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Abstract

Randomized smoothing is a popular method to
certify robustness of image classifiers to adver-
sarial input perturbations. It is the only certifica-
tion technique which scales directly to datasets
of higher dimension such as ImageNet. How-
ever, current techniques are not able to utilize
the fact that any adversarial example has to lie
in the image space, that is [0, 1]d; otherwise, one
can trivially detect it. To address this suboptimal-
ity, we derive new certification formulae which
lead to significant improvements in the certified
ℓ1-robustness without the need of adapting the
classifiers or change of smoothing distributions.
Code is released at https://github.com/
vvoracek/L1-smoothing.

1. Introduction
While neural networks have demonstrated excellent perfor-
mance in a variety of tasks, they are susceptible to small
(adversarial) changes of the input (Szegedy et al., 2014; Big-
gio et al.). Such behaviour is undesired, especially in the
safety-critical applications. To mitigate the issue, initially
the focus was on constructing empirically robust classifiers,
and then check how the resulting model performs against
adversarial attacks. However, such an approach only gives
an upper bound on the actual robustness of the classifier and
many initially considered promising methods later turned
out to be broken (Athalye et al., 2018; Carlini et al., 2019;
Tramer et al., 2020) due to stronger attacks. The only seem-
ingly working method that does not produce any guarantees
is adversarial training (Madry et al., 2018); but more power-
ful attacks show that the empirical robustness of classifiers
is lower than originally claimed (Croce & Hein, 2020; Lin
et al., 2022).
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Figure 1: Certified ℓ1 robust accuracies for CIFAR-10
dataset via randomized smoothing for three different types
of noise. The curves uniform++ and split++ use the same
networks and noise as uniform and split respectively, how-
ever, with the proposed improved certification we are able to
significantly increase the certified robustness. The reported
curves are pointwise maxima of robustness curves with dif-
ferent noise magnitudes.

Thus, an alternative approach is to certify robustness. Here,
we are no longer interested in whether we can find (or fail to
find) an adversarial example in the neighbourhood (called
threat model), but rather focus on whether we can prove (or
fail to prove) that there is no adversarial example. These
methods roughly fall into three (arguably overlapping) cate-
gories:

• Propagate a “nice” set containing the threat model through
the network; see, e.g., (Gowal et al., 2018; Wong et al.,
2018).

• Force the Lipschitz constant of a model to be small; see,
e.g., (Leino et al., 2021; Trockman & Kolter, 2021; Singla
et al., 2022; Zhang et al., 2022a).

• Randomized smoothing; see, e.g., (Lecuyer et al., 2019;
Cohen et al., 2019; Salman et al., 2019; Yang et al., 2020).

The two approaches discussed yielded either an upper bound
(empirical robustness) or a lower bound (certified robust-
ness) respectively on the actual adversarial robustness and in
general, there are points for which the certification methods
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cannot prove that they are robust, nor the attack is able to
find an adversarial example. Although this property is unde-
sirable, it is also inevitable in practice because the problem
of finding adversarial examples even in ReLU networks is
in NP-Complete (Katz et al., 2017). Therefore, determining
the true robustness of a model is only possible for very small
networks (Tjeng & Tedrake, 2017) and simple classifiers
such as linear models, boosted decision stumps (Kantchelian
et al., 2016) , or nearest neighbour (resp. prototype) classi-
fiers (Wang et al., 2019; Saralajew et al., 2020; Voráček &
Hein, 2022). Nevertheless, there is a line of work aiming at
finding the actual robustness, or at least tightening the gap
between the certifiable lower and upper bounds; see (Zhang
et al., 2018; 2022b).

We discuss shortly the choice of the threat model. It is
the perturbation set with respect to which we want to be
robust. The common choices are the ℓp balls centered at
the input points. While the choice of a threat model is al-
ways somewhat arbitrary, if it is not directly motivated by
an application, the attacks (and defenses) to many interest-
ing threat models strongly rely on techniques developed for
the ℓp threat models for both empirical and certified robust-
ness; see (Laidlaw et al., 2021; Voráček & Hein, 2022) for a
perceptual metric threat model; (Wong et al., 2019; Levine
& Feizi, 2020) for the Wasserstein distance threat model;
(Brown et al., 2017; Metzen & Yatsura, 2021; Salman et al.,
2022) for a patch threat model, in which the attacker is al-
lowed to arbitrarily set the pixel values in a small patch. The
choice of using different ℓp norms as threat models leads to
qualitatively different adversarial perturbations. For exam-
ple, when applying the ℓ∞-threat model with a sufficiently
small radius, the changes are typically imperceptible but
affect every pixel. On the other hand, the ℓ1-threat model al-
lows for potentially significant changes in individual pixels,
although limited to only a few of them. Instead of a given
threat model, that is fixing the perturbation budget, one can
also ask for the largest radius of a ball in a given norm in
which the classifier does not change - the so called robust
radius.

Definition 1.1. A classifier f : Rd → {0, 1} is said to be
robust at x with respect to a norm ∥·∥ with robust radius r
if ∥x− y∥ ≤ r =⇒ f(x) = f(y) for every y ∈ [0, 1]d.

The certified radii and perturbation magnitudes typically
considered in empirical robustness for the ℓ∞-norm are very
similar. However, for the ℓ1-norm, there is a significant
difference in the radii considered between certified robust-
ness and empirical defenses. For example, on ImageNet,
radii around 4 are considered for certified robustness, while
empirical defenses consider radii ranging from 60 to 255
(Croce & Hein, 2022; 2021). This suggests that there exists
a gap between what can be certifiably attained and what
appears to be empirically achievable for the ℓ1-norm.

On the other hand it has been argued by Croce & Hein
(2021) that ℓ1-attacks are much more difficult and prone
to fail compared to ℓ∞-attacks and thus it could also be an
overestimation problem. They conclude that the intersection
of the image domain [0, 1]d and the ℓ1-ball as the effective
threat model has a quite different geometry than an ℓ1-ball
and construct their attack accordingly. Thus, our motivation
is to consider the box-constraints even in the context of
certification.

Contributions: In previous work of Levine & Feizi (2021)
and Yang et al. (2020) on certified ℓ1-robustness using ran-
domized smoothing, it has been assumed that the input do-
main is Rd, even though the techniques are mainly applied
to image classifiers, where the domain is [0, 1]d. We show
in this paper that taking into account the box constraints of
the image domain [0, 1]d can be used to certify significantly
larger ℓ1-balls than previous work. Our main result is based
on the fact that the volume of the overlap of two ℓ∞-balls
when the centers of the balls are restricted to [0, 1]d behaves
quite different from the unconstrained case which leads to
an improved control of the smoothed classifier yielding the
better guarantees. Our technique can be applied when the
smoothing distribution is uniform Yang et al. (2020) as well
as for the Splitting Noise of (Levine & Feizi, 2021). We
also discuss an improved control of the failure probability
as well the better scaling of the ℓ1-certificates in the failure
probability compared to ℓ2 and ℓ∞. Finally, we show in the
experiments that our improved technique allows to certify
much larger ℓ1-radii than previous work.

1.1. Notation

Real interval between a, b is denoted [a, b]. We use Iverson
brackets JstatementK which is the indicator function of the
set for which the statement is true. The floor function, ⌊x⌋
stands for the maximal integer no larger than x:

⌊x⌋ = max{m ∈ Z | m ≤ x}.

The ℓp-ball with radius λ centered at x ∈ Rd is denoted as

Bp(x, λ) = {z ∈ Rd | ∥z − x∥p ≤ λ}.

The uniform distribution on B∞(0, λ) in d dimensions is
denoted Ud(λ). Volume of a set A is denoted as V ol(A).
A one hot vector with 1 at position i is denoted ei and its
dimension will be clear from the context. When the meaning
is clear from context, we use f as a base classifier, q as a
smoothing distribution, h as a smoothed classifier of f and
H as the thresholded version of h as in Equation (1) and (2).
Number of samples is denoted by n and the dimension is d.

2. Randomized smoothing
For the simplicity of exposure, we introduce randomized
smoothing for the case of binary classification and discuss
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the multiclass setting in Section 2.4. We start by treating
the mathematical foundations of randomized smoothing and
postpone the discussion on the algorithmic implementation
to Section 2.5. We will also certify class 1 and the certifica-
tion of class 0 is symmetric.

2.1. Mathematics of Randomized Smoothing

Randomized smoothing (Lecuyer et al., 2019) is a method
that takes an arbitrary binary classifier f : Rd → [0, 1]
and a noise distribution q supported on Rd; it produces a
smoothed version h of the original classifier f :

h(x) = E
ε∼q

f(x+ ε). (1)

For the thresholded classifier H defined as

H(x) = Jh(x) > 0.5K (2)

we can certify adversarial robustness.

The intuition behind this is as follows: If the distribution q
exhibits certain desirable characteristics (such as having a
small total variation distance with its slightly shifted copy),
for example, if it represents a uniform distribution within
a hypercube with a radius larger than ∥δ∥1 for some δ ∈
Rd, then h(x) and h(x + δ) are both expectations of the
same function under almost the same distribution; thus they
should be similar. Therefore, if h(x) ≈ 1, then also h(x+
δ) > 0.5 We formalize this intuition later in Proposition 2.1
for the case of ℓ1 distance.

In (Yang et al., 2020), it has been argued and supported by
both theoretical and experimental evidence that the optimal
smoothing distribution for ℓ1-robustness should have cubic
superlevel sets. That is, a smoothing distribution with den-
sity q should satisfy that the set Ut = {x ∈ Rd | q(x) ≥ t}
is a hypercube for every t. In that case, we can express
q(x) as an (uncountable) mixture of uniform distributions
supported in ℓ∞-balls of specific radii and our proposed
method can still be applied.

Proposition 2.1. Let f : Rd → [0, 1] and

h(x) = E
ε∼Ud(λ)

f(x+ ε).

Let B1 and B2 be the ℓ∞-balls with radius λ centered at
x, y respectively, then

h(y) ≥ h(x)− 1 +
V ol(B1 ∩B2)

V ol(B2)
.

Proof.

h(y) =

∫
t∈B2

f(t)dt

V ol(B2)
≥
∫
t∈B1∩B2

f(t)dt

V ol(B2)

=

∫
t∈B1

f(t)dt−
∫
t∈B1\B2

f(t)dt

V ol(B2)

≥
∫
t∈B1

f(t)dt− V ol(B1 \B2)

V ol(B2)

= h(x)− 1 +
V ol(B1 ∩B2)

V ol(B2)
,

using V ol(B1 \ B2) = V ol(B2) − V ol(B1 ∩ B2) and
V ol(B1) = V ol(B2).

It remains to find a lower bound on the volume of intersec-
tion of two ℓ∞-balls. For now, we present a simple bound
and will return to a proper treatment later in Proposition 2.5
and Theorem 2.8.
Proposition 2.2. Let B1, B2 be ℓ∞-balls with radii λ cen-
tered at x, y ∈ Rd respectively; then

V ol(B1 ∩B2)

V ol(B1)
≥ 1−

∥x− y∥1
2λ

.

Proof. The proof can be found in Appendix A.1.

Now we have developed the intuition and tools, we are ready
to state the foundational theorem of ℓ1 robustness.
Theorem 2.3. (Lee et al., 2019) Let f : Rd → [0, 1] be
a deterministic or random classifier. Then the smoothed
classifier defined as:

h(x) = E
ε∼Ud(λ)

[f(x+ ε)]

is 1/(2λ)-Lipschitz with respect to ℓ1-norm.

Proof. Plugging the bound from Proposition 2.2 into
Proposition 2.1 yields h(y) − h(x) ≤ ∥x− y∥1 /(2λ)
for all x, y ∈ Rd, thus it holds that |h(y)− h(x)| ≤
1/(2λ) ∥x− y∥1

Theorem 2.3 allows us to directly compute the radius λ of
the ℓ1 ball B1(x, λ) such that it is classified by classifier H
with the same label as H(x).
Corollary 2.4 (of Theorem 2.3). Let h be a smoothed clas-
sifier as in Theorem 2.3. Then H (thresholding h at 0.5) is
robust (for class 1) at x with certified radius

r(x) = 2λ(h(x)− 1/2).

Proof. Using h(y) ≥ h(x) − ∥x−y∥1

2λ > 1
2 from Theo-

rem 2.3 and solving for ∥x− y∥1 yields the result.
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2.2. Box Constraints

In the case of ℓ1-robustness, the most successful methods
use the uniform distribution in an ℓ∞-ball as smoothing dis-
tribution. Thus, we focus on this case first and discuss the
others later. In Proposition 2.1 we have established that the
overlap of supports of the smoothing distributions is a cru-
cial factor for the robustness certification. In the upcoming
proposition, we show that considering box-constraints gives
us a tighter upper bound on the minimal possible overlap.
Proposition 2.5. Let B1, B2 be the ℓ∞ balls with radii λ
centered at x, y ∈ [0, 1]d; then

V ol(B1 ∩B2)

V ol(B1)
≥(

1− 1

2λ

)⌊∥x−y∥1⌋(
1−
∥x− y∥1 − ⌊∥x− y∥1⌋

2λ

)
≥
(
1− 1

2λ

)∥x−y∥1

.

The very last inequality holds when 2λ ≥ 1. Both of the
inequalities are attainable.

Proof. The proof can be found in Appendix A.2.

The aim was to provide simple expressions in Proposi-
tion 2.5 so that we can express the certified radius in a
closed form. Specifically, we can plug the result from Propo-
sition 2.5 into Proposition 2.1, resulting in Theorem 2.6 and
Corollary 2.7. In Figure 2, we can see the improvement
achieved compared to the certificates based on Proposi-
tions 2.2 and 2.1 resulting in Corollary 2.4.
Theorem 2.6. Let f : Rd → [0, 1] be a deterministic or
random classifier. Then the smoothed classifier is defined
as:

h(x) = E
ε∼Ud(λ)

[f(x+ ε)] .

Then for x, y ∈ [0, 1]d it holds that

|h(x)− h(y)| ≤ 1−
(
1− 1

2λ

)∥x−y∥1

.

Proof. Plugging the bound from Proposition 2.5 into Propo-
sition 2.1.

Corollary 2.7 (of Theorem 2.6). Let h be a smoothed clas-
sifier as in Theorem 2.6. Then H (thresholding h at 0.5) is
robust (for class 1) at x with certified radius

r(x) =
ln(1.5− h(x))

ln(1− 1
2λ )

.

Proof. Using h(x)− 1
2 ≤ 1−

(
1− 1

2λ

)∥x−y∥1 from Theo-
rem 2.6 and solving for ∥x− y∥1 yields the result.
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Figure 2: Conversion of top class probability of a smoothed
classifier to the ℓ1 certifiable robust radius for different noise
magnitudes λ used for smoothing. The dashed lines are via
Corollary 2.4 and the solid ones are via our Corollary 2.7.

We can further utilize the fact that the maximal possible dif-
ference between a potential adversarial example and the orig-
inal image x at position i is at most di = max{xi, 1− xi}.
In Proposition 2.5, we used an upper bound of di ≤ 1. How-
ever, the following theorem establishes that for an image
x ∈ [0, 1]d, we can find an image y ∈ [0, 1]d that mini-
mizes the intersection of B∞(x, λ) and B∞(y, λ) under the
constraint ∥x− y∥1 ≤ c through a greedy coordinate-wise
minimization approach. The improvements in certification
are demonstrated in Example 2.9 and Figure 3.
Theorem 2.8. Let x ∈ [0, 1]d. Let σi be an ordering in-
duced by how far is xi from boundary. That is:

i ≤ j =⇒ min(xσi , 1− xσi) ≤ min(xσj , 1− xσj ).

Then for any c > 0 such that there exists y ∈ [0, 1]d with
∥x− y∥1 = c it holds that

inf
y∈[0,1]d∩B1(x,c)

V ol(B∞(x, λ) ∩ B∞(y, λ))

V ol(B∞(x, λ))

=

(
T∏

i=1

(
1− max{xσi , 1− xσi}

2λ

))(
1− U

2λ

)
where

T = max
k∈N

s.t.
i=k∑
i=1

max(xσi
, 1− xσi

) ≤ c,

and

U = c−
i=T∑
i=1

max(xσi
, 1− xσi

).

Proof. The proof can be found in Appendix A.3

Theorem 2.8 is a clear generalization of Proposition 2.5
when we choose x = 0 in Theorem 2.8. Similarly, Proposi-
tion 2.2 can be seen as another corollary with a minor effort.
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Figure 3: Effect of box constraints on the minimal overlap
of two ℓ∞ balls. The green point is at (0.4, 0.6) while the
orange one is at a distance 0.8 in ℓ1-norm. On the left is
depicted the minimal possible overlap considering box con-
straints (cf. Theorem 2.8), while on the right is the minimal
possible overlap without considering box constraints (cf.
Proposition 2.2). See Example 2.9 for further discussion.

Therefore, the proofs involve subtle variations of the same
underlying idea.

Theorem 2.8 can be used for certification with Proposi-
tion 2.1. The certified radius cannot be expressed in a closed
form but can be efficiently computed after sorting the coor-
dinates since the volume of the intersection is an increasing
piecewise-linear function of the robust radius.

Example 2.9. Consider a point x = (0.4, 0.6) and a smooth-
ing distribution uniform in B∞(0, 1), that is λ = 1. We want
to certify the thresholded version of h when h(x) = 0.88.
If we don’t consider the box constraints, we can only cer-
tify robust radius via Corollary 2.4: 2λ(0.88− 0.5) < 0.8.
However, if we consider the box constraints, we can certify
robust radius 0.8 via Proposition 2.1 and Theorem 2.8. This
is a consequence of the fact that the lower bound on the vol-
ume of intersections of two ℓ∞ balls in Proposition 2.2 (in
this case 0.6) is weaker than the (exact one) in Theorem 2.8
(in this case 0.63), see Figure 3 for the illustration.

2.3. Smoothing with Splitting Noise

An alternative ℓ1-certification method proposed by Levine
& Feizi (2021) uses a splitting noise. We show that if the
splitting noise is independent in every dimension, then our
certification from Corollary 2.7 can be directly applied here.
For the simplicity, we introduce only the splitting noise with
λ ≥ 0.5 since the general version is more complicated and
0 < λ < 0.5 can only be used to certify small radii; thus
we do not improve the certification for that case. The fun-
damental concept behind the splitting noise is that, at every
coordinate, we have two options: either we add uniform
noise from the interval [0, 1], or we set the value at that
coordinate to 1. The strength of the noise λ determines the

frequency at which each of these procedures occurs.

Theorem 2.10 (Theorem 2 of Levine & Feizi (2021)). For
any f : Rd → [0, 1], and λ ≥ 0.5 let s ∈ [0, 2λ]d be
a random variable whose (not necessarily independent)
marginals follow the uniform distribution on [0, 2λ]. Then
define

x̃i(si) = min(si, 1) + Jxi > siK, ∀i
h(x) = E

s
[f(x̃(s))] .

Then, h(·) is (1/2λ)-Lipschitz with respect to the ℓ1-norm.

Let us take a closer look at the distribution x̃(s) for some
x ∈ [0, 1] and s uniformly drawn from interval [0, 2λ]. We
split the inspection in three cases:

1. With probability x/(2λ): s ≤ x, then s ≤ 1 and
x̃(s) = 1 + s.

2. With probability (1 − x)/(2λ): x ≤ s ≤ 1, then
x̃(s) = s.

3. With probability 1− 1/(2λ): 1 ≤ s, then x̃(s) = 1.

Thus, x̃(s) is a mixture of a uniform distribution on [x, 1+x]
and a constant random variable at 1 with respective mixture
coefficients 1/(2λ) and 1−1/(2λ) respectively. Thus, when
λ = 0.5, the splitting noise distribution and uniform dis-
tribution in B∞(x, λ) are equal. Given this observation, it
comes at no surprise that the techniques we used to improve
the certification in the case of uniform noise in B∞(x, λ),
resulting in Corollary 2.7, can be used also in the case of
splitting noise.

Theorem 2.11. Let the assumptions be as in Theorem 2.10
and additionally let the marginals of s be independent. Then
Proposition 2.1 holds when the uniform noise is replaced by
the splitting noise.

Proof. Take x, y ∈ Rd and a noise sample s ∈ Ud(λ). At
every position we have

x̃i(si) = min(si, 1) + Jxi > siK,

thus, in order to x̃i(si) ̸= ỹi(si), it has to be the case that

Jxi > siK ̸= Jyi > siK

which happens with probability |xi−yi|
2λ . Let R ⊂ [0, 2λ]d

such that for every s ∈ R we have x̃(s) = ỹ(s). The
probability that x̃(s) and ỹ(s) are equal is exactly

V ol(R)

(2λ)d
=

d∏
i=1

(
1− |xi − yi|

2λ

)
=

V ol(B∞(x, λ) ∩ B∞(y, λ))

V ol(B∞(x, λ))
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since s has independent marginals. Then we mimick the
proof of Proposition 2.1:

h(y) =

∫
s∈[0,2λ]d

f(ỹ(s))ds

(2λ)d
≥
∫
s∈R

f(ỹ(s))ds

(2λ)d

=

∫
s∈R

f(x̃(s))ds

(2λ)d

=

∫
s∈[0,2λ]d

f(x̃(s))ds−
∫
s∈[0,2λ]d\R f(x̃(s))ds

(2λ)d

≥ h(x)− (2λ)d − V ol(R)

(2λ)d

= h(x)− 1 +
V ol(B∞(x, λ) ∩ B∞(y, λ))

V ol(B∞(x, λ))
.

Theorem 2.11 shows that smoothing with both uniform and
splitting noise are captured by Proposition 2.1. Thus, the
certification methods from Corollaries 2.4 and 2.7 developed
for uniform noise can be also used for the splitting noise
and for the clarity, we will keep using uniform noise in the
discussions.

2.3.1. DETERMINISTIC SPLITTING NOISE

The splitting noise has another useful property. If the noise
in different coordinates is not independent, then we can
evaluate the expectation exactly using 2qλ evaluations of
the base classifier, where q here stands for the number of
quantization levels which is commonly 256. We refer the
reader to Levine & Feizi (2021) for the details. This has
two benefits; one, the provided certificates are deterministic
and second, they are faster to compute - although this is not
inherent. We can use less samples to estimate the expecta-
tion of the base classifier under the smoothing noise. See
Subsection 2.7 and Figure 4 for more details. Our method
cannot be applied in this deterministic case because we can
no longer rely on the independence of the splitting noise
across different coordinates.

2.4. Multiclass Classification

We introduced the randomized smoothing machinery for
the task of binary classification. In the K-class setting we
define randomized smoothing as follows; let f : Rd →
{e1, e2, . . . eK} where ei are one-hot vectors with 1 at po-
sition i be the base classifier. The smoothed classifier is
then

h(x) = E
ε∼q

f(x+ ε)

and we certify robustness for its thresholded version; i.e.,
for

H(x) = argmaxKi=1 h(x)i.

A possible approach to the multiclass setting is straightfor-
ward; just consider all the other classes as a one big class.
That is, treat the multiclass classifier f(x) as if it would
be a binary classifier f(x)y when certifying class y. This
approach is commonly taken in the randomized smoothing
literature (Salman et al., 2019; Cohen et al., 2019) to avoid
problems with estimation of class probabilities. Thus, we
can directly use all the theory we have developed so far
for the binary classification. However, this simplification
may come at a high cost. Consider for example a classifi-
cation task with k = 1000 classes with h(x)1 = 0.4 and
h(x)i < 0.001 for the other classes. Then with the dis-
cussed conversion we are not able to certify class 1. How-
ever, as we will see, H can be moderately robust at x.

Proposition 2.12. Let f : Rd → {e1, e2, . . . eK} be a
base classifier, its smoothed version be h and H be the
thresholded version of h and the smoothing distribution be
Ud(λ). Let also H(x) = A. Then for any point y it holds
that

h(y)A − h(y)B
2

≥ h(x)A − h(x)B
2

− 1+
V ol(B1 ∩B2)

V ol(B2)

where B is an arbitrary class and B1 = B∞(x, λ) and
B2 = B∞(y, λ),

Proof. We subtract the inequalities from Proposition 2.1
applied to h(·)A and h(·)B .

In order to certify the thresholded classifier in the multiclass
setting, we have to ensure that h(y)A−h(y)B

2 ≥ 0 in the
notation of Proposition 2.12.

Corollary 2.13 (of Proposition 2.12 and 2.2). Let the nota-
tion be as in Proposition 2.12. Then H is certifiably robust
at x with robust radius

r(x) = λ (h(x)A − h(x)B) ,

where H(x) = A and B is the runner-up class.

Corollary 2.14 (of Proposition 2.12 and 2.5). Let the nota-
tion be as in Proposition 2.12. Then H is certifiably robust
at x with robust radius

r(x) =
ln
(
1− h(x)A−h(x)B

2

)
ln
(
1− 1

2λ

)
where H(x) = A and B is the runner-up class.

2.5. Algorithmic Implementation

We have covered the mathematical foundations of random-
ized smoothing. However, the exact expectation in Equation
(1) is usually intractable to evaluate; therefore, Monte Carlo

6
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sampling is used to estimate it (whence randomized smooth-
ing). As a consequence, the technique is stochastic and
we cannot guarantee that it will always produce a valid ra-
dius. Still, we can control the probability of bad luck during
sampling and the certificates are (by design) computed so
that they are correct with 1− α = 99.9% probability. We
discuss the procedure in Section 2.6. We emphasize that
the certificates are for the actual classifier induced by h de-
fined using an expectation. For the same reason, we should
be careful with querying the classifier h - it brings another
source of randomness. To control all this randomness, one
commonly uses n = 100 000 samples to estimate h(x) in
Equation (1) which leads to long certification and inference
times. However, it is not necessary as we will discuss in
Section 2.7

The choice of a smoothing distribution q is crucial for the
performance. Some popular choices are normal distribution
(for ℓ2- and ℓ∞-threat models) and uniform distributions in
ℓp balls; see (Yang et al., 2020) for a thorough inspection
of many smoothing distributions and respective certifica-
tions or (Dvijotham et al., 2020) for a general certification
framework that is applicable for virtually any smoothing dis-
tribution. Specially, for smoothing with normal distribution
with covariance matrix σ2Id, it was shown by Cohen et al.
(2019) that h is robust at a with radius σΦ−1(h(a)) under
the ℓ2-threat model, where Φ−1 is the quantile function of
standard normal distribution. For the ℓ∞-threat model the
radius σΦ−1(h(a))/

√
d can be certified as it fits into a

ℓ2-ball of radius σΦ−1(h(a)).

2.6. Controlling Failure Probability

In order to provide high probability certificates, we need
to estimate some of the class probabilities. A standard
way to perform certification is by first evaluating a few
(usually n0 = 64, however, we use 256 in the experiments)
noisy samples to estimate the top-1 class of h(x) that is
certified in a second step via one-versus-all approach as
discussed in Section 2.4. This approach has the benefit
that one only needs to estimate the parameter of a binomial
distribution and one can easily control the failure probability
via Clopper-Pearson tail bounds. However, this approach
has its downsides pointed out in Subsection 2.4. Thus, we
will follow Proposition 2.12 for the certification. We need
to estimate not just top-1 class probability, but also the top-2
class probability. We use the standard Bonferroni correction
to estimate them. That is, we estimate both, top-1 and top-2
class probability with allowed failure probability α/2 via
Clopper-Pearson tail bounds. Therefore, by a union bound,
both of the estimated values are simultaneously correct with
probability at least 1− α.

See Algorithm 1 for the actual certification via Corol-
lary 2.14. We note that there is no guarantee that Â nor

Algorithm 1 Randomized Smoothing Certification

procedure SAMPLEUNDERNOISE(f, x, n, λ)
counts← [0, 0, . . . , 0]
for i← 1, n do

x′ ← noise(x, λ)
counts← counts+ f(x′)

return counts

procedure CERTIFY(f, x, n0, n, λ, α)
counts0← SAMPLEUNDERNOISE(f, x, n0, λ)
Â← top index in counts0
counts← SAMPLEUNDERNOISE(f, x, n, λ)
B̂ ← top index in counts but not Â
pA ← LOWCONFBOUND(counts[Â], n, α/2)
pB ← UPPCONFBOUND(counts[B̂], n, α/2)
if pA > pB then

return prediction Â and radius

ln
(
1− pA−pB

2

)
ln
(
1− 1

2λ

)
else

return ABSTAIN

B̂ correspond to the actual two most probable classes. How-
ever, it does not matter. The value pA does not exceed
h(x)A with probability at least 1−α/2; thus, it also cannot
exceed maxk h(x)k. Similarly, even if the actual top-2 class
is not B̂, then pB is overestimating h(x)B with probability
at least 1− α/2. Thus, the failure probability is at most α.
The function LOWCONFBOUND (resp. UPPCONFBOUND)
computes lower (resp. upper) confidence interval for h(x)A
(resp. h(x)B). We discuss its implementation in Subsec-
tion 3.2.

2.7. Influence of the Number of Samples

We discuss the influence of the number of samples used to
estimate the output of a smoothed classifier and the required
confidence on the certified accuracy. In the ℓ1-case that we
have covered, certification using Corollaries 2.4, 2.7 and
their multiclass counterparts scales roughly linearly in the
estimated probability

ln

(
3

2
− h(x)− ϵ

)
≥ ln

(
3

2
− h(x)

)
− 2ϵ

for ϵ > 0 and h(x) + ϵ ≤ 1. We used that
supx∈[ 12 ,

3
2 ]
ln′(x) = 2. The width of confidence intervals

(for p ≥ 0.5) when p ≈ 1 scales roughly as − ln(α)
n for

confidence level α, while when p ̸≈ 1, the width scales as√
− ln(α)

n as follows from the Bennett’s inequality. A (sub

7
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Figure 4: Effect of the choice of α (on the left; n = 10 000)
and of n (on the right; α = 0.001) on the ℓ1-robustness
curve. Experiment is on CIFAR10 with λ = 6.92 and
certification according to Corollary 2.7.

optimal) universal bound by Hoeffding’s inequality yields

t =

√
ln(α)

−2n

as a width of the (one-sided) confidence interval; see Ap-
pendix B for the derivation. Thus, the estimation error of the

robust radius gecreases at least as
√

− lnα
n and significantly

faster when the estimated probability is close to 1.

In practice, it might not be necessary to push for the largest
n possible. See Figure 4 for certification with different
choices of numbers of noise samples and choices of α to
get an impression of how much the robustness curves are
influenced by these hyperparameters.

We note that this finding does not transfer to ℓ2- and ℓ∞-
smoothing where the normal distribution is dominantly
used as a smoothing distribution. This is because for
these cases the certificates are not linear in the estimated
probability. They are computed as σΦ−1(p), where Φ−1

grows arbitrarily steeply as p approaches 1. For exam-
ple, if we have a constant base classifier, σ = 1, and
n ∈ {10 000, 100 000, 1 000 000}, then we can certify
radii 3.20, 3.81 and 4.35 respectively which makes a huge
difference. See Figure 8 of (Cohen et al., 2019) for more
details. To conclude this subsection, we demonstrated that
ℓ1 certification via randomized smoothing requires signifi-
cantly less samples than in the ℓ2 and ℓ∞ cases in order to
reasonably controll the estimation error of a robust radius.

3. Experiments
We performed an extensive evaluation on CIFAR-
10 (Krizhevsky et al., 2009) and ImageNet-1k (Russakovsky
et al., 2015) and demonstrate the improvements compar-
ing to (Levine & Feizi, 2021) and (Yang et al., 2020).

To ensure a fairness of the evaluation, we follow the ex-
perimental setup that is identical in both mentioned pa-
pers but we perform it over a wider range of smooth-
ing distribution parameters. Following previous work,
we report standard deviations of the distribution instead
of the λ parameter that we have used throughout the
paper. The conversion is that σ corresponds to λ :=√
3σ. Namely, for CIFAR-10, we evaluated on σ ∈
{0.15, 0.25, . . . 3.5, . . . 8, 9, 10, 12}, where in the first gap,
the spacing is 0.25 and in the second it is 0.5 and for Ima-
geNet we used σ ∈ {0.5, 1.25, 2, 2.75, 3.5, 4.5, 5.5}.
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Figure 5: Comparison of certification using deterministic
splitting noise and with independent splitting noise and our
improved certification. The models were trained with stabil-
ity training. ImageNet is shown in the top figure, CIFAR-10
in the bottom figure.

3.1. Training

For ImageNet we used a ResNet-50 trained for 30 epochs;
and for CIFAR-10 we used a WideResNet-40-2 trained for
120 epochs. The optimizer is SGD with learning rate 0.1,
Nesterov momentum 0.9 and weight decay 0.0001 with
cosine annealing learning rate schedule and batch size is 64
for both models. We experimented with the two following
types of training (with a slight abuse of notation in the case
of splitting noise):

8



Improving ℓ1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints

1. standard training with cross entropy loss

L(x, y) = − log
(
f(x+ δ)y

)
, δ ∼ q

on noise-augmented data points as suggested in (Co-
hen et al., 2019).

2. stability training (Li et al., 2019) (is roughly twice as
expensive) with loss

L(x, y) =C ·KL
(
f(x+ δ1) ∥ f(x+ δ2)

)
− log

(
f(x+ δ1)y

)
, δ1, δ2 ∼ q

where C is a hyperparameter chosen as C = 6 follow-
ing (Carmon et al., 2019).

In the case when the smoothing distribution q is a uniform
distribution, upgrading standard training to stability training
helps significantly as observed by Levine & Feizi (2021)
and Yang et al. (2020). However, for the splitting noise
the benefits are less apparent and sometimes it even hurts.
Nevertheless, according to our experiments, for every radius
at which we evaluate robustness, the best performing model
was trained with stability training.

3.2. Certification Results

Following the literature, we set the probability of certificate
being incorrect to be at most α = 0.001 for all methods.
The only exception is smoothing with deterministic splitting
noise which is always correct. Unless stated otherwise, we
use 10 000 noise samples for the certification and 256 to esti-
mate the top-1 class. The confidence intervals are computed
using Python function proportion confint from
package statsmodels.stats.proportion imple-
menting the Clopper-Pearson method. We call the method
with α = 0.002 because the confidence interval returned
is central and the coverage is 1 − α/2 in both tails. For
CIFAR-10 dataset we certify 2 000 images from the test
set, while for ImageNet we certify the same subset of 500
images as Cohen et al. (2019) and Levine & Feizi (2021).

In Figure 5 we empirically demonstrate that with the im-
proved certification we are able to certify significantly larger
ℓ1-radii both on ImageNet and CIFAR-10. In Appendix C,
there is an additional extensive comparison of the proposed
method with the current state of the art.

In Figure 6 we show how the choice of the certification
scheme (binary or multiclass) affects the robustness curve.
This explains why we observe a similar performance of
splitting noise method with its derandomized counterpart,
while Levine & Feizi (2021) (who used the binary certifica-
tion scheme) observed significantly weaker performance.
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Figure 6: Comparison of the robustness curves for the binary
(Corollary 2.7) and multiclass (Corollary 2.14) certification
approach. Note that the multiclass approach (almost strictly)
outperforms the binary one. Certification was done by our
methods, but the conclusion holds for the standard bounds
from Corollary 2.4 and 2.13 as well. The setting is standard
training, CIFAR-10, σ = 2.5.

4. Conclusions
In this paper we have shown that incorporating the constraint
of image classifiers that input points have to lie in the image
domain [0, 1]d leads to significantly improved certified ℓ1-
radii. The application of our framework is essentially for
free and can be directly applied to randomized smoothing
using uniform or splitting noise. Our experiments show
that we can certify significantly larger ℓ1-radii than previous
work but there still remains a gap to what seems possible in
empirical ℓ1-robustness which is an interesting question for
future research for both empirical and certified robustness.

Acknowledgements
The authors thank the anonymous reviewers for their com-
ments, which helped improve the quality of the manuscript.
The authors acknowledge support from the DFG Cluster
of Excellence “Machine Learning – New Perspectives for
Science”, EXC 2064/1, project number 390727645 and the
Carl Zeiss Foundation in the project ”Certification and Foun-
dations of Safe Machine Learning Systems in Healthcare”.
The authors are thankful for the support of Open Philan-
thropy.

References
Athalye, A., Carlini, N., and Wagner, D. A. Obfuscated

gradients give a false sense of security: Circumventing
defenses to adversarial examples. In ICML, 2018.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,
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A. Proofs of Proposition 2.2,2.5 and Theorem 2.8
The central quantity in the proofs is

V ol(B∞(0, λ) ∩ B∞(z, λ))

V ol(B∞(0, λ))
=

d∏
i=1

(
2λ− zi

2λ

)
=

d∏
i=1

(
1− zi

2λ

)
(3)

for z ∈ [0, 2λ]d. We show that (3) is a Schur-concave function and is therefore minimized by a maximal element w.r.t. the
majorization order. The following definitions and propositions are adopted from Steele (2004).
Definition A.1. Let x, y ∈ Rd. We write x ⪰ y (x weakly majorizes y) if for all 1 ≤ k ≤ d it holds that

k∑
i=1

xi ≥
k∑

i=1

yi.

If further
∑d

i=1 xi =
∑d

i=1 yi, we write x ≻ y (x majorizes y).
Definition A.2. A function f : X → R is said to be Schur-concave if for all x, y ∈ X such that x ≻ y it holds that
f(x) ≤ f(y).
Proposition A.3. Let f : X → R be a differentiable symmetric function. Then it is Schur-concave if

(xi − xj)

(
∂f

∂xi
− ∂f

∂xj

)
≤ 0.

Proposition A.4. Function (3) is Schur-concave. It further holds that for all x, y such that x ⪰ y, f(x) ≥ f(y).

Proof. Let X = (0, 2λ)d. Function f is positive; thus is Schur-concave on X if and only if g(x) = log(f(x)) is
Schur-concave since log is an increasing function. Then

(xi − xj)

(
∂g

∂xi
− ∂g

∂xj

)
= (xi − xj)

(
1

xi − 2λ
− 1

xj − 2λ

)
≤ 0

because xi ≥ xj ⇐⇒ 0 > xi − 2λ ≥ xj − 2λ ⇐⇒ 1
xi−2λ ≤

1
xj−2λ .

Since f is continuous on X and symmetric, f is Schur-concave on [0, 2λ]d. The second claim follows since f is a decreasing
function in every coordinate on [0, 2λ]d.

A.1. Proof of Proposition 2.2

Proposition A.5. Let B1, B2 be ℓ∞-balls with radii λ centered at x, y ∈ Rd respectively; then

V ol(B1 ∩B2)

V ol(B1)
≥ 1−

∥x− y∥1
2λ

.

Proof. Let x, y ∈ Rd and c = ∥x− y∥1. It holds that

inf
z∈Rd

+∩⟨1,z⟩≤c

d∏
i=1

(
1− zi

2λ

)
= inf

u,v∈Rd∩∥u−v∥1≤c

d∏
i=1

(
1− |ui − vi|

2λ

)

≤
d∏

i=1

(
1− |xi − yi|

2λ

)
=
V ol(B∞(x, λ) ∩ B∞(y, λ))

V ol(B∞(x, λ))

=
V ol(B1 ∩B2)

V ol(B1)
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so it is sufficient to show that

inf
z∈Rd

+∩⟨1,z⟩≤c

d∏
i=1

(
1− zi

2λ

)
= 1−

∥x− y∥1
2λ

. (4)

The objective of optimization problem in (4) equals to (3) and is Schur-concave according to Proposition A.4. Thus is
minimized by (e.g.,) z = (c, 0, 0, . . . ). In that case, the value of the objective is 1− c

2λ = 1− ∥x−y∥1

2λ .

A.2. Proof of Proposition 2.5

Proposition A.6. Let B1, B2 be the ℓ∞ balls with radiii λ centered at x, y ∈ [0, 1]d; then

V ol(B1 ∩B2)

V ol(B1)
≥(

1− 1

2λ

)⌊∥x−y∥1⌋(
1−
∥x− y∥1 − ⌊∥x− y∥1⌋

2λ

)
≥
(
1− 1

2λ

)∥x−y∥1

.

The very last inequality holds when 2λ ≥ 1. Both of the inequalities are attainable.

Proof. Let x, y ∈ [0, 1]d and c = ∥x− y∥1. It holds that

inf
z∈[0,1]d∩⟨1,z⟩≤c

d∏
i=1

(
1− zi

2λ

)
= inf

u,v∈[0,1]d∩∥u−v∥1≤c

d∏
i=1

(
1− |ui − vi|

2λ

)

≤
d∏

i=1

(
1− |xi − yi|

2λ

)
=
V ol(B∞(x, λ) ∩ B∞(y, λ))

V ol(B∞(x, λ))

=
V ol(B1 ∩B2)

V ol(B1)

so it is sufficient to show that

inf
z∈Rd

+∩⟨1,z⟩≤c

d∏
i=1

(
1− zi

2λ

)
=

(
1− 1

2λ

)⌊∥x−y∥1⌋(
1−
∥x− y∥1 − ⌊∥x− y∥1⌋

2λ

)
. (5)

The objective of optimization problem in (5) equals to (3) and is Schur-concave according to Proposition A.4. Thus, it is
minimized by a vector z such that zi = 1 at ⌊c⌋ positions and zi = c− ⌊c⌋ at another position which is clearly a maximal
element w.r.t. the majorization order. In that case, the value of the objective is(

1− 1

2λ

)⌊c⌋(
1− c− ⌊c⌋

2λ

)
.

If x = 0 and y = z, the inequality is tight. Furthermore, due to the convexity of the exponential function, we have for a ≥ 1
and 0 ≤ x ≤ 1 that (

1− 1

a

)x

≤ 1− x

a
.

Thus, we can simplify (5) to

inf
z∈Rd

+∩⟨1,z⟩≤c

d∏
i=1

(
1− zi

2λ

)
≥
(
1− 1

2λ

)∥x−y∥1

finishing the proof.
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A.3. Proof of Theorem 2.8

Theorem A.7. Let x ∈ [0, 1]d. Let σi be an ordering induced by how far is xi from boundary. That is;

i ≤ j =⇒ min(xσi , 1− xσi) ≤ min(xσj , 1− xσj ).

Then for any c > 0 such that there exists y ∈ [0, 1]d with ∥x− y∥1 = c it holds that

inf
y∈[0,1]d∩B1(x,c)

V ol(B∞(x, λ) ∩ B∞(y, λ))

V ol(B∞(x, λ))

=

(
T∏

i=1

(
1− max{xσi

, 1− xσi
}

2λ

))(
1− U

2λ

)
where

T = max
k∈N

s.t.
i=k∑
i=1

max(xσi
, 1− xσi

) ≤ c,

and

U = c−
i=T∑
i=1

max(xσi
, 1− xσi

).

Proof. We equivalently rewrite the problem as

inf
z∈X∩⟨1,z⟩=c

V ol(B∞(x, λ) ∩ B∞(y, λ))

V ol(B∞(x, λ))
(6)

where X =×d

i=1
[0,max{xi, 1 − xi}] so that from z we recover y as yi = xi ± zi where either 0 ≤ xi + zi ≤ 1 or

0 ≤ xi − zi ≤ 1.

The objective of the optimization problem (6) is again (3). Thus, we only need to find a maximizing element w.r.t. the
majorization order and the Theorem describes how to find it. To see that, we notice that every 1 ≤ k ≤ d, the sequence

zi =


max{xi, 1− xi}, if σ−1

i < T + 1

U, if σ−1
i = T + 1

0, if σ−1
i > T + 1

where σ−1
i is the inverse ordering, that is, σσ−1

i
= i, maximizes

∑k
i=1 zi under the constraint

∑d
i=1 zi = c.

B. Hoeffding’s bound
Theorem B.1 (Hoeffding’s inequality). Let X1, . . . Xn be random variables with 1

nE[
∑n

i=1 Xi] = µ and 0 ≤ Xi ≤ 1.
Then it holds that

P

((
1

n

n∑
i=1

Xi

)
− µ ≥ t

)
≤ e−2t2n.

for any t ≥ 0.

We rewrite the inequality as

P

((
1

n

n∑
i=1

Xi

)
− t ≥ µ

)
≤ e−2t2n ≤ α.

We want to compute t - that is, how much do we need to subtract from the average so that the probability that the result of
the subtraction will be larger than the mean is small.

e−2t2n = α =⇒ t =

√
ln(α)

−2n

C. Ablations

14



Improving ℓ1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.2

0.4

0.6

0.8

1.0
standard training σ = 0.15

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.2

0.4

0.6

0.8

1.0
stability training σ = 0.15

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0
standard training σ = 0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0
stability training σ = 0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0
standard training σ = 0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0
stability training σ = 0.5

uniform

split

split derandomized

uniform++ (ours)

split++ (ours)

Figure 7: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns.
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Figure 8: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns.

16



Improving ℓ1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0
standard training σ = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0
stability training σ = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0
standard training σ = 1.75

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0
stability training σ = 1.75

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0
standard training σ = 2.0

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0
stability training σ = 2.0

uniform

split

split derandomized

uniform++ (ours)

split++ (ours)

Figure 9: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns.
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Figure 10: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns.
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Figure 11: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns.
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Figure 12: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns.
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Figure 13: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns. Note that the uniform noise training sometimes converges to an (apparently) constant classifier
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Figure 14: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns. Note that the uniform noise training sometimes converges to an (apparently) constant classifier
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Figure 15: Robustness curves on CIFAR-10 for different methods. The noise magnitudes differ in rows and the training
method differ in columns. Note that the uniform noise training converges to an (apparently) constant classifier
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Figure 16: Robustness curves on ImageNet for different methods. The noise magnitudes differ in rows and the training
method differ in columns.
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Figure 17: Robustness curves on ImageNet for different methods. The noise magnitudes differ in rows and the training
method differ in columns.
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