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Abstract
We propose an evolution strategies-based algo-
rithm for estimating gradients in unrolled com-
putation graphs, called ES-Single. Similarly to
the recently-proposed Persistent Evolution Strate-
gies (PES), ES-Single is unbiased, and overcomes
chaos arising from recursive function applications
by smoothing the meta-loss landscape. ES-Single
samples a single perturbation per particle, that
is kept fixed over the course of an inner prob-
lem (e.g., perturbations are not re-sampled for
each partial unroll). Compared to PES, ES-Single
is simpler to implement and has lower variance:
the variance of ES-Single is constant with re-
spect to the number of truncated unrolls, remov-
ing a key barrier in applying ES to long inner
problems using short truncations. We show that
ES-Single is unbiased for quadratic inner prob-
lems, and demonstrate empirically that its vari-
ance can be substantially lower than that of PES.
ES-Single consistently outperforms PES on a vari-
ety of tasks, including a synthetic benchmark task,
hyperparameter optimization, training recurrent
neural networks, and training learned optimizers.

1. Introduction
Many problems in machine learning involve computing
gradients through unrolled computation graphs, includ-
ing bilevel optimization (such as hyperparameter optimiza-
tion (Domke, 2012; Maclaurin et al., 2015; Franceschi et al.,
2017; Shaban et al., 2019) and meta-learning (Bertinetto
et al., 2018; Finn, 2018; Finn et al., 2018)), RNN train-
ing (Merity et al., 2018), reinforcement learning (Salimans
et al., 2017; Mania et al., 2018), and training learned op-
timizers (Metz et al., 2019; 2018; 2020a;b; Wichrowska
et al., 2017; Andrychowicz et al., 2016; Li & Malik, 2016;
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Figure 1. Comparing empirical variance measurements for PES
(solid curves) and ES-Single (ES-S, dashed lines) on a small LSTM
training task. Unlike PES, under all conditions the variance of
ES-Single is constant as the number of partial unrolls increases.

2017). In each of these tasks, we wish to learn parameters
that govern the evolution of a dynamical system, such that
the states produced by the system satisfy some objective
function. For example, in hyperparameter optimization,
we aim to tune hyperparameters (e.g., the learning rate or
dropout coefficient), such that a model trained using these
hyperparameters achieves low loss—in this case, the hyper-
parameters govern the evolution of the model parameters,
that can be interpreted as the states of the dynamical system.
Classic approaches to computing gradients through unrolled
computation graphs include reverse-mode (Werbos, 1990)
and forward-mode (Williams & Peng, 1990; Franceschi
et al., 2017; Tallec & Ollivier, 2017a; Menick et al., 2021)
gradient accumulation.

However, gradient-based methods face a fundamental obsta-
cle: the loss landscape resulting from long unrolls is often
chaotic and can exhibit near discontinuities (Metz et al.,
2019; Parmas et al., 2018; Parmas & Sugiyama, 2019),
rendering gradients unsuitable (Metz et al., 2021). One
approach to overcome this chaos is to consider Gaussian
smoothing of the outer loss surface; the gradient of such a
smoothed objective can be computed using evolution strate-
gies (ES) (Rechenberg, 1973). Applying vanilla ES to the
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full unrolled inner problem yields a useful gradient estimate,
but leads to slow outer optimization; in contrast, applying
ES to truncated unrolls leads to truncation bias, similarly to
truncated backpropagation through time.

Vicol et al. (2021) proposed an ES-based algorithm called
Persistent Evolution Strategies (PES), that yields unbiased
gradient estimates from truncated unrolls, speeding up meta-
optimization by allowing for more frequent outer parameter
updates. PES has a number of desirable characteristics, in-
cluding unbiasedness and Gaussian smoothing of the outer
loss landscape. However, its variance increases with the
number of truncated unrolls per full inner problem, po-
tentially making it impractical to use short truncations for
long-horizon problems (for example, truncations of length
K = 1 for problems where T ≥ 100).

In this paper, we propose an unbiased gradient estimator for
unrolled computation graphs, called ES-Single, that re-uses
the same outer parameter perturbations along each step of
an unrolled trajectory. ES-Single has constant variance with
respect to the number of partial unrolls per inner problem.
Due to its low variance, ES-Single outperforms PES on a
wide range of synthetic and real-world tasks. In addition,
ES-Single is simpler to implement than PES, as it does not
require maintaining a perturbation accumulator per particle,
and only samples perturbations at the start of each inner
problem, rather than for each truncated unroll.

Contributions.

• We propose an algorithm for ES-based, unbiased gradi-
ent estimation in unrolled computation graphs, called
ES-Single. We motivate ES-Single by discussing its
relationship to full-unroll ES and PES.

• We show that ES-Single can have substantially lower
variance than PES, overcoming a key barrier for use
in long-horizon inner problems, especially when using
short truncated unrolls.

• We evaluate ES-Single on a diverse set of tasks, from
synthetic problems designed to test unbiasedness, to
hyperparameter optimization, RNN training, and meta-
training learned optimizers. We found that ES-Single
outperformed PES across all tasks we investigated.

We provide JAX code for ES-Single in Appendix H, and a
Colab notebook implementation here.

2. Background
We follow the problem setup of Vicol et al. (2021), consid-
ering an unrolled computation graph with state st at time t,
updated via a function f parameterized by θ:

st = f(st−1,xt;θ) (1)

where xt is an optional input at each step (e.g., data). Many
common tasks in machine learning are instances of this prob-
lem: for example, when training an RNN, st is the hidden
state and θ are the RNN parameters, while for hyperparam-
eter optimization, st represents the parameters of a neural
network being optimized and θ are hyperparameters such as
the learning rate and momentum. The objective function for
optimizing θ is the sum of per-timestep losses Lt(st;θ):

L(θ) =

T∑
t=1

Lt(st;θ) (2)

Appendix A summarizes the notation used in this paper.

Chaos and Smoothing. Unrolling computation graphs
can give rise to chaotic dynamics, which pose funda-
mental challenges for gradient-based methods (Parmas
& Sugiyama, 2019). Chaos frequently arises in meta-
optimization (for example hyperparameter optimization and
training learned optimizers), due to nonlinear inner loss
surfaces which have many local minima—small changes
to the outer parameters may lead to different local minima,
that have different meta-loss values. To overcome chaos,
one may consider optimizing a Gaussian-smoothed outer
loss, L̃(θ) = Eθ̃∼N (θ,σ2I)

[
L(θ̃)

]
. Common approaches

for computing the gradient of the smoothed objective L̃(θ)
include evolution strategies and the reparameterization gra-
dient (Ruiz et al., 2016).

Vanilla Evolution Strategies. Evolution strate-
gies (Rechenberg, 1973; Nesterov & Spokoiny, 2017) is a
method for zeroth-order gradient estimation, that computes
a stochastic finite-difference estimate of the gradient as
follows:

gES =
1

σ2
Eϵ∼N (0,σ2I) [ϵL(θ + ϵ)]

≈ 1

σ2N

N∑
i=1

ϵ(i)L(θ + ϵ(i))

where N is the number of Monte Carlo samples (also
called particles) used to estimate the expectation. An-
tithetic sampling (Owen, 2013) is a widely-used tech-
nique to reduce the variance of ES, that works by sam-
pling pairs of positive and negative perturbations, gES-A =
Eϵ∼N (0,σ2I) [ϵ(L(θ + ϵ)− L(θ − ϵ))]. In practice, one
typically uses a Monte Carlo estimate, denoted with a hat,
as follows:

ĝES-A =
1

Nσ2

N/2∑
i=1

ϵ(i)(L(θ + ϵ(i))− L(θ − ϵ(i))) (3)

where N is even, and ϵ(i) ∼ N (0, σ2I). Unfortunately,
applying vanilla ES to long inner problems leads to slow
updates, while using partial unrolls leads to truncation
bias (Metz et al., 2019).
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Figure 2. Comparison of the computation graphs of full-unroll ES (left), PES (middle), and ES-Single (right). Full-Unroll ES
samples a perturbation ϵ(i) for particle i, and runs a full unroll from state s

(i)
0 to s

(i)
T using perturbed parameters θ + ϵ(i). Both PES and

ES-Single split the computation graph into a sequence of partial unrolls, but differ in how perturbations are sampled and how intermediate
results are aggregated to update the outer parameters online: PES samples a new perturbation ϵ

(i)
t for particle i in each unroll t, and sums

the perturbations experienced by each particle up to the current point in the inner problem,
∑t

τ=1 ϵ
(i)
τ ; in contrast, ES-Single samples a

single perturbation ϵ(i) per particle at the start of each inner problem—keeping it fixed for the duration of the problem—and does not
sum perturbations over time. ES-Single can be interpreted as inserting breakpoints into the full-unroll ES computation, at which the
intermediate losses are aggregated to form a gradient estimate used to update the outer parameters. The computation graph for vanilla
truncated ES is provided in Appendix C.1.

Persistent Evolution Strategies (PES). PES (Vicol et al.,
2021) is an ES-based approach for unbiased gradient esti-
mation using partial unrolls of the inner problem. The PES
gradient estimator is defined as follows, where θt denotes
the application of the shared parameters θ at step t and the
loss Lt is written explicitly as a function of all applications
of θ up to the current time, rather than as a function of the
state st that implicitly depends on past θ’s:

gPES =
1

σ2
Eϵ

[
T∑

t=1

(
t∑

τ=1

ϵτ

)
Lt(θ1 + ϵ1, . . . ,θt + ϵt)

]

Here, the expectation is over a T ×P matrix whose rows are
the per-timestep perturbations ϵt. Intuitively, PES maintains
a collection of particles, and applies a different outer param-
eter perturbation for each partial unroll of the inner problem.
The particles are not reset after each partial unroll, and the
perturbations experienced by each particle are accumulated
over the course of an inner problem. The particle states and
accumulators reset at the start of a new inner problem. Vicol
et al. (2021) showed that the variance of PES depends on the
covariance between gradients of each loss term Lt with re-
spect to per-timestep parameters θτ . They analyzed several
scenarios with different covariance assumptions, and found
that in a real-world scenario, the variance increases as the
number of unrolls per inner problem increases (Figure 1);
thus, while PES works well for tasks with an intermediate
number of unrolls (e.g., 10-100 unrolls), it struggles with
longer tasks due to variance.

3. ES-Single
We propose an algorithm for ES-based gradient estimation
in unrolled computation graphs, that is simpler to imple-

ment than PES, has low variance, and performs well on a
variety of tasks. To introduce this algorithm, we first re-
visit full-unroll ES, which computes 1

σ2Eϵ[ϵL(θ + ϵ)] ≈
1

Nσ2

∑N
i=1 ϵ

(i)L(θ + ϵ(i)). In full-unroll ES, we initialize
N particles, sample an outer parameter perturbation ϵ(i) for
each particle, unroll the full inner problem using the per-
turbed outer parameters θ + ϵ(i), and aggregate the results
to form the gradient estimate. Full-unroll ES yields useful
gradient estimates, but is impractical due to the high latency
between parameter updates (which is especially problematic
for tasks such as hyperparameter optimization, where the
inner problem typically has length T > 103). However, one
can consider splitting the computation graph into a series
of truncated unrolls, and using the intermediate results ob-
tained after each unroll to update the outer parameters more
frequently. The ES-Single algorithm inserts breakpoints
in the inner optimization, at which the intermediate results
(e.g., the losses from the current unroll) are aggregated to
form a gradient estimate that is used to update the outer
parameters. Mathematically, the gradient estimator for ES-
Single is equivalent to the full-unroll ES gradient (shown
here using antithetic sampling),

gES-Single =
1

σ2
Eϵ [ϵ(L(θ + ϵ)− L(θ − ϵ))] , (4)

where ϵ ∼ N (0, σ2I). However, ES-Single differs from
full ES algorithmically: full ES treats the inner problem
as a black box, ignoring its iterative nature; in contrast,
ES-Single treats it as a gray-box, which leverages this struc-
ture by constructing gradient estimates from intermediate
progress, and updating the outer parameters online.

ES-Single samples perturbations ϵ(i) for each particle once,

3



ES-Single

Algorithm 1 Truncated Evolution Strategies (ES) applied
to partial unrolls of a computation graph.

Input: s0, initial state
K, truncation length for partial unrolls
N , number of particles
σ, standard deviation of perturbations
α, learning rate for outer optimization

Initialize s = s0 s
(i) = s0

while inner problem not finished do
ĝES ← 0
for i = 1, . . . , N do

ϵ(i) =

{
draw from N (0, σ2I) i odd
−ϵ(i−1) i even

L̂
(i)
K ← unroll(s,θ + ϵ(i),K)

ĝES ← ĝES + ϵ(i)L̂
(i)
K

end for
ĝES ← 1

Nσ2 ĝ
ES

s← unroll(s,θ,K)
θ ← θ − αĝES

end while

Algorithm 2 ES with a single perturbation per particle re-
applied in each truncated unroll (ES-Single).

Input: s0, initial state
K, truncation length for partial unrolls
N , number of particles
σ, standard deviation of perturbations
α, learning rate for outer optimization

Initialize s(i) = s0 for i ∈ {1, . . . , N}
for i = 1, . . . , N do

ϵ(i) =

{
draw from N (0, σ2I) i odd
−ϵ(i−1) i even

end for
while inner problem not finished do

ĝES-Single ← 0
for i = 1, . . . , N do

s(i), L̂(i)
K ← unroll(s(i),θ + ϵ(i),K)

ĝES-Single ← ĝES-Single + ϵ(i)L̂
(i)
K

end for
ĝES-Single ← 1

Nσ2 ĝ
ES-Single

s← unroll(s, θ,K)
θ ← θ − αĝES-Single

end while
Figure 3. A comparison of the vanilla truncated ES and ES-Single gradient estimators, applied to partial unrolls of a computation
graph. The conditional statement for ϵ(i) is used to implement antithetic sampling. Differences between the two algorithms are highlighted
in red. While ES samples different perturbations for each particle in each partial unroll, ES-Single samples one perturbation per particle
before the inner problem starts, and re-applies the same perturbation in each partial unroll comprising the inner problem.

at the start of an inner problem, which are then kept fixed for
the entirety of the inner problem—the same perturbations
are applied to the outer parameters at each partial unroll.
Because ES-Single is mathematically equivalent to full-
unroll ES, it is unbiased by construction:

Proposition 3.1 (ES-Single is unbiased). Assume
that L(θ) is quadratic and ∇θL(θ) exists. Then,
the ES-Single gradient estimator using antithetic
sampling is unbiased, that is, bias(ĝES-Single) =

Eϵ

[
ĝES-Single

]
−∇θL(θ) = 0.

Proof. The proof is provided in Appendix D.1.

The main difference between ES-Single and truncated ES
is that ES-Single maintains separate states for each parti-
cle throughout the full inner problem (that are updated in
parallel in each partial unroll), rather than collapsing the
particles to update a single mean state s after each truncated
unroll. Also, ES-Single differs from PES in two key ways:
1) it uses the same perturbations over all partial unrolls of
an inner problem, rather than sampling new perturbations
for each partial unroll; and 2) it does not accumulate the
perturbations over time, as done in PES. Thus, ES-Single
is simple to implement, and may be slightly cheaper per
iteration if the cost of sampling perturbations is high (e.g.,

for high-dimensional parameters).

ES-Single PES

Figure 4. Stochastic computation graphs for ES-Single and PES,
using the notation from Schulman et al. (2015). Vanilla truncated
ES can be seen as removing the recurrent connections from PES.

Stochastic Computation Graph. Figure 4 compares the
stochastic computation graphs for ES-Single to those of PES
and ES. In these diagrams, squares represent deterministic
nodes, which are functions of their parents; circles represent
stochastic nodes (e.g., θ̃) which are distributed conditionally
on their parents; and nodes not in squares or circles (e.g.,
θ) represent inputs. ES-Single samples a single perturbed
outer parameter θ̃ ∼ N (θ, σ2I) that influences all the states
st in the unroll, such that all losses Lt are downstream of
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the node θ̃. In contrast, PES perturbs the outer parameters
independently for each partial unroll, θt ∼ N (θ, σ2I); in
this case, the losses downstream of node θt are {Lτ}Tτ=t.
In Appendix E, we provide derivations of each gradient esti-
mator, leveraging Theorem 1 from Schulman et al. (2015),
which gives a generic formula for an unbiased estimator of
such graphs.
Generalization of ES-Single and PES. One can also
consider a generalization of both ES-Single and PES, that
decouples the interval at which we update the perturbation
accumulator from the interval at which we update the outer
parameters. In particular, one can introduce another hyper-
parameter, Ω, that specifies the meta-update interval, while
K denotes the interval at which new perturbations are sam-
pled and at which the perturbation accumulator is updated.
Many algorithms of interest can be obtained as special cases,
by setting K and Ω appropriately. Let T be the length of
a full inner problem. Then, 1) if K = Ω = T , we recover
full-unroll ES; 2) if K = Ω and K < T , we recover PES;
3) if K = T and Ω < T , we recover ES-Single; and 4) if
K,Ω < T and Ω < K, we obtain a new estimator whose
properties lie between the others. The stochastic computa-
tion graph for this generalization, and the derivation of the
resulting unbiased estimator, are provided in Appendix F.

3.1. Variance
In contrast to PES, the variance of the ES-Single esti-
mator does not depend on the number of partial unrolls
per inner problem. We measured the empirical variance
on the same task used by Vicol et al. (2021): we con-
sider a tiny LSTM trained on the character-level Penn
TreeBank dataset (Marcus et al., 1993). The full inner
problem consists of a sequence of length T = 1000,
which we split into truncated unrolls of lengths K ∈
{1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. When measuring
the variance of each estimator, we keep the parameters θ
fixed—that is, we do not update θ after each partial unroll—
and accumulate the gradient for the full problem by sum-
ming the estimates over the truncated unrolls. This allows us
to avoid any hysteresis effects. We considered three different
scenarios: 1) a sequence consisting of random characters,
such that the gradients at each truncated unroll are i.i.d.; 2)
a sequence consisting of a single repeated character, such
that the gradients from each unroll are identical; and 3) a
sequence of real data from the PTB dataset. The results
are shown in Figure 1: we see that ES-Single has similar
variance for all three scenarios, and in each case the variance
is constant with respect to the number of unrolls, in contrast
to PES. Thus, ES-Single has substantially lower variance,
especially when the inner problem is split into many un-
rolls; however, PES does have slightly lower variance for
intermediate numbers of unrolls (e.g., 10-100 unrolls per
inner problem). Formally, ES-Single has the same variance
characteristics as full-unroll ES.

Proposition 3.2 (ES-Single Variance). The total
variance of ES-Single using antithetic sampling is
tr(Var(ĝES-Single)) = (P + 1)∥∇θL(θ)∥2, where P
is the dimensionality of θ.

Proof. The proof is provided in Appendix D.2.

The total variance normalized by the squared gradient norm
is O(P ), growing linearly in the number of outer param-
eters. In contrast, the variance of PES includes terms in
T , the number of unrolls per inner problem (Vicol et al.,
2021); depending on the correlation between gradients at
each partial unroll, its variance either decreases slightly with
increasing T , or increases linearly with T . In the realistic
scenario using a true sequence from the PTB dataset, the
variance of PES initially decreases slightly as the number
of inner unrolls increases, after which it increases linearly.

3.2. Hysteresis
Any method that makes updates to the outer parameters
online during optimization of an inner problem will suffer
from hysteresis, including RTRL and its approximations
(UORO, KF-RTRL, OK), PES, and ES-Single. The impact
of hysteresis on final performance is problem-dependent;
one approach to help mitigate the effects of hysteresis is to
use breakstep (as opposed to lockstep) training, described
in Appendix C.2.

4. Experiments
We evaluated ES-Single on several tasks from Vicol et al.
(2021), which include both toy problems and real-world
tasks. First, we show empirically that ES-Single is unbiased,
via an influence balancing task that is designed such that
truncated methods fail; then, we use ES-Single to optimize
hyperparameters, to tune several mixed continuous and dis-
crete hyperparameters for a FashionMNIST training task.
Finally, we consider two high-dimensional problems: 1)
training an LSTM to copy sequences of increasing length
(on which truncated methods fail); and 2) meta-training a
learned optimizer. Both of these tasks have thousands of
outer parameters, which allows us to evaluate the scalability
of ES-Single to real-world settings. Overall, we show that
ES-Single is unbiased, and consistently outperforms PES
on all tasks, achieving lower meta-loss values in fewer meta-
optimization steps. Experimental details and additional
results are provided in Appendix C.

4.1. Synthetic Influence Balancing Task
First, we revisit the influence balancing task, originally intro-
duced by Tallec & Ollivier (2017a) and used in PES (Vicol
et al., 2021). This is a synthetic task with a scalar parameter
θ ∈ R, designed such that θ has a negative influence in the
short term but a positive influence in the long term. We
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(a) Comparing ES-Single to TBPTT, vanilla trun-
cated ES, PES, UORO, and RTRL.
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(b) Ablation over the number of particles N for
PES and ES-Single.

Figure 5. Evaluating ES-Single on the synthetic influence balancing task from Tallec & Ollivier (2017a). Note that TBPTT with truncation
lengths 10 and 100 moves in the wrong direction, and truncated ES exactly matches the behavior of TBPTT with K = 1.

Iteration

Figure 6. Illustration of the influence balancing task.

consider a linear dynamical system:

st+1 = Ast + (θ, . . . , θ︸ ︷︷ ︸
p positive

,−θ, . . . ,−θ︸ ︷︷ ︸
n−p negative

)⊤ (5)

where A is an n× n matrix with Ai,i = 0.5, Ai,i+1 = 0.5,
and 0 everywhere else. The loss Lt computes the squared
error on the first index in the state vector st; see Appendix C
for details. This task is shown diagrammatically in Figure 6.
As shown in Figure 5a, ES-Single outperforms PES and
RTRL, and yields a smoother loss curve. Note that for this
task, the inner problem is infinite; thus, the perturbation
accumulator for PES is never reset. Because the variance of
PES increases with the number of unrolls, PES requires a
large number of particles (N = 1000) to perform well. If
the number of particles is decreased, optimization becomes
unstable, as shown in Figure 5b. In contrast, because the
variance of ES-Single does not depend on the number of
unrolls, it can perform well on this task with substantially
fewer particles, even N = 4.

4.2. Hyperparameter Optimization

MNIST LR Schedule. Here, we used ES-Single to meta-
learn a learning rate (LR) schedule used to train an MLP
on MNIST. Based on (Wu et al., 2018), we used a two-
hidden-layer MLP with 100 units per layer, and tuned LR
schedule parameterized by αt =

θ0

(1+ t
Q )

θ1
, where θ0 is the

initial LR, θ1 is the LR decay factor, and Q = 5000 is a

constant. The results are shown in Figure 7. We found that
ES-Single performed similarly to PES, but had more stable
convergence near the optimum, while PES at times drifted
away from the optimum due to its high variance.

2 1 0 1 2
Log LR Decay

3.0

2.5

2.0

1.5

1.0

0.5
Lo

g 
In

it 
LR

ES-Single K=10

PES K=10
ES K=10

Init
5.4

6.2

7.0

7.8

8.6

9.4

10.2

11.0

Figure 7. Meta-optimization of a learning rate schedule for an
MNIST MLP, using truncation length K = 10. Darker regions are
better. Further experiments are provided in Appendix C.

Telescoping Sums. If the desired meta-objective is the
final loss LT rather than the sum of losses

∑T
t=0 Lt, then

this can be handled gracefully in our framework by defining
pt = Lt − Lt−1, where we define L−1 ≡ 0 for notational
simplicity. Then, we can consider the sum of pt, which
yields a telescoping sum:

T∑
t=0

pt = (��L0 − L−1) + · · ·+ (LT −���LT−1) = LT (6)

Figure 8 compares vanilla truncated ES, PES, and ES-
Single on a task that tunes the learning rate and decay factor
for training an MLP on FashionMNIST, targeting the final
training loss. We see that the meta-optimization trajectory
of ES-Single was significantly smoother than that of PES,
more closely followed the meta-loss contours, and had bet-
ter stability near the optimum (Figure 8a). As shown in
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(a) Meta-optimization using telescoping sums.
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(b) Meta-losses obtained by ES, PES, and ES-Single.

Figure 8. Meta-optimizing a learning rate schedule for an MLP on FashionMNIST, using a telescoping sum to target the final training loss.

Figure 8b, ES-Single converged more rapidly to the optimal
meta-objective value than PES.

Tuning Many Hyperparameters. Here, we applied ES-
Single to tune many hyperparameters simultaneously, to
train a 5-hidden-layer MLP on FashionMNIST. The meta-
objective is the sum of validation losses over the inner prob-
lem. We tuned 29 hyperparameters, including separate learn-
ing rates and momentum coefficients per parameter block
(e.g., for each weight matrix and bias vector in the MLP),
and the number of hidden units per layer (which is a discrete
hyperparameter that takes values in the range 10-100). We
compared ES-Single to random search, vanilla ES, and PES.
The results are shown in Figure 9: we found that ES-Single
substantially outperformed these baselines, and achieved
lower meta-loss in fewer iterations compared to PES.
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Total Compute
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PES
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Figure 9. Tuning many hyperparameters for an MLP on FashionM-
NIST, targeting the sum of validation losses as the meta-objective.

4.3. LSTM Copy Task

Next, we used ES-Single to train an LSTM on the copy task
introduced by Mujika et al. (2018), where the model must
read a binary string of length T , and output the same string.
The challenge lies in learning long-term dependencies as
T increases. Following Mujika et al. (2018), we use a cur-
riculum starting with T = 1, and increasing T by 1 each

time the exponential moving average of the cross-entropy
loss (e.g., bits-per-character) drops below the threshold 0.15.
To ensure that the model does not overfit to a particular se-
quence length, we sample T uniformly from {T−5, . . . , T}
(or T = 1 if the sampled value is negative). We train a
1-layer LSTM with hidden state size 100, that has 42804 pa-
rameters, which we learn via ES-based methods, evaluating
scalability. PES and ES-Single were run using truncations of
length K = 1 for fully-online learning; for vanilla truncated
ES, we used truncation lengths K ∈ {25, 50}. In Figure 10,
we show the maximum length T that is successfully copied
over the course of training using ES, PES, and ES-Single.
As expected, ES plateaus, as it intrinsically cannot model de-
pendencies across longer horizons than its truncation length.
Both PES and ES-Single outperform ES, but ES-Single sub-
stantially outperforms PES, with T increasing faster and
reaching higher maximum values.
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Figure 10. Maximum sequence length T that is successfully copied
in the copy task from Mujika et al. (2018). Curves of the same color
use different random seeds. For the ES baselines (gray and black
curves), we show only the best result to reduce clutter. Here, the
x-axis represents the number of tokens ingested by each approach
(e.g., data-time rather than compute).

4.4. Learned Optimizer Training

Here, we used ES-Single to meta-optimize a learned op-
timizer using the LOLv2 architecture introduced by Metz
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et al. (2018). This optimizer is meta-trained to optimize
a 2-hidden-layer MLP with 128 hidden units per layer, on
FashionMNIST for T = 5000 steps, using truncated unrolls
of length K = 10. As the meta-objective, we targeted the
mean training loss over the inner optimization trajectory.
In Figure 11, we show the meta-objective values obtained
over the course of meta-training, using truncated ES, PES,
and ES-Single. ES fails due to truncation bias, while PES
performs poorly due to high variance; ES-Single performs
much better on this long-horizon task with short truncations.
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Figure 11. Meta-training a learned optimizer, targeting a two-layer
MLP on FashionMNIST.

5. Related Work
We provide extended related work in Appendix B.

Gradient-Based Approaches. There are two families of
gradient-based methods for computing gradients through
unrolled computation, based on reverse-mode (e.g., back-
propagation through time, BPTT) or forward-mode gradient
accumulation (e.g., real-time recurrent learning, RTRL).
Backpropagating through full unrolled sequences is expen-
sive, with compute and memory cost that scales linearly in
the unroll length. Gradient checkpointing (Chen et al., 2016)
reduces the memory requirement to O(

√
T ), at the cost of

additional compute. Truncated BPTT (TBPTT) operates
on shorter sub-sequences of length K ≪ T , substantially
reducing cost, but introducing truncation bias that can lead
to sub-optimal solutions (Wu et al., 2018). ART-BP (Tal-
lec & Ollivier, 2017b) uses randomly sampled truncation
lengths, and introduces reweighting factors during backprop
based on the sequence length to yield an unbiased gradient
estimate of the total loss.

RTRL performs forward-mode gradient accumulation, by
maintaining the recurrent Jacobian via the following up-
date: dst

dθ = ∂st

∂st−1

dst−1

dθ + ∂st

∂θ . RTRL allows for fully
online learning of the outer parameters (e.g., with outer
updates taken every K = 1 steps), but is intractable for
high-dimensional problems, as the recurrent Jacobian dst

dθ is
P×P and thus too large to store in memory. Several cheaper
approximations to RTRL have been proposed, including:
Unbiased Online Recurrent Optimization (UORO) (Tallec
& Ollivier, 2017a), maintains a rank-1 estimate of the recur-
rent Jacobian; KF -RTRL (Mujika et al., 2018) proposes a

Kronecker factorization of the Jacobian, and the Optimal
Kronecker Sum Approximation (OK) (Benzing et al., 2019)
provides a lower-variance extension of KF-RTRL. Unfortu-
nately, these methods cannot optimize over chaotic loss land-
scapes, and are either high-variance, difficult to implement,
or are only applicable to a restricted class of models (e.g.,
specific RNN architectures). Silver et al. (2021) propose a
method called DODGE, for unbiased gradient estimation
based on directional derivatives; being a gradient-based ap-
proach, this method requires a differentiable objective func-
tion. We provide a comparison to DODGE in Appendix C.6.

Chaos. Unrolled dynamical systems can lead to chaotic
loss landscapes, for example in rigid-body physics, graph-
ics, model-based control (Parmas et al., 2018), fluid simu-
lation (Ni & Wang, 2017; Kochkov et al., 2021), climate
modeling (Lea et al., 2000; Köhl & Willebrand, 2002), and
simulation of weather (Bischof et al., 1996) or nuclear fu-
sion (McGreivy et al., 2021). Metz et al. (2021) discuss this
in depth, showing that while analytic gradients may be avail-
able in such systems, they are not necessarily useful due to
high variance. In particular, the reparameterization gradient
estimator (Kingma & Welling, 2013) may have orders of
magnitude larger variance than black-box ES estimates (Par-
mas et al., 2018; Parmas & Sugiyama, 2019; Metz et al.,
2019; Schwefel & Schwefel, 1977; Wierstra et al., 2014)
or variational optimization (Staines & Barber, 2012). Metz
et al. (2021) provide an overview of scenarios in which
chaos arises, and a taxonomy of approaches to either pre-
vent chaos from arising (e.g., switching to a better-behaved
system) or to optimize in the presence of chaos (e.g., using
smoothing-based approaches, as we do here). The high-level
outline for ES-Single was first proposed by Vicol (2023). A
paper developing a similar algorithm, written in parallel and
independently from ours, is (Li et al., 2023).

6. Conclusion
We introduced an unbiased gradient estimator for unrolled
computation graphs, called ES-Single. ES-Single inserts
breakpoints into the computation graph for a full unroll,
at which intermediate results are aggregated and used to
form an ES-based gradient estimate, which is applied to
update the outer parameters. Crucially, compared to vanilla
truncated ES and PES, ES-Single samples outer parameter
perturbations once at the start of each inner problem, and
re-applies the same perturbations in each partial unroll. ES-
Single is simpler to implement than PES, and has constant
variance with respect to the number of partial unrolls per
inner problem; this leads to substantially lower variance
than PES in practice, and makes ES-Single well-suited for
long-horizon tasks with short truncations. We evaluated
ES-Single on a diverse set of tasks, including a synthetic
task to test for unbiasedness, hyperparameter optimization,
RNN training, and training of learned optimizers. On all
tasks, it outperformed ES and PES.

8



ES-Single

Acknowledgements
We thank Zico Kolter and Kevin Swersky for helpful discus-
sions.

References
Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,

Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.
Learning to learn by gradient descent by gradient descent.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 3981–3989, 2016.

Asuncion, A. and Newman, D. UCI Machine Learning
Repository, 2007.

Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M.,
and Wood, F. Online learning rate adaptation with hy-
pergradient descent. arXiv preprint arXiv:1703.04782,
2017.

Bengio, Y. Gradient-based optimization of hyperparameters.
Neural Computation, 12(8):1889–1900, 2000.

Benzing, F., Gauy, M. M., Mujika, A., Martinsson, A., and
Steger, A. Optimal Kronecker-sum approximation of real
time recurrent learning. In International Conference on
Machine Learning, pp. 604–613. PMLR, 2019.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. Al-
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Appendix
This appendix is structured as follows:

• In Section A, we provide an overview of the notation used in this paper.

• In Section B, we provide extended related work.

• In Section C, we provide experimental details and additional results.

• In Section D, we provide proofs of all statements in the main text.

• In Section E, we present derivations of the ES-Single and vanilla ES gradient estimators using the framework of
stochastic computation graphs.

• In Section F, we derive a generalization of both ES-Single and PES. We provide its stochastic computation graph and
resulting algorithm.

• In Section G, we derive the variance of a generalized estimator that combines a single perturbation (kept fixed over the
course of an inner problem)—as in ES-Single—with independent perturbations sampled in each partial unroll—as in
PES.

• In Section H, we provide a JAX implementation of ES-Single.
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A. Notation
Table 1 summarizes the notation used in this paper.

Symbol Meaning

ES Evolution strategies
PES Persistent evolution strategies

ES-Single Evolution strategies with a single perturbation re-used across unrolls
(T)BPTT (Truncated) backpropagation through time

RTRL Real time recurrent learning
UORO Unbiased online recurrent optimization

T The total sequence length / total unroll length of the inner problem
K The truncation length for subsequences / partial unrolls
S The dimensionality of the state of the unrolled system, dim(s)

P The dimensionality of the parameters of the unrolled system, dim(θ)

θ The parameters of the unrolled system
θt The parameters of the unrolled system at time t, where θt = θ,∀t
st The state of the unrolled system at time t

xt The (optional) external input to the unrolled system at time t

f The update function that evolves the unrolled system
N The number of particles for ES and PES
σ2 The variance of the ES/PES perturbations
ϵt A perturbation applied to the parameters θ at timestep t

ξt The sum of PES perturbations up to time t, ξt = ϵ1 + · · ·+ ϵt

Θ A matrix whose rows are per-timestep parameters θ1, . . . ,θT

Lt(Θ) The loss at timestep t, Lt(Θ) = Lt(θ1, . . . ,θt)

L(θ), L(Θ) The total loss, L(θ) = L(Θ) =
∑T

t=1 Lt(Θ) =
∑T

t=1 Lt(θ1, . . . ,θt)

gt The true gradient at step t: ∇θLt(θ)

ĝES The vanilla ES gradient estimate (with Monte-Carlo sampling)

ĝES-A The vanilla ES gradient estimate, using antithetic sampling

ĝPES The PES gradient estimate (with Monte-Carlo sampling)

ĝES-Single The ES-Single gradient estimate (with Monte Carlo sampling)
α The learning rate for the parameters θ

unroll(s,θ,K)
A function that unrolls the system for K steps

starting with state s, using parameters θ.
Returns the updated state and loss resulting from the unroll

Table 1. Table of notation, defining the terms we use in this paper.
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B. Extended Related Work
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Figure 12. Connections between approaches for computing gradients in unrolled computation graphs, focusing on three categories of
methods: 1) forward-mode differentiation, which includes RTRL (Williams & Zipser, 1989) and its approximations (UORO (Tallec &
Ollivier, 2017a), KF-RTRL (Mujika et al., 2018), OK (Benzing et al., 2019), DODGE (Silver et al., 2021)); 2) reverse-mode differentiation,
which includes backpropagation through time (BPTT), truncated BPTT, and ARTBP (Tallec & Ollivier, 2017b); and 3) evolution strategies
(ES)-based approaches, which include full-unroll and truncated ES (Metz et al., 2019), PES (Vicol et al., 2021), and the generalization we
introduce in Section F, which has as special cases PES and ES-Single.

Approaches for Gradient Estimation. Figure 12 illustrates connections between forward-mode, reverse-mode, and
evolution strategies-based approaches to gradient estimation in unrolled computation graphs.

Black-Box, Gray-Box, and Gradient-Based Approaches. Black-box approaches to meta-optimization include random
search (Bergstra et al., 2011), Bayesian optimization (Snoek et al., 2012; 2015), and full-unroll ES (Metz et al., 2019).
Gray-box approaches make use of the iterative nature of the inner problem, to make faster progress than black-box methods;
such approaches include Freeze-Thaw Bayesian optimization (Swersky et al., 2014), Hyperband (Li et al., 2017), Successive
Halving (Jamieson & Talwalkar, 2016), Population-Based Training (Jaderberg et al., 2017), PES (Vicol et al., 2021), and
ES-Single. Gradient-based approaches either: 1) differentiate through inner unrolls (Domke, 2012; Maclaurin et al., 2015;
Shaban et al., 2019); 2) leverage implicit differentiation (Larsen et al., 1996; Bengio, 2000; Foo et al., 2008; Pedregosa, 2016;
Luketina et al., 2016; Vicol et al., 2022; Lorraine et al., 2020; Blondel et al., 2021); or 3) leverage hypernetworks (Lorraine
& Duvenaud, 2018; MacKay et al., 2019). There have also been attempts to use forward-mode gradient accumulation for
hyperparameter optimization (Franceschi et al., 2017), which is only tractable when the hyperparameter dimensionality
is very small (e.g., < 10). Most gradient-based approaches perform online, joint optimization over the model parameters
and hyperparameters; a notable exception is Micaelli & Storkey (2020), that performs offline updates after each full inner
optimization run. Black-box approaches typically do not scale well beyond ∼ 10 hyperparameters. While gradient-based
approaches are highly scalable, they often suffer from truncation bias, and are typically not applicable to discrete or stochastic
hyperparameters (e.g., architectural hyperparameters such as the number of units per layer, or dropout rates). ES-Single is
applicable to a broad range of hyperparameters, including continuous, discrete, or stochastic (e.g., dropout (Srivastava et al.,
2014)) hyperparameters. In addition, it can target non-differentiable meta-objectives, such as accuracy rather than loss.

Compute and Memory Cost. Table 2 is an extension of Table 1 from Vicol et al. (2021), including an additional row
for ES-Single. The compute cost of ES-Single is identical to that of PES. Similarly to PES, ES-Single maintains the
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states of N particles, with memory cost NS. However, ES-Single does not need to store perturbation accumulators. If the
perturbations used by each particle (over the course of all unrolls in an inner problem) are sampled once at the start of the
inner problem and stored in memory, then this would require NP memory (similarly to the perturbation accumulators). But
the perturbations do not need to be stored this way, as they can be re-sampled using the same random seed in each partial
unroll. Thus, depending on the implementation, ES-Single has memory cost less than or equal to PES.

Table 2. Comparison of approaches for learning parameters in unrolled computation graphs. S is the size of the system state (e.g.
the RNN hidden state dimension, or in the case of hyperparameter optimization the inner-problem’s weight dimensionality and potentially
the optimizer state; P is the dimensionality of θ; T is the total number of steps in a sequence/unroll; K is the truncation length; and N is
the number of samples (also called particles) used for the reparameterization gradient and in ES-based algorithms; F and B are the costs
of a forward and backward pass, respectively; terms in red denote computation/memory that can be split across parallel workers.

Method Compute Memory Parallel Unbiased Optimize
Non-Diff. Smoothed

BPTT (Rumelhart et al., 1985) T (F +B) TS ✗ ✓ ✗ ✗
TBPTT (Williams & Peng, 1990) K(F +B) KS ✗ ✗ ✗ ✗
ARTBP (Tallec & Ollivier, 2017b) K(F +B) KS ✗ ✓ ✗ ✗
RTRL (Williams & Zipser, 1989) PS2 + S(F +B) SP + S2 ✗ ✓ ✗ ✗
UORO (Tallec & Ollivier, 2017a) F +B + S2 + P S + P ✗ ✓ ✗ ✗

Reparam. (Metz et al., 2019) NT (F +B) NTS ✓ ✓ ✗ ✓
ES (Rechenberg, 1973) NTF NS ✓ ✓ ✓ ✓

Trunc. ES (Metz et al., 2019) NKF NS ✓ ✗ ✓ ✓
PES (Vicol et al., 2021) NKF N(S + P ) ✓ ✓ ✓ ✓

ES-Single (Ours) NKF N(S + P ) ✓ ✓ ✓ ✓

C. Experimental Details and Additional Results
In this section, we provide experimental details and additional results comparing ES-Single to truncated ES and PES. For all
approaches (vanilla ES, PES, and ES-Single), we use antithetic sampling.

C.1. Truncated ES

Figure 13 shows the computation graph for vanilla truncated ES, to illustrate how it differs from full-unroll ES, PES, and
ES-Single as shown in Figure 2.

Figure 13. Computation graph for vanilla truncated ES. Note that truncated ES may be applied in two different ways. In the first approach,
a single state st is maintained at time t, which serves as the common initialization for evaluating N outer parameter perturbations
{θt + ϵ

(i)
t }Ni=1. The losses obtained from these partial unrolls are aggregated to form a gradient estimate used to update θt → θt+1.

After each partial unroll, the states resulting from the N perturbations are discarded, and the single state st is unrolled using the mean
parameters θt, yielding the new initialization st+1 for the subsequent unroll. In the second approach, separate states are maintained for
each particle over the course of meta-optimization, and different random perturbations are used to unroll those states in each partial unroll.
Both approaches suffer from truncation bias.
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(a) Meta-optimization trajectories for ES, PES, and
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Figure 14. Comparing meta-optimization trajectories and validation losses obtained by ES, PES, and ES-Single when tuning a global L2

regularization coefficient for linear regression on the UCI Yacht dataset.

Hyperparameter Optimization for UCI Regression. We also revisited the UCI linear regression task used in Vicol
et al. (2021), which demonstrates that truncation bias can also affect regularization hyperparameters (not only optimization
hyperparameters). In this task, we tune a global L2 regularization coefficient for linear regression on the UCI Yacht
dataset (Asuncion & Newman, 2007); the training set for this dataset is small, and thus strong regularization is necessary to
obtain good validation performance. In Figure 14a, we plot the optimal log L2 coefficient obtained via a fine-grained grid
search (dashed black line), and compare the meta-optimization trajectories of ES, PES, and ES-Single. In Figure 14b, we
show the corresponding validation losses attained by each method. In this task, the inner problem has an infinite horizon; it
is never reset. We found that ES-Single converged to the optimal L2 value more rapidly and stably than PES. All methods
used Adam with learning rate 0.003 for outer optimization, σ = 0.01, and N = 4 particles.

Influence Balancing. Written out, the dynamical system update st+1 = Ast + θ is:
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(7)

The loss Lt computes the squared error on the first index in the state vector st:

L(θ) =
T∑

t=1

Lt(θ) =

T∑
t=1

1

2

(
s
(1)
t − 1

)2
(8)

In our experiments, we used a state st of dimension n = 23, and used p = 10 positive copies of the scalar parameter θ
concatenated with n − p = 13 negative copies. We initialized the state to a vector of ones, s0 = 1, and we inittialized
θ = 0.5.

Toy 2D Regression. Here, we evaluated ES-Single on a synthetic 2D task introduced by Vicol et al. (2021), which aims to
learn a linearly-decaying learning rate schedule for a regression problem. The inner problem is designed to have a single
global optimum but many local optima, such that small changes in the learning rate schedule can lead to convergence to
different local minima; this yields a chaotic meta-loss landscape, and makes the task challenging for gradient-based outer
optimizers. The learning rate at iteration t is parameterized by αt = (1− t

T )e
θ0 + t

T e
θ1 .
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The inner problem involves optimizing parameters x = (x0, x1) to minimize the following objective function:

f(x0, x1) =
√

x2
0 + 5−

√
5 + sin2(x1) exp(−5x2

0) + 0.25|x1 − 100| (9)

We used total inner problem length T = 100 and truncations of length K = 10. For all ES-based methods, we used
N = 100 particles. For vanilla truncated ES, we used perturbation scale σ = 1, while for PES and ES-Single, we used
perturbation scale σ = 0.3. For all methods, we performed outer optimization using Adam with learning rate 0.01. The
results are shown in Figure 15. We found that ES-Single performed similarly to PES, both finding the optimal region of the
meta-loss landscape, while the gradient-based methods (TBPTT, UORO, and RTRL) failed due to chaos in the meta-loss,
and while ES failed due to truncation bias.
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(b) Meta-objective values attained by each algorithm.

Figure 15. Toy regression problem, heatmap with meta-optimization trajectories overlaid, and meta-objective values over the course of
training. Darker regions represent lower meta-objective values.

LSTM Copy Task. We train on minibatches of size 32, and feed the ES gradient estimates into Adam with default param-
eters β1 = 0.9, β2 = 0.999; for each method, we performed a grid search over learning rates α ∈ {0.01, 0.001, 0.0001}
and perturbation scales σ ∈ {0.1, 0.01, 0.001, 0.0001}, choosing the best values based on final training performance. We
used N = 1000 particles for each method.

As an additional result, in Figure 16, we compare PES and ES-Single to truncated backpropagation through time (denoted by
TBP in the legend). Similarly to truncated ES in Figure 10, TBP also plateaus for each truncation length, as it is intrinsically
limited with respect to the horizon that it can memorize.
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Figure 16. Maximum sequence length T that is successfully copied in the copy task from Mujika et al. (2018). Curves of the same color
use different random seeds. For the truncated backprop through time (TBP) baselines (gray and black curves), we show only the best
result to reduce clutter. Here, the x-axis represents the number of tokens ingested by each approach (e.g., data-time rather than compute).

Meta-Learning MNIST LR Schedule. We used a two-hidden-layer MLP with 100 hidden units per layer and ReLU
activations. The learning rate schedule we meta-learn is applied to SGD with momentum, using a fixed momentum
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coefficient of 0.9. The total inner problem length is T = 5000, which is split into 500 partial unrolls of length K = 10. We
used N = 1000 particles and σ = 0.1 for each estimator, and we used Adam with learning rate 1e-2 for outer optimization.

When using PES, there is a trade-off between stability and convergence speed; using a large learning rate may yield fast
progress, but may lead to unstable convergence, where meta-optimization diverges away from the optimum, as shown in
Figure 17. Reducing the learning rate may avoid such unstable behavior, but leads to much slower progress compared to
ES-Single, as shown in Figure 18. In this experiment, ES-Single was more stable using larger learning rates than PES.
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Figure 17. Meta-optimization trajectories of PES and ES-Single using truncations of length K = 1 on an inner problem of length
T = 5000. With outer learning rate 1e-2, ES-Single performs well and converges stably to the optimum, while PES explodes due to
variance. The red curve denotes ES-Single, while the green curve denotes PES.
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Figure 18. Meta-optimization trajectories of ES, PES, and ES-Single using truncations of length K = 1 on an inner problem of length
T = 5000. The ES curve makes very little progress, so is obscured by the others. When using a smaller outer learning rate of 1e-3 for
PES (to prevent it from exploding), it converges stably, but slowly.

Tuning Many Hyperparameters. Following Vicol et al. (2021), we trained an MLP with 5 hidden layers and ReLU
activations on FashionMNIST, using the sum of validation losses along the inner optimization trajectory as the meta-objective.
The total inner problem length was T = 1000, and we used truncations of length K = 10, yielding 100 partial unrolls
per inner problem. For ES, PES, and ES-Single, we used perturbation scale σ = 0.3 and N = 10 particles. We used
Adam as the outer optimizer, with learning rate 1e-2. The inner problem used SGD with momentum as the inner optimizer,
and trained on minibatches of size 100. We tuned 29 hyperparameters in total, consisting of: a separate learning rate and
momentum coefficient for each weight matrix and bias vector in the MLP (yielding 2 hyperparameters for each of the 6
weight matrices and 6 bias vectors, for 24 hyperparameters); and the number of hidden units per layer, which yields 5
additional hyperparameters. To tune the number of hidden units per layer, we used a nested dropout scheme, where the
hyperparameter specifies the fraction of the maximum number of units that should be used. We set the maximum number of
hidden units to 100 in each layer. All hyperparameters are optimized in the unconstrained space; each one is mapped to a
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course of multiple inner problems.

Figure 19. Comparing meta-optimization performance and meta-gradients from PES and ES-Single on a simple hyperparameter optimiza-
tion task, where we aim to tune a global learning rate for training an MLP on MNIST.

constrained space by a hyperparameter-specific transformation. For learning rates, we used an exponential mapping; for
momentum coefficients, we used the logistic sigmoid (such that the momentum is constrained within (0, 1)); and for the
number of hidden units per layer, we used the sigmoid to map the unconstrained parameterization to (0, 1), which represents
the structured dropout rate.

For ES, PES, and ES-Single, we initialized the hyperparameters randomly: the learning rates were initialized uniformly at
random in log-space, in the range (1e− 4, 1e− 2); the momentum coefficients were initialized uniformly at random in logit
space corresponding to the sigmoid-transformed range (0.01, 0.9); and the number of hidden units is initialized randomly in
logit-space corresponding to the sigmoid-transformed range (0.2, 0.8). In Figure 9, we track the best meta-objective value
obtained so far over the course of meta-optimization. We measure the performance as a function of total compute, which
takes into account the total number of inner iterations performed (considering the number of particles used). We ran each
method four times using different random seeds, and plot the mean performance as well as the min and max shown via
shaded regions.

Telescoping Sums. We trained a 2-layer MLP with 100 hidden units per layer. As a computationally tractable proxy for
the loss on the full training set, we sample a minibatch of size 1000 at the start of each inner problem, which is kept fixed for
the duration of the problem—for telescoping sums, we evaluate the loss on the same minibatch after each partial unroll, as
opposed to sampling a different random minibatch in each step, as we do when targeting the sum of losses.

Meta-Gradient Comparison. Here, we illustrate how the difference in variance between ES-Single and PES manifests
in a simple hyperparameter optimization task. We tune a global learning rate used to train an MLP on MNIST. Because
the outer parameter is 1-dimensional, we can find the global optimum via a fine-grained grid search, and visualize the
meta-optimization iterates and meta-gradients of each algorithm. Figure 19a compares the learning rates adapted by PES
and ES-Single over the course of meta-optimization; the dashed vertical lines indicate the start of each new inner problem
(training is performed in lock-step, where all particles progress through the inner problem at identical iterates). We found that
ES-Single converged stably towards the optimal solution, while PES was less stable due to its high variance. In Figure 19b,
we show the gradient estimates produced by PES and ES-Single: we observe that the PES gradient exhibits increasingly
large fluctuations over the course of each inner problem, while the ES-Single gradient is more stable. For this task, we
used total inner problem length T = 5000, partial unrolls of length K = 10, and N = 10 particles. For each estimator, we
performed a grid search over the outer learning rate and perturbation scale, choosing the best values based on convergence
speed and final performance.
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C.2. Lockstep vs Breakstep Training

particles

particles

Lockstep Training

Breakstep Training

Inner Problem

Inner Problem

Figure 20. Conceptual illustration of lockstep and
breakstep training, for methods that aggregate infor-
mation across a collection of particles.

Vanilla truncated ES, PES, and ES-Single all aggregate information
across a collection of particles. In general, for such methods, there are
two approaches for initializing and unrolling the particles: 1) lockstep
training, where all particles are initialized identically, at step t = 0
of the inner problem, and progress through the inner optimization
synchronously; or 2) breakstep training, in which each particle pair
(considering antithetic sampling) is initialized separately, potentially
at an arbitrary starting step t of the inner problem, and where particles
progress through the inner problem asynchronously (e.g., one particle
pair may be unrolled from t = K to t = 2K while another pair
is unrolled from t = 4K to t = 5K). These two approaches are
illustrated in Figure 20. Often, both approaches work well; most of
the experiments in this paper use lockstep training, except the learned
optimizer experiment in Section 4.4, which uses breakstep training.

C.3. Effect of Smoothing
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Figure 21. Ablation over the perturbation scale σ used
to train a learned optimizer, targeting an MLP on Fash-
ionMNIST.

Meta-learning tasks such as hyperparameter optimization and learned
optimizer training often lead to chaotic meta-loss landscapes, that are
not amenable to optimization via gradient-based methods. Here, we
performed an ablation over the perturbation scale σ (that controls the
degree of smoothing) for ES-Single, used to optimize an MLP learned
optimizer, similarly to Section 4.4 in the paper. Small perturbation
scales lead to behavior similar to gradient-based methods, which may
get stuck in sub-optimal local minima in chaotic loss landscapes. As
shown in Figure 21, when the perturbation scale is too small, σ =
1e-6, meta-optimization fails to make progress; in contrast, using an
appropriate scale σ = 1e-2 leads to stable convergence.

C.4. Reinforcement Learning
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Figure 22. Learning a linear policy for the Swimmer
MuJoCo environment using vanilla truncated ES, PES,
and ES-Single. Here, T = 1000 and K = 100.
Shaded regions denote standard deviations over 6 ran-
dom seeds.

While investigating truncated ES-based methods for RL is an area for
future work, we provide a proof-of-concept experiment here. We ran
ES-Single on the continuous control task used in PES, which trains
linear policy on the Swimmer MuJoCo environment. We compared
vanilla truncated ES, PES, and ES-Single, all using partial unrolls
of length K = 100. The results are shown in Figure 22, where the
shaded regions denote the standard deviations over 6 random seeds.
We found that ES-Single slightly outperformed PES, with smaller
standard deviation, and more stable convergence to the optimal episode
return.
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(b) Meta-objective values.

Figure 23. Tuning the learning rate and momentum coefficient for SGDm, used to optimize a ResNet on CIFAR-10. Here, T = 5000 and
K = 20.

C.5. CIFAR-10 Experiments
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Figure 24. Tuning (continuous) per-parameter block
learning rates and momentum coefficients, as well as
the (discrete) number of channels per convolutional
layer in a ResNet trained on CIFAR-10. The inner prob-
lem has length T = 2000 and we use truncations of
length K = 10. Shaded regions denote the min/max
performance over 3 random seeds.

Here, we applied ES-Single to two hyperparameter optimization tasks
in which we train a ResNet on CIFAR-10. We used a 1.6M parameter
Myrtle.ai ResNet architecture. In both cases, the meta-objective is
the sum of validation losses over the inner problem. First, we tuned
the global learning rate and momentum coefficient for SGDm. Here,
the inner problem had length T = 5000, and we used truncations of
length K = 20 for all approaches. As shown in Figure 23, ES-Single
converged to the optimal region substantially faster than PES. Second,
we tuned 24 continuous and discrete hyperparameters simultaneously.
In particular, we tuned per-parameter-block learning rates and momen-
tum coefficients, as well as the number of channels per convolutional
layer. Here, the inner problem had length T = 2000, and we used
truncations of length K = 10 for all approaches. The results are
shown in Figure 24; we found that ES-Single substantially outper-
formed ES and PES, achieving lower meta-objective values using less
total compute.

C.6. Comparison to DODGE

Here, we provide an extended discussion on the similarities and differences between ES-Single and DODGE (Silver
et al., 2021). Like ES-Single, DODGE is a method for computing gradients in unrolled computation graphs. DODGE is
an approximation of RTRL: rather than maintaining the expensive recurrent Jacobian matrix dst

dθ over time, it takes the
directional derivative (∇θL(θ) · u)u along a specific vector u. This reduces the space complexity of the algorithm, because
it only needs to store and propagate a vector dst

dθ u:

dL(θ)

dθ
u =

T∑
t=1

dLt(st,θ)

dθ
u (10)

dLt(st,θ)

dθ
u =

∂Lt(st,θ)

∂θ
u+

∂Lt(st,θ)

∂st

dst
dθ

u︸ ︷︷ ︸
ct

(11)

ct =
dst
dθ

u =
df(st−1,θ)

dθ
u =

∂f(st−1,θ)

∂θ
u+

∂f(st−1,θ)

∂st−1

dst−1

dθ
u︸ ︷︷ ︸

ct−1

(12)
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(a) Using the same sequence of direction vectors for ES-
Single and DODGE. With a small perturbation scale,
ES-Single becomes nearly identical to DODGE, while
with a large perturbation scale, it traverses a smoothed
landscape.
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(b) When using 1000 direction vectors, both DODGE
and ES-Single become approximately equivalent to
RTRL. Note that here we use a small perturbation scale
σ=1e-4 for ES-Single.

Figure 25. Comparing ES-Single and DODGE on the toy 2D regression task from Figure 15. (a) We use the same sequence of random
directions for ES-Single and DODGE, where a single direction is sampled at the start of each inner problem and kept fixed over all partial
unrolls. Both methods use truncations of length K = 1, with total inner problem length T = 100. Over the course of an inner problem,
DODGE and ES-Single update the outer parameters in a subspace spanned by the direction vector; this leads to the line segments in Fig.
(a), each of which shows the progress made during one inner problem. At the end of an inner problem, a new direction is sampled, leading
to the piecewise linear structure. As the perturbation scale σ goes to 0, ES-Single becomes nearly identical to DODGE, and is not able to
traverse the chaotic regions of the meta-loss landscape. Increasing the perturbation scale allows ES-Single to cross the chaos and reach the
optimal meta-objective value. In Fig. (b), we show that increasing the number of direction vectors used DODGE and ES-Single brings
both methods very close to exact RTRL. Darker regions represent lower meta-objective values.

Here, ct is a carry term that propagates information over the course of a full inner problem. While DODGE and ES-Single
quite distinct—ES-Single is gradient-free while DODGE is gradient-based—they share some conceptual similarities. In
particular, both perform meta-optimization within a subspace spanned by a set of direction vectors. In DODGE, a few
possibilities were given for determining these directions, including drawing samples from an isotropic Gaussian similarly to
ES-Single. A critical difference is that ES-Single smooths the outer loss landscape, allowing for optimization over chaotic
surfaces that arise in meta-optimization.

As shown in Figure 25, when applying DODGE to a 2D meta-optimization task, it gets stuck when it reaches a chaotic part
of the landscape, similarly to the other gradient-based methods (TBPTT, RTRL, and UORO (Tallec & Ollivier, 2017a)).

C.7. Comparison to Hypergradient Descent.

Some algorithms have been proposed to tune optimization hyperparameters (such as learning rates) online during a single
training run (e.g., one inner problem as opposed to several), in particular hypergradient descent (HD) (Baydin et al., 2017)
and “Gradient Descent: The Ultimate Optimizer” (GDTUO) (Chandra et al., 2022). Both of these adapt optimization
hyperparameters based on a 1-step lookahead meta-objective. However, as shown in (Wu et al., 2018), backpropagation
through a 1-step unroll may suffer from truncation bias. HD and GDTUO are conceptually similar to our vanilla truncated
ES baseline, as they aim to minimize the loss after taking K gradient steps (with K = 1); thus, they can be interpreted as
gradient-based analogues of truncated ES. In contrast, ES-Single and PES yield unbiased gradient estimates that do not
suffer from truncation bias. Here, we used the Github repository of Chandra et al. (2022) (https://github.com/kach/gradient-
descent-the-ultimate-optimizer), and applied their method to our task from Section 4.2: tuning the learning rate and decay
factor used to train an MLP.

We considered two scenarios for GDTUO: 1) never resetting the inner problem (e.g., the online learning setting they use);
and 2) resetting the inner problem every T iterations, while continuing to optimize the outer parameters, which mimics
our truncated ES setting. Figures 26a and 26b show that GDTUO behaves similarly to truncated ES, both in terms of the
meta-optimization trajectory and the training loss achieved. ES-Single outperforms GDTUO on this task.
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(a) Here, we show the trajectories of vanilla truncated ES and
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(b) Mean training loss values using the same setup as Section 4.2,
comparing ES, ES-Single, GDTUO, and GDTUO with inner prob-
lem resetting.

Figure 26. Tuning the learning rate and decay factor for SGDm, used to optimize an MLP on MNIST, with the same setup as Section 4.2.
We compare the meta-optimization trajectories and training losses that result from using vanilla truncated ES, ES-Single, and two variants
of GDTUO (Chandra et al., 2022) that differ with respect to whether the inner problem is reset after T steps.

D. Proofs
D.1. Proof of Unbiasedness

Proposition D.1 (ES-Single is unbiased). Assume that L(θ) is quadratic and ∇θL(θ) exists. Then, the ES-Single

gradient estimator with antithetic sampling is unbiased, that is, bias(ĝES-Single) = Eϵ

[
ĝES-Single

]
−∇θL(θ) = 0.

Proof. By assumption, L(θ) is quadratic, and thus is equivalent to its second-order Taylor series approximation:

L(θ + ϵ) = L(θ) + ϵ⊤∇θL(θ) +
1

2
ϵ⊤∇2

θL(θ)ϵ (13)

The antithetic gradient estimator is Eϵ [ϵ(L(θ + ϵ)− L(θ − ϵ))]. We can simplify this expression by noting that:

ϵ (L(θ + ϵ)− L(θ − ϵ)) = ϵ

[
L(θ) + ϵ⊤∇θL(θ) +

1

2
ϵ⊤∇2

θL(θ)ϵ− L(θ) + ϵ⊤∇θL(θ)−
1

2
ϵ⊤∇2

θL(θ)ϵ

]
(14)

= ϵϵ⊤∇θL(θ) (15)

Thus, the ES-Single gradient is the following Monte Carlo estimate:

ĝES-Single =
1

σ2N

N∑
i=1

ϵiϵ
⊤
i ∇θL(θ) (16)

Taking the expectation of this expression, we have:

Eϵ

[
ĝES-Single

]
=

1

σ2N

N∑
i=1

Eϵ

[
ϵiϵ

⊤
i

]︸ ︷︷ ︸
=σ2I

∇θL(θ) =
1

N

N∑
i=1

∇θL(θ) = ∇θL(θ) (17)

Thus, bias(ĝES-Single) = Eϵ

[
ĝES-Single

]
−∇θL(θ) = 0.
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D.2. Variance

Proposition D.2 (ES-Single Variance). The total variance of ES-Single using antithetic sampling is
tr(Var(ĝES-Single)) = (P + 1)∥∇θL(θ)∥2, where P is the dimensionality of θ.

Proof. We measure the total variance of the ES-Single estimator, defined as:

tr(Var(ĝ)) = tr
(
E
[
ĝĝ⊤

]
− E [ĝ]E [ĝ]

⊤
)
= E

[
ĝ⊤ĝ

]
− E [ĝ]

⊤ E [ĝ] (18)

We assume that the loss L is quadratic, and that we use antithetic samples to estimate the gradient. Here, we consider a single
particle pair for simplicity, N = 1, such that the estimator can be written as ĝ = 1

σ2 ϵϵ
⊤∇θL(θ). Because ĝ is an unbiased

estimator, its expectation is equal to the true gradient, and thus the second term in Eq. 18 is E [ĝ]
⊤ E [ĝ] = ∥∇θL(θ)∥2. For

the first term, we have:

E
[
ĝ⊤ĝ

]
=

1

σ4
Eϵ

[
∇θL(θ)

⊤ϵϵ⊤ϵϵ∇θL(θ)
]

(19)

=
1

σ4
∇θL(θ)

⊤Eϵ

[
ϵϵ⊤ϵϵ⊤

]
∇θL(θ) (20)

By Isserlis’ theorem (see Maheswaranathan et al. (2019)), we have Eϵ

[
ϵϵ⊤ϵϵ⊤

]
= tr(Σ)Σ+2Σ2, where Σ is the covariance

of the perturbation distribution. Because our perturbations are sampled from an isotropic Gaussian, ϵ ∼ N (0, σ2I), we
have Σ = σ2I, and thus:

Eϵ

[
ϵϵ⊤ϵϵ⊤

]
= tr(Σ)Σ + 2Σ2 (21)

= tr(σ2I)σ2I+ 2(σ2I)2 (22)

= Pσ4I+ 2σ4I (23)

= (P + 2)σ4I (24)

where P is the dimensionality of θ. Plugging this into Eq. 20, we have:

E
[
ĝ⊤ĝ

]
=

1

σ4
∇θL(θ)

⊤Eϵ

[
ϵϵ⊤ϵϵ⊤

]
∇θL(θ) (25)

=
1

σ4
∇θL(θ)

⊤ [(P + 2)σ4I
]
∇θL(θ) (26)

= (P + 2)∥∇θL(θ)∥2 (27)

Thus, the total variance of the ES-Single estimator is:

tr(Var(ĝ)) = (P + 2)∥∇θL(θ)∥2 − ∥∇θL(θ)∥2 = (P + 1)∥∇θL(θ)∥2 (28)

From this, we see that the variance increases linearly in the dimensionality of θ, but does not depend on the number of
partial unrolls per inner problem.
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E. Stochastic Computation Graphs
Here, we provide a derivation of ES-Single using the framework of stochastic computation graphs from (Schulman et al.,
2015). We also provide a derivation of vanilla truncated ES; the derivation for PES can be found in (Vicol et al., 2021).

ES-Single. For the stochastic computation graph in Figure 4, we have an input node θ that gives rise to a sampled variable
θ̃ which is re-applied over all time steps of the inner problem. Each state st depends deterministically on the sampled
parameter θ̃ and the previous state st−1. The losses at each timestep, Lt, are the cost nodes, and the objective is to minimize
L =

∑T
t=1 Lt. We leverage Theorem 1 from Schulman et al. (2015), which gives a general expression to compute the

gradient of the sum of cost nodes in such a stochastic computation graph:

∂

∂θ
E

[∑
c∈C

c

]
= E


∑

w∈S,θ≺Dw

(
∂

∂θ
log p(w | DEPSw)

)
Q̂w +

∑
c∈C,θ≺Dc

∂

∂θ
c(DEPSc)︸ ︷︷ ︸

=0

 (29)

Here, C is the set of cost nodes (the Lt); S is the set of stochastic nodes (in our case, S = {θ̃}); DEPSw denotes the set
of nodes that w depends on; a ≺D b denotes a deterministic dependence of node a on node b (this holds if there are no
stochastic nodes along the path from a to b); and Q̂w is the sum of cost nodes downstream of node w.

In our computation graph, θ does not deterministically influence the cost nodes Lt, so the second term inside the expectation
is 0. Thus, for Figure 4, we have:

∂

∂θ
E

[
T∑

t=1

Lt

]
= E

[(
∂

∂θ
log p(θ̃ | θ)

)
Q̂θ̃

]
(30)

Because we sample isotropic Gaussian perturbations to θ, we have p(θ̃ | θ) = N (θ̃; θ, σ2I) = 1√
2πσ

exp
(

−(θ̃−θ)2

2σ2

)
. The

gradient of the log probability is:

∂

∂θ
log p(θ̃ | θ) = ∂

∂θ

(
−1

2
log(2π)− log σ − (θ̃ − θ)2

2σ2

)
=

1

σ2
(θ̃ − θ) (31)

Using the reparameterization trick, we substitute θ̃ = θ + ϵ where ϵ ∼ N (0, σ2I), which yields ∂
∂θ log p(θ̃ | θ) =

1
σ2 (θ+ ϵ− θ) = 1

σ2 ϵ. The sum of cost nodes downstream of θ̃ is
∑T

t=1 Lt because all cost nodes are downstream of θ̃. Thus,
Theorem 1 from Schulman et al. (2015) gives the following unbiased gradient estimator for the ES-Single computation
graph, which is equivalent to the full-unroll ES gradient estimate:

∂

∂θ
E

[
T∑

t=1

Lt

]
=

1

σ2
Eϵ

[
ϵ

T∑
t=1

Lt

]
(32)

❌ ❌ ❌

Figure 27. Stochastic computation
graph for vanilla truncated ES,
which does not include the recur-
rent connections between states.

Vanilla Truncated ES. Figure 27 shows the stochastic computation graph correspond-
ing to vanilla truncated ES, which shares similar structure to the PES computation graph
(Figure 4), but does not include recurrent connections between successive states st−1, st.
This ignores crucial structure about the problem, e.g., that it consists of a sequence of
unrolls rather than a set of independent minimization problems over separate objectives
Lt. Once again leveraging Theorem 1 from Schulman et al. (2015), we derive the
following gradient estimator for truncated ES:

∂

∂θ
E

[
T∑

t=1

Lt

]
= Eϵ


T∑

t=1

(
∂

∂θ
log p(θt | θ)

)
︸ ︷︷ ︸

= 1
σ2 ϵt

Q̂θt︸︷︷︸
Lt

 (33)

= Eϵ

[
T∑

t=1

1

σ2
ϵtLt

]
=

1

σ2

T∑
t=1

Eϵt [ϵtLt(θ + ϵt)] (34)
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F. Generalizing PES and ES-Single by Decoupling Intervals

applied for      partial unrollsapplied for      partial unrolls

sample new perturbations for each particle, and 
add them to the perturbation accumulators

Figure 28. Computation graph for a generalization of ES-Single and PES, in which the interval at which we update the outer parameters is
decoupled from the interval at which we sample new perturbations and update the perturbation accumulator for each particle. In particular,
vanilla PES in each partial unroll samples a new perturbation, updates the accumulator, and updates the outer parameters; in contrast, here
we update the outer parameters multiple times using the same perturbation, and only update the perturbations (and the accumulators)
every K outer parameter updates.

Here, we propose a generalization of both ES-Single and PES, that decouples the interval at which we update the perturbation
accumulator from the interval at which we update the outer parameters. Recall that ES-Single has constant variance regardless
of the number of partial unrolls per inner problem (Figure 1). For long-horizon inner problems optimized using short
truncations—yielding a large number of partial unrolls per problem—ES-Single can have substantially lower variance than
PES. However, for certain scenarios (including the the real sequence from the PTB dataset) and unroll lengths (e.g. such that
we have ∼ 10 unrolls per problem), PES has lower variance than ES-Single (Figure 1). This motivated us to consider an
algorithm that generalizes both PES and ES-Single. In particular, we introduce another hyperparameter, Ω, that specifies the
meta-update interval, while K denotes the interval at which new perturbations are sampled and at which the perturbation
accumulator is updated. Many algorithms of interest can be obtained as special cases, by setting K and Ω appropriately. Let
T be the length of a full inner problem. Then, 1) if K = Ω = T , we recover full-unroll ES; 2) if K = Ω and K < T , we
recover PES; 3) if K = T and Ω < T , we recover ES-Single; and 4) if K,Ω < T and Ω < K, we obtain a new estimator
with a combination of the properties of ES-Single and PES. Algorithm 29 formally describes the latter case. Similarly to
PES and ES-Single, separate states s(i) are maintained for each particle over the course of an inner problem. Like PES,
a perturbation accumulator ξ(i) is maintained for each particle, and However, rather than sampling perturbations ϵ(i) per
particle for each partial unroll, new perturbations are only sampled every M partial unrolls. That is, the same perturbation is
re-applied for M consecutive unrolls. Correspondingly, the perturbation accumulator is only updated once every M unrolls.

General Stochastic Computation Graph. In Figure 30, we provide the stochastic computation graph for the generalized
estimator, that re-uses the same outer parameter perturbations for a sequence of K partial unrolls before re-sampling the
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Algorithm 3 Truncated Evolution Strategies (ES) applied
to partial unrolls of a computation graph.

Input: s0, initial state
K, truncation length for partial unrolls
N , number of particles
σ, standard deviation of perturbations
α, learning rate for outer optimization

Initialize s = s0 s
(i) = s0

while inner problem not finished do
ĝES ← 0
for i = 1, . . . , N do

ϵ(i) =

{
draw from N (0, σ2I) i odd
−ϵ(i−1) i even

L̂
(i)
K ← unroll(s,θ + ϵ(i),K)

ĝES ← ĝES + ϵ(i)L̂
(i)
K

end for
ĝES ← 1

Nσ2 ĝ
ES

s← unroll(s,θ,K)
θ ← θ − αĝES

end while

Algorithm 4 Generalization of ES-Single and PES, with an
arbitrary re-sampling interval M .

Input: s0, initial state
K, truncation length for partial unrolls
M , re-sampling interval
N , number of particles
σ, standard deviation of perturbations
α, learning rate for outer optimization

Initialize s(i) = s0 for i ∈ {1, . . . , N}
Initialize ξ(i) ← 0 for i ∈ {1, . . . , N}
while inner problem not finished, iteration j do

if j mod M = 0 then
for i = 1, . . . , N do

ϵ(i) =

{
draw from N (0, σ2I) i odd
−ϵ(i−1) i even

ξ(i) ← ξ(i) + ϵ(i)

end for
end if
ĝES-Gen ← 0
for i = 1, . . . , N do

s(i), L̂(i)
K ← unroll(s(i),θ + ϵ(i),K)

ĝES-Gen ← ĝES-Gen + ξ(i)L̂
(i)
K

end for
ĝES-Gen ← 1

Nσ2 ĝ
ES-Gen

s← unroll(s, θ,K)
θ ← θ − αĝES-Gen

end while

Figure 29. A comparison of vanilla ES and the generalized form of PES and ES-Single, applied to partial unrolls of a computation
graph. The conditional statement for ϵ(i) is used to implement antithetic sampling. Differences between the two algorithms are highlighted
in red. While ES samples different perturbations for each particle in each partial unroll, ES-Single re-applies the same perturbation over a
sequence of partial unrolls, and every M unrolls, it updates the perturbation accumulator and re-samples the perturbations.

outer parameters. The resulting unbiased gradient estimator is:

∂

∂θ
E

[
T∑

t=1

Lt

]
= E

T/K∑
t=1

(
∂

∂θ
log p(θt | θ)

)
Q̂θt

 (35)

=
1

σ2
E

T/K∑
t=1

ϵt

(
T∑

τ=kt+1

Lτ

) (36)

=
1

σ2
E
[
ϵ1(L1 + L2 + · · ·+ LK) + (ϵ1 + ϵ2)(LK+1 + · · ·+ L2K) + · · ·+ (ϵ1 + · · ·+ ϵT/K)LT

]
(37)

=
1

σ2
E

T/K∑
t=1

(
t∑

τ=1

ϵτ

)
(LtK+1 + · · ·+ L2tK)

 (38)

This estimator has variance equivalent to PES where the number of unrolls per inner problem is K. The main benefit is that
it allows for more frequent updates to the outer parameters, while maintaining this fixed variance, which is determined by a
hyperparameter that can be tuned independently of the update frequency.
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Same perturbation
for      partial unrolls

Figure 30. Computation graph corresponding to a generalization of ES-Single and PES, where we re-apply the same perturbed outer
parameters (and use the same accumulated perturbations) over a sequence of K partial unrolls of the inner problem. After each sequence
of unrolls, the perturbations are re-sampled and the perturbation accumulator is updated. Note that the computation graphs for ES-Single
and PES shown in Figure 4 are special cases corresponding to two extremes: 1) in ES-Single, the same perturbation is applied across all
partial unrolls, yielding a single stochastic node θ̃ for the inner problem—in this case, the perturbation accumulators are equivalent to
the perturbations themselves (e.g., they are the sum of only one term); and 2) in PES, a different perturbation is applied in each partial
unroll—yielding T stochastic nodes {θt}Tt=1 per inner problem—and the accumulators are updated after each unroll.

G. Variance Analysis of a Generalized Estimator

Figure 31. Stochastic computation graph for a
generalization of PES and ES-Single, where we
consider two types of perturbations: 1) a single
perturbation that is applied in each unroll over
the course of a full inner problem; and 2) a sepa-
rate perturbation sampled for each partial unroll.

In this section, we introduce an estimator that generalizes ES-Single and PES
by combining a single perturbation that is kept fixed across all partial unrolls
(as in ES-Single) with perturbations that are sampled independently for each
partial unroll (as in PES). One way to obtain this estimator is to consider the
stochastic computation graph in Figure 31. Here, each stochastic node θt

and θ̃ depends only on θ, e.g., DEPSθt
= {θ}∀t and DEPSθ̃ = {θ}. Then,

the gradient estimator is:

gES-Gen = E

 ∑
w∈S,θ≺Dw

(
∂

∂θ
log p(w | DEPSw

)
Q̂w

 (39)

= E

[
∂

∂θ
log p(θ̃ | θ)Q̂θ̃ +

T∑
t=1

(
∂

∂θ
log p(θt | θ)

)
Q̂θt

]
(40)

= E

[
1

σ2
ϵs

(
T∑

t=1

Lt

)
+

T∑
t=1

1

σ2
ϵt

(
T∑

τ=t

Lτ

)]
(41)

=
1

σ2
E

[
T∑

t=1

(
ϵs +

t∑
τ=1

ϵτ

)
Lt

]
(42)

where ϵs denotes a single perturbation that is sampled at the beginning of an inner problem and is kept fixed over the course
of all partial unrolls, and ϵt denotes an independent perturbation sampled in a particular partial unroll, at step t. We will
analyze a variant of this estimator that weights the contributions of these perturbations using hyperparameters α and β,
allowing one to interpolate between PES and ES-Single.

In the following, we adopt notation from Vicol et al. (2021): rather than writing the loss at step t as a function of the
parameters θ and state st, Lt(st,θ), we drop the dependence on st and explicitly denote the dependence of Lt on the
sequence of applications of θ over time, Lt(θ1,θ2, . . . ,θt). This allows us to keep track of how the applications of θ
contribute to the total loss gradient. In addition, we denote by Θ a matrix whose rows are the per-timestep parameters
θt, where θt = θ,∀t. Then, we can write Lt(Θ) as shorthand for Lt(θ1, . . . ,θt). Finally, we use ξt to denote the PES
perturbation accumulator, that sums the perturbations up to step t, ξt =

∑t
τ=1 ϵτ . Assuming that the objective is quadratic,
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and that we use antithetic sampling, we can write the estimator as:

gES-Gen =
1

α2σ2 + β2σ2
Eϵ

[
T∑

t=1

(
αϵs + β

t∑
τ=1

ϵt

)
vec(αϵs + βϵ1..t)

⊤∇vec(Θ1..t)Lt(Θ)

]
(43)

where vec denotes the vectorization operator. The expression vec(αϵs + βϵ1..t) uses broadcasting to add the single
perturbation ϵs to each of the t per-unroll perturbations in ϵ1..t. The hyperparameters α and β weight the contributions of
the perturbations corresponding to ES-Single and PES. This estimator generalizes both approaches: setting α = 1, β = 0
recovers ES-Single, while setting α = 0, β = 1 recovers PES.

Unbiasedness. Let ĝES-Gen denote the Monte Carlo estimate of gES-Gen using N particles: ĝES-Gen =
1

N(α2σ2+β2σ2)

∑N
i=1

∑T
t=1(αϵ

(i)
s + βξ

(i)
t )
∑t

τ=1(αϵ
(i)
s + βϵ

(i)
τ )⊤∇θτ

Lt(Θ). Here, we prove that ĝES-Gen is unbiased
under the same assumptions used to show the unbiasedness of PES and ES-Single.

Proposition G.1 (ĝES-Gen is unbiased). Assume that the loss L(θ) is quadratic and∇θL(θ) exists. Then, the ES-Gen

gradient estimator with antithetic sampling is unbiased, that is, bias(ĝES-Gen) = Eϵ

[
ĝES-Gen

]
−∇θL(θ) = 0, where

the expectation is taken with respect to both the single perturbation ϵs and the per-unroll perturbations ϵt.

Proof. First, we expand out the term vec(αϵs + βϵ1..t)
⊤∇vec(Θ1..t

Lt(Θ) as follows:

vec(αϵs + βϵ1..t)
⊤∇vec(Θ1..t

Lt(Θ) =

t∑
τ=1

(αϵs + βϵτ )
⊤∇θτLt(Θ) (44)

Plugging this into the expression for gES-Gen, we have:

gES-Gen =
1

α2σ2 + β2σ2
Eϵ

[
T∑

t=1

(
αϵs + β

(
t∑

τ=1

ϵτ

)
︸ ︷︷ ︸

ξt

)(
t∑

τ=1

(αϵs + ϵτ )
⊤∇θτ

Lt(Θ)

)]
(45)

=
1

α2σ2 + β2σ2
Eϵ

[
T∑

t=1

(αϵs + βξt)

t∑
τ=1

(αϵs + βϵτ )
⊤∇θτ

Lt(Θ)

]
(46)

Expanding out
∑t

τ=1(αϵs + βϵτ )
⊤∇θτ

Lt(Θ), we have:

t∑
τ=1

(αϵs + βϵτ )
⊤∇θτ

Lt(Θ) = αϵ⊤s ∇θ1
Lt + · · ·+ αϵs∇θt

Lt + βϵ⊤1 ∇θ1
Lt + · · ·+ βϵt∇θt

Lt (47)

Next, multiplying these terms by αϵs + βξt, we have:

(αϵs + βξt)

(
t∑

τ=1

(αϵs + βϵτ )
⊤∇θτLt(Θ)

)
= α2 + ϵsϵ

⊤
s ∇θ1Lt + α2ϵsϵ

⊤
s ∇θ2Lt + · · ·+ αϵsϵ

⊤
s ∇θtLt︸ ︷︷ ︸

1⃝
(48)

+ αβϵsϵ
⊤
1 ∇θ1Lt + αβϵsϵ

⊤
2 ∇θ2Lt + · · ·+ αβϵsϵ

⊤
t ∇θtLt︸ ︷︷ ︸

2⃝
(49)

+ αβξtϵ
⊤
s ∇θ1

Lt + αβξtϵ
⊤
s ∇θ2

Lt + · · ·+ αβξtϵ
⊤
s ∇θt

Lt︸ ︷︷ ︸
3⃝

(50)

+ β2ξtϵ
⊤
1 ∇θ1

Lt + β2ξtϵ
⊤
2 ∇θ2

Lt + · · ·+ β2ξtϵ
⊤
t ∇θt

Lt︸ ︷︷ ︸
4⃝

(51)
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The expectations of these four terms are as follows:

Eϵ [ 1⃝] = α2 Eϵ

[
ϵsϵ

⊤
s

]︸ ︷︷ ︸
=σ2I

∇θ1
Lt + · · ·+ α2 Eϵ

[
ϵsϵ

⊤
s

]︸ ︷︷ ︸
=σ2I

∇θt
Lt (52)

Eϵ [ 2⃝] = αβ Eϵ

[
ϵsϵ

⊤
1

]︸ ︷︷ ︸
=0

∇θ1
Lt + · · ·+ αβ Eϵ

[
ϵsϵ

⊤
t

]︸ ︷︷ ︸
=0

∇θt
Lt = 0 (53)

Eϵ [ 3⃝] = αβ Eϵ

[
ξtϵ

⊤
s

]︸ ︷︷ ︸
=0

∇θ1
Lt + · · ·+ αβ Eϵ

[
ξtϵ

⊤
s

]︸ ︷︷ ︸
=0

∇θt
Lt (54)

Eϵ [ 4⃝] = β2 Eϵ

[
ξtϵ

⊤
1

]︸ ︷︷ ︸
=σ2I

∇θ1Lt + · · ·+ β2 Eϵ

[
ξtϵ

⊤
t

]︸ ︷︷ ︸
=σ2I

∇θtLt (55)

Note that Eϵ

[
ξtϵ

⊤
s

]
= 0 because Eϵ

[
ξtϵ

⊤
s

]
= Eϵ

[(∑t
τ=1 ϵτ

)
ϵ⊤s

]
= Eϵ

[
ϵ1ϵ

⊤
s

]︸ ︷︷ ︸
=0

+ · · · + Eϵ

[
ϵtϵ

⊤
s

]︸ ︷︷ ︸
=0

= 0 Similarly,

Eϵ

[
ξtϵ

⊤
1

]
= 0 because Eϵ

[
ξtϵ

⊤
1

]
= Eϵ

[
(ϵ1 + ϵ2 + · · ·+ ϵt)ϵ

⊤
1

]
= Eϵ

[
ϵ1ϵ

⊤
1

]︸ ︷︷ ︸
=σ2I

+Eϵ

[
ϵ2ϵ

⊤
1

]︸ ︷︷ ︸
=0

+ · · ·+ Eϵ

[
ϵtϵ

⊤
1

]︸ ︷︷ ︸
=0

.

Combining the four expectations, we have:

α2σ2∇θ1Lt + · · ·+ α2σ2∇θtLt + β2σ2∇θ1Lt + · · ·+ β2σ2∇θtLt = (α2σ2 + β2σ2)

t∑
τ=1

∇θτLt(Θ) (56)

The expectation of ĝES-Gen is:

Eϵ

[
ĝES-Gen

]
= Eϵ

[
1

N(α2σ2 + β2σ2)

N∑
i=1

T∑
t=1

(αϵ(i)s + βξ
(i)
t )

t∑
τ=1

(αϵ(i)s + βϵ(i)τ )⊤∇θτ
Lt(Θ)

]
(57)

=
1

N(α2σ2 + β2σ2)

N∑
i=1

T∑
t=1

Eϵ

[
(αϵ(i)s + βξ

(i)
t )

t∑
τ=1

(αϵ(i)s + βϵ(i)τ )⊤∇θτ
Lt(Θ)

]
(58)

=
1

N(α2σ2 + β2σ2)

N∑
i=1

T∑
t=1

(α2σ2 + β2σ2)

t∑
τ=1

∇θτ
Lt(Θ) (59)

=
1

N

N∑
i=1

(
T∑

t=1

t∑
τ=1

∇θτ
Lt(Θ)

)
=

T∑
t=1

t∑
τ=1

∇θτ
Lt(Θ) (60)

= ∇θL(θ) (61)

Thus, bias(ĝES-Gen) = Eϵ

[
ĝES-Gen

]
−∇θL(θ) = 0, so ĝES-Gen is unbiased.

G.1. Variance

We assume that the inner problem is quadratic, and that we use antithetic sampling. Given a single particle pair for antithetic
sampling, we have the following estimator:

ĝES-Gen =
1

α2σ2 + β2σ2

T∑
t=1

(αϵs + βξt)vec(αϵ+ βϵ1..t)
⊤∇vec(Θ1..t)Lt(Θ) (62)

Similarly to Maheswaranathan et al. (2019) and Vicol et al. (2021), we quantify the variance of ĝES-Gen using the total
variance tr(Var(ĝES-Gen)):

tr(Var(ĝES-Gen)) = tr
(
Eϵ

[
ĝES-GenĝES-Gen⊤

]
− E

[
ĝES-Gen

]
E
[
ĝES-Gen

]⊤)
(63)

= Eϵ

[
ĝES-Gen⊤ĝES-Gen

]
︸ ︷︷ ︸

1⃝

−Eϵ

[
ĝES-Gen

]⊤
Eϵ

[
ĝES-Gen

]
︸ ︷︷ ︸

2⃝

(64)
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Term 2⃝ is simple, because ĝES-Genis unbiased, so Eϵ

[
ĝES-Gen

]
= ∇θL(Θ). Thus,

2⃝ = Eϵ

[
ĝES-Gen

]⊤
Eϵ

[
ĝES-Gen

]
= ∇θL(Θ)⊤∇θL(Θ) = ∥∇θL(Θ)∥2 (65)

To deal with term 1⃝, we will decompose ĝES-Gen⊤ĝES-Gen into simpler expressions and use the linearity of expectation
to compute each component. We will use the shorthand vt ≡ vec(αϵs + βϵ1..t) and gt ≡ ∇vec(Θ1..t)Lt(Θ). Note that
v⊤
t gt =

∑t
τ=1(αϵs + βϵτ )

⊤∇ϵτLt(Θ). Next, we expand out ĝES-Gen⊤ĝES-Gen using this shorthand:

ĝES-Gen⊤ĝES-Gen =
1

(α2σ2 + β2σ2)2

(
T∑

t=1

(αϵs + βξt)v
⊤
t gt

)⊤( T∑
t=1

(αϵs + βξt)v
⊤
t gt

)
(66)

=
1

(α2σ2 + β2σ2)2

g⊤
1 v1(αϵs + βξ1)

⊤(αϵs + βξ1)v
⊤g1︸ ︷︷ ︸

a⃝
+ g⊤

1 v1(αϵs + βξ1)
⊤(αϵs + βξ2)v

⊤
2 g2︸ ︷︷ ︸

b⃝
+ · · ·

 (67)

There are two types of terms in this expression: terms of type a⃝, that have the form g⊤
i vi(αϵs + βξi)

⊤(αϵs + βξi)v
⊤
i gi,

and terms of type b⃝ that have the form g⊤
i vi(αϵs + βξi)

⊤(αϵs + βξj)v
⊤
j gj where i ̸= j.

G.1.1. TERMS OF TYPE a⃝.

First, note that (αϵs + βξi)
⊤(αϵs + βξi) can be expanded as follows:

(αϵs + βξi)
⊤(αϵs + βξi) = α2ϵ⊤s ϵs + 2αβϵ⊤s (ϵ1 + · · ·+ ϵi) + β2

 i∑
m=1

ϵ⊤mϵm +
∑

m≤i,n≤i,m ̸=n

ϵ⊤mϵn

 (68)

To simplify notation, we will use the shorthand W =
∑i

m=1(αϵs + βϵm)⊤∇θm
Li(Θ). Then, for terms of type a⃝, we

need to compute:

W⊤(α2ϵ⊤s ϵs)W︸ ︷︷ ︸
i⃝

+W⊤(2αβϵ⊤s (ϵ1 + · · ·+ ϵi))W︸ ︷︷ ︸
ii⃝

+β2W⊤

(
i∑

m=1

ϵ⊤mϵm

)
W︸ ︷︷ ︸

iii⃝

+β2W⊤

 ∑
m≤i,n≤i,m ̸=n

ϵ⊤mϵn

W

︸ ︷︷ ︸
iv⃝

(69)

Term i⃝. There are two types of terms that have non-zero expectation: ones with the structure ϵsϵ
⊤
s ϵsϵ

⊤
s , and ones with

the structure ϵmϵ⊤s ϵsϵ
⊤
m. The contribution from the first type of term is:

α4σ4(P + 2)

(
i∑

m=1

∇θm
Li(Θ)

)⊤( i∑
m=1

∇θm
Li(Θ)

)
(70)

And the contribution from the second type of term is:

α2β2σ4P

i∑
m=1

∇θm
Li(Θ)⊤∇θm

Li(Θ) (71)

Term ii⃝. Here, we have two types of terms that have non-zero expectations: ones with the structure ϵsϵ
⊤
s ϵmϵ⊤m and ones

with the structure ϵmϵ⊤s ϵmϵ⊤s . We will have i terms of each of these sub-types. The total contribution of these terms is:

4α2β2σ4
i∑

m=1

(
i∑

m′=1

∇θm′Li(Θ)

)⊤

∇θm
Li(Θ) = 4α2β2σ4

(
i∑

m=1

∇θm
Li(Θ)

)⊤( i∑
m=1

∇θm
Li(Θ)

)
(72)
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Term iii⃝. Here, we will have non-zero terms of three types: ϵsϵ⊤mϵmϵ⊤s , ϵmϵ⊤mϵmϵ⊤m, and ϵmϵ⊤n ϵnϵ
⊤
m. The contribution

from the first type of term is:

α2β2σ4Pi

(
i∑

m=1

∇θm
Li(Θ)

)⊤( i∑
m=1

∇θm
Li(Θ)

)
(73)

The contribution from the second type of term is:

β4σ4(P + 2)

i∑
m=1

∇θm
Li(Θ)⊤∇θm

Li(Θ) (74)

And the contribution from the third type of term (ϵmϵ⊤n ϵnϵm) is:

β4σ4P

i∑
n=1

 ∑
m≤i,m ̸=n

∇θmLi(Θ)⊤∇θnLi(Θ)

 (75)

Term iv⃝. Here, the nonzero terms arise from two structures, ϵmϵ⊤mϵnϵ
⊤
n and ϵmϵ⊤n ϵmϵ⊤n . The combined contribution

from both types of terms is:

2β4σ4
∑

m≤i,n≤i,m̸=n

∇θmLi(Θ)⊤∇θnLi(Θ) (76)

G.1.2. TERMS OF TYPE b⃝.

Next, we are interested in terms of type b⃝, which have the form g⊤
i vi(αϵs + βξi)

⊤(αϵs + βξj)v
⊤
j gj where i ̸= j. In this

subsection, we will denote the minimum of i and j by r ≡ min(i, j). We can expand (αϵs + βξi)
⊤(αϵs + ξj) as follows:

(αϵs + βξi)
⊤(αϵs + βξj) = (αϵs + β(ϵ1 + · · ·+ ϵi))

⊤(αϵs + β(ϵ1 + · · ·+ ϵj)) (77)

= α2ϵ⊤s ϵs + αβϵ⊤s (ϵ1 + · · ·+ ϵi) + αβϵ⊤s (ϵ1 + · · ·+ ϵj)+ (78)

+ β2(ϵ1 + · · ·+ ϵi)
⊤(ϵ1 + · · ·+ ϵj) (79)

= αϵ⊤s ϵs︸ ︷︷ ︸
i⃝

+αβϵ⊤s (ϵ1 + · · ·+ ϵi)︸ ︷︷ ︸
ii⃝

+αβϵ⊤s (ϵ1 + · · ·+ ϵj)︸ ︷︷ ︸
iii⃝

(80)

+ β2

(
r∑

m=1

ϵ⊤mϵm︸ ︷︷ ︸
iv⃝

+
∑

m≤i,n≤jm̸=n

ϵ⊤mϵn︸ ︷︷ ︸
v⃝

)
(81)

Term i⃝. We have two types of terms with non-zero expectations: ϵsϵ⊤s ϵsϵ
⊤
s and ϵmϵ⊤s ϵsϵ

⊤
m. In particular, we have a

single instance of the former type of term, and r instances of the latter type. The total contribution of the first term is:

α4σ4(P + 2)

(
i∑

m=1

∇θmLi(Θ)

)⊤( j∑
n=1

∇θnLj(Θ)

)
(82)

The contribution from terms of the second type is:

α2β2σ4P

r∑
m=1

∇θmLi(Θ)⊤∇θmLj(Θ) (83)

Term ii⃝. Here, two types of terms have non-zero expectations: we have r terms of type ϵmϵ⊤s ϵmϵ⊤s and r terms of type
ϵsϵ

⊤
s ϵmϵ⊤m. The total contribution of both terms is:

α2β2σ4
r∑

m=1

(
i∑

m′=1

∇θm′Li(Θ)

)
∇θm

Lj(Θ) + α2β2
r∑

m=1

∇θm
Li(Θ)⊤

(
j∑

m′=1

∇θm′Lj(Θ)

)
(84)
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Term iii⃝. Term iii⃝ is symmetrical to term ii⃝, swapping i for j. Thus, its contribution is identical to that of term ii⃝:

α2β2σ4
r∑

m=1

(
i∑

m′=1

∇θm′Li(Θ)

)
∇θm

Lj(Θ) + α2β2
r∑

m=1

∇θm
Li(Θ)⊤

(
j∑

m′=1

∇θm′Lj(Θ)

)
(85)

Term iv⃝. Here, we have three types of terms with non-zero expectation: r terms of the form ϵsϵ
⊤
mϵmϵ⊤s , r terms of the

form ϵmϵ⊤mϵmϵ⊤m, and r(r − 1) terms of the form ϵnϵ
⊤
mϵmϵ⊤n where n ̸= m.

The contribution from the first type, ϵsϵ⊤mϵmϵ⊤s , is:

α2β2σ4P

r∑
m=1

(
i∑

m′=1

∇θm′Li(Θ)

)⊤( j∑
n′=1

∇θn′Lj(Θ)

)
(86)

The contribution from the second type, ϵmϵ⊤mϵmϵ⊤m, is:

β4σ4(P + 2)

r∑
m=1

∇θm
Li(Θ)⊤∇θm

Lj(Θ) (87)

The contribution from the third type, ϵnϵ⊤mϵmϵ⊤n where n ̸= m, is:

β4σ4P

r∑
n=1

 ∑
m≤r,m ̸=n

∇θm
Li(Θ)⊤∇θm

Lj(Θ)

 (88)

Term v⃝. Here, we have two types of terms with non-zero expectation: ϵnϵ⊤mϵnϵ
⊤
m and ϵmϵ⊤mϵnϵ

⊤
n . The contribution of

these terms is:

β4σ4
∑

m≤i,n≤j,m ̸=n

∇θmLi(Θ)⊤∇θnLj(Θ) + β4σ4
∑

m≤i,n≤j,m ̸=n

∇θnLi(Θ)⊤∇θmLj(Θ) (89)

Combining Terms. Overall, we have T terms of type a⃝, e.g., with structure g⊤
i vi(αϵs + βξi)

⊤(αϵs + βξi)v
⊤
i gi, with

total contribution:

T∑
i=1

(
α4σ4(P + 2)

(
i∑

m=1

∇θmLi(Θ)

)⊤( i∑
m=1

∇θmLi(Θ)

)
(90)

+ α2β2σ4P

i∑
m=1

∇θmLi(Θ)⊤∇θmLi(Θ) + 4α2β2σ4

(
i∑

m=1

∇θmLi(Θ)

)⊤( i∑
m=1

∇θmLi(Θ)

)
(91)

+ α2β2σ4Pi

(
i∑

m=1

∇θm
Li(Θ)

)⊤( i∑
m=1

∇θm
Li(Θ)

)
+ β4σ4(P + 2)

i∑
m=1

∇θm
Li(Θ)⊤∇θm

Li(Θ) (92)

+ β4σ4P

i∑
n=1

 ∑
m≤i,m̸=n

∇θm
Li(Θ)⊤∇θn

Li(Θ)

+ 2β4σ4
∑

m≤i,n≤i,m̸=n

∇θm
Li(Θ)⊤∇θn

Li(Θ)

)
(93)

In addition, we have several terms of type b⃝, e.g., with structure g⊤
i vi(αϵs + βξi)

⊤(αϵs + βξj)
⊤v⊤

j gj , with total
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contribution:

∑
i̸=j

(
α4σ4(P + 2)

(
i∑

m=1

∇θm
Li(Θ)

)⊤( j∑
n=1

∇θn
Lj(Θ)

)
+ α2β2σ4P

r∑
m=1

∇θm
Li(Θ)⊤∇θm

Lj(Θ) (94)

+ 2α2β2σ4
r∑

m=1

(
i∑

m′=1

∇θm′Li(Θ)

)
∇θm

Lj(Θ) + 2α2β2
r∑

m=1

∇θm
Li(Θ)⊤

(
j∑

m′=1

∇θm′Lj(Θ)

)
(95)

+ α2β2σ4P

r∑
m=1

(
i∑

m′=1

∇θm′Li(Θ)

)⊤( j∑
n′=1

∇θn′Lj(Θ)

)
(96)

+ β4σ4(P + 2)

r∑
m=1

∇θm
Li(Θ)⊤∇θm

Lj(Θ) + β4σ4P

r∑
n=1

 ∑
m≤r,m ̸=n

∇θm
Li(Θ)⊤∇θm

Lj(Θ)

 (97)

+ β4σ4
∑

m≤i,n≤j,m ̸=n

∇θm
Li(Θ)⊤∇θn

Lj(Θ) + β4σ4
∑

m≤i,n≤j,m ̸=n

∇θn
Li(Θ)⊤∇θm

Lj(Θ)

)
(98)

Recovering the Variance of ES-Single and PES. Setting α = 0, β = 1 recovers the PES variance, while setting
α = 1, β = 0 recovers the variance of ES-Single. Note that most of the terms in the variance of this generalized estimator
include coefficient β; thus, intuitively one would expect that setting β = 0 (for ES-Single) has reduced variance relative to
PES.

H. Code
Code Listing 1 provides a self-contained JAX implementation of the ES-Single gradient estimator, that reproduces the result
in Figure 15.

Listing 1. Self-contained implementation of ES-Single in JAX, for the 2D regression problem in Figure 15.
from functools import partial
import jax
import jax.numpy as jnp

import optax

def loss(x):
"""Inner loss."""
return jnp.sqrt(x[0]**2 + 5) - jnp.sqrt(5) + jnp.sin(x[1])**2 * \

jnp.exp(-5*x[0]**2) + 0.25*jnp.abs(x[1] - 100)

# Gradient of inner loss
loss_grad = jax.grad(loss)

def update(state, i):
"""Performs a single inner problem update, e.g., a single unroll step.
"""
(L, x, theta, t_curr, T, K) = state
lr = jnp.exp(theta[0]) * (T - t_curr) / T + jnp.exp(theta[1]) * t_curr / T
x = x - lr * loss_grad(x)
L += loss(x) * (t_curr < T)
t_curr += 1
return (L, x, theta, t_curr, T, K), x

@partial(jax.jit, static_argnames=(’T’, ’K’))
def unroll(x_init, theta, t0, T, K):

"""Unroll the inner problem for K steps.

Args:
x_init: the initial state for the unroll
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theta: a 2-dimensional array of outer parameters (log_init_lr, log_final_lr)
t0: initial time step to unroll from
T: maximum number of steps for the inner problem
K: number of steps to unroll

Returns:
L: the loss resulting from the unroll
x_curr: the updated state at the end of the unroll

"""
L = 0.0
initial_state = (L, x_init, theta, t0, T, K)
state, outputs = jax.lax.scan(update, initial_state, None, length=K)
(L, x_curr, theta, t_curr, T, K) = state
return L, x_curr

@partial(jax.jit, static_argnames=(’T’, ’K’, ’sigma’, ’N’))
def es_single_grad(key, xs, theta, t0, T, K, sigma, N):

"""Compute ES-Single gradient estimate.

Args:
key: JAX PRNG key
xs: Nx2 array of particles/states to be updated
theta: a 2-dimensional array of outer parameters (log_init_lr, log_final_lr)
t0: initial time step for the current unroll
T: maximum number of steps for the inner problem
K: truncation length for the unroll
sigma: standard deviation of the Gaussian perturbations
N: number of perturbations (as N//2 antithetic pairs)

Returns:
theta_grad: ES-Single gradient estimate
xs: Nx2 array of updates particles/states

"""
# Generate antithetic perturbations
pos_perts = jax.random.normal(key, (N//2, theta.shape[0])) * sigma # Antithetic pos
neg_perts = -pos_perts # Antithetic neg
perts = jnp.concatenate([pos_perts, neg_perts], axis=0)

# Unroll the inner problem for K steps using the antithetic perturbations of theta
L, xs = jax.vmap(unroll, in_axes=(0,0,None,None,None))(xs, theta + perts, t0, T, K)
# Compute the ES-Single gradient estimate
theta_grad = jnp.mean(perts * L.reshape(-1, 1) / (sigma**2), axis=0)
return theta_grad, xs

T = 100 # Total inner problem length
K = 10 # Truncation length for partial unrolls
N = 100 # Number of particles in total (N//2 antithetic pairs)
sigma = 0.1 # Standard deviation of perturbations

t = 0
theta = jnp.log(jnp.array([0.01, 0.01]))
x = jnp.array([1.0, 1.0])
xs = jnp.ones((N, 2)) * jnp.array([1.0, 1.0])

optimizer = optax.adam(1e-2)
opt_state = optimizer.init(theta)

key = jax.random.PRNGKey(3)
for i in range(10000):

if t >= T:
# Reset the inner problem: the inner iteration, inner parameters, and random key
key, skey = jax.random.split(key)
t = 0
xs = jnp.ones((N, 2)) * jnp.array([1.0, 1.0])
x = jnp.array([1.0, 1.0])

35



ES-Single

theta_grad, xs = es_single_grad(key, xs, theta, t, T, K, sigma, N)

updates, opt_state = optimizer.update(theta_grad, opt_state)
theta = optax.apply_updates(theta, updates)

t += K

if i % 100 == 0:
# Run a full unroll for evaluation
L, _ = unroll(jnp.array([1.0, 1.0]), theta, 0, T, T)
print(i, jnp.exp(theta), theta_grad, L)
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