
Eventual Discounting Temporal Logic Counterfactual Experience Replay

Cameron Voloshin 1 Abhinav Verma 2 Yisong Yue 1 3

Abstract
Linear temporal logic (LTL) offers a simplified
way of specifying tasks for policy optimization
that may otherwise be difficult to describe with
scalar reward functions. However, the standard
RL framework can be too myopic to find maxi-
mally LTL satisfying policies. This paper makes
two contributions. First, we develop a new value-
function based proxy, using a technique we call
eventual discounting, under which one can find
policies that satisfy the LTL specification with
highest achievable probability. Second, we de-
velop a new experience replay method for gener-
ating off-policy data from on-policy rollouts via
counterfactual reasoning on different ways of sat-
isfying the LTL specification. Our experiments,
conducted in both discrete and continuous state-
action spaces, confirm the effectiveness of our
counterfactual experience replay approach.

1. Introduction
In the standard reinforcement learning (RL) framework, the
goal is to develop a strategy that maximizes a reward func-
tion in an unknown environment. In many applications of
RL, a practitioner is responsible for generating the reward
function so that the agent will behave desirably after the
learning process. However, it can be challenging to con-
vey real-world task specifications through scalar rewards
(Randløv & Alstrøm, 1998; Toromanoff et al., 2019; Ibarz
et al., 2018; Zhang et al., 2021; Ng et al., 1999; Yang et al.,
2022). Colloquially known as reward-shaping, practitioners
often resort to using heuristic ”breadcrumbs” (Sorg, 2011)
to guide the agent towards intended behaviors. Despite the
“reward function is enough” hypothesis (Sutton & Barto,
2018; Silver et al., 2021)), some tasks may not be reducible
to scalar rewards (Abel et al., 2021).

In response to these challenges, alternative RL frameworks

1Caltech 2Penn State 3Latitude AI. Correspondence to:
Cameron Voloshin <cvoloshin@caltech.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

using Linear Temporal Logic (LTL) to specify agent behav-
ior have been studied (see Section 7). LTL can express de-
sired characteristics of future paths of a system (Baier & Ka-
toen, 2008), allowing for precise and flexible task/behavior
specification. For example, we may ask for a system to
repeatedly accomplish a set of goals in specific succession
(see Section 2 for more examples).

Without significant assumptions, there is no precise sig-
nal on the probability of a policy satisfying an LTL ob-
jective. Existing work overwhelmingly uses Q-learning
with a sparse RL heuristic (Bozkurt et al., 2020; Cai et al.,
2021a) meant to motivate an agent to generate trajectories
that appear to satisfy the task. First, these heuristics involve
complicated technical assumptions obscuring access to non-
asymptotic guarantees, even in finite state-action spaces.
Second, sparse reward functions pose substantial challenges
to any gradient-based RL algorithm since they provide poor
signal to adequately solve credit assignment. Resolving
sparsity involves using a hierarchical approach (Bozkurt
et al., 2020) or re-introducing reward-shaping (Hasanbeig
et al., 2018). See Section 7 for elaboration on prior work.

Our contributions. In this paper, we focus on model-free
policy learning of an LTL specified objective from online
interaction with the environment. We make two technical
contributions. First, we reformulate the RL problem with
a modified value-function proxy using a technique we call
eventual discounting. The key idea is to account for the
fact that optimally satisfying the LTL specification may not
depend on the length of time it takes to satisfy it (e.g., “even-
tually always reach the goal”). We prove in Section 4 that
the optimal policy under eventual discounting maximizes
the probability of satisfying the LTL specification.

Second, we develop an experience replay method1 to ad-
dress the reward sparsity issue. Namely, any LTL formula
can be converted to a fully known specialized finite state
automaton from which we can generate multiple counter-
factual trajectories from a single on-policy trajectory. We
call this method LTL-guided counterfactual experience re-
play. We empirically validate the performance gains of our
counterfactual experience replay approach using both finite
state/action spaces as well as continuous state/action spaces
using both Q-learning and Policy Gradient approaches.

1Code here: https://github.com/clvoloshin/RL-LTL

1

https://github.com/clvoloshin/RL-LTL


Eventual Discounting Temporal Logic Counterfactual Experience Replay

2. Preliminaries
We give the necessary background and examples to un-
derstand our problem statement and solution approach.
An atomic proposition is a variable that takes on a truth
value. An alphabet over a set of atomic propositions AP
is given by Σ = 2AP. For example, if AP = {x, y} then
Σ = {{}, {x}, {y}, {x, y}}. ∆(A) represents the set of
probability distributions over a set A.

2.1. Running Example

We will be using the environment illustrated in Figure 1
(First) as a running example. The agent is given by a green
dot and there are 3 circular regions in the environment col-
ored yellow, blue and red. The AP are given by {y, b, r},
referring to the respective colored zones. Elements of Σ
indicate which zone(s) the agent is in.

2.2. MDPs with Labelled State Spaces

Following a similar notation as Voloshin et al. (2022), we as-
sume that the environment follows the discounted, labelled
Markov Decision Process (MDP) framework given by the
tupleM = (SM,AM, PM, dM0 , γ, LM) consisting of a
state space SM, an action space AM, an unknown tran-
sition function PM : SM × AM → ∆(SM), an initial
state distribution dM0 ∈ ∆(SM), and a labelling function
LM : SM → Σ. Let AM(s) to be the set of available
actions in state s.

Unlike traditional MDPs,M has a labeling function LM

which returns the atomic propositions that are true in that
state. For example, in Figure 1 (First), when the agent enters
a state s ∈ SM such that it is both in the yellow and blue
zone then LM(s) = {y, b}.

2.3. Linear Temporal Logic (LTL)

Here we give a basic introduction to LTL. For a more com-
prehensive overview, see Baier & Katoen (2008).

Definition 2.1 (LTL Specification, φ). An LTL specification
φ is the entire description of the task, constructed from a
composition of atomic propositions with logical connectives:
not (¬), and (&), and implies (→); and temporal operators:
next (X), repeatedly/always/globally (G), eventually (F ),
and until (U ).

Examples. For AP = {x, y}, some basic task specifi-
cations include safety (G¬x), reachability (Fx), stability
(FGx), response (x→ Fy), and progress (x & XFy).

Consider again the environment in Figure 1 (First) where
AP = {y, r, b}. If the task is to eventually reach the yellow
zone and stay there (known as stabilization) then we write
φ = FGy. Or, if we would like the agent to infinitely loop

between the yellow and red zone while avoiding the blue
zone then φ = GF (y & XFr) & G¬b, a combination of
safety, reachability, and progress.

2.4. LTL Satisfaction

LTL has recursive semantics defining the meaning for logi-
cal connective satisfaction. Without loss of generality, we
will be using a specialized automaton, an LDBA Bφ (Sickert
et al., 2016), defined below to keep track of the progression
of φ satisfaction. More details for constructing LDBAs are
in Hahn et al. (2013); Baier & Katoen (2008); Křetı́nskỳ
et al. (2018). We drop φ from Bφ for brevity.
Definition 2.2. (Limit Deterministic Büchi Automaton,
LDBA (Sickert et al., 2016)) An LDBA is a tuple B =
(SB,Σ ∪ AB, P

B,SB∗
, bB−1) consisting of (i) a finite set

of states SB, (ii) a finite alphabet Σ = 2AP, AB is a
set of indexed jump transitions (iii) a transition function
PB : SB×(Σ∪AB)→ SB, (iv) accepting states SB∗ ⊆ SB,
and (v) initial state bB−1. There exists a mutually exclusive
partitioning of SB = SBD ∪ SBN such that SB∗ ⊆ SBD, and
for b ∈ SB

D, a ∈ Σ then PB(b, a) ⊆ SBD, closed. AB(b) is
only (possibly) non-empty for b ∈ SBN and allows B to tran-
sition to SBD without reading an AP. A path ϱ = (b0, b1, . . .)
is a sequence of states in B reached through successive
transitions under PB.
Definition 2.3. (B accepts) B accepts a path ϱ if there exists
some state b ∈ SB∗

in the path that is visited infinitely often.

Examples. Consider again the environment in Figure 1
(First) where AP = {y, r, b}. If we would like to make
an LDBA for φ = FGy (reach and stabilize at y) then we
would get the state machine seen in Figure 1 (Second). In
this state machine, the agent starts at state 0. The accepting
set is given by SB∗

= {1}. The transition between state 0
and state 1 is what is formally referred to as a jump transi-
tion: AB(0) = {ϵ} while AB(·) = ∅ otherwise. Whenever
the agent is in state 0 of the LDBA, there is a choice of
whether to stay at state 0 or transition immediately to state
1. This choice amounts to the agent believing that it has sat-
isfied the “eventually” part of the LTL specification. When
the agent takes this jump, then it must thereafter satisfy y
to stay in state 1. The agent gets the decision of when it
believes it is capable of satisfying y thereafter. When the
agent takes the jump, if it fails to stay in y, it immediately
transitions to the sink, denoted state 2. The LDBA accepts
when the state 1 is reached infinitely often, meaning the
agent satisfies “always y” eventually, as desired.

Another example, this time without jump transitions, would
be for φ = GF (y & XFr) & G¬b (oscillate between y
and r forever while avoiding b). The LDBA can be seen
in Figure 1 (Third). In this state machine, the agent starts
at state 1 and the accepting set is given by SB∗

= {1}. To
make a loop back to state 1, the agent must visit both r and y.

2



Eventual Discounting Temporal Logic Counterfactual Experience Replay

ε

⊥

⊥ y

¬y

0

2

1
¬r

y

¬y ⊥¬rr

b1

0

3b

b

2

α 1− α

A B0

Figure 1. Examples. First: Illustration of the Flatworld environment. The agent is a green dot and there are 3 zones: yellow, blue
and red. Second: LDBA B for “FGy”. SB∗

= {1}, denoted by green circle. The initial state is b−1 = 0. Third: LDBA B for
“GF (y & XFr) & G¬b”. SB∗

= {1}, denoted by green circle. The initial state is b−1 = 1. Fourth: For this example, an agent starting
in state 0 and solving argmaxπ∈Π Eτ∼TP

π
[
∑∞

i=0 γ
i1{bi∈SB∗}] where SB∗

is illustrated as the green circles would choose to take action
B with probability 1 if α ∈ (1/2, 1) for any γ ∈ [0, 1]. Such a policy has P[π |= φ] = α < 1. However the probability optimal policy
deterministically takes action A, with P[π∗ |= φ] = 1. This illustrates catastrophic myopic behavior.

Doing so infinitely often satisfies the LDBA condition and
therefore the specification. If at any point b is encountered
then the agent transitions to the sink, denoted state 3.

3. Problem Formulation
We first introduce slightly more notation. Let Z = SM ×
SB. Let Π : Z × A → ∆([0, 1]) be a (stochastic) policy
class over the product space of the MDP and the LDBA
(defined below), where A((s, b)) = AM(s) ∪ AB(b), to
account for jump transitions in B.

Synchronizing the MDP with the LDBA. For any (s, b) ∈
Z , a policy π ∈ Π is able to select an action in AM(s) or
an action in AB(b), if available. We can therefore generate
a trajectory as the sequence τ = (s0, b0, a0, s1, b0, a1, . . .)
under a new probabilistic transition relation given by

P (s′, b′|s, b, a) =
PM(s, a, s′) a ∈ AM(s), b′ ∈ PB(b, L(s′))

1, a ∈ AB(b), b′ ∈ PB(b, a), s = s′

0, otherwise
(1)

Let the LDBA projection of τ be the subsequence τB =
(b0, b1, . . .). Elements of τB can be thought of as tracking
an agent’s LTL specification satisfaction:

Definition 3.1 (Run Satisfaction, τ |= φ). We say a trajec-
tory satisfies φ if B accepts τB, which happens if ∃b ∈ τB
infinitely often with b ∈ SB∗

.

Let TP
π = Ez∼dM

0 ×{b−1}[T
P
π (z)] be the distribution over

all possible trajectories starting from any initial state z ∈
dM0 × {b−1} where TP

π (z) is the (conditional) distribution
over all possible trajectories starting from z ∈ Z generated
by π under relation P (given in (1)). The probability of
LTL satisfaction results from counting how many of the
trajectories satisfy the LTL specification:

Definition 3.2 (State Satisfaction, z |= φ). Pπ[z |= φ] =
Eτ∼TP

π (z)[1{τ |=φ}] = Eτ∼TP
π
[1{τ |=φ}|z0 = z]

Definition 3.3 (Policy Satisfaction, π |= φ). P[π |= φ] =
Eτ∼TP

π
[1{τ |=φ}] where 1X is the indicator for X .

Ideally we would like to find a policy with highest probabil-
ity of LTL specification satisfaction: one that generates the
most number of LTL-satisfying runs. Formally,

π∗ ∈ argmax
π∈Π

P[π |= φ]. (2)

We note that Eq (2) is the standard starting point for formu-
lating policy optimization for LTL satisfaction (Yang et al.,
2022; Bozkurt et al., 2020; Cai et al., 2021a; Hasanbeig
et al., 2018; 2020; Voloshin et al., 2022).
Remark 3.1. The synchronized MDP/LDBA, referred to
as a product MDP, is itself a larger MDP with a “mixed”
state space given a continuous state from the MDP and
a discrete state from the LDBA, e.g. states now take on
the tuple-form (s, b). LTL satisfaction is not reachability
within this product MDP. Satisfaction requires a policy that
creates an infinite loop in the LDBA part of the product
MDP (reaching any accepting buchi state infinitely often for
arbitrary underlying MDP state).
Remark 3.2. Notice that the policy class Π is memoryless
with respect to the product MDP as the LDBA takes care of
adding in sufficent memory a policy would need to accom-
plish φ (Baier & Katoen, 2008). This comes at the cost of
a significant increase in state-action space, but we never
explicitly form the product MDP.

4. RL-Friendly Form: Eventual Discounting
Unfortunately, the maximization problem in Eq (2) is not
easily optimized since we dont have a direct signal on P[π |=
φ]. Without any additional assumptions (such as structured
knowledge of the MDP), any finite subsequence can only
give evidence on whether τ |= φ but not a concrete proof.

3



Eventual Discounting Temporal Logic Counterfactual Experience Replay

Eventual Discounting. To address the above issue, we de-
velop a modified value-function based surrogate as follows.
Given a trajectory τ = (s0, b0, a0, . . .), we keep track of
how often bi ∈ SB

∗
and incentivize an agent to visit SB∗

as many times as possible. In particular, under eventual
discounting, the value function will give the agent a reward
of 1 when in a state bi ∈ SB

∗
and not discount length of

time between visits to SB∗
. Formally, we will be seeking

π∗
γ ∈ argmax

π∈Π
Eτ∼TP

π
[

∞∑
i=0

Γi1{bi∈SB∗}] (≡ V γ
π ), (3)

where Γ0 = 1 and

Γi =

i−1∏
t=0

γ(bt), γ(bt) =

{
γ, bt ∈ SB

∗

1, otherwise
. (4)

Intuition for Γi. At first glance setting Γi = γi to be
the traditional RL exponential discount rate would seem
reasonable. Unfortunately, ∄γ ∈ [0, 1] with Γi = γi that
avoids catastrophic myopic behavior. In particular, take
Figure 1 (Fourth). The agent starts in state 0 and only has
two actions A and B. Taking action A transitions directly
to an accepting state from which point the accepting state is
visited every 2 steps. On the other hand, action B transitions
to an accepting state with probability α and a sink state with
probability 1 − α. The accepting state reached by action
B is revisited every step. Suppose β = π(A) = 1− π(B)
then we can calculate:

Eτ∼TP
π
[

∞∑
i=0

γi1{bi∈SB∗}] =
β

1− γ2
+

(1− β)α

1− γ
. (5)

For α > 1/2, the optimal choice β is β = 0 implying that
P (π |= φ) = α. When α ∈ (1/2, 1) then this implies that
π is not probability optimal. Indeed, P (π |= φ) = α < 1
when β = 0 but P (π∗ |= φ) = 1 by selecting β = 1. The
intuition here, which can be formalized by taking γ → 1, is
that the average reward for taking action A is 1

2 while the
average reward for taking action B is 1 with probability α,
which is worth the risk for large α > 1/2.

To avoid this myopic behavior, we must avoid discriminating
between return times between good states. The number steps
(on average) it takes to return to SB∗

is irrelevant: we only
require that the system does return. For this reason we do
not count time (hence γ = 1) in our definition of Γi when
the system is not in SB∗

. We call this eventual discounting.

4.1. Analysis of π∗
γ

In this section we analyze how the probability of π∗
γ satisfy-

ing φ compares to that of the best possible one π∗.

Let the set O(τ) = {i : bi ∈ SB
∗} denote the occurences

(time steps) when a good state is reached. This quantity is
natural since |O(τ)| =∞ if and only if τ |= φ.

Lemma 4.1. For any π ∈ Π and γ ∈ (0, 1), we have

|(1− γ)V γ
π − P[π |= φ]| ≤ log(

1

γ
)Oπ

where Oπ = Eτ∼TP
π

[
|O(τ)|

∣∣∣∣τ ̸|= φ

]
is the expected num-

ber of visits to an accepting state for the trajectories that do
not satisfy φ.

Proof. Fix some state z = (s, b) ∈ Z .

V γ
π (z) = Eτ∼TP

π
[

∞∑
i=0

Γi1{bi∈SB∗}|z0 = z]

= Eτ∼TP
π

|O(τ)|∑
j=0

γj |z0 = z


Using the fact that

∑k
j=0 γ

j = 1−γk

1−γ , we have

V γ
π (z) = Eτ∼TP

π

[
1− γ|O(τ)|

1− γ

∣∣∣∣τ |=φ
z0=z

]
Pπ[z |= φ]

+ Eτ∼TP
π

[
1− γ|O(τ)|

1− γ

∣∣∣∣τ ̸|=φ
z0=z

]
Pπ[z ̸|= φ] (6)

Since |O(τ)| =∞ for any τ |= φ,

Eτ∼TP
π

[
1− γ|O(τ)|

1− γ

∣∣∣∣τ |=φ
z0=z

]
=

1

1− γ
(7)

together with Pπ[z ̸|= φ] ≥ 0 implies

V γ
π (z) ≥ 1

1− γ
Pπ[z |= φ]. (8)

Taking the expectation over initial states we have

V γ
π ≥

1

1− γ
P[π |= φ]. (9)

Now we find an upper bound. First, define

Mπ(t) ≡ Eτ∼TP
π

[
et|O(τ)|

∣∣∣∣τ ̸|= φ

]
.

Starting again with Eq (6) and using Eq (7), we have

V γ
π (z) ≤ Pπ[z |= φ]

1− γ
+

1− Eτ∼TP
π

[
elog(γ)|O(τ)|

∣∣∣∣τ ̸|=φ
z0=z

]
1− γ

(10)
where we have used that Pπ[z ̸|= φ] ≤ 1 for any z ∈
Z . Taking the expectation with respect to the initial state
distribution then we have

(1− γ)V γ
π ≤ P[π |= φ] + 1−Mπ(log(γ)) (11)

4



Eventual Discounting Temporal Logic Counterfactual Experience Replay

In particular, Mπ(t) is convex and therefore it lies above its
tangents:

Mπ(t) ≥Mπ(0) + tM ′
π(0)

= 1 + tEτ∼TP
π

[
|O(τ)|

∣∣∣∣τ ̸|= φ

]
= 1 + tOπ

Plugging this inequality into Eq (11), together with Eq (9),

P[π |= φ] ≤ (1− γ)V γ
π ≤ P[π |= φ] + log(

1

γ
)Oπ (12)

Subtracting P[π |= φ] from both sides and taking the abso-
lute value completes the proof.

Theorem 4.2. (Non-asymptotic guarantee) For any γ ∈
(0, 1),

sup
π∈Π

P[π |= φ]− P[π∗
γ |= φ] ≤ 2 log(

1

γ
) sup
π∈Π

Oπ (13)

where Oπ = Eτ∼TP
π

[
|O(τ)|

∣∣∣∣τ ̸|= φ

]
.

Proof. Consider any sequence {πi}∞i=1 such that P[πi |=
φ]→ supπ P[π |= φ] as i→∞. Then we have for any πi,

P[πi |= φ]− P[π∗
γ |= φ] = P[πi |= φ]− (1− γ)V γ

πi

+ (1− γ)V γ
πi
− (1− γ)V γ

π∗
γ

+ (1− γ)V γ
π∗
γ
− P[π∗

γ |= φ]

(a)

≤ |P[πi |= φ]− (1− γ)V γ
πi
|

+ |P[π∗
γ |= φ]− (1− γ)V γ

π∗
γ
|

(b)

≤ log(
1

γ
)(Oπi

+Oπ∗
γ
)

(c)

≤ 2 log(
1

γ
) sup
π∈Π

Oπ

where (a) is triangle inequality together with removing the
term (1 − γ)V γ

πi
− (1 − γ)V γ

π∗
γ

since it is nonpositive by
definition of π∗

γ , (b) is an application of Lemma 4.1, and (c)
is a supremum over all policies. Taking the limit on both
sides as i→∞ completes the proof.

Corollary 4.3. If the number of policies in Π is finite then
supπ∈Π Oπ = m <∞ is attained, is a finite constant and

sup
π∈Π

P[π |= φ]− P[π∗
γ |= φ] ≤ 2m log(

1

γ
)

Corollary 4.4. In the case that SM andAM are finite, then
Z and A are finite. It is known that optimal policies are
deterministic (Puterman, 2014) and therefore there we need

only consider deterministic policies, for which there are a
finite number. Thus supπ∈Π Oπ = m <∞ is attained, is a
finite constant and

sup
π∈Π

P[π |= φ]− P[π∗
γ |= φ] ≤ 2m log(

1

γ
)

Corollary 4.5. For any ϵ > 0, when γ is selected to be
γ > 1

eϵ/(2m) then∣∣∣∣sup
π∈Π

P[π |= φ]− P[π∗
γ |= φ]

∣∣∣∣ ≤ ϵ

4.2. Interpretation

Theorem 4.2 relies on the quantity supπ∈Π Oπ to be finite
for the bound to have meaning. In fact, we need only make
requirements on Mπ(log(γ)) but the requirements are more
easily understood on Oπ. As an aside, Mπ(log(γ)) can be
interpreted as the moment generating function of the random
variable which is the number of visits to SB∗

. Instead we
consider the equally natural quantity Oπ . Oπ is the (average)
number of times that a good state is visited by a trajectory
that does not satisfy the specification. Ideally, this number
would be small and it would be easy to discriminate against
good and bad policies.

Unconstrained Policy Class. In the case that Π is an in-
finite class, conditions for ensuring supπ∈Π Oπ is finite is
nontrivial and is dependent on the landscape of the transition
function P of the MDP and Π.

Let us suppose supπ∈Π Oπ is infinite. This means there are
policies that induce bad trajectories that eventually fail to
reach SB∗

, but along the way visited SB∗
an arbitrarily large

(but finite) number of times. In other words, they are policies
that are indistinguishable from actual probability-optimal
policies until the heat death of the universe.

Consider the specification in Figure 1 (right), given by in-
finitely often cycle between red and yellow while avoiding
blue. A good-looking bad policy is one that accomplishes
the task frequently but, amongst the times that it fails, it
would cycle between red and yellow many times before fail-
ing. supπ∈Π Oπ being infinite means that there are policies
that will cycle arbitrarily many times before failing.

Constrained Policy Class. Corollary 4.3 suggests that
having a finite number of policies suffices to generate prob-
ability optimal policies, with suboptimality shrinking at a
rate of log( 1γ ). In practice, since all computers deal with
finite precision, the number of policies is finite. Explicitly
constraining the number of policies is another option.

On the other hand, Corollary 4.4 reveals that discretization
is also a sufficient condition. This suggests that compactness
of P and Π and continuity of P may be sufficient as well
but we leave these conditions for future work.

5



Eventual Discounting Temporal Logic Counterfactual Experience Replay

Algorithm 1 Learning with LCER

Param: Maximum horizon T . Replay buffer D = {}.
1: for k = 1, 2, . . . do
2: Run πk−1 in the MDP for T timesteps and collect

τ = (s0, b0, a0, . . . , sT−1, bT−1, aT−1, sT , bT )
3: Dk ← LCER(Dk−1, τ)
4: πk ← Update(πk−1, Dk) // Q-learn/Policy grad.
5: end for

5. LTL Counterfactual Experience Replay
One can optimize the formulation in Eq (3) using any Q-
learning or policy gradient approach, as seen in Algorithm
1 (Line 4). However, doing so is challenging since it suffers
from reward sparsity: the agent only receives a signal if it
reaches a good state.

We combat reward sparsity by exploiting the LDBA: PB is
completely known. By knowing PB, we can generate multi-
ple off-policy trajectories from a single on-policy trajectory
by modifying which stats in the LDBA we start in, which
notably does not require any access to the MDP transition
function PM. We call this approach LTL-guided Counter-
factual Experience Replay, LCER (Algorithm 1, Line 3),
as it is a modification of standard experience replay (Lin,
1992; Mnih et al., 2013; 2015) to include counterfactual
experiences elsewhere in the LDBA. LCER is most simply
understood through Q-learning, and needs careful modifica-
tion for policy gradient methods.

Q-learning with LCER. See Algorithm 2 for a synopsis of
LCER for Q-learning. Regardless of whatever state s ∈ SM
the agent is in, we can pretend that the agent is in any
b ∈ SB. Then for any action the agent takes we can store
experience tuples:

{(s, b, a, r, s′, b̃′) | ∀b ∈ SB} (14)

where b̃′ = PB(b, LM(s′)) is the transition that would
have occurred from observing labelled state L(s′) in state
(s, b) and r = 1b̃′∈B∗ . Furthermore we can add all jump
transitions:

{(s, b, ϵ, r, s, b̃′) | ∀b ∈ SB,∀ϵ ∈ AB(b)} (15)

since jumps also do not affect the MDP. Notice when we
add the jumps that s′ = s, since only the LDBA state shifts
in a jump.

Policy Gradient with LCER. See Algorithm 3 for a sum-
mary of LCER for policy gradient. For policy gradient,
unlike Q-learning, it is necessary to calculate future reward-
to-go: Rk(τ) =

∑T
i=k Γi1{bi∈SB∗}. Thus, we have to gen-

erate entire trajectories that are consistent with PB rather
than independent transition tuples as in Eq (14). We will
show how to generate all feasible trajectories.

Algorithm 2 LCER for Q-learning
Param: Dataset D. Trajectory τ of length T .

1: for (st, at, st+1) ∈ τ do
2: for b ∈ SB do
3: Set b̃← PB(b, LM(st+1))
4: D ← D ∪ (st, b, at,1b̃∈B∗ , st+1, b̃)

5: for ϵ ∈ AB(s) do
6: Set b̃← PB(b, ϵ)
7: D ← D ∪ (st, b, ϵ,1b̃∈B∗ , st, b̃)
8: end for
9: end for

10: end for
11: return D

Consider a trajectory τ = (s0, b0, a0, . . . , sT , bT ) was col-
lected. Let us remove jump transitions (si, bi, ai) where
ai ∈ AB(bi) and consider the projection of the trajectory
to the MDP τM = (s0, s1, . . . , sT ). We should only have
control over the initial LDBA state b0 as all other automaton
states (b1, . . . , bT ) in a trajectory sequence are determined
by τM and bi+1 = PB(bi, L

M(si)).

Therefore we add

T̃ (τ) = {(s0, b̃0, a0, . . . , sT , b̃T ) |
∀b̃0 ∈ SB, b̃i = PB(b̃i−1, L

M(si))} (16)

where only the LDBA states are different between the tra-
jectories.

Now we handle jump transitions. Consider some τ̃ ∈ T̃ (τ).
Recall, a jump transition can occur wheneverAB(b̃i) is non-
empty. This involves adding a trajectory that is identical to τ̃
all the way until the jump occurs. The jump occurs and then
the same action sequence and MDP state sequence follows
but with different LDBA states. Specifically, suppose b̃i had
an available jump transitions, ϵ ∈ AB(b̃i). Then:

τ̃i,ϵ = (s0, b̃
′
i, a0, . . . , si, b̃

′
i, ϵ, si, b̃

′
i+1, ai, . . . , sT , b̃

′
T )
(17)

where b̃′k = b̃i for k ≤ i and b̃′k = PB(b̃′k−1, L
M(sk))

otherwise.

We have to add all possible τ̃ ′i,ϵ that exist. Let E be the
operator that adds jumps to existing sequences:

E(T̃ (τ)) = T̃ (τ) ∪ {τ̃i,ϵ from Eq (17)|
∀τ̃ ∈ T̃ (τ),∃bi ∈ τ̃ s.t. ∃ϵ ∈ AB(bi)}. (18)

We can only apply E(E(. . . (E(T̃ (τ))))) at most T times
since the original length of τ is T .

Remark 5.1. The length of τ has to be sufficiently large
to make sure the LDBA has opportunity to reach SB∗

. A
sufficient condition is T ≥ |{b|AB(b) ̸= ∅}|, the number
of LDBA states with jump transitions.

6



Eventual Discounting Temporal Logic Counterfactual Experience Replay

Algorithm 3 LCER for Policy Gradient
Param: Dataset D. Trajectory τ of length T .

1: Set T̃0 ← T̃ (τ)
2: for k = 1, . . . , T − 1 do
3: T̃k ← E(T̃k−1)
4: if T̃k == T̃k−1 then
5: Set T̃T−1 ← T̃k
6: break
7: end if
8: end for
9: Set D ← D ∪ T̃T−1

10: return D

It is possible to constructively generate feasible trajectories
during the rollout of a policy rather than after-the-fact, see
Appendix B.

6. Experiments
We perform experiments in four domains with varying LTL
formulas, state spaces, action spaces, and environment
stochasticity summarized in the following section. Our
aim is to answer the following two questions: (1) Can we
achieve policies that behave the way we expect an LTL-
satisfying policy to behave? (2) How does LCER impact the
performance of learning. 2

6.1. Environment Details

Minecraft The Minecraft environment is a 10× 10 deter-
ministic gridworld with 5 available actions: left, right, up,
down, nothing. The agent, given by a red triangle starts in
the cell (9, 2). The environment, as well as the final behav-
ior of the agent (given by blue dots) can be seen in Figure 2
(First).

Pacman The Pacman environment is a 5× 8 deterministic
gridworld with 5 available actions: left, right, up, down,
nothing. The agent, given by a red triangle starts in the cell
(0, 3). The ghost chases the agent with probability 0.8 and
takes a random action with probability 0.2, for this reason
the environment is stochastic. The starting position of the
environment can be seen in Figure 2 (Second).

Flatworld The Flatworld environment (seen in Figure 2
Third and Fourth) is a two dimensional continuous world.
The agent (given by a green dot) starts at (−1,−1). The
dynamics of the world are given by x′ = x+ a/10 where
both x ∈ R2 and a ∈ [0, 1]2. We also allow the action space
to be discrete by letting there be 5 actions (right, up, left,

2Our choice of baseline is meant to reveal the impacts of LCER,
while controlling for underlying method such as PPO or Q-learning.
Creating a benchmark for RL+LTL with a standard set of experi-
ments and baselines remains interesting and relevant future work.

down, nothing) where the agent takes a full-throttle action
in each respective direction.

Carlo The Carlo environment (seen in Figure 2 Fifth) is a
simplified self-driving simulator that uses a bicycle model
for the dynamics. The agent observes its position, velocity,
and heading in radians for a total of 5 dimensions. The
agent has control over its heading and throttle, for an action
space of [−1, 1]2. For this domain, we have chosen to use a
circular track where the agent starts in the center of the road
at an angle of {π(1+2i)/4}3i=0 and drive counterclockwise
around in a circle without crashing.

6.2. Methods and Baseline

When the action space is discrete, we use Q-learning with
LCER otherwise we use PPO with LCER. The baseline we
compare against is the same method without LCER. This
allows us to verify the extent to which LCER impacts per-
formance. We also plot a trajectory from the final policy
for each environment in the middle of each column of Fig-
ure 2, except for Pacman as it is difficult to visualize the
interaction between the ghost and pacman outside of video.

Dealing with A. For PPO, the agent’s policy is a Gaussian
(as in standard implementations) over the continuous action
space. In order to deal with jump transitions (in the LDBA)
when in a continuous action space (in the MDP), we first
let the agent decide whether to execute a jump transition or
not (ie. a probabilistic coin flip). If the agent chooses to
not, then we take the action according to the Gaussian. The
coin flip probability is learned, as well as the Gaussian. For
the importance sampling term of PPO, the density of π is
modified to account for the coin flip. For more details see
Appendix A.

6.3. Results

Can we achieve desired behavior? The answer here is
a resounding yes. For each environment (except Pacman)
we illustrate the trajectory of the final policy above each
learning curve in Figure 2. Determining the probability of
satisfaction of the final policy is currently a challenging open
problem (except in finite-state action spaces). Nevertheless,
in each environment the agent qualitatively accomplishes
the task. Even for challenging tasks with continuous action
spaces, the agent is able to learn to accomplish the LTL
specification.

Does LCER help in the learning process? According to
the learning curves in the last row of Figure 2, LCER demon-
strably expedites learning. In every environment with the
exception of Carlo, LCER generates significant lift over lack
of experience replay.

Intuition for why LCER helps? One way of viewing an
LDBA is as a curriculum for what steps need to be taken in

7



Eventual Discounting Temporal Logic Counterfactual Experience Replay

ϕ = GF ( x &XF y ) & G¬r

0 1 2 3 4 5

Minecraft

0.0

0.5

1.0

1.5

2.0

2.5

D
is
co

un
te

d
R
ew

ar
d

Q-Learn (LCER)

Training Steps (x1000)

Q-Learn

Oscillate yellow & blue, avoid red

ϕ = GF ( x &XF y ) & G¬r
Flatworld

0

1

2

3

4

5

Training Steps (x1000)

Oscillate yellow & red, avoid blue Drive in a circle, never crashStabilize in yellow

0 1 2 3 4 5

Flatworld

0

1

2

3

4

5

Training Steps (x1000)

PPO

Q-Learn (LCER)

Q-Learn

PPO (LCER)

Discrete Actions Cont. Actions

ϕ = FG

0 2.5 5 7.5 10

PPO

Q-Learn (LCER)

Q-Learn

PPO (LCER)

0 5 10 15 20 25

Discrete Actions Cont. Actions

ϕ = GF ( x &XF y ) & G¬r
Carlo

0

.4

.6

Training Steps (x1000)

1 2

1 2

.2

PPO
PPO (LCER)

20

0

40

60

80

0 2 4 6 8 10
Training Steps (x10000)

Q-Learn (LCER)
Q-Learn

Pacman
ϕ = F ( ) & G¬

Get the food, avoid the ghost

Figure 2. Results. Each column is an environment and a LTL formula we’d like an agent to satisfy. The environment and a trajectory from
the final policy is illustrated in the center of the column (except for Pacman, which is the initial state). The learning curves at the bottom
of each column show that adding off-policy data using LCER has strong benefits for empirical performance. First Column: Minecraft,
where an agent should visit the yellow and blue areas while avoiding the red. The final policy is illustrated via blue dots. Second Column:
Pacman, where an agent should collect the food while avoiding a ghost. Third Column: Flatword, where an agent should eventually
stabilize in the yellow region. When the actions are discrete we use Q-learning, when the actions are continuous we use PPO. Fourth
Column: Same as the third column except an agent should oscillate between the yellow and red regions while avoiding the blue. Fifth
Column: Carlo, where an agent should drive in a circle without crashing by visiting the blue regions labelled 1 and 2 infinitely often.

order to accomplish a task. By replacing the LDBA state of
the agent with some other dream LDBA state, we are allow-
ing the agent to “pretend” that it has already accomplished
some portion of the task.

As an example, consider the Flatworld example in Figure
2 with φ = GF (y & XF (r)) & (G¬b). A baseline agent
(without LCER) would need to accomplish the entirety of
the task in order to see any reward. However, an agent with
counterfacual data, need only visit y from state 0 of the
LDBA (see figure 1 for the LDBA). Then once the agent is
really good at getting to y, it needs to learn how to reach
r from state 2. After both of these tasks are accomplished,
independently, the agent has solved the whole task. By
placing the agent in state 0 of the LDBA, we are effectively
letting the agent pretend that it has already visited r. In this
sense, part of the task has been accomplished.

Limitations of LCER LCER can generate data outside
of the “reachable” set of state-action pairs (when starting
from the initial distribution). If all of the data generated
by LCER is outside the reachable set, then LCER does not
contribute meaningful off-policy experience. For a con-
crete example, consider the task “A then B then C” (e.g.
“A&XF (B&XFC))”). Suppose the MDP is such that C
can only be reached once B was reached which can only be
reached once A was reached. Then the task and MDP are
aligned in a worst-case way where any experience generated
by swapping buchi states in the trajectories is technically
outside of the “reachable” space.

We want to generate many trajectories containing some

accepting state b∗, since these trajectories provide reward
signal. However, it is likely that most of the trajectories
generated by LCER contain no reward signal, imbalancing
the dataset for training. Practitioners should pay attention
to the data imbalance to avoid learning instability.

Finally, as the size of the product MDP increases, gen-
erating all possible trajectories using LCER may become
computationally challenging. One way of generating only
positive-signal trajectories would be to generate trajectories
“backwards”: set the buchi state at time t to bt = b∗ and
see which buchi state(s) bt−1 (if any) would have reached
bt under the taken action at−1. Then see which bt−2 would
have reached the states bt−1 under the taken action at−2,
etc. This procedure would generate all valid trajectories that
reached bt = b∗. Doing so for every t <= T would give all
“positive” signal trajectories. Further computational savings
due to knowledge of the connectedness of the LDBA can
be exploited. We leave these engineering optimizations to
future work.

7. Related Work
Finding LTL-satisfying policies. Among the attempts at
finding LTL-satisfying policies, Q-learning approaches have
been the primary method of choice when the dynamics are
unknown and Linear Programming methods when the dy-
namics are known (Sadigh et al., 2014; Hasanbeig et al.,
2018; Bozkurt et al., 2020; Cai et al., 2021b; Ding et al.,
2014). The Q-learning approaches are predominantly con-
strained to finite state-action spaces. Among the works that

8



Eventual Discounting Temporal Logic Counterfactual Experience Replay

extend to continuous action spaces (Hasanbeig et al., 2020),
DDPG is used and takes the form of hierarchical RL which
is known to potentially find myopic policies (Toro Icarte
et al., 2022).

Handling a subset of LTL specifications involving those
expressible as finite expressions can also be addressed with
Reward machines (Toro Icarte et al., 2022; Camacho et al.,
2019; Vaezipoor et al., 2021). Our work handles ω-regular
expressions, subsuming regular expressions. Many prob-
lems are ω-regular problems, but not regular, such as live-
ness (something good will happen eventually) and safety
(nothing bad will happen forever).

On the formulation in Eq (3). Notable prior work on defin-
ing the value function as a function of the number of visits to
SB and a state-dependent Γi function include Bozkurt et al.
(2020); Cai et al. (2021a). Most notably, these authors use
multiple different state-dependent discount rates that have
a complicated relationships between them that needs to be
satisfied in the limit as γ → 1−. Our work drastically sim-
plifies this, getting rid of the technical assumptions, while
strengthening the guarantees. This allows us to find a non-
asymptotic dependence on the suboptimality of a policies’
probability of LTL satisfaction as a function of γ.

Off-policy data. One may view the counterfactual samples
in Toro Icarte et al. (2022) as an instantiation of LCER,
limited to finite LTL expressions and discrete action spaces.
Extension to continuous action space and full LTL requires
a careful treatment. In the continuous action and full LTL
setting, (Wang et al., 2020) incorporate starting the agent
from a different initial LDBA state (than b−1) which is still
on-policy but from a different starting state and doesn’t take
advantage of the entire LDBA structure. This work can be
seen as complimentary to our own.

Theory. Works with strong theoretical guarantees on policy
satisfaction include Fu & Topcu (2014); Wolff et al. (2012);
Voloshin et al. (2022) but are once again limited to discrete
state/action spaces. Extensions of these work to continuous
state space is not trivial as they make heavy use of the
discrete Markov chain structure afforded to them.

8. Discussion
Our work, to the best of our knowledge, is the first to make
full use of the LDBA as a form of experience replay and first
to use policy gradient to learn LTL-satisfying policies. Our
eventual discounting formulation is unrestricted to Finitary
fragments of LTL like most prior work.

Despite the guarantees afforded to us by eventual discount-
ing, in general the problem given in Eq (2) is not PAC
learnable (Yang et al., 2022). Though, like SAT solvers, it is
still useful to find reasonable heuristics to problems that are

difficult. We show that under particular circumstances, even-
tual discounting gives a signal on the quantity of interest in
(2) and even when it fails, it selects a policy that is difficult
to differentiate from a successful one. Further, the bad news
discussed in Section 4.2 we speculate is unavoidable in gen-
eral LTL specifications, without significant assumptions on
the MDP. For example, for stability problems in LTL and
assuming control-affine dynamics then Lyapunov functions
can serve as certificates for a policies’ LTL satisfaction. A
reasonable relaxation to this would be require a system to
behave a certain way for a long, but finite amount of time.

Acknowledgements. Cameron Voloshin is funded partly by an
NSF Graduate Research Fellowship. This work is also supported
in part by NSF #1918865, ONR #N00014-20-1-2115, and NSF
#2033851.

9



Eventual Discounting Temporal Logic Counterfactual Experience Replay

References
Abel, D., Dabney, W., Harutyunyan, A., Ho, M. K.,

Littman, M., Precup, D., and Singh, S. On
the expressivity of markov reward. In Ad-
vances in Neural Information Processing Sys-
tems, 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
4079016d940210b4ae9ae7d41c4a2065-Paper.
pdf.

Baier, C. and Katoen, J.-P. Principles of model checking.
The MIT Press, Cambridge, Mass, 2008. ISBN 978-0-
262-02649-9.

Bozkurt, A. K., Wang, Y., Zavlanos, M. M., and Pa-
jic, M. Control synthesis from linear temporal logic
specifications using model-free reinforcement learning.
In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 10349–10355, 2020. doi:
10.1109/ICRA40945.2020.9196796.

Cai, M., Hasanbeig, M., Xiao, S., Abate, A., and Kan,
Z. Modular deep reinforcement learning for continuous
motion planning with temporal logic. IEEE Robotics and
Automation Letters, 6(4):7973–7980, 2021a.

Cai, M., Xiao, S., Li, Z., and Kan, Z. Optimal probabilistic
motion planning with potential infeasible ltl constraints.
IEEE Transactions on Automatic Control, pp. 1–1, 2021b.
doi: 10.1109/TAC.2021.3138704.

Camacho, A., Toro Icarte, R., Klassen, T. Q., Valenzano,
R., and McIlraith, S. A. Ltl and beyond: Formal lan-
guages for reward function specification in reinforce-
ment learning. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-19, pp. 6065–6073. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/840. URL https://doi.org/
10.24963/ijcai.2019/840.

Ding, X., Smith, S. L., Belta, C., and Rus, D. Optimal
control of markov decision processes with linear tempo-
ral logic constraints. IEEE Transactions on Automatic
Control, 59(5):1244–1257, May 2014. ISSN 0018-9286,
1558-2523. doi: 10.1109/TAC.2014.2298143.

Fu, J. and Topcu, U. Probably approximately cor-
rect MDP learning and control with temporal logic
constraints. In Fox, D., Kavraki, L. E., and Kur-
niawati, H. (eds.), Robotics: Science and Systems
X, University of California, Berkeley, USA, July
12-16, 2014, 2014. doi: 10.15607/RSS.2014.X.
039. URL http://www.roboticsproceedings.
org/rss10/p39.html.

Hahn, E. M., Li, G., Schewe, S., Turrini, A., and Zhang, L.
Lazy probabilistic model checking without determinisa-
tion. arXiv preprint arXiv:1311.2928, 2013.

Hasanbeig, M., Abate, A., and Kroening, D. Logically-
constrained reinforcement learning, 2018. URL https:
//arxiv.org/abs/1801.08099.

Hasanbeig, M., Kroening, D., and Abate, A. Deep rein-
forcement learning with temporal logics. In International
Conference on Formal Modeling and Analysis of Timed
Systems, pp. 1–22. Springer, 2020.

Hasselt, H. v., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, pp. 2094–2100. AAAI Press, 2016.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences and
demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Křetı́nskỳ, J., Meggendorfer, T., and Sickert, S. Owl: a
library for ω-words, automata, and ltl. In International
Symposium on Automated Technology for Verification and
Analysis, pp. 543–550. Springer, 2018.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8:293–321, 1992.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

10

https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4079016d940210b4ae9ae7d41c4a2065-Paper.pdf
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840
http://www.roboticsproceedings.org/rss10/p39.html
http://www.roboticsproceedings.org/rss10/p39.html
https://arxiv.org/abs/1801.08099
https://arxiv.org/abs/1801.08099
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Eventual Discounting Temporal Logic Counterfactual Experience Replay

Randløv, J. and Alstrøm, P. Learning to drive a bicycle using
reinforcement learning and shaping. In ICML, 1998.

Sadigh, D., Kim, E. S., Coogan, S., Sastry, S. S., and Seshia,
S. A. A learning based approach to control synthesis
of markov decision processes for linear temporal logic
specifications. In 53rd IEEE Conference on Decision and
Control, pp. 1091–1096, 2014. doi: 10.1109/CDC.2014.
7039527.

Sickert, S., Esparza, J., Jaax, S., and Křetı́nský, J. Limit-
deterministic büchi automata for linear temporal logic.
In Chaudhuri, S. and Farzan, A. (eds.), Computer Aided
Verification, pp. 312–332, Cham, 2016. Springer Interna-
tional Publishing. ISBN 978-3-319-41540-6.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward
is enough. Artificial Intelligence, 299:103535, 2021.

Sorg, J. The Optimal Reward Problem: Designing Effective
Reward for Bounded Agents. PhD thesis, University of
Michigan, USA, 2011. URL https://hdl.handle.
net/2027.42/89705.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Toro Icarte, R., Klassen, T. Q., Valenzano, R., and McIlraith,
S. A. Reward machines: Exploiting reward function
structure in reinforcement learning. J. Artif. Int. Res.,
73, may 2022. ISSN 1076-9757. doi: 10.1613/jair.1.
12440. URL https://doi.org/10.1613/jair.
1.12440.

Toromanoff, M., Wirbel, E., and Moutarde, F. Is deep rein-
forcement learning really superhuman on atari? leveling
the playing field. arXiv preprint arXiv:1908.04683, 2019.

Vaezipoor, P., Li, A. C., Icarte, R. T., and McIlraith, S. A.
Ltl2action: Generalizing LTL instructions for multi-task
RL. In Proceedings of the 38th International Conference
on Machine Learning, ICML, volume 139 of Proceedings
of Machine Learning Research, pp. 10497–10508, 2021.
URL http://proceedings.mlr.press/v139/
vaezipoor21a.html.

Voloshin, C., Le, H. M., Chaudhuri, S., and Yue, Y. Pol-
icy optimization with linear temporal logic constraints.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=yZcPRIZEwOG.

Wang, C., Li, Y., Smith, S. L., and Liu, J. Continuous
motion planning with temporal logic specifications using
deep neural networks, 2020. URL https://arxiv.
org/abs/2004.02610.

Wolff, E. M., Topcu, U., and Murray, R. M. Robust control
of uncertain markov decision processes with temporal
logic specifications. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pp. 3372–3379, 2012.
doi: 10.1109/CDC.2012.6426174.

Yang, C., Littman, M. L., and Carbin, M. On the
(in)tractability of reinforcement learning for ltl objec-
tives. In Raedt, L. D. (ed.), Proceedings of the Thirty-
First International Joint Conference on Artificial Intel-
ligence, IJCAI-22, pp. 3650–3658. International Joint
Conferences on Artificial Intelligence Organization, 7
2022. doi: 10.24963/ijcai.2022/507. URL https:
//doi.org/10.24963/ijcai.2022/507. Main
Track.

Zhang, B., Rajan, R., Pineda, L., Lambert, N., Biedenkapp,
A., Chua, K., Hutter, F., and Calandra, R. On the impor-
tance of hyperparameter optimization for model-based
reinforcement learning. In International Conference on
Artificial Intelligence and Statistics, 2021.

11

https://hdl.handle.net/2027.42/89705
https://hdl.handle.net/2027.42/89705
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1613/jair.1.12440
http://proceedings.mlr.press/v139/vaezipoor21a.html
http://proceedings.mlr.press/v139/vaezipoor21a.html
https://openreview.net/forum?id=yZcPRIZEwOG
https://openreview.net/forum?id=yZcPRIZEwOG
https://arxiv.org/abs/2004.02610
https://arxiv.org/abs/2004.02610
https://doi.org/10.24963/ijcai.2022/507
https://doi.org/10.24963/ijcai.2022/507


Eventual Discounting Temporal Logic Counterfactual Experience Replay

A. Experiments
A.1. Environment Details

The environment and experiment details are summarized in Table 1.

Table 1. Environment Details
Environment Experiment SM AM Dynamics LTL Formula

Minecraft Q-learning Discrete Discrete Deterministic GF (y & XF (b)) & (G¬r)
Pacman Q-learning Discrete Discrete Stochastic F (food) & (G¬ghost)
Flatworld 1 Q-learning R2 Discrete Deterministic FGy
Flatworld 2 Q-learning R2 Discrete Deterministic GF (y & XF (r)) & (G¬b)
Flatworld 3 PPO R2 [0, 1]2 Deterministic FGy
Flatworld 4 PPO R2 [0, 1]2 Deterministic GF (y & XF (r)) & (G¬b)
Carlo PPO R5 [−1, 1]2 Deterministic GF (zone1 & XF (zone2)) & (G¬crash)

A.2. Experiment Setup

Each experiment is run with 10 random seeds. Results from Figure 2 are from an average over the seeds.

Q-learning experiments. Let k be the greatest number of jump transitions available in some LDBA state k =
maxb∈SB |AB(b)|. Let m = maxs∈SM |AM(s)|. The neural network Qθ(s) takes as input s ∈ SM and outputs
R(m+k)×|SB| a (m+ k)-dim vector for each b ∈ SB. For our purposes, we consider Qθ(s, b) to be the single (m+ k)-dim
vector cooresponding to the particular current state of the LDBA b.

When SM is discrete then we parametrize Qθ(s, b) as a table. Otherwise, Qθ(s, b) is parameterized by 3 linear layers with
hidden dimension 128 with intermediary ReLU activations and no final activation. After masking for how many jump
transitions exist in b, we can select argmaxi∈[0,...,|AB(b)|] Qθ(s, b)i the highest Q-value with probability 1− η and uniform
with η probability. Here, η is initialized to η0 and decays linearly (or exponentially) at some specified frequency (see Table
2).

At each episode (after a rollout of length T ), we perform K gradient steps with different batches of size given in Table 3.
We use Adam optimizer (Kingma & Ba, 2015) with a learning rate also specified by the table.

When in a continuous state space, we implement DDQN (Hasselt et al., 2016) (rather than DQN) with a target network that
gets updated at some frequency specified by Table 3.

Table 2. Hyperparameters for Q-learning experiments (Discrete Action Space)
η η Decay

Experiment η0 Min η Type Rate Freq Batch size K (# batches) LR Target update T γ

Minecraft .3 0 Exponential .9 100 128 20 - - 100 .99
Pacman .4 0 Linear .05 400 512 200 - - 100 .999
Flatworld 1 .8 .15 Exponential .9 100 128 5 .001 15 20 .95
Flatworld 2 .8 .15 Exponential .9 100 128 5 .001 15 50 .95

PPO experiments. Let k be the greatest number of jump transitions available in some LDBA state k = maxb∈SB |AB(b)|.
The neural network fθ(s) takes as input s ∈ SM and outputs R(k+2)×|SB| is a (k + 2)-dim vector for each b ∈ SB. For our
purposes, we consider fθ(s, b) to be the single (k+ 2)-dim vector cooresponding to the particular current state of the LDBA
b.

fθ(s, b) is parameterized by 3 linear layers with hidden dimension 64 with intermediary ReLU activations. The first
dimension corresponds to sampling a Gaussian action a ∼ N (fθ(s, b)[0], diag(σ2)) where σ is initialized to σ0 (see Table
3) and decays exponentially (at a rate given in the table) every 10 episodes. The remaining k + 1 dimensions (after proper
masking to account for the size of |AB(b)| and softmax) represent the probability p = [pa, pϵ0 , . . . , pϵk ] of taking either
the MDP action a or a some jump transition ϵi. We sample from a Categorical(p) variable to select whether to return

12



Eventual Discounting Temporal Logic Counterfactual Experience Replay

a ∼ N (Tanh(fθ(s, b)[0]), diag(σ2)) or a = ϵi for some i. The density can be calculated by multiplying pa by the Gaussian
density when a is selected, and pϵi otherwise.

For the critic, we have a parametrized network fϕ(s, b)→ R of 3 linear layers with hidden dimension 64 with intermediary
Tanh activations and no final activation.

At each episode (after a rollout of length T ), we perform 5 gradient steps with different batches of size given in Table 3. The
importance sampling term in PPO is clipped to 1± .4. The critic learning rate is .01. We use Adam optimizer (Kingma &
Ba, 2015) for both the actor and critic.

Table 3. Hyperparameters for PPO experiments (Continuous Action Space)
Experiment σ0 σ Decay Rate Min σ Batch size LR Actor T

Flatworld 3 1.8 .98 .3 128 .001 20
Flatworld 4 1.8 .99 .1 128 .001 50
Carlo .5 .999 .3 16 .0001 500

13



Eventual Discounting Temporal Logic Counterfactual Experience Replay

B. Constructing feasible trajectories for policy gradient during rollout
Suppose we wanted to generate feasible trajectories in realtime while the policy is being rolled out. That is, we have a partial
trajectory of the form τt = (s0, b0, a0, . . . , st, bt) generated by running π in P . Let at = a ∈ A be the t-th action taken by
π and st+1 = s′ ∈M be the next observed state observed in the MDP.

Let Tt be the current set of feasible (partial) trajectories at timestep t. Elements τk = (s0, b0, a0, . . . , sk, bk) ∈ Tt denote
k-step (partial) trajectory, not necessarily part of the trajectory observed during the course of a rollout of π. Here, k ≥ t.
Then, for each τk ∈ Tt, one of 4 cases holds:

Case 1. Action a is not a jump transition (ie. a ∈ AM(sk)) and there are no jump transitions available in bk (AB(bk) = ∅).
Then we can form the concatenation: τk+1 = τk ∪ (a, s′, bk+1) where bk+1 = PB(bk, L

M(s′)). We set Tϵ = ∅.

Case 2. Action a is a jump transition and is currently feasible in bk (ie. a ∈ AM(bk)). Then we can form the concatenation
τk+1 = τk ∪ (a, s′, bk+1) where bk+1 = PB(bk, a). We set Tϵ = ∅.

Case 3. Action a is a not a jump transition (ie. a ∈ AM(sk)), but there is at least one feasible jump transition in bk (ie.
AB(bk) ̸= ∅). Then, in addition to forming τk+1 from Case 1, we have all the possible jumps:

Tϵ = {τk ∪ (ϵ, sk, bk+1, a, s
′, bk+2)|∀ϵ ∈ AB(bk), bk+1 = PB(bk, ϵ), bk+2 = PB(bk+1, at)}

Case 4. Action a is a jump transition is infeasible in bk (ie. a ̸∈ AB(bk)). In this case, we just pass this trajectory. Setting
τk+1 = τk and Tϵ = ∅.

At the end of iterating over each element of τk ∈ Tt and forming τk+1 and Tϵ, we can update our current set of feasible
trajectories:

Tt+1 = ∪τk∈Tt

(
(Tt \ {τk}) ∪ {τk+1} ∪ Tϵ

)
(19)

To put this process simply, we are swapping out τk for τk+1 and also adding in any jump transitions if they are available.
The algorithm can be seen in Algo 4.

Algorithm 4 LCER for Policy Gradient (Option 2)
Param: Dataset D. Trajectory τ of length T .

1: Set T0 ← {(s0, b)|b ∈ B}
2: for (st, at, st+1) ∈ τ do
3: Form Tt according to Eq (19)
4: end for
5: Set D ← D ∪ TT
6: return D

14


