
Optimal LP Rounding and Linear-Time Approximation Algorithms for
Clustering Edge-Colored Hypergraphs

Nate Veldt 1

Abstract
We study the approximability of an existing frame-
work for clustering edge-colored hypergraphs,
which is closely related to chromatic correlation
clustering and is motivated by machine learning
and data mining applications where the goal is to
cluster a set of objects based on multiway interac-
tions of different categories or types. We present
improved approximation guarantees based on lin-
ear programming, and show they are tight by prov-
ing a matching integrality gap. Our results also
include new approximation hardness results, a
combinatorial 2-approximation whose runtime is
linear in the hypergraph size, and several new con-
nections to well-studied objectives such as vertex
cover and hypergraph multiway cut.

1. Introduction
Partitioning a graph into well-connected clusters is a fun-
damental algorithmic problem in machine learning. A re-
cent focus in the machine learning community has been
to develop algorithms for clustering problems defined over
data structures that generalize graphs and capture rich in-
formation and metadata beyond just pairwise relationships.
One direction has been to develop algorithms for cluster-
ing and learning over hypergraphs (Li & Milenkovic, 2017;
2018; Fountoulakis et al., 2021; Hein et al., 2013), which
can model multiway relationships between data objects
rather than just pairwise relationships. Another recent focus
has been to develop techniques for clustering edge-colored
graphs (and hypergraphs), where edge colors represent the
type or category of pairwise interaction modeled by the
edge (Amburg et al., 2020; Bonchi et al., 2015; Anava
et al., 2015; Klodt et al., 2021; Xiu et al., 2022; Amburg
et al., 2022). Edge color labels are relevant for many differ-

1Department of Computer Science and Engineering, Texas
A&M University, College Station, Texas, USA. Correspondence
to: Nate Veldt <nveldt@tamu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. The best node coloring of this edge-colored hypergraph
leaves three edges satisfied and two unsatisfied (dashed lines).

ent applications. In co-authorship (hyper)graphs, an edge
color may represent the type of publication venue or disci-
pline (Amburg et al., 2020; Bonchi et al., 2012), which can
be used to better ascertain the academic field an author be-
longs to. Edges in brain networks may have color labels to
indicate differences in co-activation patterns between brain
regions (Crossley et al., 2013). In temporal graph analysis,
edges within the same time period can be associated with
the same color (Amburg et al., 2020), which provides in-
formation about how interaction patterns evolve over time.
In addition to these settings, algorithms for edge-colored
graphs and hypergraphs have been applied to cluster food
ingredients co-appearing in different recipes (where edge
colors indicate cuisine types) (Amburg et al., 2020; Klodt
et al., 2021; Xiu et al., 2022), genes in biological networks
(where edge colors indicate gene interaction types) (Bonchi
et al., 2012), and users of social media platforms like Face-
book and Twitter (where edge colors indicate types of social
circles) (Klodt et al., 2021; Xiu et al., 2022).

The Edge-Colored Clustering problem. Edge-Colored
Clustering (ECC) is a combinatorial optimization frame-
work for clustering graphs and hypergraphs with edge col-
ors. This problem is also known by other related names
such as colored clustering or categorical edge clustering.
Let H = (V,E) be a hypergraph where each hyperedge
e ∈ E is associated with one of k colors for some k ∈ N.
The goal of ECC is to assign colors to nodes in such a way
that hyperedges tend to contain nodes that all have the same
color as the hyperedge (see Figure 1). This can also be
described as a clustering problem where one forms a single
cluster of nodes for each color, and the goal is to do so
in such a way that the cluster of nodes with color c tends
to contain hyperedges with color c. Note that the nodes
in cluster c do not necessarily need to be connected in the
hypergraph in this formulation. To defined the objective

1

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

more precisely, if all of the nodes in a hyperedge e ∈ E are
given the same color as e, then the hyperedge is satisfied,
otherwise it is unsatisfied and we say the node color assign-
ment has made a mistake at this hyperedge. The goal is then
to set node colors in a way that minimizes the number (or
weight) of unsatisfied edges (the MINECC objective), or
to maximize the number (or weight) of satisfied edges (the
MAXECC objective). These are equivalent at optimality
but different from the perspective of approximations. ECC
is NP-hard (Amburg et al., 2020) but permits nontrivial ap-
proximation algorithms, whose approximation factors may
depend on the number of colors k and the rank r of the
hypergraph (the maximum hyperedge size).

Background and previous results. Angel et al. (2016)
were the first to study the problem over graphs (the r = 2
case), focusing on MAXECC. They showed the objective
is polynomial time solvable for k = 2 colors but NP-hard
when k ≥ 3, and provided a 1

e2 -approximation algorithm
by rounding a linear programming (LP) relaxation. A se-
quence of follow-up papers (Ageev & Kononov, 2014; 2020;
Alhamdan & Kononov, 2019) improved the best approxima-
tion factor to 4225/11664 ≈ 0.3622 (Ageev & Kononov,
2020), and showed it is NP-hard to approximate above a
factor 241/249 ≈ 0.972 (Alhamdan & Kononov, 2019).
All of these results apply to MAXECC and r = 2. Cai &
Leung (2018) also focused on graphs but considered the
problem from the perspective of parameterized complexity,
showing that MINECC and MAXECC are fixed-parameter
tractable (FPT) in the solution size.

Amburg et al. (2020) initiated the study of ECC
in hypergraphs, focusing on MINECC. They gave a
min

{
2− 1

k , 2−
1
r+1

}
-approximation algorithm based on

rounding an LP relaxation, and provided combinatorial al-
gorithms with approximation factors scaling linearly in r.
Finally, they showed that the problem can be reduced in
an approximation-preserving way to node-weighted mul-
tiway cut (NODE-MC) (Garg et al., 2004). This leads to
a 2(1 − 1/k) approximation by rounding the NODE-MC
LP relaxation. Amburg et al. (2022) later extended this
framework for the task of diverse group discovery and team
formation. Recently, Kellerhals et al. (2023) gave improved
FPT algorithms and parameterized hardness results.

Other related work. ECC is closely related to chromatic
correlation clustering (Bonchi et al., 2015; Anava et al.,
2015; Klodt et al., 2021; Xiu et al., 2022), an edge-colored
generalization of correlation clustering (Bansal et al., 2004).
The reduction to NODE-MC also situates MINECC within
a broad class of multiway partition problems (Ene et al.,
2013; Garg et al., 2004; Dahlhaus et al., 1994; Călinescu
et al., 2000; Chekuri & Ene, 2011a;b; Chekuri & Madan,
2016), such as hypergraph multiway cut (HYPER-MC). Ap-
pendix A provides a deeper discussion of related work.

Our contributions. There are many natural questions on
the approximability of ECC that are unresolved in previous
work, especially relating to the less studied MINECC objec-
tive. Amburg et al. (2020) provide an indirect 2(1− 1/k)-
approximation for MINECC by rounding the NODE-MC
LP relaxation in a reduced graph. When k ≤ 2(r + 1),
this is better than the approximation factor they obtain by
rounding the canonical MINECC LP relaxation. An open
question is to understand the exact relationship between
these LP relaxations. In general, can we improve on the best
LP rounding algorithms? For combinatorial algorithms, the
best existing approximation factors scale linearly in r (Am-
burg et al., 2020). Can we design a combinatorial algorithm
whose approximation factor is constant with respect to r
and k? Finally, although the problem is known to be NP-
hard and MAXECC is known to be APX-hard (Alhamdan
& Kononov, 2019), can we say anything more about approx-
imation hardness for MINECC?

We answer all of these open questions, and in the process
prove new connections to other well-studied combinatorial
objectives. In terms of linear programming algorithms:

• We prove that the MINECC LP relaxation is always at
least as tight as the NODE-MC LP relaxation, and in some
cases is strictly tighter (Theorem 2.2).

• We improve the best approximation factors for rounding
the MINECC LP relaxation from min

{
2− 1

k , 2−
1
r+1

}
to min

{
2− 2

k , 2−
2
r+1

}
(Theorems 3.1, 3.2, and 4.6).

• We prove a matching integrality gap, showing that our LP
rounding schemes are in fact optimal (Lemma 2.1).

For the graph objective (r = 2), our approximation factor
is 4

3 , improving on the previous best 5
3 -approximation (Am-

burg et al., 2020). Our approximation result for r = 2 is the
most challenging and in-depth result in our paper, and relies
on a new technique for using auxiliary linear programs to
bound the worst-case approximation factor obtained when
rounding the MINECC LP. This proof requires a careful
case analysis; we also formally prove why alternative strate-
gies for trying to round the LP relaxation (which appear
potentially easier at first glance) will in fact fail to provide a
4
3 -approximation (Lemma 4.7). Aside from our linear pro-
gramming results, our contributions include the following:

• We prove that VERTEX COVER is reducible to MINECC in
an approximation preserving way (Theorem 5.1), implying
APX-hardness. The details of our reduction allow us to
further prove UGC-hardness of approximation below 2−
(2 + or(1)) ln ln r

ln r (for arbitrarily large k). The reduction
also implies hardness results for hypergraph MAXECC.

• We prove that hypergraph MINECC is reducible to VER-
TEX COVER in an approximation preserving way (Theo-
rem 5.2). Explicitly forming the reduced VERTEX COVER

2

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

instance lead to combinatorial 2-approximation algorithms
that run in time O(

∑
v∈V d

2
v + |E|2).

• We develop more careful 2-approximation algorithms that
run in O(

∑
e∈E |e|), i.e., linear in the hypergraph size.

Our results improve significantly on the previous best ap-
proximation guarantees for MINECC and are also tight or
near-tight with respect to different types of lower bounds.
Our LP rounding scheme is optimal in that in matches the in-
tegrality gap we show. All of our algorithms for hypergraph
MINECC also have asymptotically optimal approximation
factors assuming the unique games conjecture, since ap-
proximating VERTEX COVER by a constant smaller than
2 is UGC-hard (Khot & Regev, 2008). Our combinatorial
algorithms also have asymptotically optimal runtimes, since
it takes Ω(

∑
e∈E |e|) time simply to read the hypergraph

input. In addition to our theoretical results, we confirm in
numerical experiments that our algorithms are very practical.
Our empirical contributions include a new large benchmark
dataset for edge-colored hypergraph clustering and a very
fast method that uses additional heuristics to improve the
practical performance of our combinatorial algorithms.

2. MINECC Linear Programming Framework
An instance of MINECC is given by an edge-colored hy-
pergraph H = (V,E,C, `) with node set V and edge set
E; we ≥ 0 represents the nonnegative weight for e ∈ E.
We use the term edge even in the hypergraph setting (rather
than hyperedge), to use uniform terminology between the
graph and hypergraph setting. C = [k] = {1, 2, . . . k} is a
set of edge colors and r denotes the maximum hyperedge
size. The function ` : E → C maps each edge to a color in
C, and Ec ⊆ E denotes the set of edges with color c ∈ C.

Let Y be a map from nodes to colors where Y [v] ∈ C is
the color of node v. For e ∈ E, if there is any node v ∈ e
such that Y [v] 6= `(e), the map Y has made a mistake at
edge e, and this incurs a penalty of we. This is equivalent to
partitioning nodes into k clusters, with each cluster corre-
sponding to one color, in a way that minimizes the weight of
edges that are not completely contained in the cluster with
a matching color. Given Y , letMY ⊆ E denote the set of
edges where Y makes a mistake. The objective is

(MINECC) minY
∑
e∈E we1MY

(e), (1)

where 1MY
is the indicator function for edge mistakes and

the minimization is over all valid node colorings Y . The
canonical LP relaxation for this objective is

min
∑
e∈Ewexe

s.t.
∑k
i=1 x

i
v = k − 1 ∀v ∈ V

xe ≥ xcv if e ∈ Ec where c ∈ C
0 ≤ xiv ≤ 1 ∀v ∈ V and i ∈ C
0 ≤ xe ≤ 1 ∀e ∈ E.

(2)

<latexit sha1_base64="c8tp9vqtyTr+UM+TrI1QXqVvLgI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbQb0IRS8eK9gPaJeSTbNt2Gw2JFmhLP0RXjwo4tXf481/Y9ruQVsfDDzem2FmXiA508Z1v53C2vrG5lZxu7Szu7d/UD48auskVYS2SMIT1Q2wppwJ2jLMcNqViuI44LQTRHczv/NElWaJeDQTSf0YjwQLGcHGSp1qhG7QRXVQrrg1dw60SrycVCBHc1D+6g8TksZUGMKx1j3PlcbPsDKMcDot9VNNJSYRHtGepQLHVPvZ/NwpOrPKEIWJsiUMmqu/JzIcaz2JA9sZYzPWy95M/M/rpSa89jMmZGqoIItFYcqRSdDsdzRkihLDJ5Zgopi9FZExVpgYm1DJhuAtv7xK2vWad1nzHuqVxm0eRxFO4BTOwYMraMA9NKEFBCJ4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/LfmOJw==</latexit>

k = 3
<latexit sha1_base64="ga4wmvDMMVCgoJZV+Yph3jsbgsU=">AAACCXicbVC7SgNBFL0bXzG+opY2g4lgFXaDqI0QtLGMYB6QLGF2cpMMmX0wMyuEJa2Nv2JjoYitf2Dn3zibbKGJFwYO59x77tzjRYIrbdvfVm5ldW19I79Z2Nre2d0r7h80VRhLhg0WilC2PapQ8AAbmmuB7Ugi9T2BLW98k+qtB5SKh8G9nkTo+nQY8AFnVBuqVyTlMbkiZ2Xi8YhKY4BEonFQGOispWRX7FmRZeBkoARZ1XvFr24/ZLFvDJigSnUcO9JukpozgdNCN1YYUTamQ+wYGFAflZvMLpmSE8P0ySCU5gWazNjfEwn1lZr4nun0qR6pRS0l/9M6sR5cugkPolhjwOaLBrEgOiRpLKTPJTItJgZQJrn5K2EjKinTJryCCcFZPHkZNKsV57zi3FVLtessjjwcwTGcggMXUINbqEMDGDzCM7zCm/VkvVjv1se8NWdlM4fwp6zPH/gMmUo=</latexit>

k = 4 bipartite representation
<latexit sha1_base64="ga4wmvDMMVCgoJZV+Yph3jsbgsU=">AAACCXicbVC7SgNBFL0bXzG+opY2g4lgFXaDqI0QtLGMYB6QLGF2cpMMmX0wMyuEJa2Nv2JjoYitf2Dn3zibbKGJFwYO59x77tzjRYIrbdvfVm5ldW19I79Z2Nre2d0r7h80VRhLhg0WilC2PapQ8AAbmmuB7Ugi9T2BLW98k+qtB5SKh8G9nkTo+nQY8AFnVBuqVyTlMbkiZ2Xi8YhKY4BEonFQGOispWRX7FmRZeBkoARZ1XvFr24/ZLFvDJigSnUcO9JukpozgdNCN1YYUTamQ+wYGFAflZvMLpmSE8P0ySCU5gWazNjfEwn1lZr4nun0qR6pRS0l/9M6sR5cugkPolhjwOaLBrEgOiRpLKTPJTItJgZQJrn5K2EjKinTJryCCcFZPHkZNKsV57zi3FVLtessjjwcwTGcggMXUINbqEMDGDzCM7zCm/VkvVjv1se8NWdlM4fwp6zPH/gMmUo=</latexit>

k = 4 bipartite representation

e1 e2 e3 e4

(1,2) (1,3) (1,4) (2,3) (2,4) (2,3)

Figure 2. For integers k ≥ 3 there is an edge-colored hypergraph
for which the MINECC LP integrality gap is 2(1− 1/k) = 2(1−
1/(r + 1)). The instance involves k edges of different colors, and
for each pair of distinct edges there is one node in the intersection.
This can be visualized using a bipartite representation: there is a
hyperedge-node (squares) for each color, and each standard node
(circles) is defined by pairs of hyperedge-nodes.

The variable xiu can be interpreted as the distance between
node u and color i. Every node color map Y can be trans-
lated into a binary feasible solution for this LP by setting
xiv = 0 if Y [v] = i and xiv = 1 otherwise, and by setting
xe = 1 when e ∈ MY and xe = 0 otherwise. The con-
straints xe ≥ xcv for e ∈ Ec and the nonnegativity of we
together imply that xe = maxv∈e x

c
v at optimality.

2.1. Generic LP Rounding Algorithm

Algorithm 1 is our generic algorithm for rounding the
MINECC LP relaxation, which takes an interval I ⊆ [0, 1]
as input. It generates a random threshold ρ ∈ I , and identi-
fies the set of nodes v satisfying xiv < ρ for each cluster i.
If xiv < ρ, we say that color i “wants” node v and that i is
a candidate color for node i. A node may have more than
one candidate color, so we generate a random permutation
of {1, 2, . . . k} that defines the priority of each color. In
Algorithm 1, a color has higher priority if it comes later in
the permutation π. We then define Y [v] to be the color that
has the highest priority among all nodes that want v. Nodes
that are not wanted by any color are given an arbitrary color.

The rounding schemes of Amburg et al. (2020) amount to
running Algorithm 1 with a fixed threshold (i.e., I is a single
point). Here we use a random threshold from an interval
I , similar to rounding strategies for convex relaxations of
other multiway cut objectives (Călinescu et al., 2000; Ene
et al., 2013; Chekuri & Madan, 2016). Our goal is to bound
the probability that e ∈MY for an arbitrary e ∈ E.
Observation 1. Let Y be the output of Algorithm 1 for some
interval I ⊆ [0, 1]. If P [e ∈MY] ≤ pxe for every e ∈ E,
the output node coloring Y is a p-approximate solution for
MINECC, since the expected cost of Y is

E
[∑
e∈E

we1MY
(e)
]

=
∑
e∈E

we·P [e ∈MY] ≤ p
∑
e∈E

wexe.

Given this observation, in order to prove approximation
guarantees for Algorithm 1, we will simply focus on bound-
ing P [e ∈MY] under different conditions on I , r, and k.

3

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Algorithm 1 GenColorRound(H, I)
Input: H = (V,E,C, `), interval I ⊆ [0, 1]
Output: Node coloring map Y : V → C
Solve the LP-relaxation (2)
ρ← uniform random value in I

5: π ← uniform random permutation of {1, 2, . . . , k}
For i ∈ {1, 2, . . . k} define Si = {v ∈ V : xiv < ρ}
for i = 1 to k do

for v ∈ Sπ(i) do
Y [v] = π(i)

10: end for
end for
If v /∈

⋃
i Si, set Y [v] to an arbitrary color

2.2. Linear Program Integrality Gap

Before proving new approximation guarantees, we estab-
lish a new integrality gap result for the canonical MINECC
LP. This is related to integrality gap results for convex re-
laxations of NODE-MC (Garg et al., 2004) and HYPER-
MC (Ene et al., 2013). For these problems, an integrality
gap was given only in terms of the number of clusters k. For
MINECC, we establish a gap in terms of k and r simultane-
ously by considering a hypergraph where k = r + 1. See
Figure 2 for an illustration and the appendix for a proof.

Lemma 2.1. For every integer k ≥ 3, there exists an in-
stance H = (V,E,C, `) of MINECC with k = r + 1
whose optimal solution makes k − 1 = r mistakes, and for
which the LP relaxation has a value of k2 = r+1

2 . Thus, the
integrality gap is 2

(
1− 1

k

)
= 2
(
1− 1

r+1

)
.

2.3. Comparison with the NODE-MC LP Relaxation

Amburg et al. (2020) showed that MINECC reduces to
NODE-MC in an approximation-preserving way, implying
a 2(1− 1/k) approximation based on rounding the NODE-
MC LP relaxation. When k ≤ 2(r + 1), this is better than
the approximation guarantee the authors obtain for directly
rounding the canonical MINECC LP. Despite this, we show
that the canonical LP is tighter than the NODE-MC LP.

Theorem 2.2. The value of the MINECC LP relaxation is
always at least as large as (and can be strictly larger than)
the lower bound obtained by reducing to NODE-MC and
using the NODE-MC LP relaxation.

Appendix D provides a more formal statement of this result
and a proof, along with additional details on the relationship
between MINECC and multiway cut objectives. In particu-
lar, we detail the approximation-preserving reductions from
MINECC to NODE-MC and HYPER-MC, and show that
the best approximation results obtained via these reductions
are in general not as strong as the approximation guarantees
we develop using the MINECC LP relaxation.

3. Optimal LP Rounding for Hypergraphs
This section covers our optimal rounding scheme for
the MINECC LP relaxation when r > 2, i.e., the hy-
pergraph case. We provide our min

{
2− 2

k , 2−
2
r+1

}
-

approximation by combining two different approximation
guarantees, obtained by running Algorithm 1 using two dif-
ferent intervals I . Most proofs are deferred to the appendix.

Proof overview. Throughout the section we consider an
arbitrary fixed edge e with color c = `(e) and LP variable
xe = maxv∈e x

c
v. Recall that we say color i “wants” node

v when xiv < ρ for the randomly chosen threshold ρ ∈ I .
In order to guarantee there is no mistake at e, color c must
want every node in e, which is true if and only if ρ > xe.
Even if ρ > xe, there is a chance of making a mistake at e if
there are any other colors that want nodes from e. Our goal
is to bound the probability of making a mistake at e in terms
of xe. If P [e ∈MY] ≤ pxe for some p, then Observation 1
guarantees Algorithm 1 is a p-approximation.

The color threshold value. To aid in our results, we define
the first color threshold of e to be z(e)1 = minv∈e,i 6=c x

i
v.

This is the smallest value such that ρ > z
(e)
1 implies there

exists a color other than c that wants a node in e.
Observation 2. 1− z(e)1 ≤ xe.

To prove the observation, let j 6= c and v ∈ e be chosen
so that z(e)1 = xjv. The first constraint in the MINECC LP
implies that

∑k
i=1(1− xiv) = 1 =⇒ 2− xjv − xcv ≤ 1, so

1 ≤ xjv + xcv ≤ z
(e)
1 + xe. We use this observation in the

proofs of Theorems 3.1 and 3.2.

To simplify notation, we can write z1 instead of z(e)1 , while
still noting that this value is specific to edge e. We keep the
1 in the subscript of z1 since this is the first color threshold.
We will define other color thresholds later for our rounding
schemes for the graph case (r = 2), but this is not necessary
for the results in this section.

Theorem 3.1. Algorithm 1 with I = (1
2 ,

3
4) is a 2

(
1− 1

k

)
-

approximation for MINECC.

Proof. If k = 2, the constraint matrix for the LP relax-
ation is totally unimodular, so every basic feasible LP so-
lution will have binary variables and our rounding proce-
dure will find the optimal solution. Assume for the rest
of the proof that k ≥ 3. By Observation 1, it suffices to
show that P [e ∈MY] ≤ 2

(
1− 1

k

)
xe. If xe ≥ 3

4 , then
P [e ∈MY] ≤ 1 ≤ 4

3xe ≤ 2
(
1− 1

k

)
xe for k ≥ 3. We

break up the remainder of the proof into two cases.

Case 1: xe < 1/2. For ρ ∈ (1
2 ,

3
4), color c = `(e) will

want all nodes in e because xe < 1
2 . Observation 2 implies

that z1 > 1
2 . If z1 ≥ 3

4 , then no other color i 6= c will
want a node from e, meaning that P [e ∈MY] = 0. If

4

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

1
2 < z1 ≤ 3

4 , it is possible to make a mistake at e only if
ρ > z1, and even then the probability of making a mistake
is at most k−1k , since there is a 1

k probability that color c is
given the highest priority by the random permutation π in
Algorithm 1. Combining this with Observation 2 shows

P [e ∈MY] = P [ρ > z1]P [e ∈MY | ρ > z1]

≤
3
4 − z1
3
4 −

1
2

· k − 1

k
= 4

(
k − 1

k

)(
1− z1 −

1

4

)
≤ 4

(
1− 1

k

)(
xe −

xe
2

)
= 2

(
1− 1

k

)
xe.

Case 2: xe ∈
[
1
2 ,

3
4

)
. We apply a similar set of steps to see

P [e ∈MY] = P [ρ ≤ xe]P [e ∈MY | ρ ≤ xe]
+ P [ρ > xe]P [e ∈MY | ρ > xe]

=
xe − 1

2
3
4 −

1
2

· 1 +
3
4 − xe
3
4 −

1
2

· k − 1

k

= 4

(
xe
k

+
k − 3

4k

)
≤ 4

(
1

k
+
k − 3

2k

)
xe

= 2

(
1− 1

k

)
xe.

Theorem 3.2 provides an approximation guarantee in terms
of r, using a different interval. The main difference from
Theorem 3.1 is that we use the fact that ρ < 2

3 to bound the
number of different colors that want a node in e, in terms
of r. This allows us to bound the probability of making a
mistake at e in terms of r instead of in terms of k.
Theorem 3.2. Algorithm 1 with I = (1

2 ,
2
3) is a 2

(
1− 1

r+1

)
-

approximation for MINECC when r > 2.

Combining Theorems 3.1 and 3.2 provides an optimal round-
ing strategy, matching the integrality gap from Lemma 2.1.

4. Optimal LP Rounding for Graphs
If r = 2, Theorem 3.2 can be slightly adjusted to prove
that when I = (1

2 ,
2
3), Algorithm 1 is a 3

2 -approximation
for MINECC. Although this improves on the previous 5

3 -
approximation (Amburg et al., 2020), it does not match
the integrality gap of 4

3 established by Lemma 2.1. This
section shows how to use a larger interval I = (1

2 ,
7
8) to

obtain a 4
3 -approximation guarantee for the graph version

(r = 2). The overall proof strategy mirrors our results for
hypergraphs, but it requires several new technical results
and a substantially more in-depth analysis.

4.1. Proof Setup, Overview, and Challenges

We consider a fixed arbitrary edge e = (u, v) with color
c = `(e) and LP variable xe = max{xcu, xcv}. We will

show that for every feasible solution to the LP relaxation,

P [e ∈MY] ≤ 4

3
xe. (3)

By Observation 1, this guarantees the 4
3 -approximation. In-

equality (3) is easy to show for extreme values of xe.
Lemma 4.1. If xe /∈ (1

8 ,
3
4), for Algorithm 1 with I =

(1
2 ,

7
8), then P [e ∈MY] ≤ 4

3xe.

Proof. If xe ≥ 3
4 , then P [e ∈MY] ≤ 1 ≤ 4

3xe. If xe ≤ 1
8 ,

then for every ρ ∈ (1
2 ,

7
8), color c = `(e) wants both u and v,

and the constraint
∑k
j=1 x

j
u = k−1 can be used to show that

no other color wants either u or v, so P [e ∈MY] = 0.

The following subsections cover the case xe ∈ (1
8 ,

3
4),

which is far more challenging. The difficulty in proving
inequality (3) for this case is that the probability of making
a mistake depends heavily on the relationship among LP
variables xe and {xiu, xiv : i ∈ [k]}, and more specifically
the relative ordering of these variables. Since k can be ar-
bitrarily large, there can be many LP variables to consider,
many possible orderings of these variables, and many dif-
ferent colors that want nodes u and v. The best strategy for
bounding P [e ∈MY] depends on the configuration of LP
variables, leading to an in-depth case analysis.

To provide a systematic proof for all cases, we first intro-
duce a new set of variables {zi}i∈[k−1] that can be viewed
as a convenient rearrangement of the node-color distance
variables {xiu, xiv : i ∈ [k]}. These generalize the first color
threshold used in Section 3, and indicate the points at which
there is a change in the number of distinct colors that “want”
a node in e. We prove a key lemma on the relationship
between xe and the {zi}i∈[k−1] variables (Lemma 4.2), and
then show how to express P [e ∈MY] in terms of these
variables for different possible feasible LP solutions. We
finally prove P [e ∈MY] ≤ 4

3xe under different possible
conditions by solving small auxiliary linear programs.

4.2. The Color Threshold Lemma

For i ∈ {0, 1, 2, . . . , k−1}, the ith color threshold zi is the
smallest nonnegative value such that for every ρ > zi, there
are at least i distinct colors not equal to c = `(e) that want a
node in e. This definition does not require the i colors to all
want the same node in e. More precisely, for each of the i
colors, there exists a node v ∈ e that is wanted by that color.
By definition, the color threshold values are monotonic:

0 = z0 ≤ z1 ≤ z2 ≤ · · · ≤ zk−1 ≤ 1. (4)

These values make it easier to express the probability of
making a mistake at e if we know ρ > xe and we know the
value of ρ relative to the color threshold values. Formally,

P [e ∈MY | ρ > xe and zi < ρ ≤ zi+1] = i
i+1 . (5)

5

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

The following lemma is a generalization of Observation 1,
though its proof is more involved.

Lemma 4.2. For every integer t ≤ k
2 ,

t ≤ xe + zt + zt+1 + · · ·+ z2t−1. (6)

4.3. Auxiliary LPs for Bounding Probabilities

If we know where the color threshold values {zi}i∈[k−1] are
located relative to xe and the endpoints of I = (1

2 ,
7
8), we

can derive an expression for P [e ∈MY] in terms of these
values when applying Algorithm 1. The goal would then
be to apply a sequence of carefully chosen inequalities to
prove that this expression is bounded above by 4

3xe. This
subsection shows how to accomplish this task when we
already know the relative ordering of these variables. In the
next subsection, we apply this strategy to guarantee that this
holds for all possible orderings. The following lemmas both
rely on Lemma 4.2.

Lemma 4.3. If xe ∈ (1
8 ,

1
2) and zp−1 ≤ 1

2 ≤ zp ≤ zq ≤
7
8 ≤ zq+1 for integers p ≤ q, then p = 1, q ≤ 6, and
P [e ∈MY] ≤ 8

3Aqxe where Aq is the optimal solution to

max
q

q + 1

7

8
χ−

q∑
j=1

1

j(j + 1)
ωj

s.t. (A{i}) ωi − ωi+1 ≤ 0 for i = 1, . . . , 5
(A6) χ− ω1 ≤ 1
(A7) 2χ− ω2 − ω3 ≤ 1
(A8) 3χ− 3ω5 ≤ 1
(A9) − χ ≤ −2 (A10) ωq − 7

8χ ≤ 0.

(7)

We derive an analogous result for the case xe ∈ [12 ,
3
4).

Lemma 4.4. If xe ∈ [12 ,
3
4) and zp−1 ≤ xe ≤ zp ≤ zq ≤

7
8 ≤ zq+1 for integers p ≤ q, then p ≤ 5, q ≤ 10, and
P [e ∈MY] ≤ 8

3Bp,qxe where Bp,q is the solution to

max
1

p
+

(
q

q + 1

7

8
− 1

2

)
χ−

q∑
j=p

1

j(j + 1)
ωj

s.t. (B{i}) ωi − ωi+1 ≤ 0 for i = 1, . . . , 9
(B10) χ− ω1 ≤ 1
(B11) 2χ− ω2 − ω3 ≤ 1
(B12) 3χ− ω3 − ω4 − ω5 ≤ 1
(B13) 4χ− 4ω7 ≤ 1 (B14) ωp−1 ≤ 1
(B15) − ωp ≤ −1 (B16) ωq − 7

8χ ≤ 0.

(8)

In order to prove that P [e ∈MY] ≤ 4
3xe, it remains to

show that for all valid choices of p and q, the optimal so-
lutions LP (7) and LP (8) are bounded above by 1

2 . The
result will then follow by Lemmas 4.3 and 4.4. The dif-
ficulty is that there are many valid choices of p and q to
check, each of which requires a different linear program.
When xe ∈ (1

8 ,
1
2), Lemma 4.3 indicates that p = 1 and

q ∈ {1, 2, 3, 4, 5, 6}, so we must consider six cases. When
xe ∈ [12 ,

3
4), Lemma 4.4 shows that any pair (p, q) satisfy-

ing p ≤ 5, q ≤ 10, and p ≤ q is a valid case, and there
are 40 such pairs. If we are content with simply computing
numerical solutions for each case, we can quickly confirm
that the optimal solution for each of the 46 linear programs
is bounded above by 1

2 . In the next subsection, we will show
how to obtain a complete analytical proof by using LP dual-
ity theory to extract a set of inequalities for each case that
will prove an upper bound on the solution to each auxiliary
LP. Note that there are many additional valid constraints
that we could add to LPs (7) and (8). We have omitted some
constraints and have simplified others in order to obtain the
smallest and simplest constraint set that suffices to prove
P [e ∈MY] ≤ 4

3xe. Adding more constraints makes the
analysis more cumbersome without improving the bound.

4.4. Using LP Duality for Case Analysis

For each valid choice of q, we can use LP duality to bound
the optimal solution of LP (7) above by 1

2 . The same basic
steps also work for LP (8). The dual of LP (7) is another
LP with a variable for each constraint A{i}. By LP duality
theory, every feasible solution to the dual provides an upper
bound on the primal LP objective, so it suffices to find a set
of dual variables with a dual LP value of 1

2 or less.

Proof for q = 1. We illustrate this for LP (7) when q = 1.
The primal LP objective for this case is 7

16χ−
1
2ω1, and we

must bound this above by 1
2 . Computing an optimal solution

for the dual LP, we find that the constraint (A6) corresponds
to a dual variable of 1

2 , constraint (A9) has a dual variable
of 1

16 , and all other dual variables are zero. Multiplying
constraints by the dual variables and summing produces a
sequence of inequalities that proves the desired result:

(A6) χ− ω1 ≤ 1 and (A9) −χ ≤ −2 :

=⇒ 1

2
(χ− ω1) +

1

16
(−χ) ≤ 1

2
(1) +

1

16
(−2)

=⇒ 7

16
χ− 1

2
ω1 ≤

3

8
≤ 1

2
for all valid χ, ω1.

Table 3 in Appendix C provides dual variables for LP (7)
for all other choices of q, and outlines a similar strategy for
bounding LP (8). We conclude the following result.
Lemma 4.5. For any integer q ∈ {1, 2, . . . , 6}, the optimal
solution to linear program (7) is at most 1

2 , and for any pair
of integers (p, q) satisfying 1 ≤ p ≤ 5 and p ≤ q ≤ 10, the
optimal solution to linear program (8) is at most 1

2 . Hence,
for every xe ∈ (1

8 ,
3
4), P [e ∈MY] ≤ 4

3xe where Y is the
node coloring returned by Algorithm 1 when I = (1

2 ,
7
8).

Our main approximation result for r = 2 is now just a
corollary of Lemmas 4.1 and 4.5 and Observation 1.
Theorem 4.6. Algorithm 1 with I = (1

2 ,
7
8) is a 4

3 -
approximation algorithm for COLOR-EC.

6

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e

<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e

<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e

<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e

<latexit sha1_base64="R7P1U+hePPBb6e8Xy2jElmY/qHE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix66bEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LivedcVrXJWrd3kcBTiFM7gAD26gCjWoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBn3GM0g==</latexit>

H
<latexit sha1_base64="Wvi2dauVFo8Qohybl1ZHjLObTXs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix60GML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHssHM07Qj+hA8pAzaqxUv+uVym7FnYEsEy8nZchR65W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NDp2QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasJrP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbIo2BG/x5WXSPK94lxWvflGu3uRxFOAYTuAMPLiCKtxDDRrAAOEZXuHNeXRenHfnY9664uQzR/AHzucPne2M0Q==</latexit>

G
<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e
<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e

<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e
<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e

<latexit sha1_base64="q1WW3rLfU1JyS+tfwms7vtsZuuQ=">AAACH3icbVC7TsMwFHXKq5RXgJHFUCExVQlCgNSlgoWxSPQhNVHlOE5r1bEj20Gqos58Bx/ACp/Ahlj7BfwGTpuBthzZOkfn3qtrnyBhVGnHmVqltfWNza3ydmVnd2//wD48aiuRSkxaWDAhuwFShFFOWppqRrqJJCgOGOkEo/u83nkmUlHBn/Q4IX6MBpxGFCNtrL59iqBX9+owmBM2lJ+wYAIrfbvq1JwZ4KpwC1EFBZp9+8cLBU5jwjVmSKme6yTaz5DUFDMyqXipIgnCIzQgPSM5ionys9lXJvDcOCGMhDSXazhz/05kKFZqHAemM0Z6qJZruflfrZfq6NbPKE9STTieL4pSBrWAeS4wpJJgzcZGICypeSvEQyQR1ia9hS2BECONAjUxybjLOayK9mXNva65j1fVxl2RURmcgDNwAVxwAxrgATRBC2DwAt7AO/iwXq1P68v6nreWrGLmGCzAmv4CujOfTA==</latexit>

a b c d e

<latexit sha1_base64="3yK9BijKdAV6EiQ0+rUoYw4XQ9I=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIqOCm6MZlBfuANpTJZNIOnUzCzEQopeDGX3HjQhG3/oQ7/8ZJmoW2HpjL4Zx7uXOPn3CmtON8W6Wl5ZXVtfJ6ZWNza3vH3t1rqTiVhDZJzGPZ8bGinAna1Exz2kkkxZHPadsf3WR++4FKxWJxr8cJ9SI8ECxkBGsj9e0D7KPeFfJJVkmQ81mlfbvq1JwcaJG4BalCgUbf/uoFMUkjKjThWKmu6yTam2CpGeF0WumliiaYjPCAdg0VOKLKm+Q3TNGxUQIUxtI8oVGu/p6Y4EipceSbzgjroZr3MvE/r5vq8NKbMJGkmgoyWxSmHOkYZYGggElKNB8bgolk5q+IDLHERJvYKiYEd/7kRdI6rbnnNffurFq/LuIowyEcwQm4cAF1uIUGNIHAIzzDK7xZT9aL9W59zFpLVjGzD39gff4Ak/yU7Q==</latexit>

ab bc cd bd be

<latexit sha1_base64="3yK9BijKdAV6EiQ0+rUoYw4XQ9I=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIqOCm6MZlBfuANpTJZNIOnUzCzEQopeDGX3HjQhG3/oQ7/8ZJmoW2HpjL4Zx7uXOPn3CmtON8W6Wl5ZXVtfJ6ZWNza3vH3t1rqTiVhDZJzGPZ8bGinAna1Exz2kkkxZHPadsf3WR++4FKxWJxr8cJ9SI8ECxkBGsj9e0D7KPeFfJJVkmQ81mlfbvq1JwcaJG4BalCgUbf/uoFMUkjKjThWKmu6yTam2CpGeF0WumliiaYjPCAdg0VOKLKm+Q3TNGxUQIUxtI8oVGu/p6Y4EipceSbzgjroZr3MvE/r5vq8NKbMJGkmgoyWxSmHOkYZYGggElKNB8bgolk5q+IDLHERJvYKiYEd/7kRdI6rbnnNffurFq/LuIowyEcwQm4cAF1uIUGNIHAIzzDK7xZT9aL9W59zFpLVjGzD39gff4Ak/yU7Q==</latexit>

ab bc cd bd be
<latexit sha1_base64="3yK9BijKdAV6EiQ0+rUoYw4XQ9I=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIqOCm6MZlBfuANpTJZNIOnUzCzEQopeDGX3HjQhG3/oQ7/8ZJmoW2HpjL4Zx7uXOPn3CmtON8W6Wl5ZXVtfJ6ZWNza3vH3t1rqTiVhDZJzGPZ8bGinAna1Exz2kkkxZHPadsf3WR++4FKxWJxr8cJ9SI8ECxkBGsj9e0D7KPeFfJJVkmQ81mlfbvq1JwcaJG4BalCgUbf/uoFMUkjKjThWKmu6yTam2CpGeF0WumliiaYjPCAdg0VOKLKm+Q3TNGxUQIUxtI8oVGu/p6Y4EipceSbzgjroZr3MvE/r5vq8NKbMJGkmgoyWxSmHOkYZYGggElKNB8bgolk5q+IDLHERJvYKiYEd/7kRdI6rbnnNffurFq/LuIowyEcwQm4cAF1uIUGNIHAIzzDK7xZT9aL9W59zFpLVjGzD39gff4Ak/yU7Q==</latexit>

ab bc cd bd be

<latexit sha1_base64="3yK9BijKdAV6EiQ0+rUoYw4XQ9I=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIqOCm6MZlBfuANpTJZNIOnUzCzEQopeDGX3HjQhG3/oQ7/8ZJmoW2HpjL4Zx7uXOPn3CmtON8W6Wl5ZXVtfJ6ZWNza3vH3t1rqTiVhDZJzGPZ8bGinAna1Exz2kkkxZHPadsf3WR++4FKxWJxr8cJ9SI8ECxkBGsj9e0D7KPeFfJJVkmQ81mlfbvq1JwcaJG4BalCgUbf/uoFMUkjKjThWKmu6yTam2CpGeF0WumliiaYjPCAdg0VOKLKm+Q3TNGxUQIUxtI8oVGu/p6Y4EipceSbzgjroZr3MvE/r5vq8NKbMJGkmgoyWxSmHOkYZYGggElKNB8bgolk5q+IDLHERJvYKiYEd/7kRdI6rbnnNffurFq/LuIowyEcwQm4cAF1uIUGNIHAIzzDK7xZT9aL9W59zFpLVjGzD39gff4Ak/yU7Q==</latexit>

ab bc cd bd be

<latexit sha1_base64="3yK9BijKdAV6EiQ0+rUoYw4XQ9I=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIqOCm6MZlBfuANpTJZNIOnUzCzEQopeDGX3HjQhG3/oQ7/8ZJmoW2HpjL4Zx7uXOPn3CmtON8W6Wl5ZXVtfJ6ZWNza3vH3t1rqTiVhDZJzGPZ8bGinAna1Exz2kkkxZHPadsf3WR++4FKxWJxr8cJ9SI8ECxkBGsj9e0D7KPeFfJJVkmQ81mlfbvq1JwcaJG4BalCgUbf/uoFMUkjKjThWKmu6yTam2CpGeF0WumliiaYjPCAdg0VOKLKm+Q3TNGxUQIUxtI8oVGu/p6Y4EipceSbzgjroZr3MvE/r5vq8NKbMJGkmgoyWxSmHOkYZYGggElKNB8bgolk5q+IDLHERJvYKiYEd/7kRdI6rbnnNffurFq/LuIowyEcwQm4cAF1uIUGNIHAIzzDK7xZT9aL9W59zFpLVjGzD39gff4Ak/yU7Q==</latexit>

ab bc cd bd be

<latexit sha1_base64="qFeqzbLnersp30zjDsSHpEQzaws=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseilx4r2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7ud+54lrI2L1iNOE+xEdKREKRtFKnf6YYtaYDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOyMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8NbPhEpS5IotF4WpJBiT+e9kKDRnKKeWUKaFvZWwMdWUoU2oZEPwVl9eJ+2rqlereg/XlfpdHkcRzuAcLsGDG6hDA5rQAgYTeIZXeHMS58V5dz6WrQUnnzmFP3A+fwBpRI+f</latexit>

Ĥ

Figure 3. MINECC can be reduced to VERTEX COVER by replac-
ing each hyperedge with a node and adding an edge between nodes
that represent overlapping hyperedges of different colors. VERTEX

COVER on a graph G can be reduced to MINECC by introducing
a node for each edge in G, and a hyperedge of a unique color for
each node-neighborhood in G.

The appendix details several challenges that would need
to be overcome in order to avoid a lengthy case analysis
when trying to prove a 4

3 -approximation. Among other
challenges, we prove the following result, indicating that if
we apply Algorithm 1 with a different interval I , it would
either become more challenging or impossible (depending
on the interval I) to prove inequality (3).
Lemma 4.7. Let Y denote the node color map returned by
running Algorithm 1 with I = (a, b) ⊆ (0, 1). If a > 1

2 ,
there exists a feasible LP solution such that P [e ∈MY] >
4
3xe. If a ≤ 1

2 and b < 7
8 , there exists a feasible LP solution

such that P [e ∈MY] > 4
3xe.

5. Vertex Cover Equivalence and Algorithms
Cai & Leung (2018) showed that when r = 2, MINECC can
be reduced in an approximation-preserving way to VERTEX
COVER. We not only extend this result to r > 2, but also
prove an approximation-preserving reduction in the other
direction that only applies if we consider the hypergraph
(r > 2) setting. This immediately leads to new combinato-
rial approximation algorithms and refined hardness results.
Explicitly forming the reduced VERTEX COVER instance
and applying existing VERTEX COVER algorithms leads
to runtimes that scale superlinearly in terms of

∑
e∈E |e|

(the size of the hypergraph). As a key algorithmic contribu-
tion, we design careful implicit implementations of existing
VERTEX COVER algorithms to provide 2-approximations
for MINECC that have a runtime of O(

∑
e∈E |e|).

5.1. Vertex Cover Equivalence

The equivalence between hypergraph MINECC and VER-
TEX COVER is summarized in two theorems (see Figure 3).

Theorem 5.1. Let G = (V,E) be a graph with maximum
degree ∆. VERTEX COVER on G can be reduced in an
approximation-preserving way to MINECC on an edge-
colored hypergraph H with rank r = ∆.
Theorem 5.2. An instance H = (V,E,C, `) of MINECC
can be reduced in an approximation-preserving way to an
instance of VERTEX COVER on a graph G with |E| nodes.

Theorem 5.1 implies new hardness results: assuming r and
k are arbitrarily large, it is NP-hard to approximate hyper-
graph MINECC to within a factor better than 1.3606 (Dinur
& Safra, 2005), and UGC-hard to approximate to within
a factor that is a constant amount smaller than 2 (Khot &
Regev, 2008). The relationship between maximum degree
in G and hypergraph rank in H implies furthermore that
it is UGC-hard to obtain a 2 − (2 + or(1)) ln ln r

ln r approx-
imation for rank-r MINECC (assuming arbitrarily large
k), using the VERTEX COVER hardness results of Austrin
et al. (2011). This result also implies that the maximum
independent set problem is reducible in an approximation-
preserving way to hypergraph MAXECC, indicating that
it is NP-hard to obtain an approximation for hypergraph
MAXECC that is sublinear in terms of the number of edges
in the hypergraph (Zuckerman, 2006).

Theorem 5.2 generalizes the reduction from graph
MINECC to VERTEX COVER shown by Cai & Leung
(2018). This can be seen by viewing MINECC as an
edge deletion problem. In an edge-colored hypergraph
H = (V,E,C, `), we say that (e, f) ∈ E × E is a bad
edge pair if e and f overlap and have different colors. The
MINECC objective is then equivalent to deleting a mini-
mum weight set of edges so that no bad edge pairs remain.
A simple 2-approximation for MINECC can be designed
by explicitly converting the edge-colored hypergraph into a
graph and applying existing combinatorial VERTEX COVER
algorithms. Visiting each node v ∈ V and then iterating
through all pairs of hyperedges incident to v in H takes
O(
∑
v∈V d

2
v) time where dv is the degree of node v. The

fastest algorithms for (unweighted and weighted) VERTEX
COVER take linear-time in terms of the number of edges in
the graph (Pitt, 1985; Bar-Yehuda & Even, 1985). There
can be up to O(|E|2) edges in the reduced graph G, so this
approach has a runtime of O(|E|2 +

∑
v∈V d

2
v).

5.2. Linear-time 2-Approximation Algorithm

It would be ideal to develop an algorithm for MINECC
whose runtime is not just linear in terms of the number of
edges in a reduced graph, but is linear in terms of the hy-
pergraph size, i.e., O(

∑
e∈E |e|). This may seem inherently

challenging, given that existing VERTEX COVER algorithms
rely on explicitly visiting all edges in a graph. However, this
can be accomplished using a careful implicit implementa-
tion of a VERTEX COVER algorithm. Pitt’s algorithm (Pitt,
1985) is a simple randomized 2-approximation for weighted
VERTEX COVER that iteratively visits edges in a graph
G = (VG, EG) in an arbitrary order. Each time it encoun-
ters an uncovered edge, it samples one of the two endpoints
(in proportion to the node weight) to include in the cover.
We will design a variant of Pitt’s algorithm that we can apply
directly to a MINECC instance H without ever forming G.

7

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Additional notation. Assume a fixed ordering of edges
E = {e1, e2, . . . , e|E|}. For notational simplicity, let
w(i) = wei and `(i) = `(ei) denote the weight and color
of the ith edge, respectively. For each node v ∈ V , using
a slight abuse of notation let v(j) denote the index of the
jth edge that is adjacent to v. These edge indices will be
stored in a list LE(v) = [v(1), v(2), · · · , v(dv)] where
dv is the degree of v. For example, if node v is in three
hyperedges {e2, e5, e9}, then LE(v) = [2, 5, 9]. We as-
sume that edges are ordered by color, so that in LE(v), all
of the indices for edges of color 1 come first, then edges
with color 2, etc (see Figure 4). If the hypergraph is not
stored this way, it can easily be re-arranged in O(

∑
e∈E |e|)

time to satisfy this property. Our main goal is to obtain a set
D of edge indices to delete that implicitly corresponds to
an approximate vertex cover in G. Once we have obtained
such an edge set D, we can iterate through all edges in H ,
and for each e ∈ E − D we can assign all nodes in e to
have color `(e), which takes O(

∑
e∈E |e|) time. It remains

to show how we can efficiently obtain a setD that implicitly
encodes a 2-approximate vertex cover in G.

Implicit implementation. Iterating through edges in G
is equivalent to iterating through bad edge pairs in H . A
bad edge pair is “covered” if one of the edges is added to
D. Pitt’s algorithm visits edges in G in an arbitrary order,
so we can traverse bad edge pairs in H in any way that is
convenient. We choose to iterate through nodes, and for
each node v ∈ V we will consider all bad edge pairs that
contain v in their intersection. Explicitly visiting all pairs of
edges incident to v takes O(d2v) time. However, deleting an
edge will cover multiple bad edge pairs at once, so we will
be able to “skip” many pairs to speed up the process. To
accomplish this, we maintain pointers to the front (f) and
back (b) of LE(v) = [v(1), v(2), · · · , v(dv)] which we
initialize to f = 1 and b = dv . Unless v is only adjacent to
nodes of one color, in the first step we know (ev(f), ev(b))
will be a bad edge pair that needs to be covered. Using
Pitt’s technique, we randomly sample one edge to delete
based on its weight. If we delete ev(f), then we no longer
need to consider any other bad edge pairs involving ev(f),
so we update f ← f + 1 and consider the next edge in
the list. Otherwise, we delete edge ev(b) and decrement the
back pointer: b ← b − 1. If at any point we encounter an
edge that was added to D previously, we move past it by
incrementing f or decrementing b. We stop this procedure
when `(v(f)) = `(v(b)). Even if f 6= b, our assumption
that edges are ordered by color means that there are no
more bad edge pairs containing v to consider. Figure 4 is
an illustration of this process. Since we update either f
or b in each step, and each step involves O(1) operations,
covering all bad edge pairs containing v takes O(dv) time.
We refer to this algorithm as PittColoring (see Appendix E
for pseudocode), and end with a summarizing theorem.

<latexit sha1_base64="vep7J2D0YQO5avca6G/pRFJmv+M=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diC/YA2lM120q7dbMLuplBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0P/NbY1Sax/LRTBL0IzqQPOSMGivVx71S2a24c5BV4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4LTYTTUmlI3oADuWShqh9rP5oVNybpU+CWNlSxoyV39PZDTSehIFtjOiZqiXvZn4n9dJTXjrZ1wmqUHJFovCVBATk9nXpM8VMiMmllCmuL2VsCFVlBmbTdGG4C2/vEqalxXvuuLVr8rVuzyOApzCGVyABzdQhQeoQQMYIDzDK7w5T86L8+58LFrXnHzmBP7A+fwB5SmNAA==</latexit>v

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)
<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)
<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)
<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)
<latexit sha1_base64="e3TkHA0LYawL9lPUS7rcVgDba/M=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KomICr0UvXisYD+gCWWz3bRLN5u4OxFK6Z/w4kERr/4db/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDv1W09cG5GoBxylPIhpX4lIMIpWakfEr/pVEnZLZbfizkCWiZeTMuSod0tffi9hWcwVMkmN6XhuisGYahRM8knRzwxPKRvSPu9YqmjMTTCe3Tshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtF1MBYqzZArNl8UZZJgQqbPk57QnKEcWUKZFvZWwgZUU4Y2oqINwVt8eZk0zyveZcW7vyjXbvI4CnAMJ3AGHlxBDe6gDg1gIOEZXuHNeXRenHfnY9664uQzR/AHzucPlrePBg==</latexit>

f b

<latexit sha1_base64="e3TkHA0LYawL9lPUS7rcVgDba/M=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KomICr0UvXisYD+gCWWz3bRLN5u4OxFK6Z/w4kERr/4db/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDv1W09cG5GoBxylPIhpX4lIMIpWakfEr/pVEnZLZbfizkCWiZeTMuSod0tffi9hWcwVMkmN6XhuisGYahRM8knRzwxPKRvSPu9YqmjMTTCe3Tshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtF1MBYqzZArNl8UZZJgQqbPk57QnKEcWUKZFvZWwgZUU4Y2oqINwVt8eZk0zyveZcW7vyjXbvI4CnAMJ3AGHlxBDe6gDg1gIOEZXuHNeXRenHfnY9664uQzR/AHzucPlrePBg==</latexit>

f b <latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="vep7J2D0YQO5avca6G/pRFJmv+M=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diC/YA2lM120q7dbMLuplBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0P/NbY1Sax/LRTBL0IzqQPOSMGivVx71S2a24c5BV4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4LTYTTUmlI3oADuWShqh9rP5oVNybpU+CWNlSxoyV39PZDTSehIFtjOiZqiXvZn4n9dJTXjrZ1wmqUHJFovCVBATk9nXpM8VMiMmllCmuL2VsCFVlBmbTdGG4C2/vEqalxXvuuLVr8rVuzyOApzCGVyABzdQhQeoQQMYIDzDK7w5T86L8+58LFrXnHzmBP7A+fwB5SmNAA==</latexit>v

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)
<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)
<latexit sha1_base64="j7GWBifaAYUGyEE/nOeXAGWJrUc=">AAACL3icbVBJS8NAFJ7UrdYt6tHLYBHqpSS1LtBLURCPFewCTQiT6bQdOlmYmRRK6D/y4l/pRUQRr/4Lp2kE0/pg4Fve48373JBRIQ3jTcutrW9sbuW3Czu7e/sH+uFRSwQRx6SJAxbwjosEYdQnTUklI52QE+S5jLTd0d3cb48JFzTwn+QkJLaHBj7tU4ykkhz9njjxuGSeT6FVs2owYZUMu8iwaoZd/jJHLxplIym4CswUFEFaDUefWb0ARx7xJWZIiK5phNKOEZcUMzItWJEgIcIjNCBdBX3kEWHHyb1TeKaUHuwHXD1fwkT9OxEjT4iJ56pOD8mhWPbm4n9eN5L9GzumfhhJ4uPFon7EoAzgPDzYo5xgySYKIMyp+ivEQ8QRliriggrBXD55FbQqZfOqbD5Wi/XbNI48OAGnoARMcA3q4AE0QBNg8Axm4B18aC/aq/apfS1ac1o6cwwypX3/APImpCE=</latexit>ev(1) ev(2) ev(3) ev(4) ev(5)

<latexit sha1_base64="/TUjPfh3l0/q29Ehd919cbtkQV8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquiHosiuDBQwX7Ae1Ssmm2jc0mS5ItlKX/wYsHRbz6f7z5b0zbPWjrg4HHezPMzAtizrRx3W8nt7K6tr6R3yxsbe/s7hX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfBm6jdHVGkmxaMZx9SPcF+wkBFsrNS4796WR6fdYsmtuDOgZeJlpAQZat3iV6cnSRJRYQjHWrc9NzZ+ipVhhNNJoZNoGmMyxH3atlTgiGo/nV07QSdW6aFQKlvCoJn6eyLFkdbjKLCdETYDvehNxf+8dmLCKz9lIk4MFWS+KEw4MhJNX0c9pigxfGwJJorZWxEZYIWJsQEVbAje4svLpHFW8S4q3sN5qXqdxZGHIziGMnhwCVW4gxrUgcATPMMrvDnSeXHenY95a87JZg7hD5zPH4jvjnM=</latexit>

LE(v)
<latexit sha1_base64="/TUjPfh3l0/q29Ehd919cbtkQV8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquiHosiuDBQwX7Ae1Ssmm2jc0mS5ItlKX/wYsHRbz6f7z5b0zbPWjrg4HHezPMzAtizrRx3W8nt7K6tr6R3yxsbe/s7hX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfBm6jdHVGkmxaMZx9SPcF+wkBFsrNS4796WR6fdYsmtuDOgZeJlpAQZat3iV6cnSRJRYQjHWrc9NzZ+ipVhhNNJoZNoGmMyxH3atlTgiGo/nV07QSdW6aFQKlvCoJn6eyLFkdbjKLCdETYDvehNxf+8dmLCKz9lIk4MFWS+KEw4MhJNX0c9pigxfGwJJorZWxEZYIWJsQEVbAje4svLpHFW8S4q3sN5qXqdxZGHIziGMnhwCVW4gxrUgcATPMMrvDnSeXHenY95a87JZg7hD5zPH4jvjnM=</latexit>

LE(v)

<latexit sha1_base64="e3TkHA0LYawL9lPUS7rcVgDba/M=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KomICr0UvXisYD+gCWWz3bRLN5u4OxFK6Z/w4kERr/4db/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDv1W09cG5GoBxylPIhpX4lIMIpWakfEr/pVEnZLZbfizkCWiZeTMuSod0tffi9hWcwVMkmN6XhuisGYahRM8knRzwxPKRvSPu9YqmjMTTCe3Tshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtF1MBYqzZArNl8UZZJgQqbPk57QnKEcWUKZFvZWwgZUU4Y2oqINwVt8eZk0zyveZcW7vyjXbvI4CnAMJ3AGHlxBDe6gDg1gIOEZXuHNeXRenHfnY9664uQzR/AHzucPlrePBg==</latexit>

f b

<latexit sha1_base64="e3TkHA0LYawL9lPUS7rcVgDba/M=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KomICr0UvXisYD+gCWWz3bRLN5u4OxFK6Z/w4kERr/4db/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbBa2its7u3v7pYPDpkkyzXiDJTLR7ZAaLoXiDRQoeTvVnMah5K1weDv1W09cG5GoBxylPIhpX4lIMIpWakfEr/pVEnZLZbfizkCWiZeTMuSod0tffi9hWcwVMkmN6XhuisGYahRM8knRzwxPKRvSPu9YqmjMTTCe3Tshp1bpkSjRthSSmfp7YkxjY0ZxaDtjigOz6E3F/7xOhtF1MBYqzZArNl8UZZJgQqbPk57QnKEcWUKZFvZWwgZUU4Y2oqINwVt8eZk0zyveZcW7vyjXbvI4CnAMJ3AGHlxBDe6gDg1gIOEZXuHNeXRenHfnY9664uQzR/AHzucPlrePBg==</latexit>

f b

A B C D

<latexit sha1_base64="AsqJ1j5y7PnEdYdmbbavSmEFqws=">AAAB+nicbVDLTsJAFJ3iC/FVdOlmIpjghrQs1CXRjUtM5JFA00yntzBh+sjMFEMqn+LGhca49Uvc+TcO0IWCJ7nJyTn35t57vIQzqSzr2yhsbG5t7xR3S3v7B4dHZvm4I+NUUGjTmMei5xEJnEXQVkxx6CUCSOhx6Hrj27nfnYCQLI4e1DQBJyTDiAWMEqUl1yz7wEEBroKbTWr2xazqmhWrbi2A14mdkwrK0XLNr4Ef0zSESFFOpOzbVqKcjAjFKIdZaZBKSAgdkyH0NY1ICNLJFqfP8LlWfBzEQlek8EL9PZGRUMpp6OnOkKiRXPXm4n9eP1XBtZOxKEkVRHS5KEg5VjGe54B9JoAqPtWEUMH0rZiOiCBU6bRKOgR79eV10mnU7cu6fd+oNG/yOIroFJ2hGrLRFWqiO9RCbUTRI3pGr+jNeDJejHfjY9laMPKZE/QHxucPlqeS6A==</latexit>

delete ev(1)

Figure 4. An illustration for covering bad edge pairs containing a
node v. (A) v is contained in 5 edges and 8 bad edge pairs. (B)
Consider edges at opposite ends of v’s edge list LE(v), ordered by
color. Edges ev(1) and ev(5) define a bad edge pair. (C) Given a
bad edge pair, sample one to delete. (D) Once one ev(1) is deleted,
we no longer consider bad edge pairs containing this edge, so we
can advance the pointer f to the next edge in LE(v).

Table 1. Approximation factors (ratio between algorithm output
and LP lower bound) and runtimes obtained on five benchmark
edge-colored hypergraphs. MajorityVote (MV) is deterministic.
Our vertex cover algorithms PittColoring and MatchColoring
both involve some amount of randomization, so we list the mean
values and standard deviations over 50 runs.

Ratio to LP lower bound

Dataset LP MV PittColoring MatchColoring

Brain 1.0 1.01 1.07 ±0.01 1.08 ±0.01
Cooking 1.0 1.21 1.23 ±0.01 1.23 ±0.0
DAWN 1.0 1.09 1.57 ±0.04 1.58 ±0.03
MAG-10 1.0 1.18 1.39 ±0.01 1.49 ±0.0
Walmart 1.0 1.2 1.13 ±0.0 1.18 ±0.0

Runtime (in seconds)

Dataset LP MV PittColoring MatchColoring

Brain 0.52 0.001 0.006 ±0.028 0.002 ±0.001
Cooking 127 0.002 0.01 ±0.003 0.008 ±0.007
DAWN 4.23 0.003 0.01 ±0.004 0.005 ±0.003
MAG-10 17.0 0.012 0.04 ±0.006 0.04 ±0.016
Walmart 321 0.07 0.053 ±0.007 0.05 ±0.009

Theorem 5.3. PittColoring is a randomized 2-
approximation algorithm for weighted MINECC that runs
in O(

∑
v∈V dv) = O(

∑
e∈E |e|) time.

Our strategy for iterating through bad edge pairs can also
be used in conjunction with other VERTEX COVER algo-
rithms. If edges are unweighted, every time we visit an
uncovered bad edge pair in the list LE(v) we can instead
delete both edges and update both pointers f and b. This
leads to a new 2-approximation algorithm MatchColoring
for the unweighted objective (see Appendix E).

6. Implementations and Experiments
Although our primary focus is to improve the theoretical
foundations of edge-colored clustering, our algorithms are
also easy to implement and very practical.

Results on benchmark datasets. Table 1 reports algorith-
mic results on the benchmark edge-colored hypergraphs

8

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Table 2. Results (averaged over 50 runs) on the Trivago hyper-
graph. For PittColoring, the Apx column gives the theoretical
expected approximation guarantee. For other algorithms, Apx is an
a posteriori guarantee, improving on the method’s theoretical guar-
antee, obtained using a lower bound computed by the algorithm.

Algorithm Mistakes Sat Apx Acc Run

PittColoring 74624 0.70 2 0.72 0.13
MatchColoring 77606 0.69 1.74 0.70 0.12
MajorityVote 67941 0.73 36.43 0.77 0.11
Hybrid 65192 0.74 1.46 0.78 0.23
LP 58031 0.77 1.001 0.80 1549

of Amburg et al. (2020). On all datasets but Walmart, the
MINECC LP relaxation produces integral solutions, i.e., we
find the optimal MINECC solution without rounding. Even
for Walmart, the LP solution is nearly integral and a very
simple rounding scheme (namely, for each v ∈ V , assign it
color i∗ = argmini x

i
v), produces a solution that is within a

factor 1.00003 of optimal. For this reason, while our new
LP rounding techniques improve the best theoretical results,
is it not meaningful to compare them empirically against
previous rounding techniques. It is however very meaning-
ful to compare our vertex cover based algorithms against
alternative approaches. Table 1 shows that these algorithms
are orders of magnitude faster than solving and rounding the
LP relaxation, and still obtain good approximate solutions.
They also have the same asymptotic runtime as Majori-
tyVote, a fast previous combinatorial algorithm that comes
with a much worse r-approximation guarantee. Statistics
for these datasets, additional implementation details, and
more experimental results are provided in the appendix.

Results for new Trivago hypergraph. Our empirical
contributions include a new benchmark dataset for edge-
colored clustering, and a very practical hybrid algorithm
that combines the strengths of MatchColoring and Major-
ityVote. The dataset is a hypergraph with 207974 nodes,
247362 edges, rank r = 85, and k = 55 colors. Nodes
correspond to vacation rentals on the booking website
Trivago, and each edge corresponds to the set of rentals
that a user clicks on during a single user browsing session.
Edge colors correspond to countries where the browsing
session happens (e.g., Trivago.com is the USA platform and
Trivago.es is for Spain). Nodes also come with ground truth
colors that define the country the vacation rental is located in.
Because users often (even if not always) search for vacation
rentals within their own country, edge colors and ground
truth node colors tend to match. This therefore serves as a
useful new benchmark dataset for the ECC objective, that is
much larger than previous benchmarks.

Table 2 shows results for each algorithm on the Trivago
hypergraph, including the number of mistakes made, the pro-
portion of satisfied edges (Sat), the method’s approximation
guarantee (Apx), the number of nodes labeled correctly with

respect to the ground truth (Acc, i.e., accuracy), and the run-
time (Run, in seconds). PittColoring, MatchColoring and
MajorityVote produce good results very quickly. A new al-
gorithm Hybrid obtains even better results by first applying
the edge deletion step of MatchColoring and then using the
MajorityVote assignment for nodes that are isolated after
edge deletions. MajorityVote is only guaranteed to return an
85-approximation since r = 85, while MatchColoring and
Hybrid have a deterministic 2-approximation guarantee. We
obtain improved a posteriori approximation guarantees for
these three algorithms by comparing the number of mistakes
they make against a lower bound on the optimal solution
that can be computed based on the output of each algorithm.
PittColoring has an expected 2-approximation guarantee,
but does not produce an explicit lower bound so it does not
come with improved a posteriori guarantees.

Solving and rounding the LP relaxation produces a very
good output on the Trivago dataset, with an a posteriori
approximation guarantee of 1.0014, an edge satisfaction of
0.765, and an accuracy of 0.80. However, it takes around 25
minutes to solve the LP relaxation, which is roughly four or-
ders of magnitude slower than our linear-time combinatorial
algorithms. This result does indicate that LP-based methods
for MINECC produce great results when it is possible to run
them. However, our combinatorial algorithms will be able
to scale to extremely large datasets where it is infeasible
to rely on LP-based techniques. More details for all of our
experimental results are provided in Appendices E and F.

7. Conclusion and Discussion
We have presented improved algorithms and hardness re-
sults for Edge-Colored Clustering. Our combinatorial algo-
rithms have asymptotically optimal runtimes, and if k and r
are arbitrarily large, their 2-approximation guarantee is the
best possible assuming the unique games conjecture. Our
LP algorithms are also tight with respect to the integrality
gap. One open question is to determine whether alternative
techniques could lead to improved approximations for fixed
values of r or k. Previous work has shown that the opti-
mal approximation factor for NODE-MC and HYPER-MC
coincides with the integrality gap of their LP relaxation,
assuming the unique games conjecture (Ene et al., 2013).
An open question is whether a similar result holds for the
MINECC LP. In other words, is it UGC-hard to approximate
MINECC below the LP integrality gap? We also proved that
the MINECC LP relaxation is tighter than the NODE-MC
relaxation. An open question in this direction is to better
understand the relationship between the MINECC LP and
relaxations obtained by considering more general problems,
such as the Lovász relaxation for submodular multiway par-
tition (Chekuri & Ene, 2011b) or the basic LP for minimum
constraint satisfaction problems (Ene et al., 2013).

9

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

References
Ageev, A. and Kononov, A. Improved approximations for

the max k-colored clustering problem. In International
Workshop on Approximation and Online Algorithms, pp.
1–10. Springer, 2014.

Ageev, A. and Kononov, A. A 0.3622-approximation algo-
rithm for the maximum k-edge-colored clustering prob-
lem. In International Conference on Mathematical Op-
timization Theory and Operations Research, pp. 3–15.
Springer, 2020.

Alhamdan, Y. M. and Kononov, A. Approximability and in-
approximability for maximum k-edge-colored clustering
problem. In International Computer Science Symposium
in Russia, pp. 1–12. Springer, 2019.

Amburg, I., Veldt, N., and Benson, A. Clustering in graphs
and hypergraphs with categorical edge labels. In Proceed-
ings of The Web Conference 2020, pp. 706–717, 2020.

Amburg, I., Veldt, N., and Benson, A. R. Diverse
and experienced group discovery via hypergraph clus-
tering. In Proceedings of the 2022 SIAM Interna-
tional Conference on Data Mining (SDM), SDM ’22,
pp. 145–153, 2022. doi: 10.1137/1.9781611977172.17.
URL https://epubs.siam.org/doi/abs/10.
1137/1.9781611977172.17.

Anava, Y., Avigdor-Elgrabli, N., and Gamzu, I. Improved
theoretical and practical guarantees for chromatic cor-
relation clustering. In Proceedings of the 24th Inter-
national Conference on World Wide Web, WWW ’15,
pp. 55–65, Republic and Canton of Geneva, Switzer-
land, 2015. International World Wide Web Conferences
Steering Committee. ISBN 978-1-4503-3469-3. doi: 10.
1145/2736277.2741629. URL https://doi.org/
10.1145/2736277.2741629.

Angel, E., Bampis, E., Kononov, A., Paparas, D., Poun-
tourakis, E., and Zissimopoulos, V. Clustering on k-
edge-colored graphs. Discrete Applied Mathematics, 211:
15–22, 2016.

Austrin, P., Khot, S., and Safra, M. Inapproximability of ver-
tex cover and independent set in bounded degree graphs.
Theory of Computing, 7(1):27–43, 2011.

Bansal, N., Blum, A., and Chawla, S. Correlation clustering.
Machine Learning, 56:89–113, 2004.

Bar-Yehuda, R. and Even, S. A local-ratio theorm for ap-
proximating the weighted vertex cover problem. Annals
of Discrete Mathematics, 25:27–46, 1985.

Bonchi, F., Gionis, A., Gullo, F., and Ukkonen, A.
Chromatic correlation clustering. In Proceedings of

the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, pp.
1321–1329, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1462-6. doi: 10.1145/2339530.2339735.
URL http://doi.acm.org.ezproxy.lib.
purdue.edu/10.1145/2339530.2339735.

Bonchi, F., Gionis, A., Gullo, F., Tsourakakis, C. E.,
and Ukkonen, A. Chromatic correlation cluster-
ing. ACM Trans. Knowl. Discov. Data, 9(4):34:1–
34:24, June 2015. ISSN 1556-4681. doi: 10.1145/
2728170. URL http://doi.acm.org.ezproxy.
lib.purdue.edu/10.1145/2728170.

Cai, L. and Leung, O. Y. Alternating path and coloured
clustering. arXiv preprint arXiv:1807.10531, 2018.

Chekuri, C. and Ene, A. Approximation algorithms for
submodular multiway partition. In 2011 IEEE 52nd An-
nual Symposium on Foundations of Computer Science,
pp. 807–816. IEEE, 2011a.

Chekuri, C. and Ene, A. Submodular cost allocation prob-
lem and applications. In International Colloquium on
Automata, Languages, and Programming, pp. 354–366.
Springer, 2011b.

Chekuri, C. and Madan, V. Simple and fast rounding algo-
rithms for directed and node-weighted multiway cut. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 797–807. SIAM,
2016.

Crossley, N. A., Mechelli, A., Vértes, P. E., Winton-Brown,
T. T., Patel, A. X., Ginestet, C. E., McGuire, P., and
Bullmore, E. T. Cognitive relevance of the commu-
nity structure of the human brain functional coactiva-
tion network. Proceedings of the National Academy
of Sciences, 110(28):11583–11588, 2013. ISSN 0027-
8424. doi: 10.1073/pnas.1220826110. URL https:
//www.pnas.org/content/110/28/11583.

Călinescu, G., Karloff, H., and Rabani, Y. An improved
approximation algorithm for multiway cut. Journal of
Computer and System Sciences, 60(3):564 – 574, 2000.
ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1999.
1687. URL http://www.sciencedirect.com/
science/article/pii/S0022000099916872.

Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Sey-
mour, P. D., and Yannakakis, M. The complexity of
multiterminal cuts. SIAM Journal on Computing, 23:
864–894, 1994.

Dinur, I. and Safra, S. On the hardness of approximating
minimum vertex cover. Annals of mathematics, pp. 439–
485, 2005.

10

https://epubs.siam.org/doi/abs/10.1137/1.9781611977172.17
https://epubs.siam.org/doi/abs/10.1137/1.9781611977172.17
https://doi.org/10.1145/2736277.2741629
https://doi.org/10.1145/2736277.2741629
http://doi.acm.org.ezproxy.lib.purdue.edu/10.1145/2339530.2339735
http://doi.acm.org.ezproxy.lib.purdue.edu/10.1145/2339530.2339735
http://doi.acm.org.ezproxy.lib.purdue.edu/10.1145/2728170
http://doi.acm.org.ezproxy.lib.purdue.edu/10.1145/2728170
https://www.pnas.org/content/110/28/11583
https://www.pnas.org/content/110/28/11583
http://www.sciencedirect.com/science/article/pii/S0022000099916872
http://www.sciencedirect.com/science/article/pii/S0022000099916872

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Ene, A., Vondrák, J., and Wu, Y. Local distribution and the
symmetry gap: Approximability of multiway partitioning
problems. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 306–
325. SIAM, 2013.

Fountoulakis, K., Li, P., and Yang, S. Local hyper-
flow diffusion. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 27683–27694. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
e924517087669cf201ea91bd737a4ff4-Paper.
pdf.

Garg, N., Vazirani, V. V., and Yannakakis, M. Multiway
cuts in node weighted graphs. Journal of Algorithms, 50
(1):49–61, 2004.

Hein, M., Setzer, S., Jost, L., and Rangapuram, S. S. The
total variation on hypergraphs - learning on hypergraphs
revisited. In Proceedings of the 26th International Confer-
ence on Neural Information Processing Systems - Volume
2, NIPS’13, pp. 2427–2435, USA, 2013. Curran Asso-
ciates Inc. URL http://dl.acm.org/citation.
cfm?id=2999792.2999883.

Kellerhals, L., Koana, T., Kunz, P., and Niedermeier, R.
Parameterized algorithms for colored clustering. In Pro-
ceedings of The 2023 AAAI Conference on Artificial In-
telligence, 2023.

Khot, S. and Regev, O. Vertex cover might be hard to
approximate to within 2- ε. Journal of Computer and
System Sciences, 74(3):335–349, 2008.

Klodt, N., Seifert, L., Zahn, A., Casel, K., Issac, D., and
Friedrich, T. A color-blind 3-approximation for chromatic
correlation clustering and improved heuristics. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, pp. 882–891, 2021.

Li, P. and Milenkovic, O. Inhomogeneous hypergraph clus-
tering with applications. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30, pp. 2308–2318. Curran Asso-
ciates, Inc., 2017.

Li, P. and Milenkovic, O. Submodular hypergraphs: p-
laplacians, cheeger inequalities and spectral clustering.
In International Conference on Machine Learning, pp.
3014–3023. PMLR, 2018.

Pitt, L. B. A simple probabilistic approximation algorithm
for vertex cover. Yale University, Department of Com-
puter Science, 1985.

Xiu, Q., Han, K., Tang, J., Cui, S., and Huang, H. Chromatic
correlation clustering, revisited. In Oh, A. H., Agarwal,
A., Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=jjJgLNrCQB.

Zuckerman, D. Linear degree extractors and the inapprox-
imability of max clique and chromatic number. In Pro-
ceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pp. 681–690, 2006.

11

https://proceedings.neurips.cc/paper/2021/file/e924517087669cf201ea91bd737a4ff4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e924517087669cf201ea91bd737a4ff4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e924517087669cf201ea91bd737a4ff4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e924517087669cf201ea91bd737a4ff4-Paper.pdf
http://dl.acm.org/citation.cfm?id=2999792.2999883
http://dl.acm.org/citation.cfm?id=2999792.2999883
https://openreview.net/forum?id=jjJgLNrCQB
https://openreview.net/forum?id=jjJgLNrCQB

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

A. Extended Related Work
Chromatic correlation clustering. The graph version of ECC is closely related to chromatic correlation clustering (Bonchi
et al., 2015; Anava et al., 2015; Klodt et al., 2021; Xiu et al., 2022), an edge-colored generalization of correlation
clustering (Bansal et al., 2004). Chromatic correlation clustering also takes an edge-colored graph as input and seeks to
cluster nodes in a way that minimizes edge mistakes. ECC and chromatic correlation clustering both include penalties for
(1) separating two nodes that share an edge, and (2) placing an edge of one color in a cluster of a different color. The key
difference is that chromatic correlation clustering also includes a penalty for placing two non-adjacent nodes in the same
cluster. In other words, chromatic correlation clustering interprets a non-edge as an indication that two nodes are dissimilar
and should not be clustered together, whereas MINECC treats non-edges simply as missing information and does not include
this type of penalty. As a result, a solution to chromatic correlation clustering may involve multiple different clusters of the
same color, rather than one cluster per color. Unlike MINECC, chromatic correlation clustering is known to be NP-hard
even in the case of a single color. Various constant-factor approximation algorithms have been designed, culminating in a
2.5-approximation (Xiu et al., 2022), but these do not apply to the general weighted case. Another difference is that there
are no results for chromatic correlation clustering in hypergraphs.

Multiway cut and partition problems. The reduction from MINECC to a special case of NODE-MC situates MINECC
within a broad class of multiway cut and multiway partition problems (Ene et al., 2013; Garg et al., 2004; Dahlhaus et al.,
1994; Călinescu et al., 2000; Chekuri & Ene, 2011a;b; Chekuri & Madan, 2016). For NODE-MC (Garg et al., 2004), one
is given a node-weighted graph G = (V,E) with k special terminal nodes, and the goal is to remove a minimum weight
set of nodes to disconnect all terminals. NODE-MC is approximation equivalent to the hypergraph multiway cut problem
(HYPER-MC) (Chekuri & Ene, 2011b), where one is give a hypergraph H = (V,E) and k terminal nodes, and the goal is to
remove the minimum weight set of edges to separate terminals. These problems generalize the standard edge-weighted
multiway cut problem in graphs (GRAPH-MC) (Dahlhaus et al., 1994), where the goal is to separate k terminal nodes
in a graph by removing a minimum weight set of edges. NODE-MC and HYPER-MC are also special cases of the more
general submodular multiway partition problem (SUBMODULAR-MP), which has a best known approximation factor of
2(1 − 1/k) (Ene et al., 2013). This matches the best approximation guarantee for NODE-MC but requires solving and
rounding a generalized Lovász relaxation (Chekuri & Ene, 2011b). It is worth noting that when k = 2, MINECC can be
reduced to the minimum s-t cut problem, i.e., the 2-terminal version of GRAPH-MC, but this does not generalize to k > 2.
Amburg et al. (2020) showed a way to approximate MINECC by approximating a related instance of GRAPH-MC, but the
objectives differ by a factor (r + 1)/2.

B. Proofs for Linear Programming Results
Proof of Lemma 2.1 (LP integrality gap)

Proof. We will construct a hypergraph H that has exactly one edge ec for each color c ∈ {1, 2, . . . , k}, and a total of
(
k
2

)
nodes, each of which participates in exactly two edges. More precisely, we index each node by a pair of color indices
(i, j) ∈ C × C with i 6= j. We place node (i, j) in the hyperedge ei and the hyperedge ej . Each edge contains exactly
r = k − 1 nodes. The optimal ECC solution makes a mistake at all but one edge. To see why, if we do not make a mistake
at ec, this means every node in ec is given label c. For each color i 6= c, the node with index (i, c) is in ec and ei, which
means we will make a mistake at ei since this node was given label c. Meanwhile, the optimal solution to the LP relaxation
is k

2 : for node v corresponding to color pair (i, j), we set xiv = xjv = 1
2 and xcv = 1 for every c /∈ {i, j}. Thus, xe = 1

2 for
each hyperedge e ∈ E, for an overall LP objective of k2 . �

Proof of Theorem 3.2 (Hypergraph approximation result)

Proof. Let e be an arbitrary edge with color c = `(e). We need to show that P [e ∈MY] ≤ 2
(
1− 1

r+1

)
xe. If xe ≥ 2

3 , this
is trivial since P [e ∈MY] ≤ 1 ≤ 3

2xe ≤ 2
(
1− 1

r+1

)
xe as long as r ≥ 3. We cover two remaining cases.

Case 1: xe < 1
2 . For every ρ ∈ (1

2 ,
2
3), color c wants all nodes in e, and Observation 2 implies that z1 > 1/2. Therefore, the

algorithm can only make a mistake at e if ρ falls between z1 and 2
3 . This never happens if z1 ≥ 2

3 , so assume that z1 < 2
3 .

Because ρ < 2
3 , for every v ∈ e it is possible for two different colors to want v, but never three colors. Since color c is

guaranteed to want every v ∈ e, the worse case scenario is when ρ > z1 and each v ∈ e is wanted by a different color that is
unique to that node. In this case, the probability of making a mistake at e is at most r

r+1 . Putting all of the pieces together

12

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

we have

P [e ∈MY] = P [ρ > z1]P [e ∈MY | ρ > z1]

=
2
3 − z1
2
3 −

1
2

· r

r + 1
=

6r

r + 1

(
1− z1 −

1

3

)
≤ 6r

r + 1

(
xe −

2

3
xe

)
= 2

(
1− 1

r + 1

)
xe.

Case 2: xe ∈
[
1
2 ,

2
3

)
. If ρ ≤ xe, we are guaranteed to make a mistake at e, but this happens with bounded probability. If

ρ > xe, we can argue as in Case 1 that the probability of making a mistake at e is at most r
r+1 . We therefore have:

P [e ∈M] = P [ρ ≤ xe]P [e ∈MY | ρ ≤ xe]
+ P [ρ > xe]P [e ∈MY | ρ > xe]

=
xe − 1

2
2
3 −

1
2

· 1 +
2
3 − xe
2
3 −

1
2

· r

r + 1

= 6

(
xe −

1

2
+

2r

3r + 3
− xer

r + 1

)
= 6

(
xe
r + 1

+
r − 3

6r + 6

)
≤ 6

(
3xe

3r + 3
+

(r − 3)xe
3r + 3

)
= 2

(
1− 1

r + 1

)
xe.

�

Proof of Lemma 4.2 (Color Threshold Lemma)

Proof. Let m be an arbitrary odd integer less than k. When ρ > zm, the definition of zm tells us that there are m colors
(which are distinct from each other and not equal to c = `(e)) that want at least one of the nodes in e = (u, v). By the
pigeonhole principle, at least h = dm2 e = m+1

2 of these colors want the same node. Without loss of generality, let u be this
node and {c1, c2, . . . , ch} be these h colors, arranged so that

xc1u ≤ xc2u ≤ · · · ≤ xchu ≤ zm.

Without loss of generality we can assume these h colors are the colors (not including c) that want node u the most, in
the sense that xju ≥ xchu for every color j /∈ {c, c1, c2, . . . , ch}. Meanwhile, for every ρ ≤ zm, there can be at most
m− h = m−1

2 other colors not in {c, c1, c2, . . . , ch} that want node v. We can show then that for j ∈ {1, 2, . . . , h},

xcju ≤ zj+m−h. (9)

If this were not true and we instead assume xcju > zj+m−h, this would mean that for any ρ ∈ (zj+m−h, x
cj
u), there are

j +m− h distinct colors (not equal to c) that want at least one of the two nodes in e = (u, v). However, since ρ < x
cj
u ,

we know that {c1, c2, . . . , cj−1} are the only colors (not counting c) that want node u. Furthermore, since ρ < zm, there
are at most m − h distinct colors (again not counting c) that want node v. Thus, ρ < x

cj
u would imply there are at most

j + m − h − 1 colors not equal to c that want either u or v. This is a contradiction, so (9) must hold. Combining this
inequality with the fact that

∑k
i=1 x

i
u = k − 1, we obtain

h ≤ xcu +

h∑
j=1

xcju ≤ xe +

h∑
j=1

zj+m−h = xe + z1+m−h + z2+m−h + · · ·+ zm.

Since we assumed that m is odd, we know h = 1 +m− h and m = 2h− 1, so setting t = h yields the inequality in the
statement of the lemma. �

13

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

maximize
q

q + 1

7

8
χ−

q∑
j=1

1

j(j + 1)
ωj

subject to (A{i}) ωi − ωi+1 ≤ 0 for i = 1, . . . , 5
(A6) χ− ω1 ≤ 1
(A7) 2χ− ω2 − ω3 ≤ 1
(A8) 3χ− 3ω5 ≤ 1
(A9) − χ ≤ −2
(A10) ωq − 7

8χ ≤ 0.

(12)

Figure 5. This linear program provides an upper bound for P [e ∈MY] /xe when xe < 1
2
≤ z1 ≤ zq ≤ 7

8
for integers q ≤ 6. We

explicitly name each constraint as it will be convenient to reference individual constraints in later parts of the proof.

Proofs for Lemmas on Auxiliary Linear Programs

Lemmas 4.3 and 4.4 are concerned with the LPs in Figures 5 and 6. For notational ease in proving these results, let M be
the event e ∈MY , i.e., the event of making a mistake at edge e when rounding the LP relaxation. These Lemmas allow us
to bound P[M]

xe
by solving a small linear program, first for the case xe ∈ (1

8 ,
1
2), and then for the case xe ∈

[
1
2 ,

3
4

)
. Both

results will repeatedly apply the following facts:

P [M | ρ > xe and ρ ∈ (zi, zi+1)] =
i

i+ 1
, (10)

P [ρ ∈ (a, b)] =
8

3
(b− a), for (a, b) ⊆

(1

2
,

7

8

)
. (11)

Proof of Lemma 4.3

Proof. When xe < 1
2 , we know that for any ρ ∈ (1

2 ,
7
8), the color c = `(e) will want both nodes in e = (u, v). If we use

Lemma 4.2 with t = 4 and the monotonicity of color thresholds from (4), we can see that

4 ≤ xe + z4 + z5 + z6 + z7 ≤ xe + 4z7 =⇒ 1− xe
4
≤ z7 =⇒ z7 >

7

8
.

This implies that for a random ρ ∈ (1
2 ,

7
8), at most 6 colors other than c will want a node from e = (u, v). Thus, if

zp−1 ≤ 1
2 ≤ zp ≤ zq ≤ 7

8 ≤ zq+1, then q ≤ 6. Similarly, we can see that 1 ≤ xe + z1 =⇒ z1 >
1
2 , so we must have

p = 1. Next, we use Eq. (10) and Eq. (11) to provide a convenient expression for P [M]:

P [M] =

q−1∑
j=1

P [M | ρ ∈ (zj , zj+1)]P [ρ ∈ (zj , zj+1)] + P [M | ρ ∈ (zq, 7/8)]P [ρ ∈ (zq, 7/8)]

=
8

3

 q

q + 1

(
7

8
− zq

)
+

q−1∑
j=1

j

j + 1
(zj+1 − zj)

 =
8

3

 q

q + 1

7

8
−

q∑
j=1

1

j(j + 1)
zj

 .

Our goal is to upper bound P[M]
xe

. To do so we have the following inequalities and case-specific assumptions at our disposal:
(1) the monotonicity of color thresholds: zi ≤ zi+1 for i ∈ {0, 1, . . . , k}, (2) the relationship between xe and color
thresholds given in Lemma 4.2, and (3) our assumptions that xe < 1

2 and zq ≤ 7
8 ≤ zq+1. Since at most 6 colors other than

c can want a node in e = (u, v), we can extract a set of 10 convenient inequalities from these three categories that we know

14

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

max
1

p
+

(
q

q + 1

7

8
− 1

2

)
χ−

q∑
j=p

1

j(j + 1)
ωj

s.t. (B{i}) ωi − ωi+1 ≤ 0 for i = 1, . . . , 9
(B10) χ− ω1 ≤ 1
(B11) 2χ− ω2 − ω3 ≤ 1
(B12) 3χ− ω3 − ω4 − ω5 ≤ 1
(B13) 4χ− 4ω7 ≤ 1
(B14) ωp−1 ≤ 1
(B15) − ωp ≤ −1
(B16) ωq − 7

8χ ≤ 0.

(13)

Figure 6. This linear program provides an upper bound for P [e ∈MY] /xe when xe ∈ [1
2
, 3
4
) and zp−1 ≤ xe ≤ zp ≤ zq ≤ 7

8
≤ zq+1

for integers p ≤ 5 and q ≤ 10 satisfying p ≤ q. We explicitly name each constraint as it will be convenient to reference individual
constraints in later parts of the proof. We could add additional constraints based on the assumptions in Lemma 4.4 and the relationship
between variables given in Lemma 4.2, but it suffices to consider a subset of these constraints to bound P [e ∈MY] /xe, and this also
simplifies the analysis.

are true for xe and the first 6 color threshold values:

Monotonicity Constraints

(A1)
z1
xe
≤ z2
xe
, (A2)

z2
xe
≤ z3
xe
, (A3)

z3
xe
≤ z4
xe
, (A4)

z4
xe
≤ z5
xe
, (A5)

z5
xe
≤ z6
xe

Edge-Node Relationship Constraints (Lemma 4.2)

(A6)
1

xe
≤ 1 +

z1
xe
, (A7)

2

xe
≤ 1 +

z2
xe

+
z3
xe
, (A8)

3

xe
≤ 1 +

3z5
xe

Boundary Assumption Constraints

(A9) 1 ≤ 1

2

1

xe
, (A10)

zq
xe
≤ 7

8

1

xe
.

If the maximum value of P[M]
xe

over all values of {xe, z1, z2, z3, z4, z5, z6} that respect these inequalities is at most P , then

this guarantees P [M] ≤ Pxe. Finally, note that P[M]
xe

and the inequalities above can be given as linear expressions in terms

of 1
xe

and
{
zi
xe

: i ∈ {1, 2, 3, 4, 5, 6}
}

. We can therefore maximize 3
8
P[M]
xe

subject to these inequalities by setting χ = 1
xe

and ωi = zi
xe

and solving the linear program in Figure 5. Note that we choose to maximize 3
8
P[M]
xe

, rather than simply

maximizing P[M]
xe

, only because this will simplify some of our analysis later. �

Proof of Lemma 4.4

Proof. Combining Lemma 4.2 (with t = 6), the inequalities in (4), and the bound xe < 3
4 , we have

6 ≤ xe +

11∑
j=6

zj ≤ xe + 6z11 =⇒ 1− xe
6
≤ z11 =⇒ z11 >

7

8
.

Thus, for every ρ ∈ (1
2 ,

7
8) we know q ≤ 10 and there are at most 10 colors other than c = `(e) that want a node in e. Using

similar steps we can show that z5 > 3
4 > xe, so p ≤ 5. We again use Eq. (10) and Eq. (11) to derive the following useful

15

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

expression for P [M]:

P [M] = P
[
M | ρ ∈

(1

2
, xe

)]
P
[
ρ ∈

(1

2
, xe

)]
+ P [M | ρ ∈ (xe, zp)]P [ρ ∈ (xe, zp)]

+

q−1∑
j=p

P [M | ρ ∈ (zj , zj+1)]P [ρ ∈ (zj , zj+1)]

+ P
[
M | ρ ∈

(
zq,

7

8

)]
P
[
ρ ∈

(
zq,

7

8

)]

=
8

3

(xe − 1

2

)
+
p− 1

p
(zp − xe) +

q−1∑
j=p

j

j + 1
(zj+1 − zj)

+
q

q + 1

(
7

8
− zq

)
=⇒ P [M]

xe
≤ 8

3

1

p
+

(
q

q + 1

7

8
− 1

2

)
1

xe
−

q∑
j=p

1

j(j + 1)

zj
xe

 .

We apply the monotonicity inequalities (4) for color thresholds, Lemma 4.2, and our assumptions in the statement of the
lemma to obtain a set of inequalities that can be used to bound P[M]

xe
.

(B{i})
zi
xe
≤ zi+1

xe
for i = 1, 2, . . . 9,

(B10)
1

xe
≤ 1 +

z1
xe
, (B11)

2

xe
≤ 1 +

z2
xe

+
z3
xe
, (B12)

3

xe
≤ 1 +

5∑
j=3

zj
xe
,

(B13)
4

xe
≤ 1 + 4

z7
xe
, (B14)

zp−1
xe
≤ 1, (B15) 1 ≤ zp

xe
, (B16)

zq
xe
≤ 7

8

1

xe
.

We can maximize 3
8
P[M]
xe

subject to these inequalities by solving the linear program in Figure 6. �

Proofs not contained in this section of the appendix The proof of Theorem 2.2 is given in Appendix D, which provides
additional details on the relationship between MINECC and related multiway cut objectives. Details for proving Lemma 4.5,
and in particular dual LP solutions for 46 auxiliary linear programs needed to prove this result, are contained in Appendix C.

C. Optimal Dual Variables and LP bounds for r = 2

In Section 4.4 of the main text we proved that when q = 1, the solution to the linear program in Figure 5 is bounded above
by 1

2 . We accomplished this by multiplying constraints in this LP by dual variables corresponding to these constraints.
In Table 3, we present dual variables for all cases q ∈ {1, 2, 3, 4, 5, 6}. For the sake of completeness, here we provide
additional details for how to prove an upper bound on the LP solution for all of these values of q, without having to explicitly
write down and sum a linear combination of constraints. The upper bound can be shown more succinctly by checking a few
matrix-vector products, which is the approach we take here. We also provide dual variables for the LP in Figure 6 for all
valid choices of p and q, which can be used to prove the desired upper bound on this LP in the same fashion.

C.1. Overview of LP bounding strategy

The linear programs in Figures 5 and 6 can both be written in the following format:

max cTx
s.t. Ax ≤ b.

(14)

The dual of this LP is given by
min bTy

s.t. ATy = c
y ≥ 0.

(15)

We want to prove that cTx∗ ≤ 1
2 where x∗ is the optimal solution to the primal LP (14). By weak duality theory, it is

sufficient to find a vector y of dual variables satisfying the constraints in the dual LP (15), such that bTy ≤ 1
2 . Note that our

16

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Table 3. Optimal dual variables (one for each constraint in the primal LP) for the linear program in Figure 5, for each valid integer q.
Multiplying dual variables by the left and right hand sides of each constraint and adding the left and right hand sides together proves the
upper bound (last column) on the optimal solution to the primal LP. The bound is always 1

2
or smaller.

ω
1
−
ω
2
≤

0

ω
2
−
ω
3
≤

0

ω
3
−
ω
4
≤

0

ω
4
−
ω
5
≤

0

ω
5
−
ω
6
≤

0

χ
−
ω
1
≤

1

2χ
−
ω
2
−
ω
3
≤

1

3χ
−
3ω

5
≤

1

−
χ
≤
−
2

ω
q
−

7 8
χ
≤

0

q (A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9) (A10) Bound

1 0 0 0 0 0 1
2 0 0 1

16 0 3
8

2 1
6 0 0 0 0 2

3 0 0 1
12 0 1

2

3 0 0 0 0 0 1
2

1
6 0 5

48
1
12

11
24

4 0 0 1
12 0 0 1

2
1
6 0 5

48
1
30

11
24

5 0 0 1
12

1
30 0 1

2
1
6 0 5

48 0 11
24

6 0 0 1
12

1
30

1
42

1
2

1
6

1
126

3
28 0 29

63

goal is actually to prove that this can be done for multiple slight variations of the objective function vector c and constraint
matrix A. For all cases we have the same right hand side vector b. If {c1, c2, . . . , cj} denotes the set of objective function
vectors, {A1,A2, . . . ,Aj} is the set of corresponding constraint matrices, and {y1,y2, . . . ,yj} is an appropriately chosen
set of dual vectors, then for i = 1, 2, . . . , j, we need to perform one matrix-vector product and one vector inner product to
confirm that

AT
j yj = cj

bTyj ≤
1

2
.

C.2. Matrix computations for bounding LP in Figure 5

For the linear program in Figure 5, the variable vector is xT =
[
ω1 ω2 ω3 ω4 ω5 ω6 χ

]
and the right hand

size vector is bT =
[
0 0 0 0 0 1 1 1 −2 0

]
. The dual variables we will use are given in Table 3. For

each q ∈ {1, 2, . . . 6}, let yq denote the vector of dual variables (which corresponds to the qth row in Table 3), and let
Y =

[
y1 y2 · · · y6

]
, so

Y =

0 0 0 0 0 1
2 0 0 1

16 0
1
6 0 0 0 0 2

3 0 0 1
12 0

0 0 0 0 0 1
2

1
6 0 5

48
1
12

0 0 1
12 0 0 1

2
1
6 0 5

48
1
30

0 0 1
12

1
30 0 1

2
1
6 0 5

48 0

0 0 1
12

1
30

1
42

1
2

1
6

1
126

3
28 0

.

17

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

In order to check that bTyq ≤ 1
2 for each choice of q we just need to compute Yb, which is made easier by the fact that

most entries of b are zero.

Yb =

1
2 0 0 1

16
2
3 0 0 1

12
1
2

1
6 0 5

48
1
2

1
6 0 5

48
1
2

1
6 0 5

48
1
2

1
6

1
126

3
28

1

1

1

−2

 =

3
8
1
2
11
24
11
24
11
24
29
63

.

This confirms that as long as these dual variables are feasible for the dual linear program, the primal LP is always bounded
above by 1

2 . So, we just need to confirm that AT
q yq = cq for each q.

The constraint matrix Aq is nearly the same for all choices of q. Only the last constraint (ωq − 7
8χ ≤ 0) is dependent on q.

The first nine rows of the constraint matrix are always given by

Aq(1 : 9, :) =

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

−1 0 0 0 0 0 1

0 −1 −1 0 0 0 2

0 0 0 0 −3 0 3

0 0 0 0 0 0 −1

.

The last row has two entries: Aq(10, 7) = − 7
8 and Aq(10, q) = 1. The objective function is

cTq x =
7q

8(q + 1)
χ−

q∑
j=1

1

j(j + 1)
ωj ,

where cq is the objective function vector for q ∈ {1, 2, . . . , 6}. The matrix C =
[
c1 c2 · · · c6

]
of objective function

vectors is given by:

C =

− 1
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2

0 − 1
6 − 1

6 − 1
6 − 1

6 − 1
6

0 0 − 1
12 − 1

12 − 1
12 − 1

12

0 0 0 − 1
20 − 1

20 − 1
20

0 0 0 0 − 1
30 − 1

30

0 0 0 0 0 − 1
42

7
16

7
12

21
32

7
10

35
48

3
4

Given the matrices and vectors listed above, a few simple computations confirm that AT

q yq = cq indeed holds for every
q ∈ {1, 2, . . . 6}.

C.3. Dual variables for LP in Figure 6

Tables 4 and 5 give optimal dual variables for the linear program in Figure 6 for all possible values of p and q. We also list
the optimal solution to each linear program for each of the 40 cases, which is always less than or equal to 1

2 . We highlight
again that our proof does not rely on proving that this value is optimal—it suffices to use the dual variables to get a linear
combination of inequalities such that summing the left hand sides produces the LP objective function, and summing the

18

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

right hand sides yields the LP upper bound given in the last column of each row. We can use the strategy outlined in the
previous subsection to check these dual variables and prove the upper bound by computing a matrix-vector product and a
vector inner product for each case. We omit detailed calculations as they are straightforward but would take up a significant
amount of space.

C.4. Challenges in Avoiding Case Analysis

It is natural to wonder whether we can rule out or simultaneously handle a large number of cases for Lemmas 4.3 and 4.4,
rather than check a different set of dual variables for 46 small linear programs. However, there are several challenges in
escaping from this lengthy case analysis. First of all, the 46 linear programs we have considered all have feasible solutions,
so we cannot rule any out on the basis that they they correspond to impossible cases. The optimal solution for many cases is
exactly 1

2 , so the inequalities we apply to bound P[M]
xe

for these cases must be tight. For many of the other cases, the optimal
solution is very close to 1

2 . We attempted to use looser bounds to prove a 1
2 bound for multiple cases at once, but were

unsuccessful. Each case seems to require a slightly different argument in order to prove the needed bound. Adding more
constraints to the linear programs also did not lead to a simpler analysis.

A second natural strategy is to try to first identify and prove which values of xe, p, and q correspond to the worst cases, and
then simply confirm that the probability bound holds for these cases. However, the worst case values for xe, p, and q are
not obvious, and are in fact somewhat counterintuitive. At first glance it may appear that the worse case is when q is as
large as possible and p is as small as possible. This maximizes the expected number of colors that want a node in e for a
randomly chosen ρ ∈ (1

2 ,
7
8), leading to a higher probability of making a mistake at e. However it is important to recall

that the goal is to bound P[M]
xe

, and not just P [M], so this line of reasoning does not apply. As it turns out, the worst case
scenario (i.e., largest optimal LP solution) for xe ∈ [12 ,

3
4) is when q ∈ {2, 4}, but we do not have a proof (other than by

checking all cases) for why this case leads to the largest value of P[M]
xe

.

Finally, another natural question is whether we can avoid a lengthy case analysis by choosing an interval other than
I = (1

2 ,
7
8) when applying Algorithm 1. It is especially tempting to use an interval (a, b) where b < 7

8 , since this would
potentially decrease the maximum number of colors that want a node in e = (u, v). This is desirable because if fewer colors
want a node in e, then we have fewer color threshold variables to worry about and fewer cases to consider. The following
result (Lemma 4.7 in the main text) shows why this approach will fail.
Lemma C.1. Let Y denote the node color map returned by running Algorithm 1 with I = (a, b) ⊆ (0, 1) on an edge-colored
graph.

• If a > 1
2 , there exists a feasible LP solution such that P [e ∈MY] > 4

3xe.

• If a ≤ 1
2 and b < 7

8 , there exists a feasible LP solution such that P [e ∈MY] > 4
3xe.

Proof. If a > 1
2 , then there exists some ε > 0 such that a = 1+ε

2 . Consider an edge e = (u, v) with color c = `(e) whose
LP variables satisfy xe = xcu = xcv = 1−ε

2 and where xiu = xjv = 1+ε
2 = a for two colors i 6= j that are both distinct from c.

This is feasible as long all as xtu = 1 for t /∈ {c, i} and xtv = 1 for t /∈ {c, j}. For every ρ ∈ (a, b), color i will want node u,
color j will want node v, and color c will want both of them. Therefore, the probability of making a mistake at e is exactly

P [e ∈MY] =
2

3
=

2

3
· 1

xe
xe =

2

3
· 2

1− ε
xe >

4

3
xe.

If instead a ≤ 1
2 , consider the feasible solution where xe = xcu = xcv = xiu = xgu = xjv = xhv = 2

3 where {c, g, h, i, j} are
all distinct colors. If b < 2

3 we are guaranteed to make a mistake at xe, so assume that 2
3 ≤ b <

7
8 . Then we can calculate

that

P [e ∈MY]

xe
=

1

b− a

(
2

3
− a+

4

5

(
b− 2

3

))
· 3

2
=

2− 3a

10(b− a)
+

6

5
>

2− 3 · 12
10(7

8 −
1
2)

+
6

5
=

4

3
.

The first case in this lemma indicates that we should not use an interval (a, b) where a > 1
2 . The second case rules out the

hope of choosing some b < 7
8 in order to make the analysis easier. The interval I = (1

2 ,
7
8) is chosen to avoid these two

issues and be as simple to analyze as possible.

19

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Table 4. Optimal dual variables, one for each of the 16 constraints, for the linear program in Figure 6, for each valid pair (p, q) where
p ∈ {1, 2}. We omit the column for constraint number 6, ω6 − ω7 ≤ 0, since the dual variable for this constraint is always zero for these
cases. The last column is the bound on the LP objective (it is in fact the optimal LP solution value) that we can prove for each case using
the dual variables. It is always 1

2
or less.

C
on

st
ra

in
ts

ω
1
−
ω
2
≤

0

ω
2
−
ω
3
≤

0

ω
3
−
ω
4
≤

0

ω
4
−
ω
5
≤

0

ω
5
−
ω
6
≤

0

ω
7
−
ω
8
≤

0

ω
8
−
ω
9
≤

0

ω
9
−
ω
1
0
≤

0

χ
−
ω
1
≤

1

2
χ
−
ω
2
−
ω
3
≤

1

3
χ
−
ω
3
−
ω
4
−
ω
5
≤

1

4
χ
−

4
ω
7
≤

1

ω
p
−
1
≤

1

−
ω
p
≤
−
1

ω
q
−

7 8
χ
≤

0

L
P

bo
un

d

p,q 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16

1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4
7

1
14

3
7

2 1
6 0 0 0 0 0 0 0 1

12 0 0 0 0 7
12 0 1

2

3 3
32

1
192 0 0 0 0 0 0 0 5

64 0 0 0 19
32 0 31

64

4 1
10

1
30

1
20 0 0 0 0 0 0 1

10 0 0 0 3
5 0 1

2

5 47
450 0 13

900 0 0 0 0 0 0 14
225

8
225 0 0 136

225
1

450
37
75

6 3
28 0 5

252
17

1260
1
42 0 0 0 0 5

84
11
252 0 0 17

28 0 125
252

7 7
64 0 37

2016
257

20160
1
42 0 0 0 0 11

192
179
4032

1
224 0 39

64 0 2003
4032

8 1
9 0 13

756
23

1890
1
42

1
72 0 0 0 1

18
17
378

1
126 0 11

18 0 94
189

9 9
80 0 41

2520
59

5040
1
42

1
40

1
90 0 0 13

240
229
5040

3
280 0 49

80 0 2509
5040

10 5
44 0 43

2772
157

13860
1
42

3
88

2
99

1
110 0 7

132
127
2772

1
77 0 27

44 0 1381
2772

2, 2 0 0 0 0 0 0 0 0 1
12 0 0 0 1

12
1
6 0 1

2

3 0 1
192 0 0 0 0 0 0 0 5

64 0 0 0 3
32 0 31

64

4 0 1
30

1
20 0 0 0 0 0 0 1

10 0 0 0 1
10 0 1

2

5 0 0 13
900 0 0 0 0 0 0 14

225
8

225 0 0 47
450

1
450

37
75

6 0 0 5
252

17
1260

1
42 0 0 0 0 5

84
11
252 0 0 3

28 0 125
252

7 0 0 37
2016

257
20160

1
42 0 0 0 0 11

192
179
4032

1
224 0 7

64 0 2003
4032

8 0 0 13
756

23
1890

1
42

1
72 0 0 0 1

18
17
378

1
126 0 1

9 0 94
189

9 0 0 41
2520

59
5040

1
42

1
40

1
90 0 0 13

240
229
5040

3
280 0 9

80 0 2509
5040

10 0 0 43
2772

157
13860

1
42

3
88

2
99

1
110 0 7

132
127
2772

1
77 0 5

44 0 1381
2772

20

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Table 5. Optimal dual variables, one for each of the 16 constraints, for the linear program in Figure 6, for each pair (p, q) when
p ∈ {3, 4, 5}. We omit columns for constraint 1 (ω1 − ω2 ≤ 0) and constraint 10 (χ− ω1 ≤ 1), as dual variables for these are always
zero for these cases.

C
on

st
ra

in
ts

ω
2
−
ω
3
≤

0

ω
3
−
ω
4
≤

0

ω
4
−
ω
5
≤

0

ω
5
−
ω
6
≤

0

ω
6
−
ω
7
≤

0

ω
7
−
ω
8
≤

0

ω
8
−
ω
9
≤

0

ω
9
−
ω
1
0
≤

0

2
χ
−
ω
2
−
ω
3
≤

1

3
χ
−
ω
3
−
ω
4
−
ω
5
≤

1

4
χ
−

4
ω
7
≤

1

ω
p
−
1
≤

1

−
ω
p
≤
−
1

ω
q
−

7 8
χ
≤

0

L
P

bo
un

d

p, q 2 3 4 5 6 7 8 9 11 12 13 14 15 16

3, 3 0 0 0 0 0 0 0 0 5
64 0 0 5

64
1

192 0 31
64

4 0 1
20 0 0 0 0 0 0 1

10 0 0 1
10

1
30 0 1

2

5 0 13
900 0 0 0 0 0 0 14

225
8

225 0 14
225 0 1

450
37
75

6 0 5
252

17
1260

1
42 0 0 0 0 5

84
11
252 0 5

84 0 0 125
252

7 0 37
2016

257
20160

1
42 0 0 0 0 11

192
179
4032

1
224

11
192 0 0 2003

4032

8 0 13
756

23
1890

1
42 0 1

72 0 0 1
18

17
378

1
126

1
18 0 0 94

189

9 0 41
2520

59
5040

1
42 0 1

40
1
90 0 13

240
229
5040

3
280

13
240 0 0 2509

5040

10 0 43
2772

157
13860

1
42 0 3

88
2
99

1
110

7
132

127
2772

1
77

7
132 0 0 1381

2772

4, 4 1
10 0 0 0 0 0 0 0 1

10 0 0 1
5

1
20 0 1

2

5 3
64 0 0 0 0 0 0 0 3

64
1
20 0 23

160 0 1
60

157
320

6 5
112 0 1

280
1
42 0 0 0 0 5

112
3
56 0 1

7 0 0 55
112

7 39
896 0 1

280
1
42 0 0 0 0 39

896
3
56

1
224

9
64 0 0 63

128

8 43
1008 0 1

280
1
42 0 1

72 0 0 43
1008

3
56

1
126

5
36 0 0 71

144

9 47
1120 0 1

280
1
42 0 1

40
1
90 0 47

1120
3
56

3
280

11
80 0 0 79

160

10 51
1232 0 1

280
1
42 0 3

88
2
99

1
110

51
1232

3
56

1
77

3
22 0 0 87

176

5, 5 0 8
85 0 0 0 0 0 0 0 8

85 0 16
85 0 31

510
41
85

6 0 8
85 0 31

510 0 0 0 0 0 8
85 0 16

85 0 22
595

41
85

7 0 8
85 0 31

510
22
595 0 0 0 0 8

85 0 16
85 0 13

680
41
85

8 0 8
85 0 31

510
22
595

13
680 0 0 0 8

85 0 16
85 0 4

765
41
85

9 0 3
32 0 29

480
41

1120
1
40

1
90 0 0 3

32
1

640
3
16 0 0 309

640

10 0 41
440 0 79

1320
111
3080

3
88

2
99

1
110 0 41

440
7

1760
41
220 0 0 851

1760

21

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

<latexit sha1_base64="Kx1a1gvT5L3igiv8ne7EFpq+9qQ=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgxZL0oB6LvXhRKtgPaEPZbCbt0s0Hu5NiCf0nXjwo4tV/4s1/47bNQVsfDDzem2FmnpcIrtC2v43C2vrG5lZxu7Szu7d/YB4etVScSgZNFotYdjyqQPAImshRQCeRQENPQNsb1Wd+ewxS8Th6xEkCbkgHEQ84o6ilvmn2EJ5Qsew+9uHirj7tm2W7Ys9hrRInJ2WSo9E3v3p+zNIQImSCKtV17ATdjErkTMC01EsVJJSN6AC6mkY0BOVm88un1plWfCuIpa4Irbn6eyKjoVKT0NOdIcWhWvZm4n9eN8Xg2s14lKQIEVssClJhYWzNYrB8LoGhmGhCmeT6VosNqaQMdVglHYKz/PIqaVUrzmXFeaiWazd5HEVyQk7JOXHIFamRW9IgTcLImDyTV/JmZMaL8W58LFoLRj5zTP7A+PwBaSGTgQ==</latexit>

Node-MC
<latexit sha1_base64="yrH2SYgEyqTqyQIMYqqjUvYEb1U=">AAAB+nicbVBNT8JAEN3iF+JX0aOXjcTEi6TloB6JXLiYYCIfCTRku2xhw3bb7E5VUvkpXjxojFd/iTf/jQv0oOBLJnl5byYz8/xYcA2O823l1tY3Nrfy24Wd3b39A7t42NJRoihr0khEquMTzQSXrAkcBOvEipHQF6ztj2szv33PlOaRvINJzLyQDCUPOCVgpL5d7AF7BE3TujHV+U1t2rdLTtmZA68SNyMllKHRt796g4gmIZNABdG66zoxeClRwKlg00Iv0SwmdEyGrGuoJCHTXjo/fYpPjTLAQaRMScBz9fdESkKtJ6FvOkMCI73szcT/vG4CwZWXchknwCRdLAoSgSHCsxzwgCtGQUwMIVRxcyumI6IIBZNWwYTgLr+8SlqVsntRdm8rpep1FkceHaMTdIZcdImqqI4aqIkoekDP6BW9WU/Wi/VufSxac1Y2c4T+wPr8AVp3lA0=</latexit>

Hyper-MC

<latexit sha1_base64="tjBKw8eXGtCbmVvnKfLqDJUFbOw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+x7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHweQjaI=</latexit>

t1
<latexit sha1_base64="E8vRTPNVvaNnwpWuMEUcNZCVWbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUwH654lbdOcgq8XJSgRz1fvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n80Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmRD8JZfXiWti6p3VfUal5XabR5HEU7gFM7Bg2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq0FJ585hj9wPn8Ay2WM7w==</latexit>e

<latexit sha1_base64="1chVsqYpGeVCSZz7DaNA+C0GR54=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPewV664VXcOskq8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclrqpxoSyER1gx1JJI9R+Nj91Ss6s0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/yMyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2RC85ZdXSfOi6l1VvYfLSu02j6MIJ3AK5+DBNdTgHurQAAYDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP1lsjdg=</latexit>ve

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8
<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8
<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8
<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="mza5dh3P5mTFz8LFzoFCxbfNXDU=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVUmBthJLBQtjkehDaqPKcZ3WquNEtoNURf0BFn6FhQGEWNnZ+BvsNgO0XMlHR+fcq+t7/JhRqRzn28qtrK6tb+Q3C1vbO7t79v5BS0aJwKSJIxaJjo8kYZSTpqKKkU4sCAp9Rtr++Mb47QciJI34vZrExAvRkNOAYqS01LdPXNi7gmUD5wYuDFwaqBioGqj17aJTcmYFl4mbkSLIqtG3v3qDCCch4QozJGXXdWLlpUgoihmZFnqJJDHCYzQkXU05Con00tk1U3iqlQEMIqEfV3Cm/p5IUSjlJPR1Z4jUSC56RvzP6yYqqHkp5XGiCMfzRUHCoIqgiQYOqCBYsYkmCAuq/wrxCAmElQ6woENwF09eJq1yya2U3LtysX6dxZEHR+AYnAEXVEEd3IIGaAIMHsEzeAVv1pP1Yr1bH/PWnJXNHII/ZX3+AKWPlZw=</latexit>

1 2 3 4 5 6 7 8

<latexit sha1_base64="/3o7SrHnp2+Vem1FnprcKJwnwEU=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJVgETyURUY/FIngRKtgPaEPZbLft0s0m7E7EGvpLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCAWXKPrflu5ldW19Y38ZmFre2e3aO/tN3SUKMrqNBKRagVEM8ElqyNHwVqxYiQMBGsGo+rUbz4wpXkk73EcMz8kA8n7nBI0UtcudpA9oqbpLZfX1eqka5fcsjuDs0y8jJQgQ61rf3V6EU1CJpEKonXbc2P0U6KQU8EmhU6iWUzoiAxY21BJQqb9dHb4xDk2Ss/pR8qURGem/p5ISaj1OAxMZ0hwqBe9qfif106wf+mnXMYJMknni/qJcDBypik4Pa4YRTE2hFDFza0OHRJFKJqsCiYEb/HlZdI4LXvnZe/urFS5yuLIwyEcwQl4cAEVuIEa1IFCAs/wCm/Wk/VivVsf89aclc0cwB9Ynz+/VJMl</latexit>

MinECC

Figure 7. MINECC can be reduced to NODE-MC and HYPER-MC in an approximation preserving way. Squares represent terminal
nodes, one for each color. In the instance of NODE-MC, original nodes (numbered circles) are given weight∞, so we can only delete
hyperedge nodes when separating terminal nodes. In the illustration, green is color 1, and we label one green edge e = {1, 2, 3}, which is
converted to a new node ve that is attached to terminal t1 in the NODE-MC instance.

Lemma 4.7 and the other challenges highlighted above do not imply that it is impossible to design a 4
3 -approximation

algorithm with a simpler approximation guarantee proof. Indeed, a simpler proof of a tight approximation is a compelling
direction for future research. Nevertheless, this discussion highlights why it is challenging to escape from using a length
case analysis when proving that P [e ∈MY] ≤ 4

3xe for Algorithm 1.

D. Relation to Multiway Cut Objectives
In this section we prove that the canonical MINECC LP relaxation is always at least as tight as the NODE-MC LP relaxation,
and that it can be strictly tighter in some cases. Therefore, although these approaches lead to a matching worst-case guarantee
when r is arbitrarily large, applying the canonical relaxation leads to better results in many cases. We will also highlight
why our approximation guarantees for small values of r are much better than any guarantees we obtain by reducing to
HYPER-MC.

D.1. Reductions from MINECC to NODE-MC and HYPER-MC

As shown previously (Amburg et al., 2020), an instance H = (V,E,C, `) of MINECC can be reduced to an instance of
NODE-MC on a graph G via the following steps

• For every node v ∈ V , add a corresponding node v to G with weight∞.

• For each color i ∈ {1, 2, . . . , k}, place a terminal node ti in G.

• For each hyperedge e ∈ E with weight we, add a node ve to G with weight we and place an edge (v, ve) for each
v ∈ e.

The MINECC objective on H is then approximation equivalent to NODE-MC on G. NODE-MC is in turn approximation
equivalent to HYPER-MC (Chekuri & Ene, 2011b). Although not previously shown explicitly, there is a particularly simple
reduction from MINECC to HYPER-MC: introduce a terminal node ti for each color i, and then for a hyperedge e ∈ E of
color i, add terminal node ti to that hyperedge and then ignore the hyperedge color. Figure 7 illustrates the procedure of
reducing an instance of MINECC to NODE-MC and HYPER-MC. We note the following simple equivalence result.
Observation 3. MINECC with k colors is approximation-equivalent to a special type of HYPER-MC problem on k terminal
nodes where every hyperedge contains a terminal node.

Approximation guarantees for MINECC via reductions There are a few known approximation guarantees for HYPER-
MC in terms of the maximum hyperedge size r, but these do not imply any useful results for MINECC. When r = 2,
HYPER-MC is the well-studied graph multiway cut objective (Dahlhaus et al., 1994; Călinescu et al., 2000), but this has
no direct bearing on MINECC since an instance of MINECC with maximum hyperedge size r ≥ 2 corresponds to an
instance of HYPER-MC with maximum hyperedge size r + 1 ≥ 3. Chekuri & Ene (2011b) gave an Hr approximation for

22

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Node-MC LP: path constraints version

min
∑

v∈V−T
wvdv

s.t.
∑
v∈p dv ≥ 1 ∀p ∈ P

dv = 0 ∀v ∈ T
dv ≥ 0 ∀v ∈ V − T

(16)

Node-MC LP: polynomial constraints version

min
∑

v∈V−T
wvdv

s.t. yiv ≤ yiu + dv ∀(u, v) ∈ E,∀i ∈ [k]

yiti = 0 ∀i ∈ [k]

yjti ≥ 1 ∀i, j ∈ [k], j 6= i

dv ≥ 0 ∀v ∈ V − T

(17)

Figure 8. Two equivalent ways to write the distance-based LP relaxation for node-weighted multiway cut (Garg et al., 2004). P is the set
of all paths between terminal nodes.

HYPER-MC where Hi is the ith harmonic number. However, this only implies a 1.833-approximation for MINECC when
r = 3, and is worse than a 2-approximation when r ≥ 4. The approximation guarantees we obtain for small values of r by
rounding the MINECC LP relaxation are therefore significantly better and than results obtained by reducing to generalized
multiway cut objectives. In contrast, when r is arbitrarily large, our approximation guarantee of 2(1− 1

k) for rounding the
MINECC LP relaxation matches the guarantee obtained by first reducing to NODE-MC and rounding the LP relaxation for
this objective (Garg et al., 2004). In this appendix we explore the relationship between these linear programs in more depth.

D.2. The MINECC LP is Tighter than the NODE-MC LP

Let G = (V,E) be a graph with terminal nodes T = {t1, t2, . . . , tk} and a weight wv ≥ 0 for each node v ∈ V . The
distance-based LP relaxation for the NODE-MC objective on G is shown in Figure 8, where P represents the set of all paths
between pairs of terminal nodes. The formulation in (16) uses a single variable dv for each node v, with the constraint that
the distance between every pair of terminal nodes is at least 1. This requires an exponential number of path constraints. The
bottom of Figure 8 shows an alternative way to write the LP using more variables but only polynomially many constraints
and variables. The two LPs are known to be equivalent (Garg et al., 2004). The variable du provides an indication for how
strongly we wish to delete node u, and the variable yiu is interpreted as the distance between node u and cluster i.

Consider now an instance of MINECC encoded by an edge-colored hypergraph H = (V,E,C, `) that we reduce to a node-
weighted graph G = (V̂ , Ê) using the strategy in Section D.1. The node set V̂ = T ∪ V ∪ VE is made up of terminal nodes
T = {ti : i = 1, 2, . . . , k}, the original node set V from hypergraph H , and the node set VE = {ve : e ∈ E}. In Figure 7,
these are represented by square nodes, numbered circular nodes, and irregular shaped hyperedge-nodes, respectively. The
edge set Ê = EH ∪ ET has two parts, defined by

EH = {(v, ve) : v ∈ e in H} (18)
ET = {(ti, ve) : `(e) = i in H}. (19)

The node weight for each u ∈ V ∪ T is given by wu =∞, and the node weight for ve ∈ VE is we. Focusing specifically
on the formulation shown in (17), we see that the NODE-MC LP shares some similarities with the canonical MINECC
relaxation. For example, both linear programs involve one variable for each node-color pair (u, i) ∈ V × C. However, in
terms of the hypergraph H = (V,E,C, `), the NODE-MC relaxation involves O(k|V |+k|E|) variables and O(k

∑
e∈E |e|)

constraints overall, while the MINECC relaxation has O(k|V | + |E|) variables and O(k|V | +
∑
e∈E |e|) constraints.

Although the two linear programs both have an integrality gap of 2(1− 1
k), the following theorem proves that the MINECC

23

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

relaxation will always be at least as tight as the lower bound obtained via the NODE-MC relaxation.

Theorem D.1. (Theorem 2.2 in the main text) The value of the NODE-MC relaxation on G = (V̂ , Ê) is at most the value of
the MINECC relaxation on H = (V,E,C, `).

Proof. Let X = {xiv, xe : v ∈ V, e ∈ E, i ∈ [k]} denote an arbitrary set of variables for the MINECC LP relaxation for H .
Our goal is to use these to construct a set of feasible variables for the NODE-MC LP relaxation on graph G = (V̂ , Ê) with
the same objective score. This means we have to define yiv and dv for each v ∈ V̂ and i ∈ [k]. Since there are multiple
different types of nodes in V̂ , in order to simplify notation we will let yie = yive and de = dve when we are considering a
node ve ∈ VE that is associated with a hyperedge e ∈ E. Define the following set of variables for the NODE-MC LP:

• Let dv = 0 for v ∈ V ∪ T .

• For ve ∈ VE , define yje =

{
xe if `(e) = j in H
1 otherwise.

• For ve ∈ VE , define de = yce where c = `(e) in H .

• For v ∈ V , define yiv = xiv for every i ∈ [k].

• For ti ∈ T where i ∈ [k], define yiti = 0, and yjti = 1 whenever i 6= j.

The objective for the NODE-MC LP relaxation is then
∑
ve∈Ve

wede =
∑
e∈E wexe, which matches the MINECC

relaxation value. It only remains to check that the following distance constraints hold for all different types of edges
(u, v) ∈ Ê and every color j ∈ [k]:

yjv ≤ yju + dv (20)

yju ≤ yjv + du. (21)

For (v, ve) ∈ EH , if `(e) = c then ycv = xcv ≤ xe = yce = yce +dv , since dv = 0 for v ∈ V . Therefore, constraint (20) holds
in this case. Also, when `(e) = c, constraint (21) holds because yce = xe = de ≤ ycv + de. If (v, ve) ∈ EH but we consider
a color i 6= c = `(e), then constraint (20) is satisfied because yiv = xiv ≤ 1 = yie = yie + dv. Constraint (21) is satisfied as
well since yie = 1 ≤ xiv + xcv ≤ xiv + xe = yiv + de. Here we have used the fact that

∑k
i=1 x

i
v = 1 implies 1 ≤ xiv + xcv.

Finally, for an edge (ve, tc) ∈ ET where c = `(e), constraints (20) and (21) become yje ≤ y
j
tc + de and yjtc ≤ y

j
e . If j 6= c,

then both of these hold because yjtc = yje = 1. Meanwhile, if j = c, then they follow from yje = de and yjti = 0.

Strictly tighter instance. Theorem D.1 shows that the MINECC relaxation is at least as tight of a lower bound as using the
NODE-MC relaxation. Although they have the same integrality gap, we can additionally show that the MINECC relaxation
can be strictly tighter. Consider color set C = {1, 2, 3} and let H = (V,E) be a star graph with center node v0 and three
leaf nodes {v1, v2, v3}, where edge ei = (v0, vi) has color i for i = 1, 2, 3. The optimal MINECC solution will satisfy one
of the edges and make mistakes at the two other edges. The MINECC LP relaxation will also have an optimal value of 2 by
setting xivi = 0 for i = 1, 2, 3, and choosing either xiv0 = 2

3 for every i = 1, 2, 3, or xiv0 = 1 for exactly one i ∈ {1, 2, 3}.
Meanwhile, if we reduce to an instance of NODE-MC, each terminal node participates in one edge (vei , ti) for i ∈ {1, 2, 3}.
If we specifically consider the path constraints formulation of the NODE-MC LP in (16), we can see that it is feasible to set
dei = 1

2 , leading to an optimal LP solution of 3
2 . This matches the worst case integrality gap.

E. Additional Details for Vertex Cover Results

E.1. Reduction proofs

Proof of Theorem 5.1

Proof. See Figure 3. To construct the edge-colored hypergraph H , introduce a node vij for each (i, j) ∈ E, and for each
u ∈ V define a hyperedge eu = {vuj : j where (u, j) ∈ E)}. Let each hyperedge be associated with its own unique color.
Each node in G corresponds to a hyperedge in H and deleting a hyperedge in H is equivalent to covering a node in G.

24

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Algorithm 2 PittVertexCover(G)

Input: G = (VG, EG) with node weight wv ≥ 0 for each v ∈ VG
Output: Vertex cover C ⊆ V .
C ← ∅ // Initialize empty vertex cover
for (u, v) ∈ EG do

if u /∈ C and v /∈ C then
Generate uniform random ρ ∈ (0, 1)
if ρ < wv

wu+wv
then

C ← C ∪ {u}
else
C ← C ∪ {v}

end if
end if

end for
Return C

Algorithm 3 PittColoring(H)

Input: Edge-colored hypergraph H = (V,E,C, `) with weight w(e) ≥ 0 for each e ∈ E
Output: Set D ⊆ E so that H = (V,E −D, C, `) has no bad edge pairs
D ← ∅
for v ∈ V do
LE(v) = [v(1) v(2) · · · v(dv)] // Indices for v’s edges, ordered by color
f = 1, b = dv // Pointers to front/back of index array
// Move past all covered bad edge pairs containing v
while ev(b) ∈ D and b > f do
b← b− 1

end while
while ev(f) ∈ D and b > f do
f ← f + 1

end while
// Handle uncovered bad edge pairs containing v
while `(v(f)) 6= `(v(b)) do

Generate ρ ∈ (0, 1)

if ρ < w(v(f))
w(v(f))+w(v(b)) then

D ← D ∪ {ev(b)}
while ev(b) ∈ D and b > f do
// Ignore any deleted edges
b← b− 1

end while
else
D ← D ∪ {ev(f)}
while ev(f) ∈ D and b > f do
// Ignore any deleted edges
f ← f + 1

end while
end if

end while
end for
Return D

25

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Because all hyperedges have different colors, for every pair of overlapping hyperedges (eu, ev) we know that either eu or ev
must be deleted. This is equivalent to covering node u or node v when (u, v) ∈ E. By construction, the degree distribution
in G is exactly the hyperedge size distribution in H . �

Proof of Theorem 5.2

Proof. See Figure 3. To construct the graph G, first introduce a node ve for every hyperedge e ∈ E. If two hyperedges
e ∈ E and f ∈ E define a bad hyperedge pair (|e ∩ f | > 0 and `(e) 6= `(f)), then we add an edge (ve, vf) in the graph G.
If e ∈ E has weight we, we give node ve weight we in G. Deleting a minimum weight set of hyperedges in H to ensure
remaining hyperedges of different colors do not overlap is equivalent to deleting a minimum weight set of nodes in G so that
the remaining nodes form an independent set (i.e., the VERTEX COVER problem). �

E.2. Details and pseudocode for combinatorial algorithms

Algorithm 2 is pseudocode for Pitt’s algorithm (Pitt, 1985) for weighted VERTEX COVER. Algorithm 3 is pseudocode
for PittColoring, which is our 2-approximation for MINECC that implicitly applies Pitt’s algorithm to the VERTEX
COVER instance G that is approximation-equivalent to solving the MINECC objective on an edge colored hypergraph
H = (V,E,C, `). Importantly, this algorithm never explicitly forms G, but is still able to identify a set of edges in H to
delete which correspond to a vertex cover in G. Full details for how to accomplish this is included in the main text, along
with justification for the O(

∑
e∈E |e|) runtime. The fact that this is a 2-approximation for MINECC (even in the weighted

case) follows directly from the fact that this is implicitly providing a valid 2-approximate vertex cover in the (unformed)
reduced graph G via Pitt’s algorithm.

MatchColoring. Our algorithm MatchColoring is a 2-approximation for the unweighted version of MINECC. This
algorithm implicitly applies the common strategy of approximating an unweighted VERTEX COVER problem by finding a
maximal matching and then adding both endpoints of each edge in the maximal matching to form a cover. For our problem,
this corresponds to finding a maximal edge-disjoint set of bad edge pairs, and deleting all edges in those bad edge pairs. This
can also be implemented in O(

∑
e |e|) time by carefully iterating through bad edge pairs in the same way that PittColoring

does. This approach has the additional advantage of providing a deterministic 2-approximate solution for unweighted
MINECC (PittColoring has an expected 2-approximation). Additionally, the maximal matching (i.e., maximal edge-disjoint
set of bad edge pairs) that it computes provides a lower bound on the MINECC objective, which can be used in practice to
check a posteriori approximation guarantees for other methods that do not come with approximation guarantees of their own.

Improved Hybrid algorithm. Our Hybrid algorithm combines the strengths of MatchColoring and MajorityVote.
MatchColoring finds a maximal edge-disjoint set of bad hyperedge pairs, which provides a useful lower bound on the
optimal MINECC objective. It deletes all edges in this maximal set, which is exactly within a factor 2 of this lower bound.
In practice, this often deletes more edges than is strictly necessary, and leads to a large set of nodes that are contained
in no remaining edge. From a theoretical perspective, these can be assigned any color and the algorithm will still be a
2-approximation. Hybrid works simply by assigning these nodes to have the color determined by the MajorityVote method
(i.e, the edge color that the node participates in the most). This often ends up satisfying many edges that were deleted
by MatchColoring even though they did not actually need to be deleted in order to yield a hypergraph with no bad edge
pairs. Because the first step of Hybrid is to run MatchColoring and assign colors based on this algorithm, in theory is still
enjoys the theoretical 2-approximation guarantee, and it can still make use of the explicit lower bound computed by this
MatchColoring.

F. Experimental Results
Previous work has already shown that the LP relaxation can often be solved on real-world graphs and hypergraphs with
tens of thousands of nodes and many large hyperedges within minutes (Amburg et al., 2020; 2022). The LP relaxation
often even finds the optimal solution even using the simplest rounding techniques. Our improved LP approximation results
therefore mainly serve as a way bring the best theoretical results closer to what has been observed in practice. On the
other hand, our combinatorial algorithms provide a very practical new way to obtain approximate solutions with strong
guarantees on a much larger scale than was ever possible previously. We implement our combinatorial algorithms in Julia.
All experiments are run on a Mac laptop with 16GB of RAM. Source code and all data is publicly available on the Github
repo https://github.com/nveldt/ImprovedECC.

26

https://github.com/nveldt/ImprovedECC

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Table 6. Statistics for five benchmark edge-colored hypergraphs from Amburg et al. (2020).

Dataset |V | |E| r k

Brain 638 21180 2 2
Cooking 6714 39774 65 20
DAWN 2109 87104 22 10
MAG-10 80198 51889 25 10
Walmart-Trips 88837 65898 25 44

Experiments on previous benchmark hypergraphs Table 6 presents statistics for five benchmark edge-colored clustering
hypergraphs first considered by Amburg et al. (2020). In Table 7, we show the performance of various algorithms in
approximating ECC on these instances. The LP relaxation produces integral or near integral results on these datasets,
so it is enough to apply a very simple rounding scheme (for each v ∈ V , assign it color i∗ = argmini x

i
v) to obtain an

optimal or near optimal solution to MINECC. PittColoring and MatchColoring exhibit a very straightforward tradeoff
when compared with LP: they are far more scalable, at the expense of worse approximation guarantees. They nevertheless
produce clusterings that are within a small factor of the LP lower bound (Approximation Factor in Table 7), and only take a
fraction of a second.

The comparison between our combinatorial methods and MajorityVote is arguably more interesting. Although MajorityVote
only has an r-approximation guarantee in theory, it often produces better clusterings than our combinatorial methods.
However, on the Walmart dataset, PittColoring and MatchColoring produce better results. This may be due to the fact
that this dataset has a much larger maximum hyperedge size, though it is not entirely clear. All of these combinatorial
methods have the same asymptotic runtime of O(

∑
e |e|), and very similar running times in practice. We have also reported

results for running PittColoring and MatchColoring 100 times and taking the best result (Pitt+ and Match+ in Table 7).
This is still very fast, and produces slightly better approximation factors. For each run, we randomize the order in which
nodes are visited, which changes the order in which bad edge pairs are visited and therefore changes which hyperedges are
deleted. PittColoring has additional randomization in how it chooses which edge to delete in a bad edge pair.

Experiments on the Trivago Hypergraph The Trivago hypergraph is derived from the 2019 ACM RecSys Challenge
dataset (https://recsys.acm.org/recsys19/challenge/). It is closely related to the previous Trivago hyper-
graph without edge labels available at https://www.cs.cornell.edu/˜arb/data/trivago-clicks/. The
key difference is that in processing the data, we have kept track of the user location platform when parsing the website
browsing data, which allows us to obtain edge country labels. We discard nodes that have labels that do not correspond to
any of the hyperedge labels.

Table 2 in the main text displays the number of mistakes, edge satisfaction, a posteriori approximation ratio (for all but
PittColoring, which does not compute an explicit lower bound), accuracy, and runtime of each combinatorial method, all
averaged over 50 different trials. There is little to no variation between different runs. The a posteriori approximation
guarantee for MatchColoring and Hybrid is obtained by taking the number of mistakes made by the method and dividing
by the lower bound computed by MatchColoring. MajorityVote does not compute as good of a lower bound. In theory,
this provides an r-approximation, because this method can be seen as the optimal solution to an alternative edge-colored
clustering objective where the penalty at each hyperedge is the number of nodes in the hyperedge with a color that is
different from the hyperedge’s color. This is always within a factor r of the optimal MINECC objective. Using this fact, it is
not hard to prove that the optimal MINECC objective will be lower bounded by∑

e∈E
∑
v∈e 1 (YMV[v] 6= `(e))

r
, (22)

where YMV is the MajorityVote clustering. Dividing the MINECC objective for MajorityVote by this lower bound
on the optimal MINECC solution produces the approximation in Table 2. Although this is better than the theoretical
85-approximation, it is still very poor.

27

https://recsys.acm.org/recsys19/challenge/
https://www.cs.cornell.edu/~arb/data/trivago-clicks/

Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs

Table 7. Approximation factors (ratio between algorithm output and LP lower bound), edge satisfaction (percentage of edges satisfied by
the clustering), and runtimes obtained by various algorithms on five benchmark edge-colored hypergraphs from Amburg et al. (2020).
MajorityVote (MV) is deterministic. Our vertex cover algorithms are randomized, so we list the mean values and standard deviations over
50 runs. Pitt+ and Match+ correspond to running PittColoring and MatchColoring 100 times and taking the best clustering found.

Ratio to LP lower bound

Dataset LP MV PittColoring MatchColoring Pitt+ Match+

Brain 1.0 1.01 1.07 ±0.01 1.08 ±0.01 1.06 ±0.01 1.07 ±0.01
Cooking 1.0 1.21 1.23 ±0.01 1.23 ±0.0 1.22 ±0.0 1.22 ±0.01
DAWN 1.0 1.09 1.57 ±0.04 1.58 ±0.03 1.54 ±0.03 1.54 ±0.03
MAG-10 1.0 1.18 1.39 ±0.01 1.49 ±0.0 1.37 ±0.0 1.48 ±0.0
Walmart-Trips 1.0 1.2 1.13 ±0.0 1.18 ±0.0 1.13 ±0.0 1.17 ±0.0

Edge Satisfaction

Dataset LP MV PittColoring MatchColoring Pitt+ Match+

Brain 0.64 0.64 0.62 ±0.0 0.62 ±0.0 0.62 ±0.0 0.62 ±0.0
Cooking 0.2 0.03 0.01 ±0.0 0.01 ±0.0 0.02 ±0.0 0.02 ±0.0
DAWN 0.53 0.48 0.26 ±0.02 0.25 ±0.02 0.27 ±0.01 0.27 ±0.01
MAG-10 0.62 0.55 0.47 ±0.0 0.44 ±0.0 0.48 ±0.0 0.44 ±0.0
Walmart-Trips 0.24 0.09 0.14 ±0.0 0.11 ±0.0 0.14 ±0.0 0.11 ±0.0

Runtime

Dataset LP MV PittColoring MatchColoring Pitt+ Match+

Brain 0.52 0.001 0.006 ±0.028 0.002 ±0.001 0.12 ±0.006 0.028 ±0.004
Cooking 127.01 0.002 0.01 ±0.003 0.008 ±0.007 0.525 ±0.012 0.228 ±0.011
DAWN 4.23 0.003 0.01 ±0.004 0.005 ±0.003 0.779 ±0.038 0.221 ±0.007
MAG-10 17.0 0.012 0.04 ±0.006 0.04 ±0.016 0.675 ±0.037 0.414 ±0.06
Walmart-Trips 321.09 0.07 0.053 ±0.007 0.05 ±0.009 1.545 ±0.083 1.044 ±0.067

28

