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Abstract
Antibodies are Y-shaped proteins that neutralize
pathogens and constitute the core of our adaptive
immune system. De novo generation of new anti-
bodies that target specific antigens holds the key
to accelerating vaccine discovery. However, this
co-design of the amino acid sequence and the 3D
structure subsumes and accentuates, some central
challenges from multiple tasks including protein
folding (sequence to structure), inverse folding
(structure to sequence), and docking (binding).

We strive to surmount these challenges with a
new generative model AbODE that extends graph
PDEs to accommodate both contextual informa-
tion and external interactions. Unlike existing ap-
proaches, AbODE uses a single round of full-shot
decoding, and elicits continuous differential at-
tention that encapsulates, and evolves with, latent
interactions within the antibody as well as those
involving the antigen. We unravel fundamental
connections between AbODE and temporal net-
works as well as graph-matching networks. The
proposed model significantly outperforms exist-
ing methods on standard metrics across bench-
marks.

1. Introduction
Machine learning methods have recently enabled exciting
developments for computational drug design, including, on
tasks such as protein folding (Jumper et al., 2021), i.e., pre-
dicting the 3D structure of a given protein from its amino
acid sequence; sequence design or inverse folding (Ingra-
ham et al., 2019b), i.e., generating new sequences that fold
into a given 3D structure; and docking (Ganea et al., 2021),
i.e., predicting the complex when two proteins bind together.

We focus on the problem of antibody design. Antibodies,
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the versatile Y-shaped proteins that guard against pathogens
such as bacteria and viruses, are essential to our adaptive
immune mechanism. Typically, an antibody acts by binding
to a specific molecule of the pathogen, namely, the antigen.
Each antibody recognizes a unique antigen, and the so-
called Complementarity Determining Regions (CDRs) at
the tip of the antibody determines this specificity (Figure 1).
Thus, automating the design of antibodies against specific
pathogens (e.g., the SARS-CoV-2 virus) can revolutionize
drug discovery (Pinto et al., 2020; Jin et al., 2022b).

Our objective is to co-design the CDR sequence and struc-
ture from scratch, conditioned on an antigen. However,
significant challenges must be overcome in this pursuit.
While recent generative methods for protein sequence de-
sign have been successful (Ingraham et al., 2019b), they
crucially utilize that the long term dependencies in sequence
are local in the 3D space. However, the CDR structures
are seldom known a priori, thereby limiting the scope of
such approaches (Jin et al., 2022b). In principle, one could
segregate the design of sequence from structure. Indeed,
once a CDR sequence is generated, folding methods such
as AlphaFold that exploit alignment with a family of pro-
tein sequences (Jumper et al., 2021) can be employed to
estimate the 3D structure of the CDR. However, generating
sequence without conditioning on the structure (Alley et al.,
2019; Shin et al., 2021a) is known to produce sub-optimal
sequences. Moreover, related sequences may be unavailable
for scenarios that diverge considerably from naturally oc-
curring antibodies (Ingraham et al., 2019b). Finally, finding
antibodies that have a good binding affinity with the target
antigens (Raybould et al., 2019) requires search in a huge
space (∼ 2060 possible CDR sequences).

Initial approaches for antibody design (Pantazes & Maranas,
2010; Li et al., 2014; Lapidoth et al., 2015; Adolf-Bryfogle
et al., 2018) relied on hand-crafted energy functions that
entailed expensive simulation, and could not sufficiently
capture complex interactions (Graves et al., 2020). Going
beyond 1D sequence prediction (Alley et al., 2019; Shin
et al., 2021a; Saka et al., 2021a; Akbar et al., 2022), recent
generative methods co-design structure and sequence (Jin
et al., 2022b) and can incorporate information about antigen
directly in the model (Jin et al., 2022a; Kong et al., 2023).

Certain shortcomings, however, accompany these advances.
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Figure 1: Schematic showing the structure of a residue (amino acid), where the backbone atoms we use are N , Cα and C
(right) and the structure of the antibody (left) which is Y-shaped showing the VH/VL sequences and binding to the antigen,
and we focus on CDRs of the variable domain in the heavy chain (VH).

The autoregressive scheme (one residue at a time) adopted
by (Jin et al., 2022a;b) is susceptible to issues such as van-
ishing or exploding gradients during training, as well as
slow generation and accumulation of errors during infer-
ence. Kong et al. (2023) advocate multiple full-shot rounds
to address this issue; however, segregating context (intra-
antibody) from external interactions (antibody-antigen) pre-
cludes joint optimization, and may result in sub-optimality.

We circumvent these issues with a novel viewpoint that
models the antibody-antigen complex as a joint 3D graph
with heterogeneous edges. Different from all prior works,
this perspective allows us to formulate a coupled neural
ODE system over the nodes pertaining to the antibody, while
simultaneously accounting for the antigen. Specifically,
we associate local densities (one per antibody node) that
are progressively refined toward globally aligned densities
based on simultaneous feedback from the antigen as well
as the (other) antibody nodes. The 3D coordinates and the
node labels for the antibody can then be sampled after a
few rounds in one-shot, i.e., all at once. Thus, the entire
procedure is efficient and end-to-end trainable.

We show how invariance can be built in readily into the pro-
posed method AbODE toward representations that account
for rotations and other symmetries. AbODE establishes
a new state-of-the-art (SOTA) for antibody design across
standard metrics on several benchmarks. Interestingly, it
turns out that it shares connections with two recent methods
for equivariant molecular generation and docking, namely,
ModFlow and IEGMN. While ModFlow can be recovered
as a special case of the AbODE formulation, IEGMN may
be interpreted as a discrete analog of AbODE. One one hand,
these similarities reaffirm the kinship of different compu-
tational drug design tasks; on the other, they suggest the
broader applicability of neural PDEs as effective tools for
these tasks. Our experiments further reinforce this phe-
nomenon: AbODE is already competitive with the SOTA
methods on a task it is not tailored for, namely, fixed back-

bone protein sequence design.

1.1. Contributions

In summary, we make following contributions.

• We propose AbODE, a generative model that extends
graph PDEs by jointly modeling the internal context
and interactions with external objects (e.g., antigens).

• AbODE co-designs the antibody sequence and struc-
ture, using a single round of full-shot decoding.

• Empirically, AbODE registers SOTA performance on
various sequence design and structure prediction tasks.

2. Related Work
Antibody/protein design Early approaches for computa-
tional antibody design optimize hand-crafted energy func-
tions (Pantazes & Maranas, 2010; Li et al., 2014; Lapidoth
et al., 2015; Adolf-Bryfogle et al., 2018). These methods
require costly simulations and are prone to defects due to
complex interactions between chains that cannot be captured
by force fields or statistical functions (Graves et al., 2020).
Recently, deep generative models have been utilized for
1D sequence prediction in proteins (O’Connell et al., 2018;
Ingraham et al., 2019b; Strokach et al., 2019; Karimi et al.,
2020; Cao et al., 2021; Dauparas et al., 2022) and antibodies
(Alley et al., 2019; Shin et al., 2021a; Saka et al., 2021a;
Akbar et al., 2022), conditioned on the backbone 3D struc-
ture. Jin et al. (2022b) proposed to co-design the sequence
and structure via an autoregressive refinement technique,
while Kong et al. (2023) advocated multiple rounds of full-
shot decoding together with an encoder for intra-antibody
context, and a separate encoder for external interactions.

Different from all these works, we formulate a single full-
shot method that extends graph PDEs(Chamberlain et al.,
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Figure 2: A demonstration of AbODE. The initial structure and amino acid labels evolve in time under fψ and are subsequently
transformed into a final structure and amino acid labels.

2021; Iakovlev et al., 2020) to accommodate and condition
on spatial and context-based information of the antigen,
tailored to antibody sequence and structure generation.

Generative models for graphs Our work is related to
continuous time models for graph generation (Verma et al.,
2022; Avelar et al., 2019) that incorporate dynamic interac-
tions (Chen et al., 2018; Grathwohl et al., 2018; Iakovlev
et al., 2020; Eliasof et al., 2021) over graphs. Methods
have also been developed for protein structure generation,
e.g., Folding Diffusion (Wu et al., 2022), Anand & Huang
(2018), AlphaDesign (Gao et al., 2022), etc. Most of these
methods lack the flexibility to be directly applied to anti-
body sequence and structure design, due to their inability to
capture effective inductive biases, conditional information,
and higher-order features. In contrast, we can combine con-
ditional information and evolve the structure and sequence
via latent co-interacting trajectories.

3D structure prediction Our method is also closely re-
lated to docking (Ganea et al., 2021; Stärk et al., 2022)
and protein folding (Ingraham et al., 2019c;d; Baek et al.,
2021; Jumper et al., 2021; Ingraham et al., 2022). Methods
like DiffDock (Corso et al., 2023) and EquiBind (Stärk
et al., 2022) predict only the structure of the molecule
given a protein binding site but lack any generative compo-
nent related to sequence design. AlphaFold (Jumper et al.,
2021) requires holistic information like protein sequence,
multi-sequence alignment (MSA), and template features.
These models cannot be directly applied for antibody de-
sign, where MSA is not specified in advance and one needs
to predict the structure of an incomplete sequence. In con-
trast, we learn to co-model the 3D structure and sequence
for incomplete graphs and interleave structure modeling
with sequence prediction.

3. Antibody sequence and structure co-design
An antibody (Ab) is a Y-shaped protein (Fig. 1) that identi-
fies antigens of a foreign object (e.g., a virus) and stimulates

an immunological response. An antibody consists of a con-
stant domain, and a symmetric variable region divided into
heavy (H) and light (L) chains (Kuroda et al., 2012). The
surface of the antibody contains three complementarity-
determining regions (CDRs), which act as the main binding
determinant. CDR-H3 makes up the majority of the binding
affinity (Fischman & Ofran, 2018). The non-CDR regions
are highly preserved (Kuroda et al., 2012); thus, it is com-
mon to formulate antibody design as a CDR design problem
(Shin et al., 2021b).

We view the antibody-antigen complex as a joint graph
with interactions between nodes across the binding. We
co-model both the sequence and the 3D conformation of the
CDR regions with a graph PDE and apply our method to
antigen-specific and unconditional antibody design tasks.

We seek a representation that is invariant to translations and
rotations due to its locality along the backbone. Moreover,
we would like the edge features to be sufficiently informative
such that the relative neighborhoods can be reconstructed up
to rigid body motion (Ingraham et al., 2019b). We describe
next a representation that satisfies these desiderata.

3.1. The antibody-antigen graph

We define the antigen-antibody complex as a 3D graph
G = (V,E,X), with antibody Ab and antigen Ag ver-
tices V = (VAb, VAg), coordinates X = (XAb, XAg) and
edges E = (EAb, EAb-Ag) within the antibody as well
as between the antibody and the antigen. Each vertex
v ∈ A{Arg,His, . . .} is one of 20 amino acids. We treat
the labels with a Categorical distribution, such that the label
features ai ∈ R20 represent the unnormalized amino acid
probabilities. We also represent each residue by the carte-
sian 3D coordinates of its three backbone atoms {N,Cα, C}
(see Fig. 1). For the ith residue xi we compute its spatial
features si = (ri, αi, γi) in Eq. 1, where, ri denotes the
distance between consecutive residues xi and xi+1, αi is
the co-angle of residue i wrt previous and next residue, γi is
the azimuthal angle of i’s local plane, and ni is the normal
vector. The full residue state zi = [ai, si] concatenates the
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label features ai and the spatial features si.

ri = ∥ui∥ , ui = xi+1 − xi (1)

αi = cos−1

(
⟨ui,ui−1⟩

∥ui∥ · ∥ui−1∥

)
(2)

γi = cos−1

(
⟨ui,ni⟩

∥ui∥ · ∥ni∥

)
, ni = ui × ui−1. (3)

Figure 3: Schematic graph construction for the antigen-
antibody complex with internal edges EAb and external
edges EAb-Ag. In the unconditional setting (i.e., the antigen
is not specified), this reduces to an antibody graph

Interactions To capture the interactions pertaining to the
complex, we define edgesEAb between all antibody residues
and edgesEAb-Ag between all antibody and antigen residues
(See Figure 3). We also define edge features between nodes
i and j,

eij = (∆zij , i− j,RBF (∥si − sj∥) . (4)

O⊤
i

si,α − sj,α
∥si,α − sj,α∥

,O⊤
i Oj , kij). (5)

These include state differences ∆zij = {∆aij ,∆sij}
over label features ∆aij = aj − ai and spatial features
∆sij = {(∆rij ,∆αij ,∆γij)p | p ∈ {N,Cα, C}}, back-
bone distance i − j, and spatial distance RBF(||si − sj ||)
(here, RBF is the standard radius basis function kernel). The
fourth term encodes directional embedding in the relative
direction of j in the local coordinate frame Oi (Ingraham
et al., 2019b), and the OT

i Oj describes the orientation en-
coding of the node i with node j (See Appendix A.1 for
details). Finally, we encode within-antibody edges with
k = 1 and antibody-antigen edges with k = 2.

Task formulation Given a three-dimensional antibody or
antibody-antigen graph, we aim to learn a PDE in order to
generate an amino acid sequence and the corresponding 3D
conformation jointly.

3.2. Conjoined system of ODEs

We propose to model the distribution of antibody-antigen
complexes by a differential graph flow z(t) over time
t ∈ R+. We initialize the initial state z(0) to a uniform
categorical vector, similar to mask initialization (Jin et al.,
2022b; Kong et al., 2023). Coordinates are initialized with
the even distribution between the residue right before CDRs
and the one right after CDRs following (Kong et al., 2023),
and we learn a differential dz(t)dt that maps to the end state
z(T ) that matches data.

We begin by assuming an ODE system {zi(t)} over time
t ∈ R+, where node the time evolution of node i is an ODE

żi(t) =
∂zi(t)

∂t
= fψ(t, zi(t), zN(i)(t), {eij(t)}j) (6)

where N(i) = {j : (i, j) ∈ E} indexes the neighbors of
node i, and the function f parameterized by ψ is our main
learning goal. The differentials form a coupled ODE system

ż(t) =

 ż1(t)
...

żM (t)

 (7)

=

 fψ(t, z1(t), zN(1)(t), {e1j(t)}j)
...

fψ(t, zM (t), zN(M)(t), {eMj(t)}j)
)
 (8)

z(T ) = z(0) +

∫ T

0

ż(t)dt . (9)

where M is the number of nodes. The above ODE system
corresponds to a graph PDE (Iakovlev et al., 2020; Verma
et al., 2022), whose forward pass and backpropagation can
be solved efficiently by ODE solvers.

Interestingly, it turns out that the PDE about a recently
proposed method for molecular generation can be recovered
as a particular case of 7, when all the edges are set to be of
the same type.

Proposition 1 : ModFlow (Verma et al., 2022) can be seen
as a special case of AbODE in an unconditional setting.
This can be achieved by setting kij = 1 for every eij .

3.3. Attention-based differential

We capture the interactions between the antigen and anti-
body residues with graph attention (Shi et al., 2020)

αij = softmax

(
(W3zi)

⊤
(W4zj +W6eij)√

d

)
(10)

z′i = W1zi +
∑

j∈N(i)

αij (W2zj +W6eij) (11)
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Table 1: AbODE as a variant of Independent E(3)-Equivariant Graph Matching Network (IEGMN) applied to interactions
among two graphsG1 = (V1, E1) andG2 = (V2, E2). Here, eij ∈ E1∪E2; n ∈ V1∪V2; RBF(xi,xj ;σ) = exp(−||x(l)

i −
x
(l)
j ||2/σ); hn and xn denote, respectively, the node embedding and the spatial embedding; aij are attention based

coefficients; ϕx is a real-valued (scalar) parametric function; ϕh,e are parametric functions (MLPs); fij , fi are the original
edge and node features; β, η are scaling parameters and W is a learnable matrix. For AbODE , αi,j are the attention
coefficients; W1, . . . ,W6 are learnable weight parameters; d is the hidden size of each head; Nint(i) are the neighbours j
of node i such that kij = 1, and Next(i) are the neighbours such that kij = 2.

Method IEGMN layer AbODE

Edge mij = φe
(
h
(l)
i ,h

(l)
j ,RBF

(
x
(l)
i ,x

(l)
j ;σ

)
, fij

)
αi,j = softmax

(
(W3zi)

⊤(W4zj+W6ei,j).√
d

)
mn = 1

|N (n)|
∑
j∈N (n) mnj m′

i =
∑
j∈Ni

αi,j (W2zj +W6eij)

Intra and Inter connections µij = aijWh
(l)
j ,∀i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1 m′,ext

ij = αi,j (W2zj +W6eij) , m
′,int
ij = αi,j (W2zj +W6eij)

µi =
∑
j∈V2

µij ,∀i ∈ V1, µk =
∑
l∈V1

µkl,∀k ∈ V2 m′,int
i =

∑Nint(i)
j m′,int

ij , m′,ext
i =

∑Next(i)
j m′,ext

ij

Node embedding h
(l+1)
n = (1− β) · h(l)

n + β · φh
(
h
(l)
n ,mn,µn, fn

)
a′i = W1ai +m′,int

i +m′,ext
i

Coordinate embedding x
(l+1)
n = ηx

(0)
n + (1− η)x

(l)
n +

∑
j∈N (n)

(
x
(l)
n − x

(l)
j

)
φx (mnj) s′i = W1si +m′,int

i +m′,ext
i

where W1, . . . ,W6 are weight parameters and d is the head
size. The α’s are the attention coefficients corresponding to
within and across edges, which are used to update the node
feature zi. Interestingly, our method also shares similari-
ties with the Independent E(3)-Equivariant Graph Matching
Networks (IEGMNs) for docking (Ganea et al., 2021).

Proposition 2 : AbODE can be cast as Independent E(3)-
Equivariant Graph Matching Networks (IEGMN) (Ganea
et al., 2021)). The operations are listed in Table 1 (See
Appendix A.2 for more details).

In this sense, our extended graph PDE unifies molecular
generation and docking with protein/antibody design.

We now describe our training objective.

3.4. Training Objective

We optimize for the data fit of the generated states z(T)
given by the differential function fψ. The loss consists of
two components: one for the sequence and another for the
structure

L = Lseq + Lstructure (12)

The sequence loss is quantified in terms of the cross-entropy
between the true label atrueni and the label distribution
anipredicted by the model, i.e.,

Lseq =
1

N

N∑
n=1

1

M

Mi∑
i=1

CE
(
atrue
ni ,ani

)
(13)

where n indexes the N datapoints and i indexes the Mi

residues. The structure loss is computed based on the fit to

the data sample in terms of the angles and radii:

Lstructure =
1

N

N∑
n=1

1

M

Mi∑
i=1

λ
(
Lniangle + Lniradius

)
.

(14)

For each residue angle pair (α, γ) we compute the negative
log of the von-Mises likelihood

Lniangle =

{Cα,C,N}∑
k

∑
θ∈{α,γ}

logM
(
θnik | θn, true

ik , κ
)

(15)

where κ is a scale parameter, and k is atom index. The
von Mises distribution can be interpreted as a Gaussian
distribution over the domain of angles. On the other hand,
the radius loss is the negative log of a Gaussian distance.

Lniradius =

{cα,C,N}∑
k

logN
(
rnik | rn, true

ik , σ2
r

)
(16)

where σ2
r is the radius variance. Note that our method pre-

dicts the sidechain spatial coordinates, also used to calculate
the total loss. Here λ is the polar loss weight, set to λ = 0.8.
We set κ = 10, σ2

r = 0.1 to prefer narrow likelihoods for
accurate structure prediction.

We next describe the generation step.

3.5. Sequence and structure prediction

Given the antibody or antigen-antibody complex, we gener-
ate an antibody sequence and the corresponding structure by
solving the system of ODEs as described in section 3.2 for
time T to obtain z(T ) = [a(T ), s(T )]. Using the softmax
operator, we transform the label features a(T ) into Categor-
ical amino acid probabilities p. We pick the most probable
amino acid per node. A schematic representation is shown
in Fig. 2
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Table 2: Top: Unconditional sequence and structure benchmark. We report perplexity (PPL) and root mean square deviation
(RMSD) for each CDR in the heavy chain. Baselines are from Jin et al. (2022b). Bottom: Antigen-conditional sequence
and structure benchmark on SAbDab (Dunbar et al., 2014). We report amino acid recovery (AAR) and root mean square
deviation (RMSD) for each CDR in the heavy chain. Baselines are from Kong et al. (2023).

CDR-H1 CDR-H2 CDR-H3

Method PPL (↓) RMSD (↓) PPL (↓) RMSD (↓) PPL (↓) RMSD (↓)
LSTM 6.79 (N/A) 7.21 (N/A) 9.70 (N/A)
AR-GNN 6.44 2.97 6.86 2.27 9.44 3.63
RefineGNN 6.09 1.18 6.58 0.87 8.38 2.50
AbODE 4.25 ± 0.46 0.73 ± 0.15 4.32 ± 0.32 0.63 ± 0.19 6.35 ± 0.29 2.01 ± 0.13

CDR-H1 CDR-H2 CDR-H3

Method AAR % (↑) RMSD (↓) AAR % (↑) RMSD (↓) AAR % (↑) RMSD (↓)
LSTM 40.98 ± 5.20 (N/A) 28.50 ± 1.55 (N/A) 15.69 ± 0.91 (N/A)
C-LSTM 40.93 ± 5.41 (N/A) 29.24 ± 1.08 (N/A) 15.48 ± 1.17 (N/A)
RefineGNN 39.40 ± 5.56 3.22 ± 0.29 37.06 ± 3.09 3.64 ± 0.40 21.13 ± 1.59 6.00 ± 0.55
C-RefineGNN 33.19 ± 2.99 3.25 ± 0.40 33.53 ± 3.23 3.69 ± 0.56 18.88 ± 1.37 6.22 ± 0.59
MEAN 58.29 ± 7.27 0.98 ± 0.16 47.15 ± 3.09 0.95 ± 0.05 36.38 ± 3.08 2.21 ± 0.16
AbODE 70.5 ± 1.14 0.65 ± 0.1 55.7 ± 1.45 0.73 ± 0.14 39.8 ± 1.17 1.73 ± 0.11

4. Experiments
Tasks We benchmark AbODE on a series of challenging
tasks: (i) we evaluate the model on unconditional antibody
sequence and structure generation against ground truth struc-
tures in the Structural Antibody Database SAbDab (Dunbar
et al., 2014) section 4.1, (ii) we benchmark our method
in terms of its ability to generate antigen-conditioned anti-
body sequences and structures from SAbDab in section 4.2,
(iii) we evaluate our model on the task of designing CDR-
H3 over 60 manually selected diverse complexes (Adolf-
Bryfogle et al., 2018) in section 4.3, (iv) we extend our
model to incorporate information about the constant region
of the antibody in section 4.4, and finally, (v) we extend
AbODE to de novo protein sequence design with a fixed
backbone in section 4.5.

Baselines We compare AbODE with the state-of-the-art
baseline methods. On the uncontrolled generation task, we
compare against sequence-only LSTM (Saka et al., 2021b;
Akbar et al., 2022), an autoregressive graph network AR-
GNN (You et al., 2018) tailored for antibodies, and an au-
toregressive method RefineGNN (Jin et al., 2022b), which
considers the 3D geometry and co-models the sequence and
the structure.

On the antigen-conditioned sequence and structure genera-
tion task, we again compare against LSTM and RefineGNN.
We also consider their variants C-LSTM and C-RefineGNN
proposed in Kong et al. (2023), where they adapt the current
methodology to consider the entire context of the antibody-
antigen complex. We additionally consider MEAN (Kong

et al., 2023) which uses progressive decoding to generate
CDR by encoding the external antigen context of 1D/3D
information. Finally, we also compare against a physics-
based simulator RosettaAD (Adolf-Bryfogle et al., 2018).

Implementation AbODE is implemented in Py-
Torch (Paszke et al., 2019). We used three layers of a
Transformer Convolutional Network (Shi et al., 2020) with
embedding dimensions of 128 − 256 − 64. Our models
were trained with the Adam optimizer for 5000 epochs
using batch size 300. For details, we refer the reader to
Appendix A.3.

4.1. Unconditioned Sequence and Structure Modeling

Data We obtained the antibody sequences and structure
from Structural Antibody Database (SAbDab) (Dunbar
et al., 2014) and removed any incomplete or redundant
complexes. We followed a similar strategy to Jin et al.
(2022b), where we focus on generating heavy chain CDRs,
and curated the dataset by clustering the CDR sequences via
MMseq2 (Steinegger & Söding, 2017) with 40% sequence
identity. We then randomly split the clusters into training,
validation, and test sets with an 8:1:1 ratio.

Metrics We evaluate our method on perplexity (PPL) and
root mean square deviation (RMSD) between the predicted
structures and the ground truth structures on the test data.
We report the results for all the CDR-H regions. We cal-
culate the RMSD by the Kabsch algorithm (Kabsch, 1976)
based on Cα spatial features of the CDR residues.
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Table 3: Top: Adding constant region information for unconditioned sequence and structure modeling task. Bottom: Adding
constant region information for antigen-conditioned antibody sequence and structure modeling task.

CDR-H1 CDR-H2 CDR-H3

AbODE PPL (↓) RMSD (↓) PPL (↓) RMSD (↓) PPL (↓) RMSD (↓)
− Constant Region 4.25 ± 0.46 0.73 ± 0.15 4.32 ± 0.32 0.63 ± 0.19 6.35 ± 0.29 2.01 ± 0.13
+ Constant Region (z<i) 4.31 ± 0.31 0.69 ± 0.21 4.17 ± 0.29 0.59 ± 0.21 6.41 ± 0.37 1.94 ± 0.17

CDR-H1 CDR-H2 CDR-H3

AbODE AAR % (↑) RMSD (↓) AAR % (↑) RMSD (↓) AAR % (↑) RMSD (↓)
− Constant Region 70.5 ± 1.14 0.65 ± 0.1 55.7 ± 1.45 0.73 ± 0.14 39.8 ± 1.17 1.73 ± 0.11
+ Constant Region (z<i) 71.9 ± 1.87 0.71 ± 0.23 56.8 ± 1.97 0.70 ± 0.14 36.7 ± 1.5 1.88 ± 0.11

Results The LSTM baselines do not involve structure pre-
diction, so we only report the RMSD for the graph-based
method. Table 2 reports the performance of AbODE on
uncontrolled generation, where AbODE outperforms all the
baselines on both metrics. Notably, AbODE significantly
reduces the PPL in all CDR regions and typically predicts a
structure close to the ground truth structure. We also evalu-
ate the biological functionality of the generated antibodies,
shown in Fig. 4. Specifically, we considered the following
properties:

• Gravy: The Gravy value is calculated by adding the
hydropathy value for each residue and dividing it by
the length of the sequence (Kyte & Doolittle, 1982)

• Instability: The Instability index is calculated using
the approach of Guruprasad et al. (1990), which pre-
dicts regional instability of dipeptides that occur more
frequently in unstable proteins when compared to sta-
ble proteins.

• Aromaticity: It calculates the aromaticity value of a
protein according to Lobry & Gautier (1994). It is
simply the relative frequency of Phe+Trp+Tyr.

As our plots demonstrate, AbODE can essentially replicate
the behavior of the data in terms of instability and gravy.
However, there is some discrepancy in terms of spread con-
cerning aromaticity.

4.2. Antigen Conditioned Sequence and Structure
Modeling

Data We took the antigen-antibody complexes dataset
from Structural Antibody Database (Dunbar et al., 2014)
and removed the illegal data-points, renumbering them to
the IMGT scheme (Lefranc et al., 2003). We follow the data
preparation strategy of Kong et al. (2023); Jin et al. (2022b)
by splitting the dataset into training, validation, and test
sets. We accomplish this by clustering the sequences via
MMseq2 (Steinegger & Söding, 2017) with 40% sequence

identity. Then we split all clusters into training, validation,
and test sets in the proportion 8:1:1.

Metrics We employ Amino Acid Recovery (AAR) and
RMSD for quantitative evaluation. AAR is defined as the
overlapping rate between the predicted 1D sequences and
the ground truth. RMSD is calculated via the Kabsch algo-
rithm (Kabsch, 1976) based on Cα spatial features of the
CDR residues.

Results Table 2 shows the performance of AbODE com-
pared to the baseline methods. AbODE is able to perform
better than other competing methods in terms of structure
and sequence prediction. AbODE is able to improve over
the SOTA by directly combining the antibody context with
the information about the antigen via the attention network,
thereby demonstrating the benefits of joint modeling. As a
result, AbODE able to learn the underlying distribution of
the complexes effectively.

4.3. Antigen-Binding CDR-H3 Design

In order to further evaluate our model, we designed CDR-
H3 that binds to a given antigen. We used AAR and RMSD
as our scoring metrics. We included RosettaAD (Adolf-
Bryfogle et al., 2018), a conventional physics-based baseline
for comparison. We benchmark our method on 60 diverse
complexes selected by (Adolf-Bryfogle et al., 2018).

Note, however, that the training is still conducted on the
SAbDab dataset as described in section 4.2, where we elimi-
nate the antibodies that overlap with those in RAbD to avoid
any data leakage.

Results The performance of AbODE , and its comparison
with the baselines, is reported in Table 5. AbODE can
improve upon the best-performing baseline MEAN while
significantly outperforming all the other baselines in terms
of both the AAR and the RMSD. In particular, the higher
Amino acid recovery rate (AAR) of AbODE relative to
the other methods demonstrates the ability of the proposed
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Table 4: Perplexity (PPL) and Amino Acid Recovery (AAR) for different methods on fixed backbone sequence design task.
Baselines are from Shi et al. (2023).

PPL (↓) AAR % (↑)
Method Short Single-chain All Short Single-chain All
GVP-Transformer 8.94 8.67 6.70 27.3 28.3 36.5
Structured GNN 8.31 8.88 6.55 28.4 28.1 37.3
GVP-GNN 7.10 7.44 5.29 32.1 32.0 40.2
ProtSeed 7.32 7.38 5.60 34.8 34.1 43.8
AbODE 7.19 ± 0.34 7.33 ± 0.25 5.85 ± 0.45 34.4 ± 1.7 34.7 ± 1.2 42.7 ± 1.9

method to learn the underlying distribution of residuals for
sequence design.

4.4. Conditional Generation given Framework Region

We next extend the proposed method by incorporating the
sequence and structural information besides the CDR re-
gions (i.e., constant region). We encode the sequence and
structure information of the residues before CDR-H1, H2,
and H3. Specifically, we define a k-nearest neighbor graph
over the spatial domain for residues and use the sequence
z<i, where i is the location of the first CDR-H1 (or H2/H3
as the case maybe), top obtain an encoding

h<i = ϕenc(z<i, zN<i , {eij}j∈N<i)

h = Agg(h<i)

where z<i = [a<i, s<i], N<i denotes the neighbours of the
residues, and eij are the edge features. We parameterize
ϕenc as a 2-layer Transformer Convolutional Network (Shi
et al., 2020), setting the encoding dimension to 16. The
encoded features h<i are then aggregated to provide a single
summarized representation h per antibody, which is then
used in dynamics

żi(t) =
∂zi(t)

∂t
= fψ(t, zi(t), zN(i)(t), {eij(t)}j , h)

Consequently, in this case, our method has access to extra
information from the rest of the antibody sequence, leading
to more nuanced dynamics. Further details are provided in
Appendix A.4.

Results We evaluate this variant of our method on both un-
controlled antibody sequence-structure design and antigen-
conditioned antibody sequence structure co-design, as
described in section 4.1 and 4.2. The performance of
AbODE is reported in Table 3. We observe that including
the constant region increases performance for some CDR
regions.

4.5. Fixed Backbone Sequence Design

We finally extend the evaluation of our method to design
protein sequences that can fold into a given backbone struc-

Table 5: Results on RAbD benchmark. We report Amino
acid recovery (AAR) and RMSD for CDR-H3 design. Base-
lines are from Kong et al. (2023).

Method AAR % (↑) RMSD (↓)
RosettaAD 22.50 5.52
LSTM 22.36 (N/A)
C-LSTM 22.18 (N/A)
RefineGNN 29.79 7.55
C-RefineGNN 28.90 7.21
MEAN 36.77 1.81
AbODE 39.95 ± 1.3 1.54 ± 0.24

ture. This task is commonly known as the fixed backbone
structure design.

We utilized the protein dihedral angles and other spatial fea-
tures described in Eq 4 and Jing et al. (2020). These features
can be derived solely from backbone coordinates (Ingraham
et al., 2019b), as the protein structures are fixed from the be-
ginning. We use the CATH 4.2 dataset curated by Ingraham
et al. (2019b) and followed the same experimental setting as
used in previous works for a fair comparison. We compare
AbODE with state-of-the-art baselines for fixed backbone
design, including Structured GNN (Ingraham et al., 2019a),
GVP-GNN (Jing et al., 2020), GVP-Transformer (Hsu et al.,
2022) and ProtSeed (Shi et al., 2023). We evaluate the per-
formance of all methods using PPL and AAR as introduced
in previous sections. Additional details can be found in A.5.

Results Results The comparison of AbODE with other
baselines is shown in Table 4. We note that AbODE is
able to perform comparably to other methods when the
evaluation is performed on test splits in CATH 4.2 test set.
These include the short chains that have at most 100 residues
and the single-chain protein sequences. Our results establish
the promise of AbODE as a protein sequence design method
(conditioned on desired backbone structures), and suggest
that AbODE may be generalizable to related tasks beyond
antibody design.
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Table 6: Amino acid recovery (AAR) and root mean square deviation (RMSD) for masking a certain part of antigen in
antigen-conditioned antibody sequence and structure generation.

CDR-H1 CDR-H2 CDR-H3

AbODE AAR % (↑) RMSD (↓) AAR % (↑) RMSD (↓) AAR % (↑) RMSD (↓)

Mask = 10% 63.7 0.87 49.7 0.88 33.1 1.99
Mask = 0% 70.5 0.65 55.7 0.73 39.8 1.73

Figure 4: Functional evaluation of generated antibodies vs. data for CDR-H1 unconditional antibody sequence and structure
design

5. Ablation Studies
5.1. Masked-Antigen Conditioned Sequence and

Structure Modeling

We evaluated the performance of our method when data
was missing. We investigate this scenario by masking 10%
amino acids of the antigen with the minimum number of
amino acids being masked 1 (note that masking 10% be-
comes especially critical when the antigen is a peptide with
only 5-9 amino acids) for antigen-conditioned antibody se-
quence and structure generation. Table 6 shows the empir-
ical results of the proposed method (AbODE) on antigen-
conditioned antibody sequence and structure generation as
described in section 4.2. Compared to the original, un-
masked setting (in Table 2), we observe some dip in the
performance compared to the original setting, as expected.

Table 7: Hyperparameter effect of the number of time steps
for solving the ODE for CDR-H1 data

AbODE PPL (↓) RMSD (↓)

t = 10 7.38 1.44
t = 50 7.18 1.87
t = 200 5.18 1.01

5.2. Time hyperparameter for ODE

We also evaluated the effect of different choices of time steps
t to solve our ODE system. Table 7 demonstrates the effect
of change in the number of time steps on the downstream
performance for CDR-H1 data on Antigen Conditioned Se-
quence and Structure Modeling. We note that increasing
the number of timesteps for solving the ODE increases per-
formance and that training with fewer time steps leads to
unstable training.

6. Conclusion
We introduced a new generative model AbODE, which mod-
els the antibody-antigen complex as a joint graph and per-
forms information propagation using a graph PDE that
reduces to a system of coupled residue-specific ODEs.
AbODE can accurately co-model the sequence and structure
of the antigen-antibody complex. In particular, the model
can generate a binding antibody sequence and structure with
state-of-the-art accuracy for a given antigen.
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A. Appendix
A.1. Orientation Matrix

Orientation matrix(Ingraham et al., 2019b) defines invariant and locally informative features, using a local coordinate system
at each residue i, in terms of the backbone geometry. It is formally defined as,

Oi = [ui,ni,bi × ni] (17)

ui =
xi − xi−1

||xi − xi−1||
, bi =

ui − ui+1

||ui − ui+1||
, ni =

ui × ui+1

||ui × ui+1||
(18)

where bi acts as a negative angle bisector between the vectors xi−1 − xi and xi+1 − xi and ni is the unit normal vector of
that plane.

A.2. Connection to Independent E(3)-Equivariant Graph Matching Networks (IEGMNs)

Independent E(3)-Equivariant Graph Matching Networks (Ganea et al., 2021) combine Graph Matching Networks (GMN) (Li
et al., 2019) and E(3)-Equivariant Graph Neural Networks (Satorras et al., 2021), to characterize interactions between an
input pair of graphs G1 = (V1, E1), G2 = (V2, E2). IEGMNs utilize inter and intra-message passing to update the node
features and the spatial encodings. We adopt the notation from (Ganea et al., 2021): mij denotes the messages between
nodes i and j, mn represents the averaged message over all the neighbors, µij represents the intra-connection edge features,
and aij are the attention coefficients. These features create an aggregated external message in µ1 and µ2. The aggregated
external messages are then used to update the node feature embedding hn, and the spatial embedding xn for all nodes in
both graphs.

As outlined in (Table 8), AbODE shares strong similarities with IEGMN. Interestingly, both methods compute two kinds of
messages (one kind pertains to messages for nodes of the same type/graph, and the other for a different type/graph). The
role of µij is seem to be played by m′,int

ij and m′,ext
ij to update the corresponding node and spatial embeddings.

Table 8: AbODE as a variant of Independent E(3)-Equivariant Graph Matching Network (IEGMN) applied to interactions
among two graphsG1 = (V1, E1) andG2 = (V2, E2). Here, eij ∈ E1∪E2; n ∈ V1∪V2; RBF(xi,xj ;σ) = exp(−||x(l)

i −
x
(l)
j ||2/σ); hn and xn denote, respectively, the node embedding and the spatial embedding; aij are attention based

coefficients; ϕx is a real-valued (scalar) parametric function; ϕh,e are parametric functions (MLPs); fij , fi are the original
edge and node features; β, η are scaling parameters and W is a learnable matrix. For AbODE , αi,j are the attention
coefficients; W1, . . . ,W6 are learnable weight parameters; d is the hidden size of each head; Nint(i) are the neighbours j
of node i such that kij = 1, and Next(i) are the neighbours such that kij = 2.

Method IEGMN layer AbODE

Edge mij = φe
(
h
(l)
i ,h

(l)
j ,RBF

(
x
(l)
i ,x

(l)
j ;σ

)
, fij

)
αi,j = softmax

(
(W3zi)

⊤(W4zj+W6ei,j).√
d

)
mn = 1

|N (n)|
∑
j∈N (n) mnj m′

i =
∑
j∈Ni

αi,j (W2zj +W6eij)

Intra and Inter connections µij = aijWh
(l)
j ,∀i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1 m′,ext

ij = αi,j (W2zj +W6eij) , m
′,int
ij = αi,j (W2zj +W6eij)

µi =
∑
j∈V2

µij ,∀i ∈ V1, µk =
∑
l∈V1

µkl,∀k ∈ V2 m′,int
i =

∑Nint(i)
j m′,int

ij , m′,ext
i =

∑Next(i)
j m′,ext

ij

Node embedding h
(l+1)
n = (1− β) · h(l)

n + β · φh
(
h
(l)
n ,mn,µn, fn

)
a′i = W1ai +m′,int

i +m′,ext
i

Coordinate embedding x
(l+1)
n = ηx

(0)
n + (1− η)x

(l)
n +

∑
j∈N (n)

(
x
(l)
n − x

(l)
j

)
φx (mnj) s′i = W1si +m′,int

i +m′,ext
i

A.3. Implementation

We implemented AbODE in PyTorch (Paszke et al., 2019). We used three layers of Transformer Convolutional Network (Shi
et al., 2020) with hidden embedding dimensions of 128− 256− 64. The ODE solver operated over time-steps t ∈ [0, 200],
where we took the last time step value as the final prediction of the model. The ODE system is solved with the Adaptive
heun solver with an adaptive step size. We train the models for 10000 epochs with the Adam optimizer and use a batch size
of 300.
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A.4. Encoding the non-CDR Antibody sequence

We encode the sequence and structural information present in the constant regions of the antibody sequences in the heavy
chain. We consider the sequences that occur to the left or are before the CDR-H1, H2, and H3 sequences and denote them as
z<i where i is the location of the first CDR-H1, H2,H3 sequence. We used a 2-layer Transformer Convolutional Network
with encoding dimensions 64− 16 to encode the features into a 16-dimension encoding vector denoted as h<i. The spatial
neighborhood is defined as a k-nearest neighbor graph over the spatial domain for residues, where k = 5 and {eij}j∈N<i

are the corresponding edge features.

h<i = ϕenc(z<i, zN<i
, {eij}j∈N<i

) (19)
h = Agg(h<i) (20)

To have one encoding vector per antibody, we use Agg to obtain an aggregated encoding h, which in turn plays a role in
dynamics as,

żi(t) =
∂zi(t)

∂t
= fψ(t, zi(t), zN(i)(t), {eij(t)}j , h) (21)

The encoding model and the dynamics are trained simultaneously using the loss described in section 3.4, with the same
hyperparameters.

A.5. Fixed Backbone sequence design

We evaluate our method for de novo protein sequence design that can fold into a given backbone structure, also known as
fixed backbone structure design. In addition to the current features, in Eq 4, we utilized the node and edge features listed
in Jing et al. (2020), which can be derived solely from backbone coordinates and the protein structures are fixed from the
beginning. We follow the same initialization for the amino acid labels and due to the large length of protein sequences and
memory constraints, we restrict to k = 30 nearest neighbors when defining the spatial neighborhood. Since this task only
requires predicting the sequence, so we utilized only the sequence loss Lseq as defined in Eq. 13 for training in this setting.

We use the CATH 4.2 dataset by Ingraham et al. (2019a) where we discard the redundant, NaN coordinates, and follow a
similar experimental setting and split as previous works for a fair comparison. We followed the same hyperparameters as
used in other cases, with a batch size of 10.
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