
1

1+α/2

.
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8.5. Corollary 3.4

Proof. Using the Corollary 9 of Gallouët et al. (2021), we can ensure that z0, z∗0 are (k+2)-times continuously differentiable
over the support of µ and ν respectively. Recalling that for all x ∈ supp(ν)

∇2z0(x) = [∇2z∗0(∇z0(x))]
−1 , (60)

and using the fact that ∇z0 is a diffeomorphism between the support µ and ν, we recover that z0 is λ-strongly convex over
supp(µ) where we defined

1

λ
:= sup

y∈supp(ν)
∥∇2z∗0(y)∥ . (61)

Now, recall that in order to apply our previous result, we need to globally bound the strong-convexity constant as well as
controlling the sup norm over every ball. To achieve this, we can extend these potentials to the whole domain. Proposition
1.5 in Azagra & Mudarra (2019) provides a (k+ 2)-times continuously differentiable convex extension g̃0 of z0 − λq on the
whole domain Rd. Defining z̃0 = g̃0 + λq, we have that z̃0 coincides with z0 on supp(µ). Using again the diffeomorphism
property of ∇z0 between supp(µ) and supp(ν), we have that z̃∗0 coincides with z∗0 on supp(ν). Now let us define

C = {z | ∥z∥L∞(Br) ≤ ∥z̃0∥L∞(Br), ∥∇
k+2z∥L∞(Br) ≤ ∥∇k+2z̃0∥L∞(Br), z ≥ l, z is λ-strongly convex} ,

where l is the minimum of z̃0. The set C indeed meets Assumption (iv) and Assumption (iii) hence we can apply Prop. 3.3
which yields

E[dλϕ(ẑC , z0)2] ≲ δ +
1√
n

∫ M′
L

δ
4

√
n(C,L∞(BR′), Lu)du . (62)

Finally, using van der Vaart & Wellner (1996, Theorem 2.7), we have n(C,L∞(BR′), Lu) ≲ u− d
k+2 . If k+2

d < 1/2, take
δ = n− k+2

d . For this choice of δ,

1√
n

∫ M′
L

δ
4

√
n(C,L∞(BR′), Lu)du ≲

1√
n
(n− k+2

d )1−
d

2(k+2) (63)

≲
1√
n
n− 2(k+2)−d

2d (64)

= n− k+2
d . (65)

If k+2
d = 1/2, take δ = 1√

n
. For this choice of δ, the integral is of order log(n) which yields the upper-bound

E[dλϕ(ẑC , z0)2] ≲
log(n)√

n
. (66)

Finally, if k+2
d > 1/2, we apply the second part of Propostion 3.3 and we recover the rate

E[dλϕ(ẑC , z0)2] ≲ n−1/(1+d/2(k+2)) . (67)

8.6. Theorem 4.1

Proof. First, we show that J is lower-bounded on C so that inff∈C J(f) is indeed well-defined. Recalling J(f) =
⟨ϕ∗(f − q), µ⟩+ ⟨ϕ∗(f∗− q), ν⟩, we need to prove in particular that for f ∈ C, f∗ is bounded on BR. For f in C, denoting
x∗ = argminx f(x), we have using the strong convexity that f(x∗) ≥ λ

2 ∥x
∗∥2 − f(0) ≥ −b since we assumed |f(0)| ≤ b.

Furthermore, using the lipschitz property, we have ∥f∥L∞(Br) ≤ b+ L(r)r. Hence we can apply Lemma 8.1 that yields for
f ∈ C

∥∇f∗∥L∞(BR) ≤ R∗ :=
R

λ
+ 4

√
b

λ
∥f∗∥L∞(BR) ≤ RR∗ + b+R∗L(R∗) . (68)
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In particular, denoting K = max(b+ L(R), b+R∗(R+ L(R∗))) we have J(f) ≥ (mµ +mν) inf |t|≤K+q(R) ϕ
∗(t) with

(mµ,mν) the total masses of µ, ν respectively. Now we show the existence of a minimum. Since all functions of C are L(R)-
lipschitz continuous over BR and that for all f, x ∈ C ×BR, |f(x)| ≤ b+ L(R), we can apply the Arzela-Ascoli theorem
ensuring that C is relatively compact in the set of continuous functions on BR for the supremum topology. In particular, we
can extract a minimizing suite from inff∈C J(f) that converges toward f̄ ∈ C as C is assumed to be closed. Conversely,
since the function x ∈ C 7→ dF (xk)(x) is lower bounded by mµ inf |t|≤K+q(R)(ϕ

∗)′(t)−mν sup|t|≤K+q(R)(ϕ
∗)′(t), the

iterates (xk) are indeed well-defined using Arzela-Ascoli.

Now, applying Corollary 2.5, we have indeed for all (f, g) ∈ C

∆J(f, g) ≤
1

λ
∥∇f −∇g∥2(∇g∗)#([ν]g∗ )

+ 3SK

[
R2 + L(R∗)2

λ2
∥∇f −∇g∥2(∇g∗)#(ν) + H̃g

µ,ν(f − g)

]
, (69)

where [β]h = β × (ϕ∗)
′
(h − q) and H̃g

µ,ν(h) = ∥h∥2µ + ∥h∥2(∇g∗)#(ν). All that remains to prove is the boundedness
of Ag(h) now. Since (∇g∗)#(ν) ⊂ BR∗ we have ∥∇f − ∇g∥2(∇g∗)#([ν]g∗ )

≤ 2L(R∗)
∫
(ϕ∗)′(K + q(y)) dν(y) (recall

that (ϕ∗)′ is a non-decreasing function). And conversely, ∥∇f −∇g∥2(∇g∗)#(ν) ≤ 2mνL(R
∗). Finally, H̃g

µ,ν(f − g) ≤
2mµ(b+ L(R)) + 2mν(b+ L(R∗)). Using Theorem 9.1, we do recover

J(fk)− J̄ ≤ 4

λIL(R∗) + 3SK

[
(R2 + L(R∗)2 + 1)mνL(R

∗) +mµ(b+ L(R)) + bmν

]
λ2

, (70)

where I =
∫
(ϕ∗)′(K + q(y)).

8.7. Theorem 4.2

Proof. As in the previous proof, the minimum and the the iterates are well-defined thanks to the Arzela-Ascoli theorem.
The convergence rate follows the stability results in the smooth, strongly convex unbalanced case

1

2M
∥∇f −∇g∥2(∇g∗)#(ν) ≤ ∆J(f, g) ≤

1

2λ
∥∇f −∇g∥2(∇g∗)#(ν) . (71)

8.8. Proposition 5.1

Proof. Let us first re-write the convexity constraint as a discrete constraint. For f = g + λq ∈ C, let us denote y ∈ R2n+1

the value of g on the points x := [⃗0, µ̂, (∇f∗
k )#(ν̂)] and z ∈ R(2n+1)×d the value of ∇g over x. Using Taylor et al. (2017,

Theorem 3.3), the convexity of g can be enforced through the discrete constraints

yi − yj ≥ z⊤j (xi − xj) ∀ 0 ≤ i, j ≤ 2n+ 1 , (72)

with the following interpolation: g(x) = maxi yi + z⊤i (x− xi). In particular, f∗ can be computed pointwise through the
quadratic program

f∗(y) = max
x,t

y⊤x− λq(x)− t .

t ≥ yi + z⊤i (x− xi)

The additional bound |g(0)| ≤ b is explicitely given by the constraint |y0| ≤ b. The Lipschitz constraint can first be enforced
pointwise as ∥zi∥ ≤ L for all 0 ≤ i ≤ 2n+ 1. With the previous interpolation, the max of L-Lipschitz function being itself
L-Lipschitz , g remains globally L-Lipschitz.

Now, let us write the objective of (4) with y and z. The objective reads U(f) = ⟨DJ(fk), f − fk⟩+ K
2 ∥f − fk∥2fk with

∥h∥2fk = 3SK(∥h∥2µ̂ + ∥h∥2(∇f∗
k )#(ν̂)) +

1
λ∥∇h∥2(∇f∗

k )#(ν̂) + 3SK
R2+L(R∗)2

λ2 ∥∇h∥2[(∇f∗
k )#(ν̂)]fk

where SK and R∗ are

defined in Proposition 2.4. Since DJ(fk) = µ̂× (ϕ∗)
′ ◦ (fk − q)− (∇f∗

k )#(ν̂)× (ϕ∗)
′ ◦ (f∗

k − q), the linear part of U
can be written up to the constant terms c⊤y with c defined as

c := [0, ωµ × (ϕ∗)
′
((fk − q)(µ̂)),−ων × (ϕ∗)

′
((f∗

k − q)(ν̂))] ,
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where ωµ, ων are the weights of the empirical measures µ̂ and ν̂ respectively. Finally, the quadratic term can be recovered as

∥f − fk∥2fk = 3SK

n+1∑
i=1

ωµ
i (yi + λq(xi)− fk(xi))

2 + 3SK

2n+1∑
i=n+1

ων
i (yi + λq(xi)− fk(xi))

2

+
3SK(R2 + L(R∗)2)

λ2

2n+1∑
i=n+1

ων
i (ϕ

∗)
′
((f∗

k − q)(ν̂i))∥zi + λxi −∇fk(xi)∥2

+
1

λ

2n+1∑
i=n+1

ων
i ∥zi + λxi −∇fk(xi)∥2 .

Hence, ∥f − fk∥2fk can be re-written as

∥f − fk∥2fk = [y − f, z− g]⊤Q[y − f, z− g] ,

where f = fk(µ̂)− λq(µ̂), g = [⃗0, ν̂ − λ∇f∗
k (ν̂)] and Q is a diagonal matrix with diagonal 3SK [0, ωµ, ων , 0⃗, (ων( 1

3SKλ +

(ϕ∗)
′
((f∗

k−q)(ν̂))(R2+L(R∗)2)
λ2 ))∗d]. In the end, we do recover the quadratic program

inf
y,z

c⊤y +
1

2
[y − f, z− g]⊤Q[y − f, z− g] .

yi − yj ≥ z⊤j (xi − xj) ∀ 0 ≤ i, j ≤ 2n+ 1

∥zi∥ ≤ L, |y0| ≤ b

Let us derive the complexity of solving the convex problem above using an Interior Point Method (IPM).

First we need to compute the derivative DJ(fk) which involves computing Legendre of fk transform over the support of
ν̂. We showed in the proof of Propostion 5.1 that the Legendre transform could be computed with a linearly constrained
quadratic program with d+ 1 variable and n constraint hence the cost to assemble the KKT system is O(nd) and the cost
to solve it is O(d3) which make a complexity per iteration given by O(d3 + nd); since there are n constraints, we make
at most

√
n iterations to converge. The overall process is repeated on all the support of ν̂ hence the overall complexity to

compute DJ(fk) is at most O(n
√
n(nd+ d3)).

Now, let us focus on the cost to assemble and solve the KKT system associated with (5).Let us denote w = [y, z] ∈
R(2n+1)(d+1). Assembling the system involves computing DJ(fk), Qw and the gradient of the constraint which is of the
form

∑n(n−1)
i=1

ai

a⊤
i w−bi

. Since Q is diagonal Qw costs O(nd) and finally, since the convexity constraint is sparse, computing

a⊤i w is O(d) hence computing
∑n(n−1)

i=1
ai

a⊤
i w−bi

is O(n2d). Hence the cost to assemble the KKT system scales in O(n2d)

per iteration with an initial O(n
√
n(nd+ d3)) cost. Now let us focus on the resolution of the system. It involves solving a

system of the form Pw = t where P = Q + θt
∑n(n−1)

i=1
aia

⊤
i

(a⊤
i w−bi)2

with θt the magnitude of the barrier at step t. If we

use a conjugate gradient method to solve the system, since the evaluation aia
⊤
i w is O(n2d), solving the system also costs

O(n2d) (recall that Qw is O(nd)). Now since there are O(n2) constraints, the IPM makes at most O(n) iterations, leaving
us with a total complexity to solve (5) of O(n3d+ n

√
nd3).

8.9. Proposition 5.3

Proof. We simply apply the bound on the metric entropy of uniformly Lipschitz convex functions in Bronshtein (1976) with
respect to the supremum norm

n(Cλ,L,b, L
∞(BR′), u) ≲ u−d/2 , (73)

which implies the following growth rates with respect to to the L2 norms n(Cλ,L,b, L
2(µ), u) ≲ u−d/2 as well as

n(Cλ,L,b, L
2(ν), u) ≲ u−d/2. If d < 4, we can apply the second part of Proposition 3.3 and recover

E[dλϕ(ẑCλ,L,b
, z0)

2] ≲ n−1/(1+d/4) . (74)

If d = 4, applying the first part of Proposition 3.3 with δ = 1/
√
n yields

E[dλϕ(ẑCλ,L,b
, z0)

2] ≲
log(n)√

n
.
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Finally, if d > 4, we pick δ = n−2/d and we recover

E[dλϕ(ẑCλ,L,b
, z0)

2] ≲ n−2/d . (75)

8.10. Proposition 5.4

Proof. Let us denote ẑT the estimator that is obtained after making T iterations of 5 and z0 the ground truth OT potential.
In virtue of the estimates of Sec. 2, we have

∥∇ẑT −∇z0∥2L2(µ) ≲ J(ẑT )− J(z0) . (76)

Now, denoting Ĵ the empirical semi-dual and ẑ its minimizer, we have

J(ẑT )− J(z0) = (Ĵ(ẑT )− Ĵ(ẑ)) + (J(ẑT )− Ĵ(ẑT )) + (Ĵ(ẑ)− J(ẑ)) + (J(ẑ)− J(z0)) .

The term Ĵ(ẑT )− Ĵ(ẑ) is upper-bounded by 0(1/T ) and using the first case of Proof 8.4, the term J(ẑ)− J(z0) is upper
bounded in average by O(n−2/d) if d > 4 or Õ(1/

√
n) is d ≤ 4. Now the term J(ẑT )− Ĵ(ẑT ) can be decomposed as

J(ẑT )− Ĵ(ẑT ) = ⟨ẑT , µ− µ̂⟩+ ⟨ẑ∗T , ν − ν̂⟩ . (77)

Using again the same technique as in Proof 8.4, we recover using chaining bounds that in average J(ẑT ) − Ĵ(ẑT ) is in
O(n−2/d) if d > 4 and in Õ(1

√
n) if d ≤ 4 and the same goes for Ĵ(ẑ)− J(ẑ). Hence the total error reads{

∥∇ẑT −∇z0∥2L2(µ) ≲
1
T + 1/

√
n if d ≤ 4

∥∇ẑT −∇z0∥2L2(µ) ≲
1
T + n−2/d if d > 4 .

(78)

Setting Tτ = 1
τ and nτ = 1/τ2 if d ≤ 4 and nτ = 1/τd/2 if d > 4, we do recover a τ approximation. Hence, if d ≤ 4, the

number of operations to compute ẑτ scales as Õ(τ−7) and if d > 4, it scales as Õ(τ−( 3d
2 +1)).

9. Additional results
9.1. Section 4

In this paragraph, we state and prove the convergence guarantees we can obtain for the variable metric gradient scheme

xk+1 = argmin
x∈C

dF (xk)(x− xk) +
β

2
Axk(x− xk) , (79)

where F is a convex function over a Banach space E, Axk is a 2-homogeneous form depending on xk and C is a convex
subset of E. We first study the variable relatively smooth case ∆F (x, y) ≤ β

2A
xk(x− xk).

Theorem 9.1 (Variable relative smoothness: sub-linear convergence). Let E be a Banach space, let F be a real-valued
convex function with Gateaux derivative dF satisfying for all (x, y) ∈ E, ∆F (x, y) ≤ β

2A
y(x− y) where for all y ∈ E,

Ay(·) is a 2-homogeneous form over E depending on y and where β is a strictly positive constant and let C ⊂ E be a
closed convex subset of E. Assuming that sup(x,y)∈C2 Ay(x− y) ≤ K, that a minimizer x̄ ∈ C exists and that the iterates
x0 ∈ C, (xk) generated as

xk+1 ∈ argmin
x∈C

dF (xk)(x− xk) +
β

2
Axk(x− xk) , (80)

exist, we have F (xk)− F (x̄) ≤ 2βK
k+1 .

Proof. We simply adapt the proof of Bubeck (2015, Theorem 3.8). Recall that F verifies

F (xk+1)− F (xk) ≤ dF (xk)(xk+1 − xk) +
β

2
Axk(xk+1 − xk) . (81)
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Denoting yk = argminC dF (xk)(y − xk), we have by definition of xk+1 and by convexity of C,

dF (xk)(xk+1 − xk) +
β

2
Axk(xk+1 − xk) ≤ dF (xk)(skyk + (1− sk)xk − xk)

+
β

2
Axk(skyk + (1− sk)xk − xk)

= skdF (xk)(yk − xk) + s2k
β

2
Axk(yk − xk) ,

where sk ∈ [0, 1] is a parameter that shall be defined later. Then, by definition of yk, dF (xk)(yk − xk) ≤ dF (xk)(x̄− xk)
hence we recover using the convexity of F

F (xk+1)− F (xk) ≤ sk(F (x̄)− F (xk)) + s2k
β

2
K . (82)

Denoting δk = F (x̄)− F (xk) we get eventually

δk+1 ≤ (1− sk)δk + s2kK
β

2
. (83)

Taking sk = 2/(k + 1) yields δk = 2βK
k+1 (see the proof of Bubeck (2015, Theorem 3.8) for more details).

Now we show that under the additional variable relative strong convexity assumption ∆F (x, y) ≥ α
2A

xk(x − xk), we
recover exponential convergence.

Theorem 9.2 (Variable relative smoothness and strong convexity: exponential convergence). Let E be a Banach space, let
F be a real-valued convex function with Gateaux derivative dF and let C ⊂ E be a closed convex subset of E. If there
exists α, β > 0 and Ay(·) a 2-homogeneous form such that for all (x, y) ∈ E, α

2A
y(x− y) ≤ ∆F (x, y) ≤ β

2A
y(x− y). If

a minimizer x̄ ∈ C and the iterates x0 ∈ C, (xk) generated by (80) exist, we have

F (xk)− F (x̄) ≤
(
1− α

β

)k

[F (x0)− F (x̄)].

Proof. We simply adapt the proof of Karimi et al. (2016, Theorem 5). To this end, we propose to generalize the notion of
being proximal PL with respect to a (convex) set C and an operator A·(·) such that for any y ∈ C, Ay(·) is a 2-homogeneous
form. A Gateaux-differentiable function F is said to be proximal PL with respect to C,A if there exists some constants
α, β > 0 such that for all x ∈ C

1

2
DC,A(x, β) ≥ α(F (x)− F̄ ) , (84)

where F̄ = minx∈C F (x) and where DC,A(x, β) is defined as

DC,A(x, β) = −2β inf
y∈C

dF (x)(y − x) +
β

2
Ax(y − x) . (85)

Using these notions, we show the following exponential convergence result.

Lemma 9.3. If F verifies ∆F (x, y) ≤ β
2A

y(y − x) for all (x, y) ∈ C and is such that

1

2
DC,A(x, β) ≥ α(F (x)− F̄ ) , (86)

then the scheme (provided that the iterates are well-defined)

xk+1 = argmin
y∈C

dF (xk)(y − xk) +
β

2
Axk(y − xk) , (87)

yields iterates that verify F (xk)− F̄ ≤ (1− α/β)k(F (x0)− F̄ ).
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Proof. By relative smoothness and definition of the iterates

F (xk+1) ≤ F (xk) + dF (xk)(xk+1 − xk) +
β

2
Axk(xk+1 − xk) (88)

≤ F (xk)−
1

2β
DC,A(x, β) (89)

≤ F (xk)−
α

β
(F (xk)− F̄ ) . (90)

Rearanging the terms yields the desired result.

Now we want to apply the previous result to our function F that verifies α
2A

y(x − y) ≤ ∆F (x, y) ≤ β
2A

y(x − y). The
lower bound ensures 1

2DC,A(x, α) ≥ α(F (x)− F̄ ). Indeed

∆F (y, x) ≥
α

2
Ax(y − x) (91)

⇐⇒ F (y)− F (x) ≥ dF (x)(y − x) +
α

2
Ax(y − x) (92)

=⇒ F (y)− F (x) ≥ inf
y∈C

dF (x)(y − x) +
α

2
Ax(y − x) (93)

⇐⇒ 2α(F (x)− F (y)) ≤ DC,A(x, α) (94)

⇐⇒ 1

2
DC,A(x, α) ≥ α(F (x)− F (y)) (95)

=⇒ 1

2
DC,A(x, α) ≥ α(F (x)− F̄ ) . (96)

We conclude with a monotonicity lemma to recover eventually 1
2DC,A(x, β) ≥ α(F (x)− F̄ ).

Lemma 9.4. For a convex set C and a 2-homogeneous form Ay(·), if 0 ≤ α ≤ β then for all x ∈ C, DC,A(x, α) ≤
DC,A(x, β).

Proof. We have by definition that for all x, y ∈ C, −2β(dF (x)(y − x) + β
2A

x(y − x)) ≤ DC,A(x, β). By convexity of C,
we have in particular for all x, y ∈ C,

− 2β(dF (x)((1− α

β
)x+

α

β
y − x) +

β

2
Ax((1− α

β
)x+

α

β
y − x)) ≤ DC,A(x, β) (97)

⇐⇒ − 2β(
α

β
dF (x)(y − x) +

α2

2β
Ax(y − x)) ≤ DC,A(x, β) (98)

⇐⇒ − 2α(dF (x)(y − x) +
α

2
Ax(y − x)) ≤ DC,A(x, β) . (99)

In particular, taking the supremum of the l.h.s., we do recover DC,A(x, β) ≥ DC,A(x, α).

We draw the attention on the fact that while Lemma 9.3 holds for any C,A, the convexity of C and the 2-homogeneity of A
are crucial to derive the monotonic behavior of DC,A(x, ·).

9.2. Section 5

Smooth and strongly convex functions case We study the case where C = Cλ,M,L,b = {f |λ− strongly convex,M −
smooth, ∥∇f(0)∥ ≤ L, |f(0)| ≤ b}. As in the strongly convex case, using the results of Taylor et al. (2017), the iterates (4)
can be reformulated as the following Quadratically Constrained Quadratic Program
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inf
y∈R2n+1

z∈R(2n+1)×d

c⊤y +
1

2
[y − f, z− g]⊤Q[y − f, z− g] ,

yi − yj − z⊤j (xi − xj) ≥
1

2(1− λ
M )

(
1

M
∥zi − zj∥2 + λ∥xi − xj∥2 − 2

λ

M
(xi − xj)

⊤(zi − zj)

)
∥z0∥ ≤ L, |y0| ≤ b

(100)

where f = fk(µ̂), c = [0, ωµ(ϕ∗)
′
((fk − q)(µ̂)),−ων(ϕ∗)

′
((f∗

k − q)(ν̂))], g = [⃗0, ν̂] and Q is a diagonal matrix with

diagonal 3SK [0, ωµ, ων , 0⃗, ω̃ν ] with ω̃ν :=

(
ων( 1

3SKλ +
(ϕ∗)

′
((f∗

k−q)(ν̂))(R2+L(R∗)2)
λ2 )

)∗d

where c, f,g, Q are defined in

Proposition 4. Now, for the statistical complexity, since the functions in Cλ,M,L,b are L +MR-Lipschitz over BR and
bounded by b+ LR over BR, similar results as in Proposition 5 hold: if the ground truth potential z0 belongs to Cλ,M,L,b,
then denoting ẑ = argminz∈Cλ,M,L,b

Ĵ(z) we have


E[dλϕ(ẑ, z0)2] ≲ n−1/(1+d/4) if d < 4

E[dλϕ(ẑ, z0)2] ≲
log(n)√

n
if d = 4

E[dλϕ(ẑ, z0)2] ≲ n−2/d if d > 4 .

Hence, even though the model is less expressive, the statistical behavior is the same as for λ-strongly convex functions ; it is
an open question whether the additional smoothness can be leveraged statistically speaking.

Parametric model case We study the computational complexity and statistical guarantees we obtain when C is chosen to
be a parametric set of (strongly) convex functions.

We propose to study the following model: C = {λq + g|g(x) =
∑p

i=1 wi

√
∥x− ci∥2 + ϵ, 0 ≤ wi ≤ L} where the

centroids ci are fixed vectors and the weights wi are to be learned. The rational behind this model is that the hessian of the
components is given by 1√

∥x−ci∥2+ϵ
(Id− (x−ci)(x−ci)

⊤

∥x−ci∥2+ϵ ), hence, in a first approximation, this model enables to locally add

curvature around ci.

Since C is a parametric model, assuming that the original UOT potential z0 belongs to C, we recover the fast statistical rate
E[dλϕ(ẑC , z0)] = O( 1n ) ; hence we have an improvement with respect to the case where C is the whole set of λ-strongly
convex function and whose statistical complexity scaled as n−2/d. Finally, the iterates of the semi-dual involves solving a
quadratic program of the form

inf
0≤w≤L

c⊤w +
1

2
w⊤Z⊤Zw ,

where Z ∈ R2nd×p. The cost to compute Z⊤Z scales as O(p2dn) and the cost to solve the program is O(p3). Hence
assuming that p << n, the overall cost is O(p2dn), which is now linear in n instead of cubic in the case where C is the set
of all λ-strongly convex functions. Indeed this model is extreme since it may lack expressiveness yet it illustrates how the
computational and statistical behavior can be improved.
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