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Abstract
We investigate the problem of best arm identifica-
tion in Multi-Agent Multi-Armed Bandits (MAM-
ABs) where the rewards are defined through a
factor graph. The objective is to find an optimal
global action with a prescribed level of confidence
and minimal sample complexity. We derive a tight
instance-specific lower bound of the sample com-
plexity and characterize the corresponding opti-
mal sampling strategy. Unfortunately, this bound
is obtained by solving a combinatorial optimiza-
tion problem with a number of variables and con-
straints exponentially growing with the number of
agents. We leverage Mean Field (MF) techniques
to obtain, in a computationally efficient manner,
an approximation of the lower bound. The ap-
proximation scales at most as ρKd (where ρ, K,
and d denote the number of factors in the graph,
the number of possible actions per agent, and the
maximal degree of the factor graph). We devise
MF-TaS (Mean-Field-Track-and-Stop), an algo-
rithm whose sample complexity provably matches
our approximated lower bound. We illustrate
the performance of MF-TaS numerically using
both synthetic and real-world experiments (e.g.,
to solve the antenna tilt optimization problem in
radio communication networks).

1. Introduction
Best arm identification with fixed confidence in stochas-
tic bandits (Lai & Robbins, 1985) refers to the problem of
finding the arm with the highest expected reward with a
prescribed level of certainty, while minimizing the number
of samples or arm draws, i.e., the sample complexity. When
the arm rewards are unrelated, the sample complexity needs
to typically scale linearly with the number of arms, and the
task quickly becomes intractable as this number grows large.
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To reduce the sample complexity, the learner may leverage
any underlying structure tying up the expected rewards of
the various arms together. Most efforts in this direction
have focused on linear structures (Degenne et al., 2020; Fiez
et al., 2019; Jedra & Proutiere, 2020; Karnin, 2016; Soare
et al., 2014; Tao et al., 2018), see (Wang et al., 2021) and
references therein. Exploiting the underlying structure is
critical when the number of arms becomes extremely large,
as in combinatorial bandit problems (Chen et al., 2014; Jour-
dan et al., 2021). To solve these problems, the learner faces
a statistical efficiency issue (she has to control the sample
complexity), but also needs to account for inherent computa-
tional limits (she will typically have to solve combinatorial
optimization problems over the set of possible arms).

We investigate the best arm identification problem in the
stochastic Multi-Agent Multi-Armed Bandits (MAMABs)
– referred to as M-BAI for short. M-BAI is a particular
instance of the best arm identification problem in combina-
torial bandits, where (i) a global arm or action is defined by
the actions individually selected by the various agents, and
(ii) the reward function is defined through a factor graph.
This reward structure arises naturally in networks where
agents interact with their neighbors in the graph, and need
to coordinate toward a common goal. The paper was ac-
tually motivated by the problem of learning to coordinate
base-stations in radio communication networks (see §7.2).

Contributions. For the M-BAI problem, we present a sta-
tistically and computationally efficient algorithm. The al-
gorithm has provable performance guarantees (in the form
of sample complexity upper bounds), and can be applied in
large-scale MAMABs. More precisely, our contributions
are as follows.

1) Sample complexity lower bound. We derive an instance-
specific lower bound on the sample complexity satisfied by
any algorithm. The bound is defined through an optimiza-
tion problem, whose solution provides an optimal sampling
strategy. Unfortunately, because of the factored reward
structure, this optimization problem contains an exponential
number of variables and constraints, and is hence difficult
to exploit in practice.

2) Mean-Field-based approximation of the lower bound op-
timization problem. We propose a tight approximation of
the lower bound optimization problem obtained by com-
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bining a Mean Field (MF) technique, to reduce the number
of variables, and Factored Constraint Reduction (FCR), a
procedure inspired by methods in probabilistic graphical
models, to reduce the number of constraints. We show that
the resulting optimization problem is equivalent to a con-
vex program that can be solved efficiently. The resulting
approximated lower bound scales at most as ρKd, where
ρ is the number of factors (or groups), K is the number of
actions per agent and d is the maximal degree of the factor
graph. This scaling illustrates the gains one may achieve by
exploiting the factor graph structure (without leveraging the
structure, the sample complexity would well scale as KN ,
where N is the number of agents).

3) The MF-TaS algorithm. We devise MF-TaS (Mean-Field-
Track-and-Stop), an algorithm whose sample complexity
provably matches our approximated lower bound. The algo-
rithm, based on the popular Track and Stop (TaS) algorithm,
selects actions suggested by the solution of the approxi-
mated lower bound optimization problem and decides to
stop gathering data according to the result of a classical
Generalized Likelihood Ratio Test (GLRT).

4) Synthetic and real-world experiments. First, we test
the performance of MF-TaS numerically using synthetic
experiments. We then apply the algorithm to solve the
problem of learning to coordinate the antenna tilts at various
base stations in a radio communication network. In both
sets of experiments, we show that MF-TaS can solve very
large problems with millions of global actions in a sample
and computationally efficient manner.

2. Related Work
Most existing works on multi-agent bandit models focus
on the so-called multi-player bandits (Besson & Kaufmann,
2018; Rosenski et al., 2016; Shi et al., 2021; Wang et al.,
2020). There, agents have access to the same set of actions
and interact through collisions (if two agents select the same
action, no reward is collected by both agents). Our setting
is different and assumes that the global reward is a sum
over groups of local rewards which depend on the actions
selected by related agents.

A few papers investigate MAMABs with the same factored
reward structure as ours (Bargiacchi et al., 2018; 2022; Stran-
ders et al., 2012; Verstraeten et al., 2020). While (Bargiacchi
et al., 2018; Stranders et al., 2012; Verstraeten et al., 2020)
focus on regret minimization, our paper studies best arm
identification. The closest related work is (Bargiacchi et al.,
2022). There, the goal is to identify a global arm or action
that is ε-optimal and with error probability bounded by δ.
Targeting ε-optimal arms greatly simplifies the problem and
the analysis, and removes the need for an adaptive stopping
rule (the number of samples is fixed a-priori). In turn, the al-

gorithm proposed in (Bargiacchi et al., 2022) does not adapt
to the hardness of the problem. This hardness is captured
through ∆min, the gap between the best and the second-best
arm. Our algorithm is learning this gap and adapting its
sampling strategy accordingly.

Another closely related line of work is best arm identifi-
cation in combinatorial bandits with semi-bandit feedback
(Chen et al., 2014; Du et al., 2021; Jourdan et al., 2021; Wa-
genmaker et al., 2020), which encompasses the MAMABs
setting as a particular case (see App. G). These works do not
explicitly consider multi-agent problems and focus on de-
vising computationally and statistically efficient algorithms.
The closest work here is (Jourdan et al., 2021), which lever-
ages a game interpretation of the lower bound optimization
problem to devise asymptotically optimal meta-algorithms
using online optimization methods. Their method requires
the existence of a ”best-response oracle”, which is com-
putationally inefficient for factored rewards models with
combinatorial action spaces. In contrast, our algorithm
leverages an MF approximation to reduce the number of
variables and constraints in the lower bound optimization
problem and leads to a more efficient algorithm.

A few related works investigate regret minimization in com-
binatorial semi-bandit feedback settings (Cuvelier et al.,
2021a;b; Wagenmaker et al., 2020). The authors of (Cuve-
lier et al., 2021b) derive a lower bound on the regret that
has a similar structure and presents the same challenges, as
the one we derive for best arm identification: the bound is
obtained by solving an optimization problem with an expo-
nentially large number of variables and constraints (see App.
F for details). By smartly rewriting the optimization prob-
lem, the authors of (Cuvelier et al., 2021b) manage to devise
an asymptotically optimal algorithm. Unfortunately, the
algorithm relies on Assumption 6 in (Cuvelier et al., 2021b)
which, in general, does not hold in our setting (Wainwright
& Jordan, 2008). It is hence impossible to follow a similar
approach in the MAMAB setting.

3. Problem Setting
Model and reward structure. We consider the generic
MAMAB model with factored structure introduced in (Bar-
giacchi et al., 2018). The model is defined by the tuple
⟨S,A, r⟩, where:

1. S = [N ] ≜ {1, . . . , N} is a set of N agents,

2. A = ×i∈[N ]Ai is a set of global actions, which is
the Cartesian product over i of the set Ai of actions
available to the agent i. We assume w.l.o.g. that |Ai| =
K, for all i ∈ [N ], and define A ≜ |A| = KN ,

3. r is the reward function mapping the global action to
the collected reward.
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We now describe the reward collected when a global action
a ∈ A is selected. We assume that there are ρ groups
of possibly overlapping subsets of agents (Se)e∈[ρ], with
Se ⊆ S , and |Se| = Ne. Each group generates rewards. The
local reward generated by group e depends on group actions
ae ≜ (ai)i∈Se

∈ Ae ≜ ×i∈Se
Ai only. More precisely,

each time ae is selected, the collected local rewards are
i.i.d. copies of a random variable re(ae) ∼ N (θe(ae), 1).
Rewards collected in various groups are independent. The
global reward for action a is then r(a) =

∑
e∈[ρ] re(ae),

a random variable with expectation θ(a) =
∑
e∈[ρ] θe(ae).

The number of possible group actions in group e is Ae ≜
|Ae| = KNe , and we define Ã ≜

∑
e∈[ρ]Ae.

Factor graph representation. The reward structure
can be represented as a factor graph (Wainwright &
Jordan, 2008). Factor graphs are bipartite graphs with
two types of node: N action nodes, one for each agent
(represented by circles), and ρ factor nodes, one for each
group (represented by squares). An edge between a factor
re and an agent i exists if the action ai selected by the
agent i is an input of re, i.e., i ∈ Se. Fig. 1 shows
an example of a factor graph with N = 4 agents and
ρ = 4 factors in which the reward is factored additively as
r(a) = r1(a1, a2) + r2(a2, a4) + r3(a1, a3) + r4(a3, a4).
In this example, when each agent has K actions available,
we have A = K4 and Ã = 4K2.

Rewards

Agents

r1 r2 r3 r4

1 2 3 4

Figure 1. Example of a factor graph.

Sequential decision process. In M-BAI, the decision maker
sequentially selects global actions based on the history of
previous observations and receives a set of samples of the
local rewards associated to the various groups. Specifically,
in each round t ≥ 1, the decision maker selects a global
action at = (at,1, . . . , at,N ) and observes the local rewards
rt = (rt,1, . . . , rt,ρ) from each group. The global action
at+1 is selected based on the history of observationsHt =
(as, rs)s∈[t]. This type of interaction is known as semi-
bandit feedback (see App. G for details).

Best Arm Identification. In this work, we study the prob-
lem of M-BAI in the fixed confidence setting. The goal
is to devise an algorithm that returns, using as few rounds
as possible, the best global action with a fixed confidence
level. This action is defined as a⋆θ ∈ argmaxa∈A θ(a).

Throughout the paper, we assume that a⋆θ is unique. Fur-
thermore, when there is no ambiguity, we use a⋆ and a⋆θ
interchangeably. In this setting, an algorithm is defined
through a sampling rule, a stopping rule, and a recommen-
dation rule, described as follows:

(i) Sampling rule: it specifies the global action selected in
each round. The sampling rule is defined as a sequence
of actions (at)t≥1, where at ∈ A may depend on past
observations. Formally, at is Ft−1-measurable, where
Ft is the σ-algebra generated byHt, the history up to
time t.

(ii) Stopping rule: it controls the end of the data acquisition
phase and is defined as a stopping time τ with respect
to the filtration (Ft)t≥1.

(iii) Recommendation rule: in round τ , after the data acqui-
sition phase ends, it returns an estimated best global
action âτ ∈ A.

We denote by Pθ the probability measure of the observations
generated under the parameter θ, and by Eθ the respective
expectation. With these definitions, the objective is to devise
a δ-PAC algorithm, as defined below, with minimal expected
sample complexity Eθ[τ ].

Definition 3.1. Let δ ∈ (0, 1). An algorithm is δ-PAC if ∀θ,
Pθ(a⋆θ ̸= âτ ) ≤ δ and Pθ (τ <∞) = 1.

4. Sample Complexity Lower Bound
We present a lower bound on the sample complexity satisfied
by any δ-PAC algorithm. The lower bound is obtained
using classical change-of-measure arguments introduced in
(Kaufmann et al., 2016; Lai & Robbins, 1985). To state the
lower bound, we introduce the following notations.

Notations. Define the marginal polytope as:

Λ̃ =

{
w̃ ∈ RÃ : ∃w ∈ Λ,∀e ∈ [ρ], ae ∈ Ae, w̃e,ae =

∑
b∈A:be=ae

wb,

}
,

where Λ = {w ∈ RA+ :
∑
a∈A wa = 1} is the (A − 1)-

dimensional simplex. The set Λ̃ contains group alloca-
tions w̃ = (w̃e)e∈[ρ], where w̃e = (w̃e,ae)ae∈Ae . In other
words, Λ̃ contains group probability measures w̃ which sat-
isfy a consistency constraint w.r.t. the global allocations
w ∈ Λ. Such constraints encode the condition that there
exists a global allocation w having marginal group alloca-
tions w̃. Let kl(x, y) be the Kullback–Leibler divergence
between two Bernoulli distributions of mean x and y, and
∆(a) = θ(a⋆) − θ(a) be the sub-optimality gap for a sub-
optimal action a ̸= a⋆θ .
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Theorem 4.1. The sample complexity of any δ-PAC algo-
rithm satisfies ∀θ, Eθ[τ ] ≥ 2T ⋆θ kl(1− δ, δ), where

T ⋆θ = inf
w̃∈Λ̃

max
a̸=a⋆

∑
e∈[ρ]:ae ̸=a⋆e

(
w̃−1
e,a⋆e

+ w̃−1
e,ae

)
∆(a)2

(1)

The proof of the above theorem is given for completeness in
App. A.1. T ⋆θ is referred to as characteristic time and rep-
resents the hardness of the M-BAI problem for a MAMAB
instance θ. Furthermore, an allocation w̃ ∈ Λ̃ attaining
T ⋆θ is optimal: an algorithm relying on a sampling strategy
realizing w̃ such that for all e ∈ [ρ] and ae ∈ Ae, w̃e,ae =
Eθ[Nτ,e,ae ]/Eθ[τ ] (where Nt,e,ae =

∑
s∈[t] 1{as,e=ae} is

the number of times the group action ae is selected up to
time t) would yield the lowest possible sample complexity.

5. Lower Bound Approximation
Solving the lower bound optimization problem (1) is hard
for the following reasons: (i) exponential variable space:
global allocations w lie in Λ ⊂ RA+; (ii) exponentially
large number of constraints: T ⋆θ is defined as a maximum
over a set of KN − 1 actions (a ̸= a⋆), which in turn
corresponds to solving a problem with an equal number
of constraints (see (4)). To circumvent these issues, we
propose an approximation of the lower bound optimization
problem, which allows to reduce the number of variables
and constraints. We will then leverage this approximation
in the design of an efficient M-BAI algorithm.

Mean-field variable reduction. In order to reduce the vari-
able space, we consider an MF approximation (Wainwright
& Jordan, 2008), which restricts the allocations w ∈ Λ
to the set factored distributions. To define this set, let
vi = (vi,ai)ai∈Ai denote the local allocation of agent i.
vi,ai is the proportion of time agent i selects ai ∈ Ai, and
hence vi ∈ Λi = {vi ∈ RK+ :

∑
ai∈Ai

vi,ai = 1}. The set
of factored distributions is then defined as:

ΛMF =

{
w ∈ Λ : ∀i ∈ [N ],∃vi ∈ Λi, wa =

∏
i∈[N ]

vi,ai

}
.

We also denote by Λ̃MF the corresponding marginal MF
polytope. The lower bound approximation is essentially
obtained replacing Λ̃ by Λ̃MF in (1). Then, the corresponding
MF characteristic time is:

T MF
θ = inf

w̃∈Λ̃MF

max
a̸=a⋆

∑
e∈[ρ]:ae ̸=a⋆e

(
w̃−1
e,ae + w̃−1

e,a⋆e

)
∆2

min

, (2)

where ∆min = mina ̸=a⋆ ∆(a). The following lemma
proves that T MF

θ is an upper bound of T ⋆θ and provides a
gap-dependent scaling.

Lemma 5.1. ∀θ, T ⋆θ ≤ T MF
θ ≤

2Ã
∆2

min
, and we have:

T MF
θ = inf

(vi)i∈[N]

max
a ̸=a⋆

∑
e:ae ̸=a⋆

e

( ∏
i∈Se

v−1
i,ai

+
∏

i∈Se

v−1
i,a⋆

i

)
∆2

min
. (3)

The proof can be found in App. A.2. Note that the dimen-
sion of the variables involved in (2) is KN , whereas solv-
ing (1) would involve KN -dimensional variables w ∈ Λ.
The lemma also provides a worst-case scaling of T MF

θ : it
scales at most with the sum of the group action sets size
Ã =

∑
e∈[ρ]K

Ne . Note that there are trivial factor graphs
for which T ⋆θ scales as Ã/∆2

min (this is the case when each
agent is involved in a single factor).

Notice that the program in (2) is seemingly non-convex. In
fact, it is generally known that MF approximations lead to
non-convex programs due to the geometry of ΛMF (Wain-
wright & Jordan, 2008). Despite the non-convexity, we
show, in App. B, that (2) can be reformulated as a Geomet-
ric Program (GP), which can be reduced to a (non-linear)
convex program by a change of variables.

Factored constraint reduction. After the variable reduc-
tion step, the main challenge in solving (2) is the maxa̸=a⋆ .
We can rewrite (2) in epigraph form (Boyd & Vandenberghe,
2004) as:

inf
w̃∈Λ̃MF ,z∈R

z s.t. z ≥
∑
e∈[ρ]

f w̃e
e (ae),∀a ̸= a⋆, (4)

where f w̃e
e (ae) = (w̃−1

e,ae + w̃−1
e,a⋆e

)/∆2
min1{ae ̸=a⋆e}. In the

following, we will omit the superscript w̃e for clar-
ity. Hence, the maxa ̸=a⋆ operator in (2) is equivalent
to considering a set of KN − 1 non-linear constraints:
C =

{
z ≥

∑
e∈[ρ] fe(ae),∀a ̸= a⋆

}
.

The objective is to obtain a compact representation of C that
avoids an explicit enumeration of the exponentially-many
actions. To this aim, we adapt a popular method used in
factored Markov Decision Processes (Guestrin et al., 2001;
2003). This method, which we refer to as Factored Con-
straint Reduction (FCR), reduces a constraint set described
by an exponential number of constraints with a factored
structure to a provably equivalent set with a reduced num-
ber of constraints. The method is inspired by the Variable
Elimination (VE) procedure in graphical models (Dechter,
1999). Specifically, FCR considers constraints of the type:

z ≥
∑
e∈[ρ]

pe(ae), ∀a ∈ A,

where pe(·) is a factor function mapping group actions ae
to real values, and z is a real variable, and construct an
equivalent set of constraints K. We present the pseudo-code
of FCR in Alg. 1 and describe its steps below.
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Algorithm 1 FCR

Input: Elimination order O, factors F
Initialize K = ∅
for i = 1, . . . , N do
l← O(i)
Fl ← {p ∈ F : l ∈ SC(p)}
K ← K ∪

{
uplaSC(pl)

≥
∑
p∈Fl

upaSC(p)
,∀aSC(pl), al

}
F ← F ∪ {pl} \ Fl

end for
K ← K ∪ {z ≥ upO(N)}
Return K

FCR takes as input an initial set of factors F = {pe}e∈[ρ],
and an ordered elimination set O. For a factor p ∈ F , we
define its scope SC(p) ⊆ [N ] as the set of agents involved
in p. We also associate a real variable upaSC(p)

to each factor
p ∈ F . After initializing the output constraint set as K = ∅,
the algorithm proceeds in an iterative manner. At each itera-
tion i = 1, . . . , N , we set l = O(i) (the ith element of O),
and define Fl = {p ∈ F : l ∈ SC(p)}. We then introduce a
new factor pl having scope SC(pl) = ∪p∈Fl

{SC(p)} \ {l},
and we associate the variable uplaSC(pl)

to pl. We include in
K a new set of constraints

uplaSC(pl)
≥
∑
p∈Fl

upaSC(p)
, ∀aSC(pl), al.

We further include the new factor variable pl in the set
of factors F and remove all factors in Fl from it, i.e.,
F = F ∪ {pl} \ Fl. At l = O(N), we introduce the con-
straint z ≥ upO(N) intoK, where pO(N) is the last generated
factor and has empty scope.

As shown in App. B, the set of constraints in K, constructed
through FCR, are equivalent to the ones in C, i.e., an as-
signment of variables satisfies the constraints in C if and
only if it satisfies the constraints in K. Furthermore, the
number of constraints in K set scales as O(NKAO ), where
AO = maxi∈[N ] |SC(pO(i))| is the size of the maximum
scope induced by the chosen order of elimination O (see
App. E for details).

6. The MF-TaS Algorithm
Our algorithm, MF-TaS, identifies and tracks the sampling
allocation solving the approximated lower bound optimiza-
tion problem (3). Such problem (3) depends on the unknown
parameter θ through the optimal action a⋆θ and ∆min. The
algorithm hence consists in (i) estimating the unknown pa-
rameter θ, (ii) plugging this estimator in (3) to compute the
corresponding optimal sampling rule, and (iii) tracking this
sampling rule and stopping when enough information has
been gathered. We present MF-TaS in Alg. 2 and detail its
step in the remainder of this section.

Algorithm 2 MF-TaS

Input: Confidence δ, exploration set A0

Initialize ∀e ∈ [ρ], N0,e = 0, θ̂0,e = 0, U0,e = Ae,
∀i ∈ [N ], N0,i = 0, t = 1
while t < T MF

θ̂t
β(δ, t) do

if ∃e : Ut,e ̸= ∅ then
bt,e ← argminae∈Ut,e

Nt,e,ae
at ← at ∈ A0 : bt,e = at,e

else
at,i ← argmax

ai∈Ai

tvt,i,ai −Nt,i,ai
at ← (at,i)i∈[N ]

end if
t← t+ 1
Update (Nt,i)i∈[N ], (Nt,e, θ̂t,e, Ut,e)e∈[ρ],

(vt,i)i∈[N ] ← Solve (3) with θ̂t plugged in
end while
Return âτ ← argmaxa∈A

∑
e∈[ρ] θ̂t,e(ae)

6.1. Parameter estimation

In principle, the estimation of θ would require evaluating an
exponentially large number of components, i.e., θ(a),∀a ∈
A. Instead, by leveraging the factored reward structure, we
can focus on estimating group parameters (θe)e∈[ρ] ∈ RÃ.
We define the estimate at time t, group e, and action ae as:

θ̂t,e,ae =
1

Nt,e,ae

∑
s∈[t]

rs,e1{as,e=ae}.

We then define θ̂t,a =
∑
e∈[ρ] θ̂t,e,ae , for all a ∈ A.

6.2. Sampling Rule

The sampling rule is inspired by the D-tracking rule in
(Garivier & Kaufmann, 2016) and alternates between forced
exploration and tracking steps as described below.

Forced Exploration. During forced exploration steps, we
select arms to ensure convergence of the group parameter
estimates (θ̂t,e)e∈[ρ] as t→∞. Define a set of exploratory
global actions A0 ⊆ A, which is chosen in such a way that
it covers all possible group actions, i.e., A0 is such that
∀e ∈ [ρ],∀ae ∈ Ae,∃b ∈ A0 : be = ae (see App. C for an
algorithm to select A0 efficiently). Further define the set
of under-explored actions at group e and time t as: Ut,e ={
ae ∈ Ae : Nt,e,ae <

√
t/|A0|

}
. At time t, if there is a

group e such that Ut,e ̸= ∅, the algorithm executes a forced
exploration step. In such steps, we first compute the most
under-explored group arm at,e = argminae∈Ut,e

Nt,e,ae
(with ties breaking arbitrarily), and then select an action
from the exploratory action set bt ∈ A0 such that at,e = bt,e
(with ties breaking arbitrarily).
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Tracking. In the tracking phase, at time t, we solve the op-
timization problem (3) with the estimated parameter θ̂t, and
derive the optimal estimated allocations (vt,i)i∈[N ], where
vt,i = (vt,i,ai)ai∈Ai

. Then, the action selected by agent i at
a tracking time step t is:

at,i = argmax
ai∈Ai

tvt,i,ai −Nt,i,ai .

The global action is simply selected as at = (at,i)i∈[N ].
Note that tracking single-agent allocations vt,i,ai rather than
the global allocations wt,a =

∏
i∈[N ] vt,i,ai allows us to

reduce the search space for the tracking action from a com-
binatorial set of actions a ∈ A to local sets ai ∈ Ai, for all
agents i ∈ [N ].

6.3. Stopping Rule

For the stopping rule, we use the classical GLRT as in
previous works (Garivier & Kaufmann, 2016; Wang et al.,
2021). Specifically, the test consists in comparing T MF

θ̂t
to an

exploration threshold β(δ, t) as

τ = inf
{
t ≥ 1 : t ≥ T MF

θ̂t
β(δ, t)

}
. (5)

The conditions that the exploration threshold must satisfy
are the same as Sec. 3.2 of (Wang et al., 2021) (see App.
D for details). An exploration threshold satisfying these
conditions is presented in (Kaufmann & Koolen, 2021).
Unless otherwise mentioned, we will use such a threshold.

6.4. Decision Rule

The decision rule selects the best empirical action:

âτ = argmax
a∈A

∑
e∈[ρ]

θ̂τ,e,ae .

Note that, in principle, computing âτ would require a max
operation over an exponential number of actions a ∈ A.
However, due to the factored structure, we can implement
the decision rule efficiently through VE (Dechter, 1999), an
important sub-routine presented in Alg. 3 and detailed in
the remainder of this section.

Algorithm 3 VE

Input: Elimination order O, factorsR
for i = 1, . . . , N do
l = O(i)
Rl = {re ∈ R : l ∈ SC(re)}
pl(ae\l) = maxal∈Al

∑
re∈Rl

re(al, ae\l)
R ← R∪ {pl(ae\l)} \ Rl

end for
Return

∑
p∈R pO(N)

Variable Elimination. Similarly to FCR, VE follows an
elimination order O, where O(i) is the ith variable to be
eliminated. The algorithm takes as input a set of factorized
reward functionsR = {re}e∈[ρ]. The algorithm proceeds it-
eratively for i = 1, . . . , N , by eliminating variable l = O(i)
in each round. At round l, all the factors in R contain-
ing variable l in their scopes are collected in the set Rl.
Subsequently, the (marginal) best response is computed as
pl(ae\l) = maxal∈Al

∑
re∈Rl

re(al, ae\l), where ae\l cor-
responds to the action ae corresponds to the action ae with
the l-th component removed. The set of factors is then up-
dated asR ← R∪{p(ae\l)}\Rl. At this point, every factor
containing l in its scope is eliminated. At the next iteration,
the algorithm selects the next variable to be eliminated until
i = N . Finally, it returns the optimal value

∑
p∈R pO(N)

.

Note that VE, applied toR = {θ̂τ,e}e∈[ρ] returns the highest
global estimated reward θ̂τ,âτ . A backward pass of the VE
algorithm allows to recover the optimal arm âτ . The time
and memory complexity of VE is O(NKAO ) (see App. E).

6.5. Sample complexity guarantees

We establish that the MF-TaS algorithm achieves a sam-
ple complexity, matching the approximated lower bound
T MF
θ kl(1 − δ, δ) asymptotically (as δ → 0). The proof is

given in App. D.

Theorem 6.1. MF-TaS is δ-PAC, and its sample complex-
ity satisfies, ∀θ, Pθ

(
lim sup
δ→0

τ

log( 1
δ )
≤ T MF

θ

)
= 1, and

lim sup
δ→0

Eθ[τ ]

log( 1
δ )
≤ T MF

θ .

7. Experiments
In this section, we assess the performance of MF-TaS. We
propose two sets of experiments through numerical exper-
iments. We apply MF-TaS to synthetic MAMABs with
different levels of complexity in §7.1, and to a timely in-
dustrial use-case from the radio communication domain:
antenna tilt optimization, in §7.2. Additional experiments
are reported in App. J, and the code is available at this link.

7.1. Synthetic Experiments

Problem instance. We consider a ring factor graph, de-
picted in Fig. 2, in which the reward is described as
r(a) =

∑
i∈[N−1] ri(ai, ai+1) + rN (a1, aN ), for ai ∈ [K].

The local expected rewards are selected at random as
θi(ai, ai+i) ∼ U(0,M), for all i ∈ [N ] and for some
M > 0. We propose two sets of synthetic experiments to
test different levels of complexity: (i) we vary the number
of agents N ∈ {3, 5, 10} while keeping a fixed K = 10 and
δ = 0.01, and (ii) we vary the confidence δ ∈ {10−i}i∈[5],
while keeping K = 10 and N = 3 fixed.
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Table 1. Experimental results for the synthetic experiments with varying N (with fixed K = 10, δ = 0.01).
Problem instance Sample complexity Computational complexity [s]

N A Ã T MF
θ log

(
1
δ

)
4Ã

∆2
min

log
(
1
δ

)
Oracle MF-TaS Random T MF

θ T ⋆
θ

3 103 300 158.3 209.0 223 299.6± 107.5 644.7± 140.2 0.09± 0.03 6.87± 1.12
5 105 500 270.5 358.0 385 356.8± 150.0 708.3± 132.9 0.54± 0.13 2375.82± 5.32
10 1010 1000 305.9 405.0 533 411.1± 193.5 800.4± 177.9 0.81± 0.31 > 10800 (3 h)

Implementation details. We execute our experiments
for Nsim = 100 runs. Following previous works (Kauf-
mann & Koolen, 2021; Wang et al., 2021), the explo-
ration threshold is selected as β(δ, t) = log(log(t) + 1)/δ).
The elimination order for both VE and FCR is chosen as
O = {N,N − 1, . . . , 1}. We implement the solver for the
lower bound optimization problems using CVXPY (Dia-
mond & Boyd, 2016), with a MOSEK solver. The experi-
ments run on a MacBook Pro 2.6 GHz 6-Core Intel Core i7
processor. We use this setup in all of our experiments.

Figure 2. Ring factor graph used in the synthetic experiments.

Results. The results are presented in Tab. 1 for the exper-
iments with varying N , and in Tab. 2 for the experiments
with varying δ, with the sample complexity box-plots re-
ported in Fig. 3. The sample complexity corresponds to the
stopping time averaged over the various runs. The perfor-
mance of MF-TaS is compared to that of an oracle algorithm
aware of the problem parameters θ (obtained by replacing θ̂t
by θ in MF-TaS), and to a random strategy selecting actions
uniformly at random. The computational complexity is the
average running time (in seconds) to solve one instance of
the lower bound optimization problem for T ⋆θ and T MF

θ .

Table 2. Experimental results for the synthetic experiments with
varying δ (with fixed K = 10, N = 3).

Problem instance Sample complexity
δ T MF

θ log
(
1
δ

)
Oracle MF-TaS Random

10−1 79.1 154 223.5± 82.4 635.5± 135.5
10−2 158.3 223 317.5± 133.2 649.4± 142.6
10−3 237.4 303 397.6± 129.0 668.2± 131.5
10−4 316.5 384 493.9± 153.8 695.5± 141.4
10−5 395.7 464 535.4± 154.2 793.4± 190.8

We note that MF-TaS exhibits a sample complexity close
to the proposed MF approximation of the lower bound
T MF
θ log(1/δ) (they differ from a small multiplicative con-

stant) for all values of N . We also observe that, as expected,
MF-TaS outperforms the random sampling strategy and is
competitive with the oracle strategy. In terms of computa-
tional complexity, the average running time to solve T MF

θ is
significantly lower than that to solve T ⋆θ , which becomes
quickly untractable even for a small number of agents.

Figure 3. Sample complexity boxplots for the experiments with
varying δ (dashed line represents the oracle performance).

7.2. Antenna Tilt Optimization

Next, we test MF-TaS on the antenna tilt optimization prob-
lem. The task consists in controlling the vertical antenna tilt
at different network base stations to optimize the network
throughput. In the following, we detail the network model,
our simulation setup, and present our experimental results.
Additional details are presented in App. I.

Network Model. We consider a sectorized mobile network
consisting of a set of sectors S = [N ]. The set of sectors
corresponds to the set of agents in our M-BAI model. Since
each sector is associated to a unique antenna, we will use
the terms sector and antenna interchangeably. We assume
that each sector i ∈ S serves (on the downlink) a fixed set
of Users Equipments (UEs) Ui (each UE is associated with
a unique antenna, that from which it receives the strongest
signal). The set of UEs in the network is U = ∪i∈SUi.

Factor graph. We model the observed reward in the net-
work as a factor graph with N = |S| agent nodes and
ρ = |S| factor nodes. Each sector is associated with a
unique factor, which models the rewards observed in that
sector. We build the factor graph based on the interference
pattern of the antennas, i.e., antennas that can interfere with
each other are connected to common factors. Fig. 4 shows
an example of such a graph on a network with |S| = 15.

7
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Table 3. Experimental results for the antenna tilt optimization experiments.
Problem instance Sample complexity Computational complexity [s]

N A Ã T MF
θ log

(
1
δ

)
Oracle MF-TaS Random T MF

θ T ⋆
θ

6 2.4 · 102 324 129.2 203 286.4 341.1 0.93± 0.27 4.34± 0.92
12 5.9 · 104 1124 472.1 524 623.5 813.9 1.32± 0.62 2778.53± 5.32
15 1.4 · 107 1799 568.9 729 913.7 1262.1 3.24± 0.91 > 10800 (3 h)

Figure 4. Network factor graph.

Actions. The action at,i represents the antenna tilt for sector
i ∈ S and at time t. For simplicity, it is chosen from
a discrete set of K tilts, i.e., at,i ∈ {α1, . . . , αK}. The
antenna tilt for a group of sectors e is denoted by ae.

Rewards. Rewards are based on the throughput of UEs
in sector i, which depends on the actions of a group of
agents ae: re(ae) =

∑
u∈Ui

Ti,u(ae), where Ti,u is the
throughput of an UE u associated to sector i. Hence, the
global reward for a tilt configuration a ∈ A is r(a) =∑
i∈[N ]

∑
u∈Ui

Ti,u(ae). The throughput Ti,u depends on
channel conditions (or fading) between the base station an-
tenna and the user. These conditions rapidly evolve over
time around their mean. The fadings between pairs of (an-
tenna, user) are typically stochastically independent across
users and antennas (Tse & Viswanath, 2009). More pre-
cisely, since the sets of (Ui)i∈[N ] form a partition, they do
not overlap, and the random variables re(ae) are indepen-
dent across groups and we assume that can be modeled as
independent Gaussian r.v.

Simulator. We run our experiments in a proprietary mobile
network simulator in an urban environment. The simulation
parameters used in our experiments are reported in Tab. 4.
Based on the user positions and network parameters, the
simulator computes the path loss in the network environment
using a BEZT propagation model (Rappaport, 2001) and
returns the throughput for each sector by conducting user
association and resource allocation in a full-buffer traffic
demand scenario. Given a user configuration, the goal is to
identify the best global tilt configuration in the network, i.e.,
the one which maximizes the overall network throughput.

Table 4. Simulator parameters.

PARAMETER SYMBOL VALUE

Number of sectors |S| {6, 12, 15}
Number of UEs |U| 1000
Antenna tilt values Ai {3◦, 6◦, 12◦}
Carrier frequency f 1800 MHz
Antenna height h 32 m
Network size M 2 km2

Results. We test our algorithm with the same experimental
conditions in §7.1. The sample complexity and the com-
putational complexity of MF-TaS are presented in Tab. 3.
The results are in line with the experimental findings of the
previous section. However, due to the higher degree of the
factor graph, the MF-TaS running time is higher.

8. Conclusions
In this paper, we investigated the M-BAI problem: we de-
rived a sample complexity lower bound, proposed a Mean
Field approximation of it, and devised MF-TaS, an algorithm
achieving this limit in a computationally efficient manner.
MF-TaS is statistically and computationally efficient on both
synthetic examples and the antenna tilt optimization prob-
lem. The algorithm runs fast and identifies the best global
action using a limited number of samples, even for scenarios
with a very large number of actions.

Interesting future research directions include (i) the analysis
of the sample complexity lower bound and its Mean Field
approximation depending on the factor graph topology, (ii)
extending the analysis towards tighter lower bound approx-
imations, (iii) proposing efficient distributed implementa-
tions of MF-TaS with a specific focus on its communication
complexity, and (iv) investigating representation learning
problems in M-BAI where the underlying factor graph is
initially unknown and needs to be learned.
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A. Lower Bound Proofs
In this appendix, we prove Theorem 4.1 (in App. A.1) and Lemma 5.1 (in App. A.2). Finally, we state a result bounding the
approximation ratio T MF

θ /T ⋆θ in App. A.3.

A.1. Proof of Theorem 4.1

Proof. The proof leverages the classical change-of-measure argument (Lai & Robbins, 1985) and the transportation lemma
from Lemma 19 in (Kaufmann et al., 2016) to accommodate the MAMAB setting. We divide the proof into 5 steps. The first
four steps are standard, and consist in relating the log-likelihood ratio of the observations under two models to the expected
sample complexity. They are given for completeness. The last step is specific to MAMABs and deals with optimizing the
resulting lower bounds.

1) The log-likelihood ratio. LetM = {θ ∈ RA : ∃(θe(ae))e∈[ρ],ae∈A : ∀a ∈ A, θ(a) =
∑
e∈[ρ] θe(ae), a

⋆
θ is unique}

denote the set of possible parameters describing a MAMAB. Let θ, µ ∈M. For any (global) action a ∈ A denote by fθa
the density (w.r.t. the Lebesgue measure) of the reward distribution of action a. For any (group) action ae ∈ Ae, denote
by νθeae = N (θe(ae), 1) the distribution of the corresponding reward, and by fθeae its density. For the parameters θ, µ, the
log-likelihood ratio of the observations under a M-BAI algorithm up to round T can be written as

Lθ,µT (a1,[ρ], r1,[ρ], . . . , aT,[ρ], rT,[ρ]) = log

(
fθ(a1,[ρ], r1,[ρ], . . . , aT,[ρ], rT,[ρ])

fµ(a1,[ρ], r1,[ρ], . . . , aT,[ρ], rT,[ρ])

)

=
∑
t∈[T ]

log

∏
e∈[ρ]

fθe(rt,e|at,e)
fµe(rt,e|at,e)


=
∑
t∈[T ]

∑
e∈[ρ]

log

(
fθe(rt,e|at,e)
fµe(rt,e|at,e)

)

=
∑
t∈[T ]

∑
e∈[ρ]

∑
ae∈Ae

1{at,e=ae} log

(
fθeae (rt,e)

fµe
ae (rt,e)

)
.

(6)

2) The change-of-measure argument. Define the set of confusing parameters as B(θ) =
{
µ ∈M : a⋆µ ̸= a⋆θ

}
, and the event

E = {âτ = a⋆θ} . Under any δ-PAC algorithm, it holds that

∀θ ∈M, Pθ(E) ≥ 1− δ, and ∀µ ∈ B(θ),Pµ(E) ≤ δ.

Therefore, by applying Lemma 19 in (Kaufmann et al., 2016), we obtain

∀µ ∈ B(θ), E
[
Lθ,µτ

]
≥ kl (1− δ, δ) . (7)

3) The expected log-likelihood ratio. We apply (6) to T = τ , the stopping time. Taking the expectation of (6), we get

Eθ
[
Lθ,µτ

]
= Eθ

 ∞∑
t=1

1{τ>t−1}
∑
e∈[ρ]

∑
ae∈Ae

1{at,e=ae} log

(
fθeae (rt,e)

fµe
ae (rt,e)

)
= Eθ

 ∞∑
t=1

Eθ

∑
e∈[ρ]

∑
ae∈Ae

1{τ>t−1}1{at,e=ae} log

(
fθeae (rt,e)

fµe
ae (rt,e)

)∣∣∣∣Ft−1


= Eθ

 ∞∑
t=1

∑
e∈[ρ]

∑
ae∈Ae

1{τ>t−1}1{at,e=ae}Eθ

[
log

(
fθeae (rt,e)

fµe
ae (rt,e)

)∣∣∣∣Ft−1

]
=
∑
e∈[ρ]

∑
ae∈Ae

Eθ [Nτ,e,ae ] KL(νθeae , ν
µe
ae ),
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where KL(ν, ν′) is the KL divergence for distributions ν and ν′. Now, since the distributions are Gaussians, we get:

Eθ
[
Lθ,µτ

]
=
∑
e∈[ρ]

∑
ae∈Ae

Eθ [Nτ,e,ae ]
(θe(ae)− µe(ae))2

2
. (8)

4) Optimizing the lower bound. By combining (7) and (8), we obtain

inf
µ∈B(θ)

∑
e∈[ρ]

∑
ae∈Ae

Eθ [Nτ,e,ae ]
(θe(ae)− µe(ae))2

2
≥ kl(1− δ, δ). (9)

Dividing both sides of (9) by Eθ[τ ], defining the group allocations w̃e,ae = Eθ [Nτ,e,ae ] /Eθ[τ ] for all e ∈ [ρ], ae ∈ Ae, and
optimizing over the set of possible allocations w̃ ∈ Λ̃, we get:

Eθ[τ ] ≥
2kl(1− δ, δ)

supw̃∈Λ̃ infµ∈B(θ)

∑
e∈[ρ]

∑
ae∈Ae

w̃e,ae (θe(ae)− µe(ae))
2 . (10)

5) Solving the optimization problem. Consider the optimization problem at the denominator of (10):

inf
µ∈B(θ)

∑
e∈[ρ]

∑
ae∈Ae

w̃e,ae
(θe(ae)− µe(ae))2

2
. (11)

Note that the set of confusing parameters defined before can be expressed as:

B(θ) =
{
µ ∈M : a⋆µ ̸= a⋆θ

}
=
⋃
a̸=a⋆θ

{µ ∈M : µ(a⋆θ) ≤ µ(a)}

=
⋃
a̸=a⋆θ

(µe)e∈[ρ] :
∑
e∈[ρ]

µe(a
⋆
e) ≤

∑
e∈[ρ]

µe(ae)

 .

Then, using this decomposition, (11) can be rewritten as:

min
a̸=a⋆

inf
(µe)e∈[ρ]

∑
e∈[ρ]

∑
ae∈Ae

w̃e,ae
(θe(ae)− µe(ae))2

2

subject to
∑
e∈[ρ]

(µe(a
⋆
e)− µe(ae)) ≤ 0.

(12)

Now, (12) is a convex program and it can be easily verified that Slater’s conditions hold (Boyd & Vandenberghe, 2004). The
Lagrangian associated to (12) is:

L((µe)e∈[ρ], λ) =
∑
e∈[ρ]

∑
ae∈Ae

w̃e,ae
(θe(ae)− µe(ae))2

2
− λ

∑
e∈[ρ]

(µe(a
⋆
e)− µe(ae))1{ae ̸=a⋆e}

 ,

where λ ∈ R is the Lagrange multiplier associated with the inequality constraint. The optimality conditions impose:
w̃e,ae(µe(ae)− θe(ae)) + λ1{ae ̸=a⋆e} = 0, for e ∈ [ρ]

w̃e,a⋆e (µe(a
⋆
e)− θe(a⋆e))− λ1{ae ̸=a⋆e} = 0, for e ∈ [ρ]

λ
(∑

e∈[ρ] (µe(a
⋆
e)− µe(ae))1{ae ̸=a⋆e}

)
= 0

λ ≥ 0

. (13)

It can be directly verified that the solution of the set of equations in (13) is attained at:

µe(ae) = θe(ae)−
λ

w̃e,ae
, µe(a

⋆
e) = θe(a

⋆
e) +

λ

w̃e,a⋆e
, λ =

∑
e∈[ρ](θe(a

⋆
e)− θe(ae))∑

e∈[ρ]

(
1

w̃e,ae
+ 1

w̃e,a⋆
e

)
1{ae ̸=a⋆e}

> 0.

Hence, by substitution of (µe(ae))e∈[ρ],ae∈Ae
into the objective of (12), and by (10), we get the result.
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A.2. Proof of Lemma 5.1

Proof. We first show that ∀θ ∈M, T ⋆θ ≤ T MF
θ . This simply follows by noting that 1/∆(a) ≤ 1/∆min, and ΛMF ⊆ Λ, and

hence Λ̃MF ⊆ Λ̃. Combining these facts, we can write:

T ⋆θ = inf
w̃∈Λ̃

max
a̸=a⋆

∑
e∈[ρ]:ae ̸=a⋆e

(
w̃−1
e,a⋆e

+ w̃−1
e,ae

)
∆(a)2

≤ inf
w̃∈Λ̃

max
a̸=a⋆

∑
e∈[ρ]:ae ̸=a⋆e

(
w̃−1
e,a⋆e

+ w̃−1
e,ae

)
∆2

min

≤ inf
w̃∈Λ̃MF

max
a ̸=a⋆

∑
e∈[ρ]:ae ̸=a⋆e

(
w̃−1
e,a⋆e

+ w̃−1
e,ae

)
∆2

min

= T MF
θ

Next, we show that (2) and (3) are equivalent. First, recall the expression of the MF marginal polytope:

Λ̃MF =

{
w̃ ∈ RÃ : ∃w ∈ ΛMF ,∀e ∈ [ρ], ae ∈ Ae, w̃e,ae =

∑
b∈A:be=ae

wb,

}
.

Note that, for any w̃ ∈ Λ̃MF , we must have that:

w̃e,ae =
∑

b∈A:be=ae

wb =
∑

b∈A:be=ae

∏
i∈[N ]

vi,bi =
∏
i∈Se

vi,ai
∑

b∈A:be=ae

∏
j∈[N ]\Se

wj,bj =
∏
i∈Se

vi,ai . (14)

Hence, by substituting (14) into (2), and noticing that T MF
θ involves only local allocation variables (vi)i∈[N ], we have that:

T MF
θ = inf

w̃∈Λ̃MF

max
a ̸=a⋆

∑
e:ae ̸=a⋆e

(
w̃−1
e,a⋆e

+ w̃−1
e,ae

)
∆2

min

= inf
(vi∈Λi)i∈[N]

max
a̸=a⋆

∑
e:ae ̸=a⋆e

(∏
i∈Se

v−1
i,ai

+
∏
i∈Se

v−1
i,a⋆i

)
∆2

min

.

Note that, if (v⋆i )i∈[N ] is an optimal solution to T MF
θ , we can express such solution it in terms of the optimal group allocations

as in (14), i.e., w̃⋆ =
∏
i∈Se

v⋆i,ai .

Finally, we show that, ∀θ ∈ M, T MF
θ ≤

4Ã
∆2

min
. The bound is proved using techniques from combinatorial bandits with

semi-bandit feedback. This class of bandit problems encompasses MAMAB as a particular case in (we provide clarification
for this connection in App. G). Specifically, the proof relies on two known results from (Wagenmaker et al., 2020) that
we report below. Lemma A.1 is a reformulation of the MAMAB sample complexity lower bound in the combinatorial
semi-bandit feedback setting, while Lemma A.2 is an adaptation of the celebrated Kiefer-Wolfowitz Equivalence Theorem
(Kiefer & Wolfowitz, 1960) for the case of semi-bandit feedback problems.

Lemma A.1 ((Wagenmaker et al., 2020), Theorem 6). For any θ ∈M, we have that

T ⋆θ = inf
w∈Λ

max
a̸=a⋆

∥ϕ(a⋆)− ϕ(a)∥2Asemi(w)−1

(θ̃⊤(ϕ(a⋆)− ϕ(a))2
, (15)

where

• θ̃ = (θe(ae))e∈[ρ],ae∈Ae

• ϕ(a) ∈ {0, 1}Ã, is the binary vector containing ϕ(a) = [ϕe(be)]e∈[ρ],be∈Ae
such that ϕe(be) = 1{ae=be},

• Asemi(w) = diag(
∑
a∈A waϕ(a)ϕ(a)

⊤), where diag(X) is the operator which sets all elements in a matrix X not on
the diagonal to 0

13
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Lemma A.2 ((Wagenmaker et al., 2020), Proposition 9). infw∈Λ maxa∈A ∥ϕ(a)∥2Asemi(w)−1 = Ã.

By Lemma A.1, we can equivalently characterize the MF characteristic time as:

T MF
θ = inf

w∈ΛMF
max
a ̸=a⋆

∥ϕ(a⋆)− ϕ(a)∥2Asemi(w)−1

(θ̃⊤(ϕ(a⋆)− ϕ(a))2
.

To verify this, notice that θ̃⊤(ϕ(a⋆)− ϕ(a)) =
∑
e∈[ρ](θe(a

⋆
e)− θe(ae)). Hence, to show the equivalence, it is sufficient to

show that
∥ϕ(a⋆)− ϕ(a)∥2Asemi(w)−1 =

∑
e∈[ρ]:ae ̸=a⋆e

1/w̃e,ae + 1/w̃e,a⋆e .

By definition of (ϕ(a))a∈A, and ∀w̃ ∈ Λ̃, we have that ∥ϕ(a⋆)− ϕ(a)∥2Asemi(w)−1 = ∥ϕ(a⋆)− ϕ(a)∥2M(w̃)−1 , where

M(w̃) ∈ RÃ×Ã is the diagonal matrix containing the vector w̃ on its diagonal. Hence, we get:

∥ϕ(a⋆)− ϕ(a)∥2Asemi(w)−1 = (ϕ(a⋆)− ϕ(a))⊤
(
diag

(∑
a∈A

waϕ(a)ϕ(a)
⊤

))−1

(ϕ(a⋆)− ϕ(a))

= (ϕ(a⋆)− ϕ(a))⊤M(w̃)−1(ϕ(a⋆)− ϕ(a))

=
∑

e∈[ρ]:ae ̸=a⋆e

1/w̃e,ae + 1/w̃e,a⋆e .

Then, we can upper bound the characteristic time as:

T MF
θ = T MF

θ̃,semi
=

1

∆2
min

inf
w∈ΛMF

max
a̸=a⋆

∥ϕ(a⋆)− ϕ(a)∥2Asemi(w)−1

(i)

≤ 4

∆2
min

inf
w∈ΛMF

max
a∈A
∥ϕ(a)∥2Asemi(w)−1

(ii)
=

4Ã

∆2
min

In the above steps, (i) follows by an application of the triangular inequality. Note that, in general, showing (ii) is a
non-trivial step due to the non-convexity of the MF approximation. By Lemma A.2, we have that:

inf
w∈Λ

max
a∈A
∥ϕ(a)∥2Asemi(w)−1 = Ã,

and it can be directly verified that the optimal value is attained at the point w∗ = (1/A, . . . , 1/A) ∈ Λ. Now, since ΛMF ⊆ Λ,
in order to show (ii), it suffices to verify that w∗ ∈ ΛMF . Specifically, we need to show that there exists a set of local
allocations (v∗i )i∈[N ], where v∗i ∈ Λi, for all i ∈ [N ], such that w∗

a =
∏
i∈[N ] v

∗
i,ai

, for all a ∈ A. This is easily verified by
the vector of marginal allocations v∗i = (1/K, . . . , 1/K).

A.3. Quantifying the approximation ratio

Lemma A.3. For any θ, we have that 1 ≤ TMF
θ

T⋆
θ
≤ Ã/√ρ.

Proof. The lower bound TMF
θ

T⋆
θ
≥ 1 is obvious from Lemma 5.1. For the upper bound, we have

T MF
θ

T ⋆θ

(i)

≤ 2Ã

∆2
min

1

T ⋆θ

(ii)

≤ 2Ã

∆2
min

√
ρ∆2

min

2ρ
=

Ã
√
ρ
,

where (i) follows from Lemma 5.1, and (ii) follows directly from an application of Lemma 2 of (Soare et al., 2014).
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B. Properties of TMF
θ

In this appendix, we provide important properties of T MF
θ . We first establish, in App. B.1, that the optimization leading to

T MF
θ is equivalent to a non-linear convex program, which ensures that it can be computed efficiently. We then show, in App.

B.2, the continuity of functions involved in the definition of T MF
θ . These continuity arguments will be needed in the sample

complexity analysis for our algorithm.

B.1. An equivalent convex program

We establish in Proposition B.1 below that the optimization problem defining the MF characteristic time T MF
θ (2) is equivalent

to a convex program. Note that this is a non-trivial result and does not hold in general. Indeed, it is known that in general,
MF approximations lead to non-convex optimization problems (see e.g., (Wainwright & Jordan, 2008)) in App. D.

Proposition B.1. The optimization problem (2) is equivalent to a (non-linear) convex program.

The proof relies on the application of Lemma B.2 given below. Specifically, in Lemma B.2, we show that (2) can be
reformulated as a GP in standard form. The proof of the Lemma relies on the fact that relaxing the constraints that are not in
standard GP form does not affect optimality, while leading to a GP in standard form. Then, in Proposition B.1, we show that
the GP (3) can be reformulated as a non-linear convex optimization program by a change of variables.

Lemma B.2. The optimization problem (2) is equivalent to a geometric program.

Proof. Recall that, for a positive variable x ∈ RI>0, a GP in standard form is described as (Boyd et al., 2007):

infx f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p
(16)

where f0, . . . , fm are posynomials and h1, . . . , hp are monomials. Recall that for x ∈ RI>0, α ∈ RI , and γ > 0, a
monomial is a function of the type h(x) = γ

∏
i∈[I] x

αi
i and a posynomial is a positive sum of monomials: f(x) =∑

j∈[J] ξj
∏
i∈[I] x

βi,j

i , for some β ∈ RI×J and ξ ∈ RJ>0.

By Lemma 5.1, and using an epigraph representation (Boyd & Vandenberghe, 2004), we can rewrite the optimization
problem (2) describing T MF

θ , for a positive variable z > 0 and vi ∈ RK>0, for all i ∈ [N ], as:

inf
z,(vi)i∈[N]

z (17a)

subject to
1

∆2
min

∑
e∈[ρ]:ae ̸=a⋆e

(∏
i∈Se

v−1
i,ai

z−1 +
∏
i∈Se

v−1
i,a⋆i

z−1

)
≤ 1,∀a ̸= a⋆ (17b)

∑
ai∈Ai

vi,ai = 1,∀i ∈ [N ]. (17c)

Note that, at this stage, (17) cannot be described as a GP in standard form. Indeed, although the objective (17a) is a
monomial and the set of inequality constraints (17b) are posynomials, the set of constraints (17c) are posynomial equality
constraints, which do not comply with standard GP requirements. The problem (17) is in fact generally known as a signomial
program, and is hard to solve in general (Boyd et al., 2007). The rest of the proof will be aimed at showing that (17) can be
transformed into an equivalent GP.

In order to show that T MF
θ can be actually casted as a GP, we can apply the method described in (Boyd et al., 2007) to relax

the set of constraints (17c). Define the relaxed GP as:

15
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inf
z,(vi)i∈[N]

z

subject to
1

∆2
min

∑
e∈[ρ]:ae ̸=a⋆e

(∏
i∈Se

v−1
i,ai

z−1 +
∏
i∈Se

v−1
i,a⋆i

z−1

)
≤ 1,∀a ̸= a⋆

∑
ai∈Ai

vi,ai ≤ 1,∀i ∈ [N ].

(18)

As described in (Boyd et al., 2007) (Sec. 7.4), we have that (18) and (17) are equivalent if and only if we have: for all
i ∈ [N ], there exists a k ∈ [N ], such that:

(a) the variable vi,ak does not appear in any of the monomial equality constraints;

(b) the objective and the inequality constraint functions are all monotone decreasing in vi,ak , i.e., if we increase vi,ak
(holding all other variables constant), the inequality constraint functions decrease, or remain constant;

(c) the posynomial function in the equality constraints are monotone strictly increasing in vi,ak , i.e., if we increase vi,ak
(holding all other variables constant), the posynomial function increases.

In our setting, these assumptions hold naturally: (a) is satisfied since the original optimization problem does not involve any
monomial equality constraints; (b) holds since the functions on the LHS of (17b) are monotone decreasing in vi,ak , ∀a ∈ A;
(c) holds since the function on the LHS of (17c) are monotone strictly increasing in vi,ak , ∀i ∈ [N ].

Proof of Proposition B.1. By Lemma B.2, the optimization problem leading to T MF
θ is equivalent to (18). Let yz = log(z),

yvi,ai
= log(vi,ai), for all i ∈ [N ], ai ∈ Ai. By applying this change of variables, we can rewrite (18) as:

inf
yz∈R>0,(yvi∈RK

>0)i∈[N]

eyz

subject to
1

∆2
min

∑
e:ae ̸=a⋆e

exp

(
−
∑
i∈Se

yvi,ai
yz

)
+ exp

(
−
∑
i∈Se

yvi,a⋆
i
yz

)
≤ 1,∀a ̸= a⋆,

∑
ai∈Ai

e
yvi,ai ≤ 1,∀i ∈ [N ].

(19)

By the monotonicity of the logarithm function, we have that (19) is also equivalent to:

inf
yz∈R>0,(yvi∈RK

>0)i∈[N]

yz

subject to log

 1

∆2
min

∑
e:ae ̸=a⋆e

exp

(
−
∑
i∈Se

yvi,ai
yz

)
+ exp

(
−
∑
i∈Se

yvi,a⋆
i
yz

) ≤ 0,∀a ̸= a⋆,

log

( ∑
ai∈Ai

exp
(
yi,wai

))
≤ 0,∀i ∈ [N ].

(20)

It follows directly from the convexity of the Log-Sum-Exp function that (20) is a convex program.
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B.2. Continuity arguments

This section presents continuity arguments on functions related to the optimization problem (2). Define, for θ ∈ M and
w̃ ∈ Λ̃MF , the function

ψ(θ, w̃) = min
a̸=a⋆

∆2
min∑

e∈[ρ]:ae ̸=a⋆e

(
w̃−1
e,ae + w̃−1

e,a⋆e

) .
Further define ψ⋆(θ) = supw̃∈Λ̃MF

ψ(θ, w̃), and w̃⋆ = argmaxw̃ ψ(θ, w̃). In the following, we shall assume w.l.o.g. that

w̃⋆ is unique, i.e., the set of optimal allocations is a singleton: C⋆(θ) = {w̃ ∈ Λ̃MF : ψ(θ, w̃) = (T MF
θ )−1} = {w̃⋆}. This

may be proved using similar techniques as those of Theorem 5 in (Garivier & Kaufmann, 2016). Note that if this was not the
case, one may reason in terms of the objective function as, e.g., in (Jedra & Proutiere, 2020) for linear bandits.

Lemma B.3. The function ψ(θ, w̃) is continuous in both w̃ and θ, and ψ⋆(θ) is continuous in θ. Furthermore there exists a
w̃⋆ ∈ Λ̃MF such that w̃⋆ ∈ argmaxw̃∈Λ̃ ψ(θ, w̃).

Proof. The proof of Lemma B.3 follows from standard continuity arguments and is similar to that of the related results in
(Jedra & Proutiere, 2020).

First, we prove that ψ(θ, w̃) is continuous in both θ and w̃. Let (θt, w̃t)t≥1 be a sequence taking values inM× Λ̃MF , and
converging to (θ, w̃). Recall the definition of the set of confusing parameters with respect to θ ∈M,

B(θ) = {µ ∈M : ∃a ̸= a⋆θ : µ(a) > µ(a⋆θ)} .

and define

f(θ, µ, w̃) =
∑
e∈[ρ]

∑
ae∈Ae

w̃e,ae
(θe(ae)− µe(ae))2

2
.

Since (θt, w̃t) converges to (θ, w̃), and a⋆θ is unique, there exists ε > 0 and a t1 ≥ 1 such that ∀t ≥ t1, ∥(θ, w̃⋆)−(θt, w̃t)∥ <
ε and such thatB(θ) = B(θt). Further note that, since f(θ, µ, w̃) is a polynomial in θ, µ, w̃, is continuous. As a consequence,
there exists t2 ≥ 1 : ∀t ≥ t2, such that for all µ ∈ M, we have |f(θt, µ, w̃t) − f(θ, µ, w̃)| ≤ εf(θ, µ, w̃). Thus, for all
t ≥ max{t1, t2}, we get

|ψ(θ, w̃)− ψ(θt, w̃t)| =
∣∣∣∣ min
µ∈B(θ)

f(θ, µ, w̃)− min
µ∈B(θ)

f(θt, µ, w̃t)

∣∣∣∣
≤ ε |f(θ, µ, w̃)| ≤ ε|ψ(θ, w̃)|.

The continuity of ψ⋆(θ) and existence of a solution w̃⋆ follows from Berge’s maximum theorem (Berge, 1963).
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C. Sampling Rule Analysis
In this appendix, we present various results on the sampling rule of MF-TaS. We divide the analysis for the forced exploration
(in App. C.1) and tracking (in App. C.2). Recall that, the forced exploration relies on the set A0, as described in §6.2. This
set may be difficult to construct due to the combinatorial nature of the action set A. To address this issue, we provide, in
App. C.3, a simple and efficient algorithm to build A0.

C.1. Forced Exploration

In this section, we state and prove Lemma C.1. It shows that each group arm is sampled sufficiently often. This, in turn,
ensures that the estimators of the group means θ̂t,e converge to θe, for all groups e ∈ [ρ], and hence that θ̂t → θ a.s..

Lemma C.1. The sampling rule of MF-TaS ensures that exists a finite t′ > 0, such that ∀t ≥ t′ and ∀e ∈ [ρ], ae ∈ Ae, we
have that

Nt,e,ae ≥

√
t− |A0| − 1

|A0|
.

Proof. Recall the expression for the set of under-explored actions at group e and time t:

Ut,e =

{
ae ∈ Ae : Nt,e,ae <

√
t

|A0|

}
.

The proof is inspired by that of Lemma 5 in (Jedra & Proutiere, 2020). The main idea is to show that, if at some time t0 + 1
the condition ∃e ∈ [ρ], Ut0+1,e ̸= ∅ is violated, then the number of rounds needed to satisfy the condition again cannot
exceed |A0| rounds. This follows by the definition of A0 and of the forced exploration rule.

By construction, we have that
inf{t ≥ 1 : ∀e ∈ [ρ], Ut,e = ∅} ≜ T0 ≤ |A0|.

Now, if there exists t0 ≥ T0 such that ∀e ∈ [ρ], Ut0,e = ∅ and ∃e ∈ [ρ] such that Ut0+1,e ̸= ∅, we may define

t1 = inf{t > t0 : ∀e ∈ [ρ], Ut,e = ∅}.

Observe that for all t0 ≤ t ≤ t1, and for all e ∈ [ρ], we have,

Nt,e,ae ≥ Nt0,e,ae ≥
√
t0/|A0|.

Furthermore, if t1 ≥ t0 + |A0|+ 1 then we have, ∀e ∈ [ρ],

Nt1,e,ae ≥ Nt0+|A0|+1,e,ae ≥ Nt0,e,ae + 1 ≥
√
t0/|A0|+ 1.

However, we have:

t0 ≥
1

4|A0|
⇒

√
t0
|A0|

+ 1 ≥

√
t0 + |A0|+ 1

|A0|
.

Therefore if t0 ≥ 1
4|A0| then t1 ≤ t0 + |A0|+ 1. In other words, we have shown that for all t ≥ 1

4|A0| + |A0|+ 1, we have
for all e ∈ [ρ], for all ae ∈ Ae

Nt,e,ae ≥

√
t− |A0| − 1

|A0|
.
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C.2. Tracking

In this section we state and prove Lemma C.2 and Lemma C.3. Lemma C.2 shows that MF-TaS can correctly track a
changing sequence that concentrates. Lemma C.3 (and Corollary C.4) shows that tracking local allocations ensures that
global (and group) allocations are correctly tracked. Finally, in Proposition C.5, we show that MF-TaS ensures that the
empirical allocations converge to the optimal allocation.

Lemma C.2. Define, for all i ∈ [N ], the sequence (vt,i)t≥1, where vt,i = (vt,i,ai)ai∈Ai
, taking values in Λi used in the

tracking rule of MF-TaS. Let, for all i ∈ [N ], v⋆i ∈ Λi. Then, for all ε > 0, and for all t0, there exists tε > t0 such that

sup
t≥t0

max
i∈[N ],ai∈Ai

∣∣vt,i,ai − v⋆i,ai∣∣ ≤ ε⇒ sup
t≥tε

max
i∈[N ],ai∈Ai

∣∣∣∣Nt,i,ait
− v⋆i,ai

∣∣∣∣ ≤ 3(K − 1)ε.

Proof. The proof is quite similar to the one of Lemma 7 in (Garivier & Kaufmann, 2016) for D-tracking. We adapt the proof
to allow our sampling rule to track local allocations for each agent, as opposed to tracking arm allocations as in (Garivier &
Kaufmann, 2016). Also, there is an asymmetry in the forced exploration that slightly complicates the analysis.

For all i ∈ [N ], ai ∈ Ai, define Xt,i,ai = Nt,i,ai − tv⋆i,ai , and note that ∀i ∈ [N ], we have:

∑
ai∈Ai

Xt,i,ai =
∑
ai∈Ai

(Nt,i,ai − tv⋆i,ai) = t− t

( ∑
ai∈Ai

v⋆i,ai

)
= 0. (21)

Furthermore, we have that maxi∈[N ],ai∈Ai
|Xt,i,ai | ≤ N(K − 1)maxi∈[N ],ai∈Ai

Xt,i,ai . To see this, note that for every
i ∈ [N ], ai ∈ Ai, we have that Xt,i,ai ≤ maxk∈[N ] maxak∈Ak

Xt,k,ak , and that, by (21), we have

Xt,i,ai = −
∑
j ̸=i

Xt,j,ai ≥ −
∑
j ̸=i

max
k∈[N ]

Xt,k,ai = −(K − 1) max
k∈[N ]

Xt,k,ai .

The remaining part of the proof will aim at determining an upper bound on maxi∈[N ],ai∈Ai
Xt,i,ai , for t large enough. Now,

let t′0 ≥ t0 be such that
∀t ≥ t′0,

√
t/|A0| ≤ 2tε and 1/t ≤ ε.

We will show that for t ≥ t′0, and for all i ∈ [N ],

{at+1,i = ai} ⊆ {Xt,i,ai ≤ 2tε}. (22)

We analyze two (mutually exclusive) cases: (i) forced exploration and (ii) tracking.

(i) if at t ≥ t′0, ∃e ∈ [ρ] : Nt,e,ae ≤
√
t/|A0|, MF-TaS is in a forced exploration step. This, in turn, implies that ∃i ∈ Se

such that Nt,i,ai ≤
√
t/|A0|. Hence we have that:

Xt,i,ai ≤
√
t/|A0| − tv⋆i,ai ≤

√
t/|A0| ≤ 2tε,

where the last inequality follows by definition of t′0.

(ii) If MF-TaS is in a tracking step at t ≥ t′0, for all i ∈ [N ], ai ∈ Ai, we have,

Nt,i,ai − twt,i,ai = min
bi∈Ai

(Nt,i,bi − twt,i,bi)

Xt,i,ai + (w⋆i,ai − wt,i,ai) = min
bi∈Ai

(
Xt,i,bi + t(w⋆i,bi − wt,i,bi)

)
.

Now, for all t ≥ t0, we have that Xt,i,ai + (w⋆i,ai − vt,i,ai) ≤ minbi∈Ai(Xt,i,bi + tε) ≤ tε, where we used that, ∀i ∈ [N ],
minbi∈Ai

Xt,i,bi ≤ 0 by (21). Now, by assumption, we have that for all t ≥ t′0 ≥ t0, |v⋆i,ai − vt,i,ai | ≤ ε, and we can
conclude that (22) holds.

Note that, for all i ∈ [N ], we have Xt+1,i,ai = Xt,i,ai + 1{at+1,i=ai} − v⋆i,ai . Hence, for t ≥ t′0, we have

Xt+1,i,ai ≤ Xt,i,ai + 1{Xt,i,ai
≤2tε} − v⋆i,ai .
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We now prove by induction that for all t ≥ t′0, we have

Xt,i,ai ≤ max{Xt′0,i,ai
, 2tε+ 1}. (23)

The base case t = t′0 automatically holds. Now, assume that, at t ≥ t′0, (23) holds. If Xt,i,ai ≤ 2tε, we have

Xt+1,i,ai ≤ 2tε+ 1− v⋆i,ai ≤ 2tε+ 1 ≤ max{Xt′0,i,ai
, 2tε+ 1} ≤ max{Xt′0,i,ai

, 2(t+ 1)ε+ 1}.

On the other hand, if Xt,i,ai > 2tε, we have Xt+1,i,ai ≤ max{Xt′0,i,ai
, 2tε+ 1} − v⋆i,ai ≤ max{Xt′0,i,ai

, 2(t+ 1)ε+ 1}.
This concludes the induction step. Now, for t ≥ t′0, using that Xt′0,i,ai

≤ t′0 and 1/t ≤ ε, we have

max
i∈[N ],ai∈Ai

∣∣∣∣Xt,i,ai

t

∣∣∣∣ ≤ (K − 1)max{2ε+ 1/t, t′0/t} ≤ (K − 1)max{3ε, t′0/t}.

Hence, we can conclude that exists t1(ε) ≥ t′0 such that for all t ≥ t1(ε),

max
i∈[N ],ai∈Ai

∣∣∣∣Xt,i,ai

t

∣∣∣∣ ≤ 3(K − 1)ε.

Lemma C.3. Let w(1), w(2) ∈ ΛMF , and let v(1), v(2) be the corresponding local allocations. For all ε ≥ 0, we have that

max
i∈[N ],ai∈Ai

|v(1)i,ai − v
(2)
i,ai
| ≤ ε ⇐⇒ max

a∈A
|w(1)
a − w(2)

a | ≤ Nε.

Proof. We have that

ε ≥ max
i∈[N ],ai∈Ai

|v(1)i,ai − v
(2)
i,ai
| ≥ 1

N

∑
i∈[N ]

max
ai∈Ai

|v(1)i,ai − v
(2)
i,ai
| ≥ 1

N
max
a∈A

∑
i∈[N ]

|v(1)i,ai − v
(2)
i,ai
|, (24)

where the first inequality follows by hypothesis and the second and third by inequalities on the max. Next, we show by
induction that, ∀a ∈ A, ∑

i∈[N ]

|v(1)i,ai − v
(2)
i,ai
| ≥

∣∣∣∣∣∣
∏
i∈[N ]

v
(1)
i,ai
−
∏
i∈[N ]

v
(2)
i,ai

∣∣∣∣∣∣ .
Let n ∈ [N ], and define W (1)

n =
∏
i∈[n] v

(1)
i,ai

and W (2)
n =

∏
i∈[n] v

(2)
i,ai

. The base case n = 1 obviously holds true since.

Suppose that |W (1)
n −W (2)

n | ≤
∑
i∈[n] |v

(1)
i,ai
− v(2)i,ai |, for any n ∈ [N − 1]. Then we have:

|W (1)
n+1 −W

(2)
n+1| ≤ |v

(1)
n+1,an+1

− v(2)n+1,an+1
||W (1)

n |+ |W (1)
n −W (2)

n ||v
(2)
n+1,an+1

| ≤
∑

i∈[n+1]

|v(1)i,ai − v
(2)
i,ai
|,

where the inequalities follow by applying a triangular inequality and by the fact that |vi,ai | ≤ 1, ∀i ∈ [N ], ai ∈ Ai. This
concludes the induction step. Hence, by (24), we get:

ε ≥ 1

N
max
a∈A

∑
i∈[N ]

|v(1)i,ai − v
(2)
i,ai
| ≥ 1

N
max
a∈A

∣∣∣∣∣∣
∏
i∈[N ]

v
(1)
i,ai
−
∏
i∈[N ]

v
(2)
i,ai

∣∣∣∣∣∣ = 1

N
max
a∈A
|w(1)
a − w(2)

a |.

By following a similar approach, we can prove the following corollary.

Corollary C.4. Let w̃(1), w̃(2) ∈ Λ̃MF and let v(1), v(2) be the corresponding local allocations. For all ε > 0, we have that

max
i∈[N ],ai∈Ai

|v(1)i,ai − v
(2)
i,ai
| ≤ ε ⇐⇒ max

e∈[ρ],ae∈Ae

|w̃(1)
e,ae − w̃

(2)
e,ae | ≤ Nε.
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Proposition C.5. Let w̃⋆ = argmaxw̃∈Λ̃MF
ψ(θ, w̃), and let (v⋆i )i∈[N ] be the corresponding optimal local allocations. The

MF-TaS sampling rule satisfies ∀i ∈ [N ], ai ∈ Ai

P
(
lim
t→∞

Nt,i,ai
t

= v⋆i,ai

)
= 1.

Proof. Let E =
{
θ̂t

t→∞−→ θ
}

, and note that P(E) = 1. In fact, by Lemma C.1, there exists a finite t0 ≥ 1 such that for all

t ≥ t0, we have mine∈[ρ],ae∈Ae
Nt,e,ae ≥

√
t−|A0|−1|

|A0| . Hence, by the law of large numbers (each group action will be

played infinite times), we have that θ̂t,e
t→∞−→ θe a.s., and hence θ̂t

t→∞−→ θ a.s..

Note that under the event E , by continuity of w̃⋆ (Lemma B.3), we have that there exists t0(ε) ≥ 1 such that:

sup
t≥t0(ε)

max
e∈[ρ],ae∈Ae

|w̃⋆e,ae − w̃t,e,ae | ≤
Nε

3(K − 1)
.

Furthermore, by Corollary C.4, we have that supt≥t0(ε) maxi∈[N ],ai∈Ai
|v⋆i,ai − vt,i,ai | ≤

ε
3(K−1) . Hence, using Lemma

C.2, there exists tε ≥ t0(ε) such that for all t ≥ tε,

sup
t≥tε

max
i∈[N ],ai∈Ai

∣∣∣∣Nt,i,ait
− v⋆i,ai

∣∣∣∣ ≤ ε.

C.3. An algorithm for selecting A0

We present in Alg. 4, the pseudocode of a simple procedure for selecting A0. It takes as input the set of global actions A
and the set of group actions Ae for all e ∈ [ρ]. Let Ie,ae =

∑
b∈A0

1{ae=be} be the counter of group actions ae ∈ Ae in A0,
and define Ie = [Ie,ae ]ae∈Ae

∈ NAe . To describe the algorithm, we assume that A is an ordered set, and denote by A(i) is
the i-th global action. First, the algorithm initializes A0 ← ∅, and Ie = 0 ∈ NAe ,∀e ∈ [ρ]. Then, the algorithm iterates over
groups e ∈ [ρ] and groups’ actions be ∈ Ae, and iteratively includes arms in A into the set A0 which are never observed in
previous iterates. By construction, Alg. 4, ensures that every group arm is observed at least once in A0.

Algorithm 4 BUILD A0

Input: Global actions A, group actions (Ae)e∈[ρ]

Initialize: A0 ← ∅, Ie = 0 ∈ NAe ,∀e ∈ [ρ],
for e ∈ [ρ] do
i← 1
while minae∈Ae

Ie,ae = 0 do
a← A(i)
for be ∈ Ae do

if be = ae and Ie,be = 0 then
A0 ← A0 ∪ {a}
Ie,be ← Ie,be + 1

end if
end for
i← i+ 1

end while
end for
Return A0

Note that Alg. 4 may be improved with more precise search strategies, at the cost of increased computational complexity. For
example, the algorithm could include in A0, at each step, global arms a ∈ A which maximizes the number of non-observed
group actions corresponding to the global actions in A0.
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Example 1 (A0 action choice). Consider the example in Fig. 1 with K = 2 local actions and N = 4 agents (i.e., A = 16
actions). In such setting, we can select A0 = {a0000, a0110, a1001, a1111}. Running Alg. 4 on this instance instead produces
the set A0 = {a0000, a0001, a0110, a0111, a1000, a1010, a1100}.

D. Asymptotic Sample Complexity Upper Bound
In this section, we present the proof of Theorem 6.1. The proofs of the results are quite similar to those of the related results
in (Garivier & Kaufmann, 2016). We divide the proof for the guarantee in probability (a.s.) and in expectation. In the
remainder of this section, we will make use of the following technical lemma.

Lemma D.1 (Lemma 18 in (Garivier & Kaufmann, 2016)). For every α ∈ [1, e/2], and for any two constants c1, c2 > 0,

x =
1

c1

[
log

(
c2e

cα1

)
+ log log

(
c2
cα1

)]
is such that c1x ≥ log(c2x

α).

D.1. Almost Sure Upper Bound

Proof. Define the event

E =

{
∀i ∈ [N ], ai ∈ Ai,

Nt,i,ai
t

t→∞−→ w̃⋆i,ai , θ̂t
t→∞−→ θ

}
.

Observe that P(E) = 1. This follows directly from Lemma C.1 and Proposition C.5. Note that, under E , we also have
that ∀e ∈ [ρ], ae ∈ Ae, Nt,e,ae

t

t→∞−→ w̃⋆e,ae . Let w̃t = (Nt,e,ae/t)e∈[ρ],ae∈Ae
. As described in §6.3, the conditions that the

stopping threshold β(δ, t) must satisfy are the same as in Sec. 3.2 of (Wang et al., 2021):

∀t ≥ 1, tψ(w̃t, θ̂t) ≥ β(δ, t)⇒ P[a⋆θ ̸= ât] ≤ δ, (25a)
∃c1, c2 > 0 : ∀t ≥ c1, β(δ, t) ≤ log(c2t/δ). (25b)

Note that a threshold satisfying these properties exists (see e.g., (Kaufmann & Koolen, 2021)). In the following, we assume
these conditions hold. Let ε > 0. Under the event E , by continuity of ψ (Lemma B.3), we have that there exists t1 such that
for all t ≥ t1, ψ

(
θ̂t, w̃t

)
≥ (1− ε)ψ (θ, w̃⋆). This implies that for all t ≥ t0 we have:

τ = inf
{
t ∈ N>0 : tψ(θ̂t, w̃t) > β(δ, t)

}
≤ t1 ∨ inf

{
t ∈ N>0 : t(1− ε)ψ (θ, w̃⋆) > β(δ, t)

}
≤ t1 ∨ inf

{
t ∈ N>0 : t ≥

T MF
θ β(δ, t)

1− ε

}
≤ c1 ∨ t1 ∨ inf

{
t ∈ N>0 : t ≥

log(c2t)T MF
θ

(1− ε)δ

}
,

where we used the fact that ψ(θ, w̃⋆) = (T MF
θ )−1 and the assumption on the stopping threshold (25b).

Now, by applying Lemma D.1, for α = 1, c1 = (1−ε)δ
TMF
θ

we get:

τ ≤ c1 + t1 +
T MF
θ

(1− ε)δ

[
log

(
T MF
θ c2e

(1− ε)δ

)
+ log log

(
T MF
θ c2

(1− ε)δ

)]
.

Hence, for all δ ∈ (0, 1), we have that:

Pθ
(
lim sup

δ→0

τ

log(1/δ)
≤ T MF

θ

)
= 1.
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D.2. Expected Upper Bound

Proof. Let ε > 0. By Lemma B.3, we have that w̃⋆ is continuous in θ, and hence there exists ξ(ε, θ) such that

Iε = ×a∈A[θ(a)− ξ, θ(a) + ξ],

is such that for all θ′ ∈ Iε, we have
max

e∈[ρ],ae∈Ae

|w̃⋆e,ae(θ
′)− w̃⋆e,ae(θ)| ≤ ε.

Note that, when θ̂t ∈ Iε, we have ât = a⋆θ . Define, for T ∈ N, h(T ) = T 1/4, and let the ”good event” be defined as:

ET (ε) =
T⋂

t=h(T )

{
θ̂t ∈ Iε

}
.

We will now show that:

(i) P[EcT ] ≤ BT exp(−CT 1/8), for some constants B,C (which depend on θ and ε).

(ii) There exists a Tε such that for all T ≥ Tε, it holds, under the event ET , that

∀t ≥
√
T , max

i∈[N ],ai∈Ai

∣∣∣∣Nt,i,ait
− w⋆i,ai

∣∣∣∣ ≤ 3(K − 1)ε.

We shall prove (i) first. By a union bound on EcT , we have

P (EcT ) ≤
T∑

t=h(T )

P
(
θ̂t /∈ Iε

)
=

T∑
t=h(T )

∑
a∈A

[
P
(
θ̂t,a ≤ θ(a)− ξ

)
+ P

(
θ̂t,a ≥ θa + ξ

)]
.

Now, let T be such that h(T ) ≥ |A0|(|A0|+1)
(|A0|−1) . Then, for t ≥ h(T ), we have ∀e ∈ [ρ], ae ∈ Ae, Nt,e,ae ≥

√
t/|A0| by

Lemma C.1. Applying a union bound and Chernoff’s inequality, we get:

P
(
θ̂t,a ≤ θ(a)− ξ

)
= P

∑
e∈[ρ]

θ̂t,e,ae ≤
∑
e∈[ρ]

θe(ae)− ξ


≤
∑
e∈[ρ]

P
(
θ̂t,e,ae − θe,ae ≤ −ξ/ρ

)
=
∑
e∈[ρ]

P
(
θ̂t,e,ae ≤ θe(ae)− ξ/ρ,Nt,e,ae ≥

√
t/|A0|

)

≤
∑
e∈[ρ]

t∑
s=

√
t/|A0|

P
(
θ̂s,e,ae − θe(ae) ≤ ξ/ρ

)

≤
∑
e∈[ρ]

t∑
s=

√
t/|A0|

exp
(
−skl(θ̂s,e,ae − θe(ae) ≤ ξ/ρ

)

≤
∑
e∈[ρ]

exp
(
−
√
t/|A0|kl(θe(ae)− ξ/ρ, θe(ae))

)
1− exp (−kl(θe(ae)− ξ/ρ, θe(ae)))

.

Similarly, we can prove that

P
(
θ̂t,a ≥ θ(a) + ξ

)
≤
∑
e∈[ρ]

exp
(
−
√
t/|A0|kl(θe(ae) + ξ/ρ, θe(ae))

)
1− exp (−kl(θe(ae) + ξ/ρ, θe(ae)))

.
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Hence, by letting

B =
∑
a

∑
e

exp (−kl(θe(ae) + ξ/ρ, θe(ae))/|A0|)
1− exp (−kl(θe(ae) + ξ/ρ, θe(ae)))

+
exp (−kl(θe(ae)− ξ/ρ, θe(ae))/|A0|)
1− exp (−kl(θe(ae)− ξ/ρ, θe(ae)))

,

C = min
a

{∑
e

kl(θe(ae) + ξ/, θe(ae)) ∧
∑
e

kl(θe(ae) + ξ/, θe(ae))

}
,

we have P(EcT ) ≤
∑T
h(T )B exp(−C

√
t) ≤ BT exp(−C

√
h(T )) ≤ BT exp(−CT 1/8).

Note that (ii) follows directly from the definition of Iε and Lemma C.1. For T ≥ Tε, define the constant

C⋆ε (θ) = inf
θ′:∥θ′−θ∥≤ξ(ε)

w̃′:∥w̃′−w̃⋆∥≤3(K−1)ε

ψ (θ′, w̃′)

Now, on the event ET (ε), it holds that for every and for all t ≥ h(T ), we have that ât = a⋆θ and ψ(θ̂t, w̃t) ≥ C⋆ε (θ). Let
T ≥ Tε, on ET (ε), we have

min{τ, T} ≤
√
T +

T∑
t=

√
T

1{τ>t} ≤
√
T +

T∑
t=

√
T

1{tψ(θ̂t,w̃t)≤β(δ,t)}

≤
√
T +

T∑
t=

√
T

1{tC⋆
ε (θ)≤β(δ,T )} ≤

√
T +

β(δ, T )

C⋆ε (θ)
.

Let us introduce T0(δ) = inf
{
T ∈ N :

√
T + β(δ,T )

C⋆
ε (θ)
≤ T

}
. For every T ≥ max{T0(δ), Tε}, we have that ET (ε) ⊆ {τ ≤

T}. Hence, we get

P(τ > T ) ≤ P(ET (ε)) ≤ BT exp(−CT 1/8), and E[τ ] ≤ T0(δ) + Tε +

∞∑
T=1

BT exp(−CT 1/8).

We now provide an upper bound on T0(δ). For ξ > 0, let

C(ξ) = inf{T ∈ N : T −
√
T ≥ T/(1 + ξ)}

Using the upper bound (25b) on the threshold β(δ, T ), we have

T ε0 (δ) ≤ c1 + C(ξ) + inf

{
T ∈ N :

ln
(
c2T
δ

)
C⋆ε (θ)

≤ T

1 + ξ

}
.

Using Prop. 8 in (Kaufmann & Koolen, 2021), it follows that

T0(δ) ≤ c1 + C(ξ) +
(1 + ξ)

C⋆ε (θ)

[
ln

(
(1 + ξ)c2
C⋆ε (θ)δ

)
+ ln

(
ln

(
(1 + ξ)c2
C⋆ε (θ)δ

)
+

√
2 ln

(
(1 + ξ)c2
C⋆ε (θ)δ

)
− 2

)]
.

Hence for any ξ > 0 and ε > 0, it holds that lim supδ→0
Eθ[τ ]

ln(1/δ) ≤
(1+ξ)
C⋆

ε (θ)
. Letting ε→ 0 and ξ → 0 and by continuity of ψ,

we get
lim
ε→0

C⋆ε (θ) = (T MF
θ )−1,

which implies

lim sup
δ→0

E[τ ]
log(1/δ)

≤ T MF
θ .
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E. Examples and results on VE and FCR
In this section, we present examples of the application of VE (see Alg. 3) and FCR (see Alg. 1) on a factor graph, in order to
clarify their use. We also report results that ensure the correctness and bound the complexity of these methods.

E.1. Variable Elimination

We illustrate the use of VE to compute a joint optimal arm a⋆θ .

r1 r2 r3 r4

1 2 3 4

Figure 5. Factor graph from example 2.

Example 2. Consider the factor graph in Fig. 5 with N = ρ = 4. The average reward is described as:

θ(a) = θ1(a1, a2) + θ2(a2, a4) + θ3(a1, a3) + θ4(a3, a4).

The key idea in VE is that, rather than summing all reward functions and then doing the maximization, we fix an ordering
for the variables, and we maximize over variables one at a time, according to the predefined ordering. For example, fix the
ordering as O = {a4, a3, a2, a1}. Starting from a4, we get

max
a∈A

θ(a) = max
a1,a2,a3

θ1(a1, a2) + θ3(a1, a3) + max
a4

θ2(a2, a4) + θ4(a3, a4).

Agent 4 can summarize the value that it brings to the system when varying (a2, a3) using a new function p4(a2, a3) =
maxa4 θ2(a2, a4) + θ4(a3, a4). Note that p4 represents the best response of agent 4 conditioned on the actions played by
agents 2, 3. We may also denote a⋆4(a2, a3) = argmaxa4 θ2(a2, a4) + θ4(a3, a4) as the best action for agent 4 conditioned
on the actions of agent 2, 3. Hence, we get

max
a∈A

θ(a) = max
a1,a2,a3

θ1(a1, a2) + θ3(a1, a3) + p4(a2, a3).

Next, we do the same for agent 3, where we denote by p3(a1, a2) = maxa3 θ3(a1, a3) + p4(a2, a3), a⋆3(a1, a2) =
argmaxa3 θ3(a1, a3) + p4(a2, a3), and we reduce the problem to

max
a∈A

θ(a) = max
a1,a2

θ1(a1, a2) + p3(a1, a2).

Next, agent 2 computes her response p2(a1) = maxa2 θ1(a1, a2) + p3(a1, a2), and a⋆2(a1) = argmaxa2 θ1(a1, a2) +
p3(a1, a2). Hence agent a1 can simply select her action a1 that maximizes p1 = maxa1 p2(a1).

We can recover the best joint action a⋆ = (a⋆1, a
⋆
2, a

⋆
3, a

⋆
4) by performing the entire process in reverse order: a⋆1 =

argmaxa1 p2(a1), a
⋆
2 = argmaxa2 θ1(a

⋆
1, a2) + p3(a

⋆
1, a2), a

⋆
3 = argmaxa3 θ3(a

⋆
1, a3) + p4(a

⋆
2, a3), and a⋆4 =

argmaxa4 θ2(a
⋆
2, a4) + θ4(a

⋆
3, a4).

Complexity of VE.VE is guaranteed to return the optimal global arm in O(NKAO+1) operations (Dechter, 1999), where
AO = maxi∈[N ] |SC(pO(i))| is the size of the largest factor generated when using elimination order O. The complexity
of VE depends on the elimination order O and is linear in the maximum size of the scope of ”best-response functions”
introduced in the elimination process.
Remark E.1. Note that the complexity is linear in N for any order of elimination O. However, finding the optimal ordering,
i.e., the one minimizing AO, is an NP-hard problem (Dechter, 1999). This issue has been addressed successfully for a large
variety of graph structures in the graphical model community, where there exists a variety of good heuristics for the VE
ordering problem (Wainwright & Jordan, 2008). In addition, there are approximate (and more efficient) alternatives to VE
(e.g., the max-plus algorithm (Wainwright & Jordan, 2008)), but using those methods invalidates the correctness of VE.
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E.2. Factored Constraint Reduction

We provide an example of the application of FCR to reduce a combinatorial number of constraints. We consider set of
constraints

z ≥ 1

∆2
min

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,ae + w̃−1

e,a⋆e︸ ︷︷ ︸
fe(ae)

, ∀a ̸= a⋆.

These constraints can be equivalently rewritten as z ≥ maxa∈A
∑
e∈[ρ] fe(ae).

Example 3. For the graph in Ex. 2 we have:

z ≥ max
a1,a2,a3,a4

f1(a1, a2) + f2(a2, a4) + f3(a1, a3) + f4(a3, a4).

We introduce a set of variables (ufeae)e∈[ρ],ae∈Ae
, and the equality constraints:

ufeae = w̃−1
e,ae ,∀e ∈ [ρ], ae ∈ Ae.

Note that we can rewrite fe(ae) = ufeae + ufea⋆e . Fix the elimination ordering O = {4, 3, 2, 1} and let F = ∅. Now
we introduce a new ”function” pl into F by eliminating a variable l = O(i). For i = 1, we have O(1) = 4 and
FO(1) = {f2(a2, a4), f4(a3, a4)}, and a variable associated to this function up4a2,a3 , for all a2, a. We introduce a set of
constraints:

up4a2,a3 ≥ u
f2
a4,a2 + uf2a⋆4 ,a⋆2

+ uf4a4,a3 + uf4a⋆4 ,a⋆3
,∀a2, a3, a4

and we include these in the constraints set K. We further exclude the function f2 and f4 from the set F , while including
p4(a2, a3). Subsequently, we consider O(2) = 3. Then F3 = {p4(a2, a3), f3(a3, a1)}. We introduce the new constraints:

up3a1,a2 ≥ u
p4
a2,a3 + up4a⋆2 ,a⋆3

+ uf3a3,a1 + uf3a⋆3 ,a⋆1
,∀a1, a2, a3,

and we add them to the constraint set K. We proceed to eliminate p4 and f3 from F and include p3. We then move to
O(3) = 2 and define F2 = {f1(a1, a2), p3(a1, a2)}. The set of constraints introduced at this step are:

up2a1 ≥ u
p3
a1,a2 + up3a⋆1 ,a⋆2

+ uf1a1,a2 + uf1a⋆1 ,a⋆2
,∀a1, a2,

and similarly to the previous steps we add these constraints to K and eliminate the variables p3 and f1 from F , while
including p2. The last step at O(4) = 1 consists of simply including in K the constraints

up1 ≥ up2a1 ,∀a1 ∈ A1.

Finally we add to K the constraint z ≥ up1 , and output K.

Correctness and Complexity of FCR. The number of constraints in K set scales as O(NKAO ), where AO =
maxi∈[N ] |SC(pO(i))| is the size of the maximum scope induced by the chosen order of elimination O. Note that FCR
also includes O(NKAO ) new variables in the optimization problem. Hence, similarly to VE, the number of constraints
and variables to represent an exponentially large set depends linearly in N and exponentially only on the width of the
induced graph, i.e., O(N exp(AO)). Furthermore, the following lemma, adapted from Theorem 4.4 in (Guestrin et al.,
2003), establishes the correctness of the FCR algorithm.

Lemma E.2 ((Guestrin et al., 2003), Theorem 4.4). Let K = FCR(C). Then C and K are equivalent, that is, an assignment
of variables (p, z, w̃) is feasible for K if and only if (z, w̃) is feasible for C.
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E.3. m-BEST algorithm

In this section, we discuss an algorithm to find the m-best global arms. As explained in App. H, a set of tighter
approximations can be built by considering an ordering of the first m smallest gaps and hence requires to compute the m+1
global arms with highest expected rewards. The Lawler and Nilsson’s m-BEST algorithm (Lawler, 1972; Nilsson, 1998),
briefly described in the remainder of this section, will serve this purpose.

The procedure was originally devised to compute the m most probable configurations in graphical models. The main idea is
the following: At each step, the m-BEST find the best solution to a re-formulation of the original problem that excludes the
solutions already discovered. Specifically, at each time iteration j < m, the algorithm runs VE excluding the first j most
probable configurations. The Lawler’s algorithm (Lawler, 1972) starts by computing the best global action a(1) by applying
VE (with elimination order O) over the combinatorial action space A by applying VE N times. To determine the second
best action a(2), the algorithm searches over the set A(2) = A \ {a(1)}. More generally, at iteration j, the algorithm finds
the jth best global action a(j) by running VE over the sets A(j) = A \ ∪k∈[j]{a(k)}.

This procedure provably identifies the m-best global actions with complexity O(mN2KAO+1). By leveraging similar ideas
and using a junction tree representation of the graph, Nilsson (Nilsson, 1998) improves over this procedure leading to an
m-best algorithm with complexity O(mNKAO+1).

F. Regret
In this section, we consider the MAMAB model as in §3 in the regret setting. We provide a lower bound on the regret and
an approximation of such lower bound, using similar techniques as the ones used in the BAI setting.

In regret minimization, the goal is to devise an algorithm π to minimize the regret up to time T ≥ 1, defined as

Rπ(T ) = E

[
T∑
t=1

θ(a⋆)− θ(at)

]
=
∑
a ̸=a⋆

(θ(a⋆)− θ(a))E[NT,a],

where at ∈ A is the action selected by algorithm π at time t.

F.1. Regret lower bound

Now, we give an instance-specific lower bound on the regret in the MAMAB setting. The regret lower bound is stated on the
class of uniformly good algorithms, according to the following definition.

Definition F.1. An algorithm π is uniformly good algorithm if for all θ, we have that Rπ(T ) = o(Tα), ∀α > 0.

The following theorem gives a lower bound on the regret of any consistent algorithm. It is a direct consequence of the
analogous lower bound in the combinatorial semi-bandit feedback setting, given e.g., in Theorem 1 in (Cuvelier et al.,
2021b) or Theorem 12 in (Wagenmaker et al., 2020).

Theorem F.2. Let π be a uniformly good algorithm. Then ∀θ,

lim inf
T→∞

Rπ(T )

log(T )
≥ c⋆θ, (26)

where c⋆θ is the value of the optimization problem:

min
w̃∈RÃ

≥0
,w∈RA

≥0

∑
e∈[ρ],ae∈Ae

w̃e,ae(θe(a
⋆
e)− θe(ae))

subject to
∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,ae ≤ ∆(a)2/2,∀a ∈ A

w̃e,ae =
∑
b∈A:be=ae

wb,∀e ∈ [ρ], ae ∈ Ae
(27)

Note that the structure of the regret lower bound is similar to the one for M-BAI. The challenges are also similar: the
optimization problem (27) has a combinatorial number of variables and constraints.
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G. Connection to Combinatorial Semi-bandit Feedback Bandits
The MAMAB setting can be regarded as a specific instance of a combinatorial semi-bandit feedback setting (Cuvelier et al.,
2021a;b; Wagenmaker et al., 2020). In the following, we present an equivalent characterization of the MAMAB problem to
clarify its connection to the combinatorial semi-bandit feedback setting.

We first describe the interaction model in the generic (linear) combinatorial semi-bandit feedback setting. In such a setting,
at each time step t ≥ 1, the learner selects an action from a combinatorial set at ∈ {0, 1}d, and, given an unknown parameter
θ̃ ∈ Rd, she observes:

rt,i = θ̃i + ηt,i,∀i ∈ [d] : at,i = 1,

where ηt,i ∼ N (0, 1), for all i ∈ [d], are independent Gaussian noise samples.

Recall that, since in MAMAB the set of global actions is defined as A = ×i∈[N ]Ai, the problem is not directly interpretable
in the semi-bandit feedback setting. We show that a simple map from actions in A to binary vectors in the Ã-dimensional
space can reformulate the MAMAB problem to the semi-bandit feedback setting.

Let ϕ(·) : A → {0, 1}Ã be a function mapping global actions to binary vectors in the Ã-dimensional space. In MAMAB,
the vector ϕ has a block structure: it can be decomposed as ϕ(a) = [ϕe(be)]e∈[ρ],be∈Ae

, where ϕe(be) ∈ {0, 1}Ae is a
group vector ϕe(be) = 1{ae=be}, i.e., containing 1 in correspondence of the activated group action ae. Further define
θ̃ = [θe(ae)]e∈[ρ],ae∈Ae

∈ RÃ, i.e., θ̃ is the vector containing the local mean parameters. At round t ≥ 1, a global action
at ∈ A is selected by the learner, and she observes:

rt,e,ae = θ̃e(ae),∀e ∈ [ρ] : ϕe(at,e) = 1.

In other words, in the semi-bandit feedback setting, a (joint) action a ∈ A is selected and the learner observes a vector
of rewards [re(ae)]e∈[ρ],ae⊆a, where re(ae) = θe(ae)

⊤ϕe(ae) + ηe, where ηe ∼ N (0, 1) is i.i.d. Gaussian Noise. Note
that the feature vectors satisfy ∥ϕ(a)∥0 = ρ, ∀a ∈ A and ∥ϕe(ae)∥0 = 1, ∀e ∈ [ρ], ae ∈ Ae. In order to further clarify the
connection to the semi-bandit feedback, we provide a concrete example below.
Example 4. Consider the factor graph in Fig. 6 with N = 3 agents, ρ = 2 groups, and K = 2 actions. The reward can be
written as r(a1, a2, a3) = r1(a1, a2) + r2(a2, a3). Let ai ∈ {0, 1}, for all i ∈ [N ]. The average reward can be expressed
by the vector θ̃ =

[
[θ1(a1, a2)](a1,a2)∈{0,1}2 , [θ2(a2, a3)](a2,a3)∈{0,1}2

]
∈ R8, where

[θ1(a1, a2)](a1,a2)∈{0,1}2 = [θ1(0, 0), θ1(0, 1), θ1(1, 0), θ1(1, 1)]

[θ2(a2, a3)](a2,a3)∈{0,1}2 = [θ2(0, 0), θ2(0, 1), θ2(1, 0), θ2(1, 1)].

For example, selecting action a = (0, 0, 0), corresponds to the feature vector ϕ(a) = (1, 0, 0, 0, 1, 0, 0, 0), while selecting
action b = (0, 1, 0) corresponds to the feature vector ϕ(b) = (0, 1, 0, 0, 0, 0, 1, 0).

r1 r2

1 2 3

Figure 6. Factor graph from Example 4.
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H. Tighter Approximations
H.1. Tighter constraints reduction

In this section, we propose tighter constraint approximations by leveraging an ordering of the arms and of the sub-optimality
gaps. For m ∈ [KN ], let a(m) be the mth best arm and, for m ∈ [KN − 1], let ∆m = θ(a⋆θ)− θ(a(m+1)) the mth minimal
non-zero gap (with ties breaking arbitrarily).
Lemma H.1. Let m ∈ [KN − 1], and TMF

θ (m) be the solution to the following optimization problem:

inf
w̃∈Λ̃MF,z∈R

z

subject to z ≥ 1

∆2
j

∑
e∈[ρ]:a

(j+1)
e ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1

e,a
(j+1)
e

,∀j ∈ [m]

z ≥ 1

∆2
m

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae ,∀a ∈ A \ ∪j∈[m]{a(j+1)}.

(28)

Then, TMF
θ (m+ 1) ≤ TMF

θ (m), ∀m ∈ [KN − 2], and T ⋆θ ≤ TMF
θ (m), ∀m ∈ [KN − 1].

Note that TMF
θ (1) = TMF

θ , and for m > 1, TMF
θ (m) provides provably tighter approximations. This approximation gain

comes at the cost of increased computational complexity. Indeed, to solve TMF
θ (m), one needs to compute the first m+ 1

best arms and the m minimal gaps. To solve this task, there exist algorithm having complexity O((m+ 1)NKAO+1) (see
Sec. E.3).

This result shows that for increasingly larger values of m, the approximation gets tighter, but the computational complexity
increases. Hence, the approximations TMF

θ (m) allow for an interplay between sample complexity and computational
complexity when varying m. Sec. J.1 provides numerical results on this trade-off.

There exists an interesting trade-off between sample complexity and computational complexity. The smallest sample
complexity achievable is the true lower bound constant, i.e. T ⋆θ , which is the solution to an optimization problem with
O(KN ) variables and constraints. The approximation TMF

θ has generally higher complexity, but its computational complexity
is characterized by O(mNKAO ), where AO is typically much smaller than N . As explained above, for m = 1 TMF

θ (m)

reduces to the MF approximation TMF
θ . For illustration purposes we also report the sample complexity 2Ã/∆2

min which is
achieved by the random allocation w = (1/A)a∈A ∈ Λ.

Proof of Lemma H.1. First, we shall prove TMF
θ (m + 1) ≤ TMF

θ (m),∀m ∈ [KN − 1], by induction. The base case, for
m = 1, is TMF

θ (2) ≤ TMF
θ (1). Note that TMF

θ (1) can be written as

inf
w̃∈Λ̃MF,z∈R

z (29)

subject to z ≥ 1

∆2
1

∑
e∈[ρ]:a

(2)
e ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1

e,a
(2)
e

(30)

z ≥ 1

∆2
1

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae ,∀a ∈ A \ {a

(1), a(2)}, (31)

while TMF
θ (2) is defined as

inf
w̃∈Λ̃MF,z∈R

z (32)

subject to z ≥ 1

∆2
1

∑
e∈[ρ]:a

(2)
e ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1

e,a
(2)
e

(33)

z ≥ 1

∆2
2

∑
e∈[ρ]:a

(3)
e ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1

e,a
(3)
e

(34)

z ≥ 1

∆2
2

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae ,∀a ∈ A \ {a

(1), a(2), a(3)}. (35)
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The constraints (30) and (33) are identical. The constraints (34)-(35) can be simply written as

z ≥ 1

∆2
2

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae ,∀a ∈ A \ {a

(1), a(2)},

which corresponds to (31) with the exception of the term 1
∆2

1
in place of 1

∆2
2

. As ∆1 ≤ ∆2, we naturally conclude that

TMF
θ (2) ≤ TMF

θ (1).

Now, assume that TMF
θ (m+1) ≤ TMF

θ (m) holds for m− 1, to complete the induction we need to show that TMF
θ (m+1) ≤

TMF
θ (m). By following a similar approach to the base case, we can show that the only difference in the optimization

problems defining TMF
θ (m) and TMF

θ (m+ 1) is in the last set of constraints: for TMF
θ (m) these constraints are

z ≥ 1

∆2
m

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae ,∀a ∈ A \ ∪j∈[m]{a(j+1)},

while for TMF
θ (m+ 1) they can be written as

z ≥ 1

∆2
m+1

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae ,∀a ∈ A \ ∪j∈[m]{a(j+1)}.

As we have ∆m ≤ ∆m+1, we can conclude that TMF
θ (m+ 1) ≤ TMF

θ (m).

Now, to complete the proof, we show that T ⋆θ ≤ TMF
θ (m), ∀m ∈ [KN −1]. In light of the fact that TMF

θ (m+1) ≤ TMF
θ (m),

it is sufficient to prove that T ⋆θ ≤ TMF
θ (KN − 1). It is easy to check that TMF

θ (KN − 1) can be written as

inf
w̃∈Λ̃MF

max
a ̸=a⋆

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae

∆(a)2
. (36)

Eq. (36) is essentially the same as T ⋆θ in (1), with the difference that the allocations variables are in Λ̃MF. As Λ̃MF ⊆ Λ̃ we
conclude that T ⋆θ ≤ TMF

θ (KN − 1).

H.2. Tighter variables reduction: Structured Mean Field

In this section we present tighter variable reduction schemes that consider a different factorization factorization w.r.t.
allocation distributions named Structured Mean Field (SMF). Let G be a set of subsets of [N ] and consider the following
factorization

wa =
∏
g∈G

wγgg,ag ,∀a ∈ A,

where ag denotes the sub-vector of actions corresponding to indices g ∈ G, and γg > 0. Let ΛG denote the set of
distributions satisfying this factorization, and Λ̃G the corresponding marginal polytope. The approximation is essentially
obtained replacing Λ̃ by Λ̃G in (4.1). Note that if G = {{1}, ..., {N}}, and αg = 1, ∀g ∈ G, we recover the MF
approximation TMF

θ . In general tighter (or even exact approximations) are possible.

Lemma H.2. For any valid factorization G, we have that T ⋆θ ≤ T
G
θ , where

TG
θ = inf

w̃∈Λ̃G

max
a ̸=a⋆

∑
e∈[ρ]:ae ̸=a⋆e

w̃−1
e,a⋆e

+ w̃−1
e,ae( ∑

e∈[ρ]

θe(a⋆e)− θe(ae)

)2 . (37)
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I. Details on antenna tilt optimization experiments
In this section, we present details on the antenna tilt optimization experiments.

Throughput. The throughput Ti,u, is formally defined in terms of the Signal-to-Interference-plus-Noise Ratio (SINR), a
metric that measures the quality of a signal in the presence of interference and noise. Let aNi

be the group vector containing

Specifically, the SINR of a UE u ∈ U connected to cell c ∈ C is defined as:

SINRi,u(ai) =
PiGi,u(ai)Li,u(ai)∑

k∈Ni
PkGk,u(ak)Lk,u(ak) + σ

,

where Pi, Gi,u, and Li,u are the transmitter antenna power, the gain of the transmitter antenna, and path loss for UE u
connected to cell i, respectively. The gain is influenced by antenna parameters such as tilt and azimuth, and the path
loss accounts for the transmission medium and obstacles (e.g., buildings, atmospherical conditions, vegetation, etc.). The
throughput Ti,u experienced by UE u connected to the cell i is then expressed as a function of the SINR and available
bandwidth:

Ti,u = ωBn
R
i,u log2 (1 + SINRi,u) ,

where nRi,u is the number of Physical Resource Blocks (PRBs) allocated to UE u in cell i and ωB is the bandwidth per PRB
(180 kHz). We use the average throughput of a cell in our group reward definition, i.e.,

ri(ae) =
1

|Ui|
∑
u∈Ui

Ti,u.

Hence the global reward is expressed as

r(a) =
∑
i∈[N ]

1

|Ui|
∑
u∈Ui

Ti,u(ae).

On the noise independence assumption. In our experiments, each group e ∈ [ρ] corresponds to a sector: more precisely, it
consists of an antenna i ∈ [N ] serving the users u ∈ Ui connected to this sector, and the set of antennas that can interfere
with the transmissions of the antenna i. Recall that the group reward is defined as re(ae) =

∑
u∈Ui

Ti,u(ae), where ae
represents the tilts of antennas in group i. The throughput Ti,u(ae) is the rate at which an user u can decode transmissions
from the antenna u. This rate depends on the random channel conditions (also known as fading) between each antenna in the
group and the user i. Now, the fadings between pairs of (antenna, user) are typically stochastically independent across users
and antennas (Tse & Viswanath, 2009). Since the sets of (Ui)i∈[N ] form a partition, they do not overlap, and the random
variables re(ae) are indeed independent across groups. They can be modeled as independent Gaussian realizations in the
sum-throughput over groups. For details, refer e.g., to (Tse & Viswanath, 2009).

Additional details. The set of UEs in the network is U = ∪i∈SUi as presented in Sec. 7.2. The number of UEs connected
to cell i is affected by tilt variation since we assume UEs connect to the cell from which they get maximum Reference Signal
Received Power (RSRP). In particular, given a tilt configuration a, the UEs in cell i are defined as

Ui =

{
u ∈ U : argmax

k∈[N ]

PkGk,uLk,u = i

}
.

There exist other methods to determine relations between antennas which rely on automated procedures, domain knowledge,
and heuristics. For example, they may be based on the geographic distance between cells, on Neighbor Relations (ANR) as
defined in 3GPP standards, on network planning tools for coverage prediction, or on cell handover logs (Rappaport, 2001).
In addition, domain knowledge can be used to refine the graph topology by pruning or adding edges based on key feature
of a city or knowledge about the terrain (if there is a natural obstacle for example). Analyzing the influence of the graph
structure is not in the scope of this paper and is left as future work.
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J. Additional Experiments
J.1. Tighter bounds experiments

In this section, we propose a set of experiments to test the effect of the tighter lower bound approximations TMF
θ (m), presented

in App. H. We consider different instances of the line and ring graphs with varying N ∈ {3, 4, 5, 6, 7}, K ∈ {2, 3, 4, 5}, and
m ∈ {1, 10}. The group means (θe)e∈[ρ] are generated uniformly at random. We report in Fig. 7, the results averaged over
Nsim = 5 independent runs and report the results in terms of the mean and standard deviation of the normalized TMF

θ (m).
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Figure 7. Normalized TMF
θ (m) for varying m,K, and N .

As expected, TMF
θ (m) is a monotonically decreasing function of m for all considered graphs. The approximation for m = 1

corresponds to the MF approximation TMF
θ . Hence the curves in Fig. 7 represent improvement over the MF approximations

(recall that TMF
θ ≤ TMF

θ (m), for any m). We can observe that for increasing values of N , the improvement over TMF
θ gets

larger, while the effect of larger K is less significant.
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J.2. Quantifying the approximation

In this section, we provide numerical results on the approximation ratio TMF
θ /T ⋆θ . We consider different instances of line

and ring graphs with varying N and K ∈ {2, 3, 4, 5}. The group means (θe)e∈[ρ] are generated uniformly at random, as
described in Sec. 7.1. We report the results averaged over Nsim = 5 independent runs and report the results in terms of mean
and standard deviation of the ratio TMF

θ /T ⋆θ , together with its upper bound Ã/ρ (see Lem. A.3). The results are shown in
Fig. 8. It can be observed that, as conjectured in App. A.3, the upper bound on the approximation ratio is loose for different
instances, and generally the actual value of TMF

θ /T ⋆θ is significantly smaller than the bound.
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Figure 8. Approximation ratio TMF
θ /T ⋆

θ vs upper bound 4Ã/ρ.
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