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Abstract
While federated learning (FL) promises to pre-
serve privacy, recent works in the image and text
domains have shown that training updates leak
private client data. However, most high-stakes ap-
plications of FL (e.g., in healthcare and finance)
use tabular data, where the risk of data leakage
has not yet been explored. A successful attack
for tabular data must address two key challenges
unique to the domain: (i) obtaining a solution to
a high-variance mixed discrete-continuous opti-
mization problem, and (ii) enabling human assess-
ment of the reconstruction as unlike for image
and text data, direct human inspection is not pos-
sible. In this work we address these challenges
and propose TabLeak, the first comprehensive
reconstruction attack on tabular data. TabLeak
is based on two key contributions: (i) a method
which leverages a softmax relaxation and pooled
ensembling to solve the optimization problem,
and (ii) an entropy-based uncertainty quantifica-
tion scheme to enable human assessment. We
evaluate TabLeak on four tabular datasets for both
FedSGD and FedAvg training protocols, and show
that it successfully breaks several settings pre-
viously deemed safe. For instance, we extract
large subsets of private data at > 90% accuracy
even at the large batch size of 128. Our findings
demonstrate that current high-stakes tabular FL is
excessively vulnerable to leakage attacks.

1. Introduction
Federated Learning (McMahan et al., 2017) (FL) has
emerged as the most prominent approach to training ma-
chine learning models collaboratively without requiring sen-
sitive data of different parties to be collected in a central
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Figure 1: Comparison of image, text, and tabular data re-
construction. While the attack success can be judged by
human inspection in images and text, for tabular data it is
not possible, as both reconstructions look plausible. The im-
age reconstruction example is taken from Yin et al. (2021).

database. While prior work has examined privacy leakage
from exchanged updates in FL on images (Zhu et al., 2019;
Geiping et al., 2020; Yin et al., 2021) and text (Deng et al.,
2021; Dimitrov et al., 2022a; Gupta et al., 2022), many
applications of FL involve tabular datasets incorporating
highly sensitive personal data such as financial information
and health status (Borisov et al., 2021; Long et al., 2021;
Rieke et al., 2020). However, as no prior work has studied
the issue of privacy leakage in tabular data, we are unaware
of the true extent of its risks. This is also a cause of con-
cern for US and UK public institutions which have recently
launched a $1.6 mil. prize competition1 to develop privacy-
preserving FL solutions for financial fraud detection and
infection risk prediction, both being tabular datasets.

Ingredients of a Data Leakage Attack A successful at-
tack builds on two pillars: (i) ability to reconstruct private
data from client updates with high accuracy, and (ii) a mech-
anism that allows a human to assess the obtained reconstruc-
tions without knowledge of the true data. Advancing along
the first pillar typically requires leveraging the unique as-
pects of the given domain, e.g., image attacks employ image
priors (Geiping et al., 2020; Yin et al., 2021), while attacks
on text make use of pre-trained language models (Dimitrov
et al., 2022a; Gupta et al., 2022). However, in the image and
text domains, the second pillar naturally comes for free, as
the credibility of the obtained data can be assessed simply
by human inspection, in contrast to tabular data, where this
is not possible, as illustrated in Fig. 1.

1https://petsprizechallenges.com/
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Figure 2: Overview of TabLeak. Our approach transforms the optimization problem into a fully continuous one by optimizing
continuous versions of the discrete features, obtained by applying softmax (Attack Step 1, middle boxes), resulting in N
candidate solutions (Attack Step 1, bottom). Then, we pool together an ensemble of N different solutions z1, z2, ..., zN
obtained from the optimization to reduce the variance of the reconstruction (Attack Step 2). Finally, we assess the quality of
the reconstruction by computing the entropy from the feature distributions in the ensemble (Assessment).

Key Challenges A strong attack for tabular data must ad-
dress two unique challenges, one along each pillar: (i) due
to the presence of both discrete and continuous features,
the attack needs to solve a mixed discrete-continuous op-
timization problem of high variance, and (ii) unlike with
image and text data, assessing the quality of the reconstruc-
tion is no longer possible via human inspection, requiring a
mechanism to quantify the uncertainty of the reconstruction.

This Work In this work we propose the first comprehen-
sive attack on tabular data, TabLeak, addressing the above
challenges. Using our attack, we conduct the first compre-
hensive evaluation of the privacy risks posed by data leak-
age in tabular FL. We provide an overview of our approach
in Fig. 2, showing the reconstruction of a client’s private data
point x = [male, 18, white], from the corresponding
update ∇f received by the server. We tackle the first chal-
lenge in two steps. In Attack Step 1, we create N separate
optimization problems with different initializations. We
transform the mixed discrete-continuous optimization prob-
lem into a fully continuous one using a softmax relaxation.
Once optimization completes, in Attack Step 2, we reduce
the variance of the final reconstruction by pooling over the
different solutions. To address challenge (ii, Assessment),
we rely on the observation that when the N reconstructions
agree on a certain feature, it tends to be reconstructed well.
We measure the agreement using entropy. In our example,
sex and age exhibit a low entropy reconstruction and are
also correct. Meanwhile, the high disagreement over the
race feature is indicative of its incorrect reconstruction.

Comparing our domain-specific attack with prior works
adapted from other domains on both FL protocols, FedSGD
and FedAvg in various settings on four popular tabular
datasets, we reveal the high vulnerability of such systems
on tabular data, even in scenarios previously deemed as safe.
We observe that on small batch sizes tabular FL systems are
nearly transparent, where most attacks recover > 90% of
the private data. Further, our attack retrieves 70.8% - 84.9%
of the client data at the practically relevant batch size of
32 on the examined datasets, improving by 12.7% - 14.5%
on prior art. Additionally, even on batch sizes as large as
128, we show how an adversary can recover a quarter of the
private data well above 90% accuracy; leading to alarming
conclusions about the privacy of FL on tabular data.

Main Contributions Our main contributions are:

• First effective domain-specific data leakage attack on
tabular data called TabLeak, enabling novel insights
into the unique aspect of tabular data leakage.

• An effective uncertainty quantification scheme, en-
abling the assessment of obtained samples and allow-
ing an attacker to extract highly accurate subsets of
features even from poor reconstructions.

• An extensive experimental evaluation, revealing the
excessively high vulnerability of FL with tabular data
by successfully conducting attacks even in setups pre-
viously deemed safe.
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2. Background and Related Work
Federated Learning FL is a framework developed to fa-
cilitate the distributed training of a parametric model while
preserving the privacy of the data at source (McMahan et al.,
2017). Formally, we have a parametric function fθ(x) = y,
where θ are the parameters. Given a dataset as the union
of private datasets of clients S =

⋃K
k=1 Sk, we now wish

to find a θ∗ such that 1
N

∑
(xi,yi)∈S L(fθ∗(xi), yi) is min-

imized, without first collecting the dataset S in a central
database. McMahan et al. (2017) propose two training algo-
rithms: FedSGD (a similar algorithm was also proposed by
Shokri & Shmatikov (2015)) and FedAvg, that allow for the
distributed training of fθ, while keeping the data partitions
Sk at client sources. The two protocols differ in how the
clients compute their local updates in each step of training.
In FedSGD, each client calculates the update gradient with
respect to a randomly selected batch of their own data and
shares it with the server. During FedAvg, the clients con-
duct a few epochs of local training on their own data before
sharing their resulting parameters with the server. In each
case, after the server has received the gradients/parameters
from the clients, it aggregates them, updates the model, and
broadcasts it to the clients; concluding an FL training step.

Data Leakage Attacks Although the design goal of FL
was to preserve the privacy of clients’ data, recent work has
uncovered substantial vulnerabilities. Melis et al. (2019)
first presented how one can infer certain properties of the
clients’ data. Later, Zhu et al. (2019) demonstrated that an
honest-but-curious server can use the current state of the
model and the received updates to reconstruct the clients’
data, breaking the privacy promise of FL. Under this threat
model, there has been extensive research on designing tai-
lored attacks for images (Geiping et al., 2020; Zhao et al.,
2020; Geng et al., 2021; Huang et al., 2021; Jin et al., 2021;
Balunović et al., 2021; Yin et al., 2021; Jeon et al., 2021;
Dimitrov et al., 2022b) and natural language (Deng et al.,
2021; Dimitrov et al., 2022a; Gupta et al., 2022). However,
no prior work has comprehensively dealt with data leakage
attacks on tabular data, despite its significance in real-world
high-stakes applications (Borisov et al., 2021). While, Wu
et al. (2022) describe an attack on tabular data where a ma-
licious client learns some distributional information from
other clients, they do not reconstruct any private data points.
Some works also consider a threat scenario where a mali-
cious server may change the model or the updates sent to
the clients (Fowl et al., 2021; Wen et al., 2022); but in this
work we focus on the honest-but-curious setting.

In FedSGD, given the gradient ∇θ L(fθ(x), y) of some
client (shorthand: g(x, y)), we solve the following opti-
mization problem to retrieve the client’s private data (x, y):

x̂, ŷ = argmin
x′,y′

E(g(x, y), g(x′, y′)) + λR(x′). (1)

In Eq. 1 we denote the gradient matching loss as E and
R is an optional regularizer for the reconstruction. The
work of Zhu et al. (2019) used the mean squared error for E ,
on which Geiping et al. (2020) improved using the cosine
similarity loss. Zhao et al. (2020) first demonstrated that
the private labels y can be estimated before solving Eq. 1,
reducing the complexity of Eq. 1 and improving the attack
results. Their method was later extended to batches by Yin
et al. (2021) and refined by Geng et al. (2021). Eq. 1 is
typically solved using continuous optimization tools such
as L-BFGS (Liu & Nocedal, 1989) and Adam (Kingma
& Ba, 2015). Although analytical approaches exist, they
do not generalize to batches with more than a single data
point (Zhu & Blaschko, 2021).

Domain-Specific Attacks Depending on the data domain,
distinct tailored alterations to Eq. 1 have been proposed
in the literature, e.g., using the total variation regularizer
for images (Geiping et al., 2020) and exploiting pre-trained
language models in language tasks (Dimitrov et al., 2022a;
Gupta et al., 2022). These mostly non-transferable domain-
specific solutions are necessary as each domain poses unique
challenges. Our work is first to identify and tackle the key
challenges to data leakage in the tabular domain.

Privacy Threat of Tabular FL Regulations and personal
interests prevent institutions from sharing privacy-sensitive
tabular data, such as STI and drug test results, social security
numbers, credit scores, and passwords. To this end, FL was
proposed to enable inter-owner usage of such data. However,
in a strict sense, if FL on tabular data leaks any private
information, it does not fulfill its original design purpose,
severely undermining trust in institutions employing such
solutions. In our work we show that tabular FL, in fact,
leaks large amounts of private information.

Mixed Type Tabular Data Mixed type tabular data is
commonly used in healthcare, finance, and social sci-
ences, which entail high-stakes privacy-critical applica-
tions (Borisov et al., 2021). Here, data is collected in a
table with mostly human-interpretable columns, e.g., age,
and race of an individual. Formally, let x ∈ X be one row of
data and letX contain K discrete columns and L continuous
columns, i.e., X = D1× · · ·×DK ×U1× · · ·×UL, where
Di ⊂ N and Ui ⊂ R. For processing with neural networks,
discrete features are usually one-hot encoded, while continu-
ous features are preserved. The one-hot encoding of the i-th
discrete feature xD

i is a binary vector cDi (x) of length |Di|
that has a single non-zero entry at the position marking the
encoded category. We retrieve the represented category by
taking the argmax of cDi (x) (projection to obtain x). Using
the described encoding, one row of data x ∈ X is encoded
as: c(x) =

[
cD1 (x), . . . , cDK(x), xC

1 , . . . , x
C
L

]
, containing

d := L+
∑K

i=1 |Di| entries.
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3. Tabular Leakage
In this section, we briefly summarize the challenges in tab-
ular leakage and present our solution to these, followed by
our end-to-end reconstruction attack.

Key Challenges In the tabular domain, a strong attack has
to address two unique challenges: (i) the presence of both
categorical and continuous features requires the attacker to
solve a significantly harder mixed discrete-continuous opti-
mization problem of higher variance (addressed in Sec. 3.1.1
and Sec. 3.1.2), and (ii) as exemplified previously in Fig. 1,
in contrast to images and text, it is hard for an unassisted
adversary to assess the credibility of the reconstructed data
in the tabular domain (addressed in Sec. 3.2).

3.1. Building a Strong Base Attack

We solve challenge (i) by introducing two components
to our attack; a softmax relaxation to turn the mixed
discrete-continuous problem into a fully continuous one
(see Sec. 3.1.1), and pooled ensembling to reduce the vari-
ance in the final reconstruction (see Sec. 3.1.2).

3.1.1. THE SOFTMAX RELAXATION

In accordance with prior literature on data leakage attacks,
we aim to conduct the optimization in continuous domain.
For this we employ the softmax relaxation, which turns
the hard mixed discrete-continuous optimization problem
into a fully continuous one. This drastically reduces its
complexity, while still facilitating the recovery of correct
discrete structures.

The recovery of one-hot vectors requires the integer con-
straints of all entries taking values in {0, 1} and summing
to one. Relaxing the integer constraints by allowing the
reconstructed entries to take real values in [0, 1], we are
still left with a constrained optimization problem not well
suited for popular continuous optimization tools, such as
Adam (Kingma & Ba, 2015). Therefore, we aim to implic-
itly enforce the constraints introduced above.

For this, we extend the method of Zhu et al. (2019) used
for inverting the discrete labels when jointly optimizing for
both the labels and the data. Let z ∈ Rd be our approximate
intermediate solution for the true one-hot encoded data c(x)
during optimization. Then we can implicitly enforce all
constraints described above by applying a softmax to zDi for
all i between 1 and K, i.e., define:

σ(zDi )[j] :=
exp(zDi [j])∑|Di|
k=1 exp(zDi [k])

∀j ∈ Di. (2)

Therefore, in each round of optimization we will have the
following approximation of the true data point: c(x) ≈
σ(z) =

[
σ(zD1 ), . . . , σ(zDK), zC1 , . . . , zCL

]
. In order to

Figure 3: Maximum similarity matching of a sample x̂i of
batch size 4 from the collection of reconstructions to the
best-loss sample x̂best.

preserve notational simplicity, we write σ(z) to mean the
application of softmax to each group of entries representing
a given categorical variable separately. Inverting a batch of
data, the softmax is applied in parallel to the batch points.

3.1.2. POOLED ENSEMBLING

In general, the data leakage optimization problem possesses
multiple local minima (Zhu & Blaschko, 2021) and is sen-
sitive to initialization (Wei et al., 2020). Additionally, we
observed and confirmed in a targeted experiment in App. E
that in tabular data the mix of discrete and continuous fea-
tures introduces further variance, in contrast to image and
text, where the problem is fully continuous or fully discrete,
respectively. We alleviate this problem by running inde-
pendent optimization processes with different initializations
and ensembling their results through feature-wise pooling.

Exploiting the structural regularity of tabular data, we can
combine independent reconstructions to obtain an improved
and more robust final estimate of the true data by applying
feature-wise pooling. Formally, we run N independent
rounds of optimization with i.i.d. initializations recovering
potentially different reconstructions {σ(zj)}Nj=1. Then, we
obtain a final estimate of the true encoded data, denoted as
σ(ẑ), by pooling across these reconstructions in parallel for
each batch-point and feature:

σD
i (ẑ) = pool

({
σD
i (zj)

}N
j=1

)
∀i ∈ [K] (3)

ẑCi = pool
({

(zCi )j
}N
j=1

)
∀i ∈ [L]. (4)

Where the pool(·) operation can be any permutation invari-
ant mapping. In our attack we use median pooling.

However, the above equations can not be applied in a
straight-forward manner as soon as we aim to reconstruct
batches containing more than just a single data point. As
the batch-gradient is an average of the per-sample gradients,
when running the leakage attack we may retrieve the batch-
points in a different order at every optimization instance.
Hence, it is not immediately clear how we can combine the
obtained samples; i.e., we need to reorder each batch such
that their rows match to each other, and only then we can
pool. We reorder by first selecting the sample that produced
the best reconstruction loss at the end of optimization ẑbest,
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with projection x̂best. Then, we match the rows of every
other sample in the collection with respect to x̂best. Con-
cretely, we calculate the similarity (shown in Eq. 6 in Sec. 4)
between each pair of rows of x̂best and another sample x̂i

in the collection and find the maximum similarity reorder-
ing of the rows with the help of bipartite matching solved
by the Hungarian algorithm (Kuhn, 1955). This process
is depicted in Fig. 3. Repeating this for each sample, we
reorder the entire collection with respect to the best-loss
sample, effectively reversing the permutation differences
in the independent reconstructions. Finally, we can apply
feature-wise pooling for each row over the collection.

3.2. Assessment via Entropy

We now address challenge (ii), assessing reconstructions.
To recap, it is close-to-impossible for an uninformed ad-
versary to assess the quality of the obtained private sample
when it comes to tabular data, as almost any reconstruction
may constitute a credible data point when projected back to
mixed discrete-continuous space. This challenge does not
arise as prominently in the image (or text) domain, because
one can easily judge by looking at a picture, if it is just noise
or an actual image, as exemplified in Fig. 1. To address this
issue, we propose to estimate the reconstruction uncertainty
by looking at the level of agreement over a certain feature
for different reconstructions. Concretely, given a collection
of leaked samples as in Sec. 3.1.2, we can observe the dis-
tribution of each feature over the samples. Intuitively, if
this distribution is "peaky", i.e., concentrates the mass heav-
ily on a certain value, then we can assume that the feature
has been reconstructed correctly, whereas if there is high
disagreement between the reconstructed samples, we can
assume that this feature’s recovered final value should not
be trusted. We can quantify this by measuring the entropy of
the feature distributions induced by the recovered samples.

Discrete Features Let p(x̂D
i )m := 1

N Countj(x̂D
ij = m)

be the relative frequency of projected reconstructions of
the i-th discrete feature of value m in the ensemble. Then,
we can calculate the normalized entropy of the feature as
H̄D

i = −1
log |Di|

∑Di

m=1 p(x̂
D
i )m log p(x̂D

i )m. Note that the
normalization allows for comparing features with different
domain sizes, i.e., it ensures that H̄D

i ∈ [0, 1], as H(k) ∈
[0, log |K|] for any finite discrete random variable k ∈ K.

Continuous Features In case of continuous features, we
calculate the entropy by first making the standard assump-
tion that the errors of the reconstructed continuous features
follow a Gaussian distribution. As such, we first estimate the
sample variance σ̂2

i for the i-th continuous feature and then
plug it in to calculate the entropy of the corresponding Gaus-
sian: HC

i = 1
2 + 1

2 log 2πσ̂2
i . Cross-feature comparability

can be achieved by scaling all features, e.g., standardization.

Algorithm 1 TabLeak against training by FedSGD

1: function SINGLEINVERSION (Neural Network: fθ,
Client Gradient: g(c(x), y), Reconstructed Labels: ŷ,
Initial Reconstruction: z0j , Iterations: T , # Discrete
Features: K)

2: for t in 0, 1, . . . , T − 1 do
3: for k in 1, 2, . . . ,K do
4: σ(zDkj)← softmax(zDkj)
5: end for
6: zt+1

j ← ztj − η∇zECS(g(c(x), y), g(σ(z
t
j), ŷ))

7: end for
8: return zTi
9: end function

10:
11: function TABLEAK (Neural Network: fθ, Client Gra-

dient: g(c(x), y), Reconstructed Labels: ŷ, Ensemble
Size: N , Iterations: T , # Discrete Features: K)

12:
{
z0j
}N
j=1
∼ U[0,1]d

13: for j in 1, 2, . . . , N do
14: zTj ← SINGLEINVERSION(fθ, g(c(x), y), ŷ, z0j ,

T , K)
15: end for
16: ẑbest ← argminzT

j
ECS(g(c(x), y), g(σ(z

T
j ), ŷ))

17: σ(ẑ)←MATCHANDPOOL(
{
σ(zTj )

}N
j=1

, ẑbest)

18: H̄D, HC ← CALCULATEENTROPY(
{
σ(zTj )

}N
j=1

)
19: x̂← PROJECT(σ(ẑ))
20: return x̂, H̄D, HC

21: end function

3.3. Combined Attack

Following Geiping et al. (2020), we use the cosine similarity
loss as our reconstruction objective, defined as:

ECS(z) := 1− ⟨g(c(x), y), g(σ(z), ŷ)⟩
∥g(c(x), y)∥2 ∥g(σ(z), ŷ)∥2

, (5)

where (x, y) are the true data, ŷ are the labels reconstructed
beforehand, and we optimize for z. Our end-to-end attack,
TabLeak is shown in Alg. 1. First, we reconstruct the la-
bels using the label reconstruction method of Geng et al.
(2021) and input them into our attack. Then, we initialize
N independent dummy samples for an ensemble of size N
(Line 12). Starting from each initial sample we optimize
independently (Lines 13-15) via the SINGLEINVERSION
function. In each optimization step, we apply the softmax
relaxation of Sec. 3.1.1, and let the optimizer differentiate
through it (Line 4). After the optimization processes have
reached the maximum number of allowed iterations T , we
identify the sample ẑbest producing the best reconstruction
loss (Line 16). Using ẑbest, we match and pool to obtain the
final encoded reconstruction σ(ẑ) in Line 17 as described in
Sec. 3.1.2. Finally, we return the projected private data re-
construction x̂ and the corresponding feature-entropies H̄D

and HC , quantifying the uncertainty in the leaked sample.
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Table 1: The mean inversion accuracy [%] and standard deviation of different methods over varying batch sizes with given
true labels (True y) and with reconstructed labels (Rec. ŷ) on the Adult dataset.

Label Batch TabLeak TabLeak TabLeak Inverting Gradients Deep Gradient Leakage Random
Size (no pooling) (no softmax) Geiping et al. (2020) Zhu et al. (2019)

True y

8 95.2± 8.8 92.5± 11.8 91.3± 7.1 91.1± 7.3 61.2± 4.7 53.9± 4.4
16 89.9± 7.3 85.3± 9.7 79.0± 4.0 75.0± 5.2 60.2± 3.3 55.1± 3.9
32 79.3± 4.5 74.3± 4.5 70.8± 3.3 66.6± 3.5 60.8± 1.9 58.0± 2.9
64 73.4± 3.0 68.9± 3.1 67.3± 3.2 62.5± 3.1 61.3± 1.4 59.0± 3.2
128 71.4± 1.2 67.4± 1.4 65.2± 2.1 59.5± 2.1 62.9± 1.0 61.2± 3.1

Rec. ŷ

8 86.7± 12.2 83.8± 13.6 82.7± 10.5 83.3± 9.7 56.1± 5.4 53.9± 4.4
16 83.0± 7.7 78.6± 8.1 76.4± 5.4 73.0± 3.5 57.2± 3.4 55.1± 3.9
32 76.9± 4.8 72.4± 4.8 68.9± 4.2 66.3± 3.4 58.4± 2.5 58.0± 2.9
64 72.8± 3.3 68.5± 3.5 66.8± 2.9 63.1± 3.2 60.1± 1.7 59.0± 3.2
128 71.4± 1.3 67.5± 1.5 65.0± 2.2 59.5± 2.1 62.3± 1.0 61.2± 3.1

4. Experimental Evaluation
In this section, we first detail the evaluation metric we used
to assess the obtained reconstructions and explain our exper-
imental setup. Then, we evaluate our attack in various set-
tings against prior methods, establishing a new state-of-the-
art, while uncovering the significant vulnerability of tabular
FL. Next, we demonstrate the effectiveness of our entropy-
based uncertainty quantification method. Finally, we test
our attack on varying architectures, over federated training,
and against a defense mechanism. Our code is available at:
https://github.com/eth-sri/tableak.

Evaluation Metric As no prior work on tabular data leak-
age exists, we propose a metric for measuring the recon-
struction accuracy, inspired by the 0-1 loss, allowing the
joint treatment of categorical and continuous features. For a
reconstruction x̂, we define the accuracy as:

accuracy(x, x̂) :=
1

K + L

(
K∑
i=1

I{xD
i = x̂D

i }

+

L∑
i=1

I{x̂C
i ∈ [xC

i − ϵi, x
C
i + ϵi]}

)
,

(6)

where x is the ground truth and {ϵi}Li=1 are constants de-
termining how close the reconstructed continuous features
have to be to the original value in order to be considered a
privacy breach. We provide more details on our metric in
App. A and experiments with additional metrics in App. C.4.

Baselines We consider two established prior attacks; the
seminal work on gradient inversion of Zhu et al. (2019),
Deep Gradient Leakage, and the more recent strong attack
of Geiping et al. (2020), Inverting Gradients. For a fair
comparison, we provide the labels to both attacks in the
same manner as we do for TabLeak and remove all non-
tabular domain-specific elements from the attacks (i.e., im-
age priors). Additionally, we also compare against random

guessing. Here, ignoring the gradient updates, we randomly
sample reconstructions from the per-feature marginals of
the input dataset. To obtain the 1-way marginals, first we
uniformly discretize the continuous features in 100 bins,
and then estimate the marginals of all features by counting.
Although this baseline is usually not realizable in practice
(as it assumes knowledge of the marginals), it is imperative
to compare against it, as performing below this baseline
signals that no private information is extracted from the
client updates. Note that as both the selection of a batch and
the random baseline represent sampling from the (approxi-
mate) data distribution, the random baseline monotonously
increases in accuracy with growing batch size.

Experimental Setup For all attacks, we use the Adam
optimizer (Kingma & Ba, 2015) with learning rate 0.06 for
1 500 iterations and without a learning rate schedule to per-
form the optimization in Alg. 1. Unless stated otherwise, we
attack a fully connected neural network (NN) at initializa-
tion with two hidden layers of 100 neurons each. All exper-
iments were carried out on four popular mixed-type tabular
binary classification datasets, the Adult census dataset (Dua
& Graff, 2017), the German Credit dataset (Dua & Graff,
2017), the Lawschool Admission dataset (Wightman, 2017),
and the Health Heritage dataset from Kaggle (2012). Due
to the space constraints, here we report only our results on
the Adult dataset, and refer the reader to App. D for full
results on all four datasets. Finally, for all reported numbers
below, we estimate the mean and standard deviation of each
reported metric on 50 randomly sampled batches. For fur-
ther details on the experimental setup, we refer the reader
to App. B. For experiments with varying network sizes and
attacks against defenses, please see App. C.

General Results against FedSGD In Tab. 1 we present
the results of TabLeak against FedSGD training, together
with two ablation experiments, each time removing either
the pooling (no pooling) or the softmax component (no soft-
max). We compare our results to the baselines introduced
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Table 2: Mean and standard deviation of the inversion accuracy [%] on FedAvg with local dataset sizes of 32 on the Adult
dataset. The accuracy of the random baseline for 32 data points is 57.7± 3.6.

TabLeak Inverting Gradients (Geiping et al., 2020)

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 80.7± 3.8 75.8± 3.3 72.8± 3.2 65.2± 2.7 56.1± 4.1 53.1± 4.2
2 79.2± 4.2 75.6± 2.7 73.1± 5.0 64.8± 3.3 56.4± 4.8 56.2± 4.8
4 79.7± 3.6 76.2± 3.0 73.7± 3.6 64.8± 3.4 58.7± 4.6 56.6± 5.0

above, on batch sizes 8, 16, 32, 64, and 128, once assuming
knowledge of the true labels (top) and once using labels
reconstructed by the method of Geng et al. (2021) (bottom).
Notice that the noisy label reconstruction only influences
the results for lower batch sizes, and manifests itself mostly
in higher variance in the results. Further, we find that for
batch size 8 (and lower, see App. D) most attacks reveal
close to all the private data, exposing a trivial vulnerability
of tabular FL of high concern. In case of larger batch sizes,
even up to 128, TabLeak can uncover a significant portion of
the client’s private data, well above random guessing, while
the attacks of Zhu et al. (2019) and Geiping et al. (2020)
fail to do so, demonstrating the necessity of a domain tai-
lored attack when evaluating the privacy threat. Further,
the results on the ablation attacks demonstrate the effective-
ness of each attack component, both providing non-trivial
improvements over the baseline attacks that are preserved
when combined in TabLeak. Demonstrating generalization
beyond Adult, we include our results on the German Credit,
Lawschool Admissions, and Health Heritage datasets in
App. D.1, where we also improve on the state-of-the-art by
at least 12.7% − 14.5% on batch size 32 on each dataset
and up to 21.8% on other batch sizes. As Inverting Gradi-
ents (Geiping et al., 2020) dominates Deep Gradient Leak-
age (Zhu et al., 2019) in almost all settings in Tab. 1, we omit
the attack of Zhu et al. (2019) from further comparisons.

Categorical vs. Continuous Features An important con-
sequence of having mixed type features is that the attack
success clearly differs by feature type. As we can observe in
Fig. 4, the continuous features exhibit an up to 30% lower
accuracy than the categorical features for the same batch
size. We suggest that this is due to the discrete nature of
categorical features and their encoding. While trying to
match the gradients by optimizing the reconstruction, hav-
ing the correct categorical features will have a greater effect
on the gradient alignment, as when encoded, they take up
the majority of the data vector. Also, when reconstructing
a one-hot encoded categorical feature, we only have to be
able to retrieve the location of the maximum in a vector of
length Di, whereas for the successful reconstruction of a
continuous feature we have to retrieve its value correctly up
to a small error. Therefore, especially when the optimization
process is aware of the discrete structure (e.g., by using the
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Figure 4: The inversion accuracy on the Adult dataset over
varying batch size separated for discrete (D) and continuous
(C) features.

softmax relaxation), categorical features are much easier to
attack. This finding of ours uncovers a critical privacy risk
in tabular federated learning, as sensitive features are often
categorical, e.g., gender, race, or STI test results.

Federated Averaging In training with FedAvg (McMa-
han et al., 2017) participating clients conduct local training
of several updates before communicating their new param-
eters to the server. Note that the more local updates are
conducted by the clients, the harder a leakage attack be-
comes, making FedAvg to be regarded as a more secure
protocol. Although this training method is of significantly
higher practical importance than FedSGD, most prior work
does not evaluate against it. Transferring TabLeak into the
framework of Dimitrov et al. (2022b) (for details please see
App. B and the work of Dimitrov et al. (2022b)), we evalu-
ate our attack and the strong baseline attack of Geiping et al.
(2020) in the setting of Federated Averaging. We present our
results of retrieving a client dataset of size 32 over varying
number of local batches and epochs on the Adult dataset in
Tab. 2, while assuming full knowledge of the true labels. We
observe that our combined attack significantly outperforms
the random baseline of 57.7% accuracy even up to 40 local
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Table 3: The mean and the standard deviation of the attack accuracy [%] over different architectures inverting batches of
size 32. The random baseline at this batch size is 58.0± 2.9.

Attack Linear FC NN FC NN large CNN (BN) ResNet (BN)

Inverting Gradients (Geiping et al., 2020) 55.3± 1.7 66.6± 3.5 89.2± 3.8 43.4± 2.0 61.7± 4.0
GradInversion (Yin et al., 2021) 61.3± 2.7 67.7± 2.5 88.0± 3.0 72.8± 2.7 67.6± 2.6
TabLeak 44.5± 1.9 79.3± 4.5 89.6± 8.3 83.7± 2.7 71.4± 9.2

Table 4: The mean and standard deviation of the accuracy
[%] of each feature type in the top 25% and the bottom 25%
ranked in the batch according to entropy (lowest on top).

Batch Categorical Continuous

Size Top 25% Bottom 25% Top 25% Bottom 25%

8 99.7± 2.3 96.0± 10.3 97.2± 9.4 84.2± 21.6
16 99.9± 0.6 89.8± 13.0 98.2± 3.5 60.8± 19.9
32 99.1± 2.6 75.5± 8.0 94.2± 4.7 43.6± 8.2
64 97.8± 2.6 66.1± 5.3 92.9± 3.5 41.3± 5.8
128 94.3± 1.9 62.8± 3.8 93.5± 2.3 42.2± 3.7

updates, and in some cases beating the baseline attack of
Geiping et al. (2020) by almost 20%. Meanwhile, the base-
line attack fails to consistently outperform random guessing
whenever the local training is longer than one epoch. This
shows that non-domain-tailored attacks are not sufficient
to uncover relevant vulnerabilities, risking an illusion of
privacy. As FedAvg with tabular data is of high practical
relevance, our results of successful attacks are concerning.
Further details of the experimental setup and results on other
datasets can be found in App. B and App. D, respectively.

Assessing Reconstructions via Entropy We demonstrate
the effectiveness of our assessment mechanism, looking
at reconstructions from TabLeak and their corresponding
feature entropies. For a reconstructed batch, we rank each
per-sample feature (i.e., all features over all rows in a sin-
gle batch, distinguishing discrete and continuous features)
according to decreasing entropy (lowest on top). Then, we
take the top 25% of the features of lowest entropy and the
bottom 25% from the resulting ranking, and report their
accuracy for varying batch sizes in Tab. 4. The results in
Tab. 4 confirm our expectation that features with low un-
certainty score tend to be reconstructed much better than
those exhibiting high entropy, asserting that our assessment
mechanism is effective in separating well reconstructed data
from poorly reconstructed, exposing an accuracy gap of up
to 50% in the retrieved features. In fact, the top quarter of
all features is reconstructed at an accuracy well above 90%
on all batch sizes. Note that this ranking is done without any
knowledge of the true data, hence it is accessible to a real
adversary. This shows that even reconstructions of lower
overall accuracy (e.g., 71.4% on batch size 128, see Tab. 1)
only provide a false sense of privacy, as an adversary can

still extract correct data with high confidence, resulting in a
strong breach of privacy even at large batch sizes, previously
deemed as safe. We include results on all four datasets in
App. D.4, leading to analogous conclusions.

Attack Performance and Model Architecture To assess
how the attack success of our and competing methods de-
pends on the chosen architecture, in this experiment we
attack five different models, reconstructing batches of size
32: a logistic regressor (Linear), the two-layer NN used in
prior experiments (FC NN), a large-three layer NN with
400 neurons in each layer (FC NN large), a convolutional
NN (CNN) with a batch normalization (BN) layer, and a
fully connected NN with residual connections and two BN
layers (ResNet). For this experiment we also introduce an
additional baseline, GradInversion (Yin et al., 2021), which
is an attack tailored to image data, and was designed to
overcome the limitations of BN layers. Note that this attack
operates under strictly stronger assumptions than TabLeak,
as it requires knowledge of the BN statistics, which Huang
et al. (2021) argue is unrealistic. To adapt GradInversion
to tabular data, we change the original reconstruction loss
of squared error to cosine similarity, as it leads to better
results in this domain. Additionally, as this attack requires
the selection of several additive prior parameters, we eval-
uate the attack on a grid, and report only the best results
here, providing an unrealistic advantage to this baseline.
Our results are shown in Tab. 3. We make several important
insights on the influence of the architecture on the attack
success: (i) TabLeak is the strongest overall attack, even
when confronted with BN layers, (ii) larger networks are
significantly more vulnerable to all attacks, (iii) linear mod-
els are seemingly unbreakable under realistic assumptions.
Therefore, while BN layers might only provide a false sense
of privacy, it is imperative to consider models of limited size
to enhance the privacy of FL.

Impact of Network Training Before, we only attacked
networks at initialization. To examine how the attack suc-
cess depends on the training state of the network, we evalu-
ate TabLeak and the baseline attack of Geiping et al. (2020)
attacking over the first 15 epochs of federated training with
batch size 32. We report our results in Tab. 5. As expected,
the attack performance gradually decreases as the network
is fitted to the data, a phenomenon already known from
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Table 5: The mean and standard deviation of the attack
accuracy [%] attacking a network at the 1st, 5th, 10th, and
15th epoch of FedSGD training on batch size 32.

Training TabLeak Inverting Gradients
Epochs Geiping et al. (2020)

1 79.1± 4.2 67.8± 2.1
5 76.4± 5.7 64.5± 3.8
10 74.5± 5.7 60.9± 3.7
15 64.5± 7.1 57.8± 4.0

Table 6: The mean and standard deviation of the attack
accuracy [%] for Gaussian noise of varying scale added to
the gradients. The right column reports the task accuracy
[%] of the NN trained with perturbed gradients.

Noise TabLeak Inverting Gradients Network
Scale Geiping et al. (2020) Accuracy

0.0 79.3± 4.5 66.6± 3.5 84.6± 0.1
10−3 75.4± 3.8 64.1± 3.2 84.5± 0.2
10−2 58.0± 2.3 46.6± 2.8 84.4± 0.2
10−1 41.3± 2.9 38.6± 2.2 84.1± 0.2

prior works (Geiping et al., 2020; Dimitrov et al., 2022b).
However, TabLeak maintains a strong performance further
into the training, and preserves its advantage over the base-
line attack consistently. Further, note that decreasing attack
performance over training is of limited practical relevance,
as nothing prevents the server from attacking in the early
stages of training where the model is vulnerable, breaching
the privacy of the participating clients.

Defending with Noise As the undefended systems at-
tacked above are critically vulnerable, we evaluate the ef-
fectiveness of a common defense method against gradient
leakage attacks (Zhu et al., 2019; Dimitrov et al., 2022a;b).
To defend against an honest-but-curious server the clients
add Gaussian noise of zero mean and fixed scale to the gra-
dients before communicating them to the server. Although
this defense is inspired by differential privacy (DP) (Dwork,
2006), due to no clipping, it does not provide theoretical
guarantees. We test this defense method against TabLeak
and the baseline attack of Geiping et al. (2020) on varying
noise scales at batch size 32, and report our results in Tab. 6.
Encouragingly, we can observe that using the right amount
of noise poses a viable defense against leakage attacks on
the Adult dataset at this batch size, reducing the attack ac-
curacy, while having a −0.5% impact on the task accuracy
of the NN trained on the noisy gradients. In App. C.1, we
present our results against this defense on all four datasets
and over varying batch sizes, where we observe that smaller
batch sizes require more noise to reduce vulnerability.

5. Discussion
Using TabLeak, we showed that an honest-but-curious FL
server can reconstruct large amounts of private data with lit-
tle effort, even in setups previously deemed as safe, such as
large batch sizes and FedAvg. In particular, using our uncer-
tainty quantification scheme, we can reconstruct a quarter of
all features in a large batch of size 128 at > 93% accuracy.
In a practical example, assuming all adults in the US have a
bank account (≈ 260 million) at banks cooperating in FL,
at least 65 million people would be affected by a potential
attack leaking their information with high confidence, deem-
ing it the sixth-largest financial data breach in history (Kost,
2022). Further, our discovery of the disproportionate vul-
nerability of discrete features argues for targeted mitigation,
e.g., by exploring alternative, safer representations.

Our results raise great concerns about current industrial
FL systems potentially employed by financial, healthcare,
or other institutions managing privacy-critical tabular data.
Individuals’ trust in such institutions when handing over
sensitive information is fundamental in allowing for effec-
tive operation, to which end various legal institutions have
been established, e.g., barrister secrecy, medical secrecy, or
latest, GDPR. Apart from the damage inflicted on individu-
als whose private information may be abused by adversaries,
the potential long-term loss of trust in institutions could lead
to a wider impact on the services they are able to provide.

Defenses In addition to our attacks on undefended sys-
tems uncovering the excessive intrinsic risk in tabular FL,
we showed in a promising experiment how a DP-inspired de-
fense of adding noise to the communicated gradients can be
leveraged to mitigate this risk. While this defense appears
as effective in our experimental setup, in practice, the large
associated cost in utility makes for limited applicability (Ja-
yaraman & Evans, 2019) of DP methods. Therefore, it is
necessary that further theoretically principled approaches
are pursued in defending against data leakage attacks in FL.

6. Conclusion
In this work, we explored data leakage in tabular FL us-
ing TabLeak, the first data leakage attack on tabular data,
obtaining state-of-the-art results against both popular FL
training protocols, and uncovering the excessive vulnerabil-
ity of tabular FL, breaking several setups previously thought
of as safe. As tabular data is ubiquitous in privacy critical
applications, our results raise important concerns regarding
practical systems currently using FL. Therefore, we advo-
cate for further research on advancing provable defenses.
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A. Accuracy Metric
To ease the understanding, we start by repeating our accuracy metric here, where we measure the reconstruction accuracy
between the retrieved sample x̂ and the ground truth x as:

accuracy(x, x̂) :=
1

K + L

(
K∑
i=1

I{xD
i = x̂D

i }+
L∑

i=1

I{x̂C
i ∈ [xC

i − ϵi, x
C
i + ϵi]}

)
. (7)

Note that the binary treatment of continuous features in our accuracy metric enables the combined measurement of the
accuracy on both the discrete and the continuous features. From an intuitive point of view, this measure closely resembles
how one would judge the correctness of numerical guesses. For example, guessing the age of a 25 year old, one would deem
the guess good if it is within 3 to 4 years of the true value, but the guesses 65 and 87 would be both qualitatively incorrect. In
order to facilitate scalability of our experiments, we chose the {ϵi}Li=1 error-tolerance-bounds based on the global standard
deviation if the given continuous feature σC

i and multiplied it by a constant, concretely, we used ϵi = 0.319σC
i for all our

experiments. Note that Pr[µ− 0.319σ < x < µ+ 0.319σ] ≈ 0.25 for a Gaussian random variable x with mean µ and
variance σ2. For our metric this means that assuming Gaussian zero-mean error in the reconstruction around the true value,
we accept our reconstruction as privacy leakage as long as we fall into the 25% error-probability range around the correct
value. In Tab. 7 we list the tolerance bounds ϵi for the continuous features of the Adult dataset produced by this method. We
would like to remark here, that we fixed our metric parameters before conducting any experiments, and did not adjust them
based on any obtained results. Note also that in App. C we provide results where the continuous feature reconstruction
accuracy is measured using the commonly used regression metric of root mean squared error (RMSE), where TabLeak also
achieves the best results, signaling that the success of our method is independent of our chosen metric.

Table 7: Resulting tolerance bounds on the Adult dataset when using ϵi = 0.319σC
i , as used by us for our experiments.

feature age fnlwgt education-num capital-gain capital-loss hours-per-week

tolerance 4.2 33699 0.8 2395 129 3.8

B. Further Experimental Details
Here we give an extended description to our experimental details provided in Sec. 4, additionally we provide the specifications
of each used dataset in Tab. 8. For all attacks, we use the Adam optimizer (Kingma & Ba, 2015) with learning rate 0.06 for
1 500 iterations and without a learning rate schedule. We chose the learning rate based on our experiments on the baseline
attack where it performed best. In line with Geiping et al. (2020), we modify the update step of the optimizer by reducing
the update gradient to its element-wise sign. We attack a fully connected neural network with two hidden layers of 100
neurons each at initialization. However, we provide a network-size ablation in Fig. 9, where we evaluate our attack against
the baseline method for 5 different network architectures. For each reported metric we conduct 50 independent runs on
50 different batches to estimate their statistics. For all FedSGD experiments we clamp the continuous features to their
valid ranges before measuring the reconstruction accuracy, both for our attacks and the baseline methods. Additionally, for
TabLeak and its ablation experiments, we encourage the continuous features to stay within bounds by wrapping them in a
sigmoid function during optimization. Note that assuming some knowledge of the admissible ranges for the continuous
columns is not unrealistic, as in most cases realistic ranges can be assumed based on the name of the feature column,
especially if the feature standard deviations are known to the server (as in our case). For the network accuracy shown in the
experiment "Defending with Noise", we train the two layer attacked network for 10 epochs at batch size 32 with learning
rate 0.01 using mini-batch stochastic gradient descent. We ran each of our experiments on single cores of Intel(R) Xeon(R)
CPU E5-2690 v4 @ 2.60GHz.

Federated Averaging Experiments For experiments on attacking the FedAvg training algorithm, we fix the clients’ local
dataset size at 32 and conduct an attack after local training with learning rate 0.01 on the initialized network described
above. We use the FedAvg attack-framework of Dimitrov et al. (2022b), where for each local training epoch we initialize
an independent mini-dataset matching the size of the client dataset, and simulate the local training of the client. At each
reconstruction update, we use the mean squared error between the different epoch data means (Dinv = ℓ2 and g = mean in
Dimitrov et al. (2022b)) as the permutation invariant epoch prior required by the framework, ensuring the consistency of the
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Table 8: Dataset specifications.

Features Discrete Features Continuous Features Encoded Features Data Points

Adult 14 8 6 105 45 222
German 20 13 7 63 1 000
Lawschool 7 5 2 39 96 584
Health Heritage 17 6 11 110 218 415

reconstructed dataset. For the full technical details, please refer to the manuscript of Dimitrov et al. (2022b). For choosing
the prior parameter λinv, we conduct line-search on each setup and attack method pair individually on the parameters
[0.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001], and pick the ones providing the best results. Further, to reduce computational
overhead, we reduce the ensemble size of TabLeak from 30 to 15 for these experiments on all datasets.

C. Further Experiments
In this subsection, we present several further experiments:

• Results of attacking neural networks defended using differentially private noisy gradients in App. C.1.

• Ablation study on the impacts of the neural network’s size on the reconstruction difficulty in App. C.2.

• Ablation study on the impact of the neural network’s architecture on the reconstruction difficulty in App. C.3.

• Measuring the Root Mean Squared Error (RMSE) of the reconstruction of continuous features in App. C.4.

• Testing TabLeak and the baseline attack on a high-dimensional synthetic dataset in App. C.5.

• Ablation study on the impact of training on the attack difficulty in App. C.6.

• Ablation study on the impact of number of attack iterations on the attack success in App. C.7.

C.1. Attack against Gaussian DP Defense

Differential privacy (DP) has recently gained popularity, as a way to prevent privacy violations in FL (Abadi et al., 2016;
Zhu et al., 2019). Unlike, empirical defenses which are often broken by specifically crafted adversaries (Balunović et al.,
2021), DP provides guarantees on the amount of data leaked by a FL model, in terms of the magnitude of random noise
the clients add to their gradients prior to sharing them with the server (Abadi et al., 2016; Zhu et al., 2019). Naturally, DP
methods balance privacy concerns with the accuracy of the produced model, since bigger noise results in worse models that
are more private. In this subsection, we evaluate TabLeak, and Inverting Gradients (Geiping et al., 2020) against DP-inspired
defended gradient updates, where zero-mean Gaussian noise is added with standard deviations 0.001, 0.01, and 0.1 to the
client gradients. Note that this defense does not lead to DP guarantees, as the gradients are not clipped prior to adding noise.
Nevertheless, this method is in line with prior works on gradient leakage (Zhu et al., 2019; Dimitrov et al., 2022a;b). We
present our results on the Adult, German Credit, Lawschool Admissions, and Health Heritage datasets in Fig. 5, Fig. 6,
Fig. 7, and Fig. 8, respectively. Although both attack methods are affected by the defense, our method consistently produces
better reconstructions than the baseline method. However, for high noise level (standard deviation = 0.1) and larger batch
size both attacks break, advocating for the use of DP-inpsired defenses in tabular FL to prevent the high vulnerability
exposed by this work.
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(a) Noise standard deviation = 0.001
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(b) Noise standard deviation = 0.01
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(c) Noise standard deviation = 0.1

Figure 5: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise level σ added to the
client gradients for differential privacy on the Adult dataset.
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(a) Noise standard deviation = 0.001
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(b) Noise standard deviation = 0.01
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(c) Noise standard deviation = 0.1

Figure 6: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise level σ added to the
client gradients for differential privacy on the German Credit dataset.
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(a) Noise standard deviation = 0.001
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(b) Noise standard deviation = 0.01
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(c) Noise standard deviation = 0.1

Figure 7: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise level σ added to the
client gradients for differential privacy on the Lawschool Admissions dataset.
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(a) Noise standard deviation = 0.001
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(b) Noise standard deviation = 0.01
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(c) Noise standard deviation = 0.1

Figure 8: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise level σ added to the
client gradients for differential privacy on the Health Heritage dataset.
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Table 9: Mean and standard deviation of the peak test accuracy of each of the examined 6 models on the four discussed
datasets over training.

Linear Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

Adult 84.7± 0.1 84.9± 0.1 85.0± 0.1 84.8± 0.1 84.8± 0.1 84.7± 0.1
German 73.0± 1.4 80.0± 1.1 79.5± 0.6 80.9± 0.7 78.9± 1.0 79.4± 1.8
Lawschool 87.4± 0.0 89.6± 0.1 89.8± 0.0 90.0± 0.1 89.8± 0.1 89.8± 0.1
Health Heritage 80.9± 0.0 81.2± 0.1 81.2± 0.0 81.2± 0.1 81.2± 0.1 81.1± 0.1

C.2. Varying Network Size

To understand the effect the choice of the network has on the obtained reconstruction results, we defined 4 additional fully
connected networks, two smaller, and two bigger ones to evaluate TabLeak on. As a simple linear model is often a good
baseline for tabular data, we add it also to the range of attacked models. Concretely, we examined the following six models
for our attack:

• Linear: a linear classification network: fW (c(x)) = σ(Wc(x) + b),

• NN 1: a single hidden layer neural network with 50 neurons,

• NN 2: a single hidden layer neural network with 100 neurons,

• NN 3: a neural network with two hidden layers of 100 neurons each (network used in main body),

• NN 4: a neural network with three hidden layers of 200 neurons each,

• NN 5: a three hidden layer neural network with 400 neurons in each layer.

We attack the above networks, aiming to reconstruct a batch of size 32. We plot the accuracy of TabLeak and of Inverting
Gradients (Geiping et al., 2020) as a function of the number of parameters in the network in Fig. 9 for all four datasets. We
can observe that with increasing number of parameters in the network, the reconstruction accuracy significantly increases
on all datasets, and rather surprisingly, allowing for near perfect reconstruction of a batch as large as 32 in some cases.
Observe that on both ends of the presented parameter scale the differences between the methods degrade, i.e., they either
both converge to near-perfect reconstruction (large networks) or to random guessing (small networks). Therefore, the choice
of our network for conducting the experiments was instructive in examining the differences between the methods.

Additionally, to better understand the relevance of the models examined here, we train them on each of the datasets for 50
epochs and observe their behavior through monitoring their performance on a secluded test set of each dataset. We do this
for 5 different initializations of each model, and report the mean and the standard deviation of the test accuracy at each
training epoch for each model. Note that we do not train the models using any FL protocol, merely, this experiment serves
to give a better understanding between the relation of the given dataset and the model used, putting also the attack success
data in better perspective. For training, we use the Adam Kingma & Ba (2015) optimizer and batch size 256 for each of
the datasets, except for the German Credit dataset, where we train with batch size 64 due to its small size. We provide all
test accuracy curves over training in Fig. 10. From the accuracy curves we can observe that most large models that are
easy to attack tend to overfit quickly to the data, indicating a heavily overparameterized regime. Additionally, in Tab. 9 we
provide the peak mean test accuracies per dataset and model, effectively corresponding to a ’perfect’ early-stopping. The
linear model could appear to be an overall good choice, as it is very hard to attack and shows good stability during training,
however, it does not achieve competitive performance on most datasets. In Tab. 9 the non-linear models always outperform
the linear model, and achieve comparable performance across themselves in this ideal setting, where overfitting can be
prevented by monitoring on the test data2. Conclusively, simpler non-linear models shall be pursued for FL on tabular data,
as they are less prone to overfitting and provide better protection from data leakage attacks.

2In practice a proxy metric would be necessary to achieve early-stopping, such as monitoring the performance on a separate validation
set split from the training data

16



TabLeak: Tabular Data Leakage in Federated Learning

0.2 5.4 10.820.9
102.0

364.0

#Params (thousand)

30

40

50

60

70

80

90

100

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy
 [%

]

Used NN
Random
Inverting 
Gradients
TabLeak

(a) Adult: d = 105
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(b) German Credit: d = 63
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(c) Lawschool Admissions: d = 39
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(d) Health Heritage: d = 110

Figure 9: Mean attack accuracy curves with standard deviation for batch size 32 over varying network size (measured in
number of parameters, #Params, log scale) on all four datasets with d number of features after encoding. We mark the
network we used for our other experiments with a dashed vertical line. From left to right we have the following models:
Linear, NN 1, NN 2, NN 3, NN 4, and NN 5.
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(b) German Credit
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(c) Lawschool Admissions
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(d) Health Heritage

Figure 10: Mean test and standard deviation of the test accuracy over epochs during five independent runs of training for
each examined model on all four datasets. For our experiments elsewhere we used the network corresponding to Layout 3,
marked in dark violet here.
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C.3. Varying Network Architecture

To investigate the impact of the network architecture on the attack success, we test TabLeak and two baseline methods,
Inverting Gradients (Geiping et al., 2020) and GradInversion (Yin et al., 2021) (introduced in Sec. 4 in the main body) on
various network architectures. The examined architectures are:

• Linear: a linear classification network: fW (c(x)) = σ(Wc(x) + b);

• FC NN: a neural network with two hidden layers of 100 neurons each (network used in the main body);

• FC NN large: a three hidden layer neural network with 400 neurons in each layer;

• CNN (BN): a convolutional neural network with a single initial convolutional layer of kernel size 3 and 16 output
channels, followed by a batch normalization layer (BN) and two fully connected hidden layers of 100 neurons;

• ResNet (BN): a fully connected neural network with two residual blocks, each containing a batch normalization layer.

Our results on all four datasets are included in Tabs. 10 to 13. Note that on the last two architectures we raised the number
of iterations for all the attacks to 7 000. We can confirm the three observations we have already made in the main body of
the paper: (i) TabLeak is the strongest overall attack across various architectures, with BN layers not impacting its position
either, and in line with App. C.2, we again observe that large networks are excessively vulnerable to all attacks (ii) and that
the linear model is hard to break for any attack (iii). Therefore, we again argue for a conservative architecture choice, with
as little parameters as possible that are still fit to solve the underlying task.

Table 10: The mean and the standard deviation of the attack accuracy [%] over different architectures inverting batches of
size 32 on the Adult dataset. The random baseline at this batch size is 58.0± 2.9.

Attack Linear FC NN FC NN large CNN (BN) ResNet (BN)

Inverting Gradients (Geiping et al., 2020) 55.3± 1.7 66.6± 3.5 89.2± 3.8 43.4± 2.0 61.7± 4.0
GradInversion (Yin et al., 2021) 61.3± 2.7 67.7± 2.5 88.0± 3.0 72.8± 2.7 67.6± 2.6
TabLeak 44.5± 1.9 79.3± 4.5 89.6± 8.3 83.7± 2.7 71.4± 9.2

Table 11: The mean and the standard deviation of the attack accuracy [%] over different architectures inverting batches of
size 32 on the German Credit dataset. The random baseline at this batch size is 56.8± 2.2.

Attack Linear FC NN FC NN large CNN (BN) ResNet (BN)

Inverting Gradients (Geiping et al., 2020) 58.1± 1.5 69.7± 2.2 96.7± 2.1 60.7± 2.3 66.4± 3.0
GradInversion (Yin et al., 2021) 57.8± 1.4 68.8± 1.8 97.0± 2.1 71.7± 1.9 70.9± 2.3
TabLeak 54.8± 1.8 84.2± 2.8 99.8± 0.4 79.2± 3.6 74.5± 4.2

Table 12: The mean and the standard deviation of the attack accuracy [%] over different architectures inverting batches of
size 32 on the Lawschool Admissions dataset. The random baseline at this batch size is 57.6± 2.3.

Attack Linear FC NN FC NN large CNN (BN) ResNet (BN)

Inverting Gradients (Geiping et al., 2020) 61.5± 2.0 71.0± 2.8 92.4± 3.6 61.1± 2.1 69.4± 3.2
GradInversion (Yin et al., 2021) 61.4± 2.1 71.8± 2.4 91.5± 4.2 74.7± 3.0 74.5± 3.0
TabLeak 61.5± 2.5 84.9± 4.0 97.3± 2.8 79.1± 3.1 82.6± 6.7
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Table 13: The mean and the standard deviation of the attack accuracy [%] over different architectures inverting batches of
size 32 on the Health Heritage dataset. The random baseline at this batch size is 43.4± 2.8.

Attack Linear FC NN FC NN large CNN (BN) ResNet (BN)

Inverting Gradients (Geiping et al., 2020) 48.2± 2.5 57.7± 4.1 80.1± 5.4 29.2± 4.9 54.1± 6.1
GradInversion (Yin et al., 2021) 48.6± 3.1 58.2± 2.6 84.3± 5.6 64.9± 3.1 60.1± 2.8
TabLeak 27.4± 2.1 70.8± 4.5 85.7± 11.1 72.9± 4.6 46.7± 12.8

C.4. Continuous Feature Reconstruction Measured by RMSE

In order to examine the potential influence of our choice of reconstruction metric on the obtained results, we further measured
the reconstruction quality of continuous features on the widely used Root Mean Squared Error (RMSE) metric as well.
Concretely, we calculate the RMSE between the L continuous features of our reconstruction x̂C and the ground truth x in a
batch of size n as:

RMSE(xC , x̂C) =
1

L

L∑
i=1

√√√√ 1

n

n∑
j=1

(xC
ij − x̂C

ij)
2. (8)

As our results in Fig. 11 demonstrate, TabLeak achieves significantly lower RMSE than Inverting Gradients (Geiping et al.,
2020) on large batch sizes, for all four datasets examined. This indicates that the strong results obtained by TabLeak in the
rest of the paper are not a consequence of our evaluation metric.

C.5. Attacking High-Dimensional Datasets

To understand how gradient inversion attacks scale with the number of features and the encoded dimension of the dataset,
we attack a synthetic dataset with 125 discrete and 125 continuous features (generated with the procedure explained in
App. E.1), resulting in 1231 dimensions when encoded, i.e., around 12× the dimension of Adult. We attack this setup both
with TabLeak and the baseline attack of Geiping et al. (2020), reporting our results in Tab. 14, for batch sizes 16, 32, and 64.
We can observe that while it is significantly harder to obtain high accuracy from such a high-dimensional dataset, TabLeak
still strongly outperforms both the baseline and random guessing, achieving at least 1.68× higher accuracy.

Table 14: The mean and standard deviation of the attack accuracy [%] on a synthetic dataset with 125 discrete and 125
continuous features (1231 dimensions one-hot encoded).

Batch TabLeak Inverting Gradients Random
Size Geiping et al. (2020)

16 70.0± 4.1 39.5± 3.2 19.6± 0.6
32 55.0± 2.3 30.6± 2.1 20.1± 0.5
64 40.0± 1.1 23.8± 1.2 20.7± 0.4
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(d) Health Heritage

Figure 11: The mean and standard deviation of the Root Mean Squared Error (RMSE) of the reconstructions of the
continuous features on all four datasets over batch sizes.
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C.6. Attacking During Training

We evaluate how TabLeak and the baseline attack of Geiping et al. (2020) perform when attacking a network not only at
initialization, but after some epochs of federated training have already been conducted. We expect to confirm the findings of
prior works (Geiping et al., 2020; Dimitrov et al., 2022b), i.e., that training degrades the performance of the attacks. Indeed,
looking at our results collected in Tab. 15, we can observe that on all four datasets training negatively impacts the attack
success. Moreover, we confirm the partial observation made already on Adult in the main body of this paper, namely that
TabLeak preserves a high performance further into the training than the baseline attack, reinforcing the significance of the
improvement TabLeak brings over prior methods.

Training TabLeak Inverting Gradients
Epochs Geiping et al. (2020)

1 79.1± 4.2 67.8± 2.1
5 76.4± 5.7 64.5± 3.8
10 74.5± 5.7 60.9± 3.7
15 64.5± 7.1 57.8± 4.0

(a) Adult

Training TabLeak Inverting Gradients
Epochs Geiping et al. (2020)

1 94.2± 4.4 78.9± 4.0
5 92.6± 5.0 77.5± 5.0
10 92.2± 3.7 76.0± 4.6
15 89.7± 4.0 72.4± 4.1

(b) German Credit

Training TabLeak Inverting Gradients
Epochs Geiping et al. (2020)

1 85.7± 4.2 71.4± 2.2
5 78.0± 4.6 70.1± 3.4
10 74.9± 2.7 68.3± 3.5
15 74.9± 3.1 66.7± 3.9

(c) Lawschool Admissions

Training TabLeak Inverting Gradients
Epochs Geiping et al. (2020)

1 69.5± 4.5 58.0± 4.2
5 69.3± 5.3 54.8± 4.5
10 64.8± 6.0 52.1± 3.1
15 62.3± 6.9 50.7± 3.3

(d) Health Heritage

Table 15: The mean and standard deviation of the attack accuracy [%] attacking a network at the 1st, 5th, 10th, and 15th

epoch of FedSGD training on batch size 32.
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C.7. Impact of Attack Iterations

We conduct an ablation study over the attack iterations to understand its influence on the attack success. In all the presented
experiments we chose to run the attacks for 1 500 iterations before reporting our results; our goal here is to understand
how this choice influenced our results. Tab. 16 shows that although the baseline attack is faster to converge, it tops out
at a significantly lower accuracy level than TabLeak on all datasets, while TabLeak manages to improve on the accuracy
presented in the paper on most cases, by allowing for more iterations. This further underlines the significant performance
difference between TabLeak and prior gradient inversion attacks.

Attack TabLeak Inverting Gradients
Iterations Geiping et al. (2020)

10 46.5± 1.44 60.5± 1.37
500 65.8± 3.86 66.8± 2.35
1 500 78.8± 4.25 66.4± 2.57
10 000 83.7± 2.91 67.6± 2.81

(a) Adult

Attack TabLeak Inverting Gradients
Iterations Geiping et al. (2020)

10 55.4± 1.62 62.0± 1.14
500 79.2± 2.51 68.4± 2.28
1 500 82.1± 2.56 68.7± 2.75
10 000 84.7± 2.92 68.8± 3.18

(b) German Credit

Attack TabLeak Inverting Gradients
Iterations Geiping et al. (2020)

10 61.0± 1.80 65.7± 1.81
500 78.1± 3.33 71.8± 2.42
1 500 86.9± 3.49 71.7± 1.99
10 000 86.4± 4.29 71.8± 2.53

(c) Lawschool Admissions

Attack TabLeak Inverting Gradients
Iterations Geiping et al. (2020)

10 29.8± 1.31 51.9± 1.79
500 59.6± 3.57 57.5± 3.76
1 500 71.3± 5.25 57.6± 4.76
10 000 71.3± 3.65 54.0± 6.12

(d) Health Heritage

Table 16: The mean and standard deviation of the attack accuracy [%] on batch size 32 over attack iterations.
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Table 17: The mean inversion accuracy [%] and standard deviation of different methods over varying batch sizes with given
true labels (top) and with reconstructed labels (bottom) on the Adult dataset.

Label Batch TabLeak TabLeak TabLeak Inverting Gradients Deep Gradient Leakage Random
Size (no pooling) (no softmax) Geiping et al. (2020) Zhu et al. (2019)

True y

1 99.4± 2.8 99.1± 4.4 100.0± 0.0 100.0± 0.0 97.0± 9.3 43.3± 11.8
2 99.3± 5.0 99.2± 5.5 99.6± 1.3 97.6± 6.9 77.5± 12.8 47.1± 7.9
4 98.1± 4.7 96.6± 7.8 98.7± 3.4 96.4± 7.2 65.3± 8.2 49.8± 4.9
8 95.2± 8.8 92.5± 11.8 91.3± 7.1 91.1± 7.3 61.2± 4.7 53.9± 4.4
16 89.9± 7.3 85.3± 9.7 79.0± 4.0 75.0± 5.2 60.2± 3.3 55.1± 3.9
32 79.3± 4.5 74.3± 4.5 70.8± 3.3 66.6± 3.5 60.8± 1.9 58.0± 2.9
64 73.4± 3.0 68.9± 3.1 67.3± 3.2 62.5± 3.1 61.3± 1.4 59.0± 3.2
128 71.4± 1.2 67.4± 1.4 65.2± 2.1 59.5± 2.1 62.9± 1.0 61.2± 3.1

Rec. ŷ

1 99.4± 2.8 99.3± 3.6 100.0± 0.0 100.0± 0.0 98.9± 2.6 43.3± 11.8
2 98.1± 9.6 98.1± 9.6 98.7± 7.1 95.9± 11.5 77.9± 14.1 47.1± 7.9
4 89.6± 13.5 87.8± 15.3 89.8± 13.0 87.9± 13.7 58.1± 12.4 49.8± 4.9
8 86.7± 12.2 83.8± 13.6 82.7± 10.5 83.3± 9.7 56.1± 5.4 53.9± 4.4
16 83.0± 7.7 78.6± 8.1 76.4± 5.4 73.0± 3.5 57.2± 3.4 55.1± 3.9
32 76.9± 4.8 72.4± 4.8 68.9± 4.2 66.3± 3.4 58.4± 2.5 58.0± 2.9
64 72.8± 3.3 68.5± 3.5 66.8± 2.9 63.1± 3.2 60.1± 1.7 59.0± 3.2
128 71.4± 1.3 67.5± 1.5 65.0± 2.2 59.5± 2.1 62.3± 1.0 61.2± 3.1

D. All Main Results
In this subsection, we include all the results presented in the main part of this paper for the Adult dataset alongside with the
corresponding additional results on the German Credit, Lawschool Admissions, and the Health Heritage datasets.

D.1. Full FedSGD Results on all Datasets

In Tab. 17, Tab. 18, Tab. 19, and Tab. 20 we provide the full attack results of our method compared to Inverting Gradi-
ents (Geiping et al., 2020) and the random baseline on the Adult, German Credit, Lawschool Admissions, and Health
Heritage datasets, respectively. Looking at the results for all datasets, we can confirm the observations made in Sec. 4, i.e., (i)
the lower batch sizes are vulnerable to any non-trivial attack, (ii) not knowing the ground truth labels does not significantly
disadvantage the attacker for larger batch sizes, and (iii) TabLeak provides a strong improvement over the baselines for
practically relevant batch sizes over all datasets examined.

D.2. Categorical vs. Continuous Features on all Datasets

In Fig. 12, we compare the reconstruction accuracy of the continuous and the discrete features on all four datasets. We
confirm our observations, shown in Fig. 4 in the main text, that a strong dichotomy between continuous and discrete feature
reconstruction accuracy exists on all 4 datasets.

D.3. Federated Averaging Results on all Datasets

In Tab. 21, Tab. 22, Tab. 23, and Tab. 24 we present our results on attacking the clients in FedAvg training on the Adult,
German Credit, Lawschool Submissions, and Health Heritage datasets, respectively. We described the details of the
experiment in App. B above. Confirming our conclusions drawn in the main part of this manuscript, we observe that
TabLeak achieves non-trivial reconstruction accuracy over all settings and even for large numbers of updates, while the
baseline attack often fails to outperform random guessing, when the number of local updates is increased.
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Table 18: The mean inversion accuracy [%] and standard deviation of different methods over varying batch sizes with given
true labels (top) and with reconstructed labels (bottom) on the German Credit dataset.

Label Batch TabLeak TabLeak TabLeak Inverting Gradients Deep Gradient Leakage Random
Size (no pooling) (no softmax) Geiping et al. (2020) Zhu et al. (2019)

True y

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 43.9± 9.8
2 100.0± 0.0 100.0± 0.0 99.9± 0.4 98.0± 7.1 84.2± 14.9 45.1± 6.6
4 99.9± 0.4 99.5± 2.8 99.6± 1.2 97.8± 6.0 71.0± 6.9 50.3± 4.5
8 99.6± 1.2 99.1± 2.4 98.4± 2.2 96.1± 5.2 64.1± 2.7 51.8± 3.2
16 96.3± 3.4 93.7± 4.5 85.1± 3.6 79.3± 4.4 63.1± 2.1 54.5± 3.0
32 84.2± 2.8 80.1± 3.2 72.8± 1.9 69.7± 2.2 63.4± 1.4 56.8± 2.2
64 74.4± 1.4 71.8± 1.6 69.7± 1.3 66.6± 1.8 64.0± 1.0 59.4± 1.9
128 72.3± 0.9 69.8± 0.7 68.4± 1.5 64.5± 1.5 65.3± 0.7 61.0± 2.1

Rec. ŷ

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 99.1± 6.3 43.9± 9.8
2 100.0± 0.0 100.0± 0.0 99.9± 0.4 98.8± 5.2 86.2± 14.3 45.1± 6.6
4 99.5± 3.2 98.7± 4.7 99.3± 2.9 97.4± 6.4 73.0± 7.4 50.3± 4.5
8 97.2± 6.3 96.1± 7.6 96.2± 6.4 94.8± 6.5 63.5± 4.8 51.8± 3.2
16 92.0± 6.5 90.0± 6.6 83.5± 4.0 77.9± 4.6 61.4± 2.9 54.5± 3.0
32 81.9± 3.4 78.4± 3.4 71.8± 1.9 69.1± 2.1 62.1± 1.4 56.8± 2.2
64 73.8± 1.5 71.4± 1.3 69.5± 1.2 66.5± 1.7 63.5± 1.0 59.4± 1.9
128 72.3± 0.9 69.8± 0.7 68.2± 1.6 64.4± 1.6 65.0± 0.6 61.0± 2.1

Table 19: The mean inversion accuracy [%] and standard deviation of different methods over varying batch sizes with given
true labels (top) and with reconstructed labels (bottom) on the Lawschool Admissions dataset.

Label Batch TabLeak TabLeak TabLeak Inverting Gradients Deep Gradient Leakage Random
Size (no pooling) (no softmax) Geiping et al. (2020) Zhu et al. (2019)

True y

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 97.7± 9.6 38.9± 14.6
2 100.0± 0.0 100.0± 0.0 99.9± 1.0 96.3± 10.4 84.6± 16.7 38.4± 11.5
4 100.0± 0.0 100.0± 0.0 99.6± 2.1 97.6± 6.9 76.6± 12.5 43.2± 7.2
8 98.9± 3.8 98.5± 4.5 95.6± 5.1 94.5± 5.8 68.5± 5.4 49.4± 4.6
16 95.0± 5.8 93.2± 6.4 81.3± 4.4 77.3± 5.5 65.8± 3.2 53.0± 3.1
32 84.9± 4.0 82.0± 3.7 73.1± 2.5 71.0± 2.8 67.9± 2.3 57.6± 2.3
64 78.1± 2.17 76.6± 2.2 73.0± 2.1 71.7± 2.2 70.4± 1.4 60.4± 2.2
128 77.2± 1.1 75.9± 1.2 73.5± 2.8 71.8± 2.7 73.4± 0.9 63.4± 1.5

Rec. ŷ

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 38.9± 14.6
2 99.1± 6.0 99.1± 6.0 98.7± 8.0 95.9± 12.0 84.3± 17.2 38.4± 11.5
4 99.5± 3.5 99.1± 4.3 98.7± 5.9 96.8± 8.5 79.9± 12.6 43.2± 7.2
8 95.9± 7.8 95.9± 8.0 93.4± 7.8 91.9± 7.9 66.9± 7.2 49.4± 4.6
16 91.2± 7.4 88.5± 8.7 80.4± 5.0 77.4± 5.4 64.9± 3.9 53.0± 3.1
32 83.1± 4.2 81.2± 4.5 72.9± 2.5 71.0± 2.0 66.1± 2.0 57.6± 2.3
64 77.3± 2.2 75.9± 2.0 72.5± 2.1 71.5± 2.4 69.3± 1.2 60.4± 2.2
128 77.0± 1.1 75.8± 1.2 73.8± 2.5 71.8± 2.8 72.8± 1.0 63.4± 1.5
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Table 20: The mean inversion accuracy [%] and standard deviation of different methods over varying batch sizes with given
true labels (top) and with reconstructed labels (bottom) on the Health Heritage dataset.

Label Batch TabLeak TabLeak TabLeak Inverting Gradients Deep Gradient Leakage Random
Size (no pooling) (no softmax) Geiping et al. (2020) Zhu et al. (2019)

True y

1 99.8± 1.6 99.8± 1.6 99.8± 1.6 99.8± 1.6 97.3± 6.4 34.8± 13.1
2 97.6± 7.9 97.1± 9.3 98.9± 3.3 97.9± 5.6 70.7± 16.9 36.9± 9.8
4 97.9± 7.7 96.4± 10.8 95.4± 7.8 95.6± 8.1 52.0± 7.2 37.0± 5.3
8 95.5± 9.2 93.1± 11.5 88.6± 10.8 86.2± 9.0 50.1± 3.9 39.2± 3.8
16 85.4± 9.9 79.8± 10.5 68.3± 5.3 63.6± 5.5 50.8± 2.2 41.4± 3.7
32 70.8± 4.5 65.5± 4.2 61.8± 4.0 57.7± 4.1 51.6± 1.7 43.4± 2.8
64 65.5± 2.8 61.3± 2.7 61.2± 4.4 57.4± 4.7 54.0± 1.5 45.0± 3.7
128 63.5± 1.7 59.3± 1.6 58.6± 4.4 55.6± 4.8 55.4± 0.8 46.8± 3.2

Rec. ŷ

1 99.8± 1.6 99.8± 1.6 99.8± 1.6 99.6± 2.5 96.1± 7.7 34.8± 13.1
2 95.1± 14.2 95.3± 13.7 95.4± 14.2 92.5± 16.9 68.2± 19.6 36.9± 9.8
4 86.3± 21.1 85.0± 22.2 83.4± 19.6 83.5± 20.7 48.2± 11.7 37.0± 5.3
8 81.5± 16.0 77.6± 16.9 76.8± 13.4 74.5± 13.8 48.0± 6.3 39.2± 3.8
16 75.3± 13.1 71.2± 12.9 65.2± 7.6 60.9± 6.3 49.6± 4.5 41.4± 3.7
32 65.5± 5.6 62.0± 5.2 60.3± 4.1 56.9± 4.0 51.0± 3.2 43.4± 2.8
64 63.9± 2.9 60.9± 2.5 61.2± 4.4 57.7± 4.7 53.7± 1.3 45.0± 3.7
128 63.8± 1.8 60.3± 1.9 58.8± 4.7 55.7± 5.0 55.4± 0.9 46.8± 3.2

Table 21: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32 in FedAvg training on the
Adult dataset. The accuracy of the random baseline for 32 datapoints is 58.0± 2.9.

TabLeak Inverting Gradients (Geiping et al., 2020)

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 80.7± 3.8 75.8± 3.3 72.8± 3.2 65.2± 2.7 56.1± 4.1 53.2± 4.2
2 79.2± 4.2 75.6± 2.7 73.1± 5.0 64.8± 3.3 56.4± 4.8 56.2± 4.8
4 79.7± 3.6 76.2± 3.0 73.7± 3.6 64.8± 3.4 58.7± 4.6 56.6± 5.0

Table 22: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32 in FedAvg training on the
German Credit dataset. The accuracy of the random baseline for 32 datapoints is 56.9± 2.1.

TabLeak Inverting Gradients (Geiping et al., 2020)

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 96.0± 3.4 87.3± 8.2 85.9± 6.2 78.2± 4.6 65.4± 6.2 62.5± 6.1
2 96.2± 3.0 87.2± 5.4 85.4± 9.0 78.3± 5.8 68.8± 6.6 63.4± 4.8
4 96.1± 3.6 85.3± 8.0 83.8± 8.1 79.2± 4.9 67.4± 4.8 62.6± 6.5

Table 23: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32 in FedAvg training on the
Lawschool Admissions dataset. The accuracy of the random baseline for 32 datapoints is 57.8± 2.3.

TabLeak Inverting Gradients (Geiping et al., 2020)

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 85.4± 4.2 82.9± 3.1 81.7± 4.0 72.2± 2.6 68.1± 3.1 65.2± 2.8
2 86.2± 4.3 82.8± 3.0 81.4± 3.1 72.5± 1.9 68.3± 4.4 66.2± 2.8
4 85.7± 4.4 81.5± 3.8 80.3± 4.5 72.5± 2.4 69.4± 3.9 67.9± 3.8
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(c) Lawschool Admissions

1 2 4 8 16 32 64 128
Batchsize (log scale)

20

30

40

50

60

70

80

90

100
Re

co
ns

tru
ct

io
n 

Ac
cu

ra
cy

 [%
]

Inverting Gradients, 
discrete
TabLeak, discrete
Inverting Gradients, 
continuous
TabLeak, continuous

(d) Health Heritage

Figure 12: Mean reconstruction accuracy curves with corresponding standard deviations over varying batch size, separately
for the discrete and the continuous features on all four datasets.

Table 24: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32 in FedAvg training on the
Health Heritage dataset. The accuracy of the random baseline for 32 datapoints is 43.4± 3.5.

TabLeak Inverting Gradients (Geiping et al., 2020)

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 68.5± 5.0 62.2± 3.5 57.4± 3.0 53.8± 5.5 41.4± 3.6 41.1± 3.4
2 68.1± 4.9 62.4± 4.1 57.0± 2.8 52.4± 5.7 43.4± 4.28 44.4± 4.3
4 67.3± 5.8 62.0± 3.5 57.0± 3.0 52.5± 6.6 43.4± 5.7 44.8± 4.4
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Table 25: The mean accuracy [%] and entropies with the corresponding standard deviations over batch sizes of the categorical
and the continuous features on the Adult dataset, together with the rank correlation between mean batch accuracy and mean
batch entropy at the given batch size.

Discrete Continuous

Accuracy Entropy Kendall’s τ Accuracy Entropy Kendall’s τ

1 100.0± 0.0 0.02± 0.04 NaN 98.7± 6.5 −4.00± 0.72 −0.28
2 99.8± 1.7 0.02± 0.05 −0.20 98.7± 9.3 −3.75± 0.93 −0.20
4 99.6± 1.7 0.08± 0.11 −0.38 96.2± 9.0 −2.61± 1.34 −0.56
8 98.3± 6.1 0.15± 0.14 −0.52 91.0± 14.3 −1.69± 1.14 −0.66
16 97.2± 4.3 0.25± 0.11 −0.64 80.0± 12.9 −0.63± 0.62 −0.65
32 91.5± 4.1 0.39± 0.06 −0.55 63.1± 6.7 0.17± 0.31 −0.53
64 83.7± 3.7 0.47± 0.04 −0.65 59.6± 2.5 0.57± 0.22 −0.34
128 79.2± 1.6 0.51± 0.03 −0.42 61.3± 1.6 0.80± 0.14 −0.34

Table 26: The mean accuracy [%] and entropies with the corresponding standard deviations over batch sizes of the categorical
and the continuous features on the German Credit dataset, together with the rank correlation between mean batch accuracy
and mean batch entropy at the given batch size.

Discrete Continuous

Accuracy Entropy Kendall’s τ Accuracy Entropy Kendall’s τ

1 100.0± 0.0 0.00± 0.01 NaN 100.0± 0.0 −4.81± 0.62 NaN
2 100.0± 0.0 0.02± 0.03 NaN 100.0± 0.0 −4.12± 1.36 NaN
4 100.0± 0.0 0.06± 0.05 NaN 99.7± 1.2 −2.75± 1.33 −0.19
8 100.0± 0.0 0.11± 0.07 NaN 98.9± 3.4 −1.92± 1.01 −0.23
16 99.6± 1.3 0.24± 0.08 −0.35 90.1± 8.0 −0.74± 0.33 −0.38
32 93.4± 2.2 0.42± 0.04 −0.52 67.3± 4.8 0.28± 0.17 −0.28
64 82.5± 1.8 0.55± 0.02 −0.64 59.3± 2.1 0.80± 0.07 −0.29
128 78.5± 1.1 0.58± 0.02 −0.27 61.2± 1.3 1.01± 0.04 −0.25

D.4. Full Results on Entropy on all Datasets

In Tab. 25, Tab. 26, Tab. 27, and Tab. 28 we provide the mean and standard deviation of the reconstruction accuracy and
the entropy of the continuous and the categorical features over increasing batch size for attacking with TabLeak on the
four datasets. Additionally, at each batch size we calculate and report the Kendall’s τ rank correlation coefficient (Kendall,
1938) between the mean entropy of the features and the mean accuracy of the features over different batches. Note that if all
features are correctly reconstructed, we can not calculate a rank correlation, in these cases we replace the missing value by
NaN. We can observe on all datasets a trend of increasing entropy over decreasing reconstruction accuracy as the batch size
is increased; and as such providing a signal to the attacker about their overall reconstruction success.

To generalize our results presented in Sec. 4 beyond Adult, we present the corresponding tables on the top and bottom
quarters of the data based on the entropy ranking in Tab. 29, Tab. 30, Tab. 31, and Tab. 32 for all four datasets, respectively.
We can observe that the entropy is still effective in separating the poorly reconstructed features from the well reconstructed
ones. The scheme is especially strong on the categorical features, which is concerning, because, as discussed in Sec. 4, they
are already much more vulnerable to leakage attacks.
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Table 27: The mean accuracy [%] and entropies with the corresponding standard deviations over batch sizes of the categorical
and the continuous features on the Lawschool Admissions dataset, together with the rank correlation between mean batch
accuracy and mean batch entropy at the given batch size.

Discrete Continuous

Accuracy Entropy Kendall’s τ Accuracy Entropy Kendall’s τ

1 100.0± 0.0 0.01± 0.02 NaN 100.0± 0.0 −2.94± 0.32 NaN
2 100.0± 0.0 0.02± 0.05 NaN 100.0± 0.0 −2.52± 0.67 NaN
4 100.0± 0.0 0.03± 0.04 NaN 100.0± 0.0 −2.25± 0.53 NaN
8 99.8± 1.1 0.10± 0.10 −0.28 96.5± 11.1 −1.66± 0.47 −0.25
16 98.4± 2.8 0.23± 0.11 −0.37 87.6± 14.0 −0.62± 0.42 −0.50
32 93.4± 2.9 0.42± 0.08 −0.50 65.3± 8.5 0.21± 0.20 −0.45
64 86.9± 2.5 0.55± 0.05 −0.51 58.4± 4.6 0.80± 0.11 −0.20
128 83.5± 1.6 0.60± 0.03 −0.36 62.7± 3.1 1.06± 0.10 −0.18

Table 28: The mean accuracy [%] and entropies with the corresponding standard deviations over batch sizes of the categorical
and the continuous features on the Health Heritage dataset, together with the rank correlation between mean batch accuracy
and mean batch entropy at the given batch size.

Discrete Continuous

Accuracy Entropy Kendall’s τ Accuracy Entropy Kendall’s τ

1 100.0± 0.0 0.02± 0.04 NaN 99.6± 2.5 −3.45± 0.70 −0.18
2 100.0± 0.0 0.05± 0.09 NaN 96.4± 12.3 −2.88± 0.97 −0.47
4 99.6± 2.4 0.08± 0.10 −0.28 97.0± 10.6 −1.92± 0.96 −0.34
8 98.4± 5.2 0.13± 0.11 −0.43 93.9± 11.8 −1.19± 0.76 −0.56
16 96.0± 8.5 0.26± 0.10 −0.61 79.5± 12.1 −0.25± 0.49 −0.55
32 85.8± 5.9 0.42± 0.06 −0.62 63.2± 4.3 0.47± 0.24 −0.48
64 73.9± 4.5 0.50± 0.04 −0.60 60.6± 2.9 0.78± 0.20 −0.48
128 68.1± 2.0 0.55± 0.02 −0.26 61.0± 2.3 1.03± 0.11 −0.42

Table 29: The mean and standard deviation of the accuracy [%] of each feature type in the top 25% and the bottom 25%
when ranked in the batch according to the entropy on the Adult dataset.

Batch Categorical Continuous

Size Top 25% Bottom 25% Top 25% Bottom 25%

1 100.0± 0.0 100.0± 0.0 99.0± 7.0 98.0± 9.8
2 100.0± 0.0 99.3± 4.7 98.7± 9.3 98.7± 9.3
4 100.0± 0.0 98.0± 7.2 99.7± 2.3 92.7± 18.6
8 99.7± 2.3 96.0± 10.3 97.2± 9.4 84.2± 21.6
16 99.9± 0.6 89.8± 13.0 98.2± 3.5 60.8± 19.9
32 99.1± 2.6 75.5± 8.0 94.2± 4.7 43.6± 8.2
64 97.8± 2.6 66.1± 5.3 92.9± 3.5 41.3± 5.8
128 94.3± 1.9 62.8± 3.8 93.5± 2.3 42.2± 3.7

29



TabLeak: Tabular Data Leakage in Federated Learning

Table 30: The mean and standard deviation of the accuracy [%] of each feature type in the top 25% and the bottom 25%
when ranked in the batch according to the entropy German Credit dataset.

Batch Categorical Continuous

Size Top 25% Bottom 25% Top 25% Bottom 25%

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
2 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
4 100.0± 0.0 100.0± 0.0 100.0± 0.0 98.9± 4.8
8 100.0± 0.0 100.0± 0.0 99.7± 2.0 97.7± 5.4
16 100.0± 0.0 97.8± 6.2 98.2± 3.5 80.6± 13.7
32 100.0± 0.0 75.2± 7.1 87.3± 5.9 51.2± 7.1
64 98.9± 1.3 66.7± 4.0 77.9± 5.6 47.2± 4.8
128 96.9± 1.4 66.0± 2.8 78.0± 3.0 48.9± 2.9

Table 31: The mean and standard deviation of the accuracy [%] of each feature type in the top 25% and the bottom 25%
when ranked in the batch according to the entropy Lawschool Admissions dataset.

Batch Categorical Continuous

Size Top 25% Bottom 25% Top 25% Bottom 25%

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
2 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
4 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
8 100.0± 0.0 98.5± 7.8 99.5± 3.5 91.5± 23.2
16 100.0± 0.0 89.2± 17.3 96.5± 10.9 75.2± 24.6
32 99.9± 0.9 77.5± 9.3 76.6± 11.9 53.4± 13.4
64 96.6± 3.5 76.0± 9.4 62.7± 9.7 53.0± 9.3
128 93.6± 3.1 70.5± 7.6 68.2± 5.9 56.6± 6.0

Table 32: The mean and standard deviation of the accuracy [%] of each feature type in the top 25% and the bottom 25%
when ranked in the batch according to the entropy Health Heritage dataset.

Batch Categorical Continuous

Size Top 25% Bottom 25% Top 25% Bottom 25%

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 98.7± 9.3
2 100.0± 0.0 100.0± 0.0 97.7± 10.5 94.3± 16.9
4 99.8± 1.3 99.3± 4.0 98.0± 10.8 95.8± 13.6
8 99.8± 1.3 96.7± 10.4 97.7± 5.8 88.5± 20.6
16 99.0± 5.4 92.7± 12.4 92.3± 9.3 64.8± 16.8
32 95.3± 3.8 75.9± 8.8 77.2± 6.7 51.1± 8.4
64 88.3± 4.5 59.6± 6.0 73.3± 5.6 52.3± 6.1
128 82.4± 2.3 54.5± 3.1 71.2± 4.3 56.3± 4.0
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E. Studying Pooling
In this subsection, we present three further experiments on justifying and understanding our choices in pooling:

• Experiments on synthetic datasets for understanding the motivation for pooling in App. E.1.

• Ablation study on understanding the impact of the number of samples N in the collection before pooling on the
performance of TabLeak in App. E.2.

• Comparison of using mean and median pooling on TabLeak in App. E.3.

Note that in the experiments below we do not make use of the sigmoid restricting the continuous features.

E.1. Variance Study

A unique challenge (challenge (i)) of tabular data leakage is that the mix of discrete and continuous features introduces further
variance in the final reconstructions. As a solution to this challenge, we propose to produce N independent reconstructions
of the same batch, and ensemble them using the pooling scheme described in Sec. 3.1.2. In this subsection, we provide
empirical evidence for the subject of challenge (i) and the effectiveness of our proposed solution to it.

Experimental Setup We create 6 synthetic binary classification datasets, each with 10 features, however of varying
modality. Concretely; we have the following setups:

• Synthetic dataset with 0 discrete and 10 continuous columns,

• Synthetic dataset with 2 discrete and 8 continuous columns,

• Synthetic dataset with 4 discrete and 6 continuous columns,

• Synthetic dataset with 6 discrete and 4 continuous columns,

• Synthetic dataset with 8 discrete and 2 continuous columns,

• Synthetic dataset with 10 discrete and 0 continuous columns.

The continuous features are Gaussians with means between 0 and 5, and standard deviations between 1 and 3. The discrete
features have domain sizes between 2 and 6, and the probabilities are drawn randomly. On each of these datasets we sample
50 batches of size 32 and reconstruct them using TabLeak (no pooling) starting from 30 different initializations in the same
experimental setup elaborated in Sec. 4 and in App. B. We then proceed to calculate the standard deviation of the accuracy
for each of the 50 batches over their 30 independent reconstructions, providing us 50 statistically independent data points for
understanding the variance in the non-pooled reconstruction problem. Further, from the 30 independent reconstructions of
each batch, we build 6 independent mini-ensembles of size 5 and conduct median pooling on them (essentially, TabLeak
with N = 5). We then measure the standard deviation of the error for each of the 50 batches over the 6 obtained pooled
reconstructions, obtaining 50 independent data points for analyzing the variance of pooled reconstruction.

Results We present the results of the experiment in Fig. 13; additionally to measuring the same-batch reconstruction
accuracy standard deviation for all features together, we also present the resulting measurements when only considering the
discrete and the continuous features, respectively. The figures are organized such that the x-axis begins with the synthetic
dataset consisting only of continuous features and progresses to the right by decreasing the number of continuous and
increasing the number of discrete features at each step by 2. Roughly speaking, the very left column of the figures is similar
to data leakage in the image domain, where all features are continuous, and the very right relates to data leakage in the
text domain, containing only discrete features. Looking at Fig. 13a, we observe that the mean same-batch STD is indeed
higher for datasets consisting of mixed types, providing empirical evidence underlining the first challenge of tabular data
leakage. Further, it can be clearly seen that pooling, even with a small ensemble of just 5 samples, decisively decreases
the variance of the reconstruction problem, providing strong justification for using pooling in the tabular setting. Finally,
from Fig. 13b and Fig. 13c we gain interesting insight in the underlying dynamics of the interplay between discrete and
continuous features at reconstruction. Concretely, we observe that as the presence of a given modality is decreasing and its
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(b) Discrete Accuracy STD
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(c) Continuous Accuracy STD

Figure 13: Mean same-batch reconstruction accuracy standard deviation and 90% confidence interval at batch size 32
estimated from 50 independent batches over synthetic datasets with varying number of discrete (D.) and continuous (C.)
features.

Table 33: Reconstruction accuracy [%] and standard deviation of TabLeak on batch size 32 over the size of the ensemble N
used for pooling.

N = 1 5 10 15 20 25 30

Adult 71.8± 4.6 75.1± 4.6 76.5± 4.6 76.5± 4.8 77.1± 4.7 77.0± 4.7 77.4± 4.8
German 79.0± 3.0 81.6± 2.9 82.6± 2.9 82.9± 2.9 83.2± 2.8 83.4± 2.8 83.6± 2.7
Lawschool 82.3± 4.0 84.4± 3.7 84.7± 4.1 85.2± 3.9 85.1± 3.9 85.3± 4.0 85.3± 4.0
Health Heritage 64.6± 4.2 67.5± 4.3 69.1± 4.4 69.1± 4.5 69.7± 4.5 69.5± 4.3 70.1± 4.0

place is taken up by the other, the recovery of this modality becomes increasingly noisier. Much in line with the observations
on the difference in the recovery success between discrete and continuous features, these results also argue for future work
to pursue methods that decrease the disparity between the two different feature types in the mixed setting.

E.2. The Impact of the Number of Samples N

In Tab. 33 we present the results of an ablation study we conducted on TabLeak at batch size 32 to understand the impact of
the size of the ensemble N on the performance of the attack. We observed that with increasing N the performance of the
attack gets steadily better, albeit, producing diminishing returns, showing signs of saturation on some datasets after N = 25.
Note that this behavior is expected, and suggests using the largest N that is not yet computationally prohibitive. We chose
N = 30 for all our experiments with TabLeak (unless explicitly stated otherwise); this allowed us to conduct large-scale
experiments while still extracting good performance from TabLeak.

E.3. Choice of the Pooling Function

We compare TabLeak using median pooling to TabLeak with mean pooling in Tab. 34 over the four datasets. As we can
observe, in most cases both methods produce similar results, hence the effectiveness of TabLeak is mostly independent of
this choice. However, as median pooling demonstrates to provide a slight edge in some cases, we opt for using median
pooling in our main experiments with TabLeak.
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batch TabLeak TabLeak
size (median) (mean)

1 99.4± 2.8 99.4± 2.8
2 99.2± 5.5 99.3± 5.0
4 98.0± 4.5 97.7± 5.3
8 95.1± 9.2 94.8± 9.0
16 89.4± 7.6 88.9± 7.7
32 77.6± 4.8 77.1± 4.7
64 71.2± 2.8 71.7± 2.8
128 68.8± 1.3 69.4± 1.4

(a) Adult

batch TabLeak TabLeak
size (median) (mean)

1 100.0± 0.0 100.0± 0.0
2 100.0± 0.0 100.0± 0.0
4 99.9± 0.4 99.9± 0.4
8 99.7± 1.1 99.6± 1.1
16 95.9± 3.4 95.6± 3.3
32 83.6± 2.9 83.1± 3.0
64 73.0± 1.3 72.6± 1.3
128 71.3± 0.8 70.8± 0.9

(b) German Credit

batch TabLeak TabLeak
size (median) (mean)

1 100.0± 0.0 100.0± 0.0
2 100.0± 0.0 100.0± 0.0
4 100.0± 0.0 100.0± 0.0
8 98.7± 3.8 98.8± 3.4
16 94.8± 5.6 94.6± 5.4
32 84.8± 3.9 84.7± 3.9
64 78.2± 2.0 78.2± 2.2
128 77.3± 1.2 77.5± 1.2

(c) Lawschool Admissions

batch TabLeak TabLeak
size (median) (mean)

1 99.8± 1.6 99.8± 1.6
2 97.7± 8.3 97.4± 9.0
4 98.2± 6.5 98.0± 6.7
8 96.0± 8.2 95.6± 8.6
16 86.1± 8.8 84.9± 9.3
32 70.0± 4.5 69.7± 4.4
64 64.7± 2.8 64.8± 2.9
128 63.0± 1.4 63.6± 1.5

(d) Health Heritage

Table 34: Mean and standard deviation of the reconstruction accuracy [%] using TabLeak with either median or mean
pooling, assuming full knowledge of the true labels.
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