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Abstract
We study the problem of convergence to a station-
ary point in zero-sum games. We propose com-
petitive gradient optimization (CGO ), a gradient-
based method that incorporates the interactions
between two players in zero-sum games for its
iterative updates. We provide a continuous-time
analysis of CGO and its convergence properties
while showing that in the continuous limit, previ-
ous methods degenerate to their gradient descent
ascent (GDA ) variants. We further provide a rate
of convergence to stationary points in the discrete-
time setting. We propose a generalized class of
α-coherent functions and show that for strictly α-
coherent functions, CGO ensures convergence to
a saddle point. Moreover, we propose optimistic
CGO (oCGO ), an optimistic variant, for which
we show a convergence rate of O( 1n ) to saddle
points for α-coherent functions.

1. Introduction
We study the zero-sum simultaneous two-player optimiza-
tion problem of the following form,

min
x∈X

f(x, y), max
y∈Y

f(x, y) (1)

where x and y are players’ moves with X ⊆ Rm,Y ⊆ Rn

and f is a scalar value map from X × Y → R. Such an
optimization problem, also known as minimax optimization
problems, has numerous applications in machine learning
and decision theory, some examples including competitive
Markov decision processes (Filar and Vrieze, 1996), e.g.,
game of StarCraft, Go, soccer, and car racing (Vinyals et al.,
2019; Silver et al., 2016; Prajapat et al., 2021), adversarial
and robust learning (Sinha et al., 2017; Namkoong and
Duchi, 2016; Madry et al., 2017), generative adversarial
networks (GAN) (Goodfellow et al., 2014; Radford et al.,
2015; Arjovsky et al., 2017), and risk assessment (Artzner
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et al., 1999).

Gradient descent ascent (GDA ) is the standard first-order ap-
proach to the minimax optimization problem in Eq. (1) and
is known to converge for strictly-coherent functions (Mer-
tikopoulos et al., 2019) which subsumes the strictly convex-
concave function class (Facchinei and Pang, 2003). Yet,
GDA cycles or diverges on simple functions with in-
teractive terms between the players, e.g., a function like
f(x, y) = y⊤x (Mertikopoulos et al., 2019) which are not
strictly-coherent. To tackle this issue, Schäfer and Anand-
kumar (2019) propose competitive gradient descent (CGD )
which includes the bilinear approximation of the function as
opposed to only the linear approximation used in GDA to
formulate the local update. In this approach, despite being
bilinear, the game approximation per player is linear. With
this update, CGD is able to utilize the interaction terms to
guarantee convergence in some non-convex non-concave
problems rather than be impeded by them. Schäfer and
Anandkumar (2019) further asks the question whether a
local optimality result analogous to (Lee et al., 2016) for
the minimization problem can be obtained for minimax op-
timization. Letcher (2020) answers this to the negative by
constructing an example with a local-Nash equilibrium to
which no ’reasonable’ algorithm can converge. Yet, the con-
structed function is one with discontinuous ∇xyf the con-
tinuity of which is a key assumption in CGD . Diakonikolas
et al. (2021) proposes a generalized version of the extra-
gradient method that solves the problem in Eq. (1) for the
weak-MVI condition which extends the MVI condition in
(Mertikopoulos et al., 2019). This is achieved by decou-
pling the learning rates in the two steps of the extragradient
method.

Daskalakis et al. (2018) extend the online learning algo-
rithm optimistic mirror descent ascent (OMDA ) (Rakhlin
and Sridharan, 2013) to two player games and shows
convergence of the method for all bilinear games of the
form f(x, y) = y⊤Ax (thereby for y⊤x). Mertikopou-
los et al. (2019) use the extragradient version of OMDA
to show convergence for all coherent saddle points which
includes the saddle points in bilinear-games of the form
f(x, y) = y⊤Ax. However, we show, CGD and OMDA (as
defined in (Mertikopoulos et al., 2019)) reduce to GDA and
mirror descent ascent (MDA ) respectively in the continuous-
time limit (gradient-flow). The continuous-time regime has
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given insights into the behavior of single-player optimiza-
tion algorithms (Wilson et al.; Lee et al., 2016) and has been
used to study games in (Mazumdar et al., 2020).

In light of this, we propose competitive gradient optimiza-
tion (CGO ), an optimization method that incorporates play-
ers’ interaction in order to come up with gradient updates.
CGO considers a local linear approximation of the game
and introduces the interaction terms in the linear model.
The algorithm solves the problem in Eq. (1) for a class of
α-coherent functions. This class is strictly larger than the
coherent class in Mertikopoulos et al. (2019) and contains
examples that are not in the weak-MVI class in Diakonikolas
et al. (2021). At an iteration point (x, y), the CGO update
is as follows,

argmin
δx∈X

δx⊤∇xf +
α

η
δx⊤∇2

xyfδy + δy⊤∇yf

+
1

2η
δx⊤δx

argmax
δy∈Y

δy⊤∇yf +
α

η
δy⊤∇2

yxfδx+ δx⊤∇xf

− 1

2η
δy⊤δy.

(2)

where the first term in the update is a local linear approxi-
mation of the game. The second term is the interaction term
between players which is scaled with α to represent the
importance of incorporating the interaction in the update.
This scaling is analogous to scaling in Newton methods
with varying learning rates. This approximation results in a
local bilinear approximation of the game. Finally, η is the
learning rate appearing in the penalty term. It is important
noting that fixing the other player, the optimization for each
player is a linear approximation of the game. Since the
game approximation for each player is linear in its action,
we consider this update yet a linear update. The solution to
the CGO update is the following,[
δx
δy

]
= −ηgα := −η

[
I α∇xyf

−α∇yxf I

]−1 [ ∇xf
−∇yf

]
(3)

where gα is the gradient-based update at point (x, y). CGO
is a generalization of its predecessors, in the sense that,
setting α = 0 recovers GDA , and setting α = η recovers
CGD . CGO gives greater flexibility for the updates in the
hyper-parameters and gives rise to a distinct algorithm in
continuous-time. In large-scale practical and deep learning
settings, this update can be efficiently and directly computed
using an optimized implementation of conjugate gradient
and Hessian vector products.

Further, we introduce generalized versions of the Stam-
pacchia and Minty variational inequality (Facchinei and
Pang, 2003) and extend the definition of coherent sad-

dle points (Mertikopoulos et al., 2019) to α-coherent sad-
dle points and show the convergence of CGO under α-
coherence (which contains the bilinear function class and
thus explains the success of CGD). Finally, we propose
optimistic CGO which converges to the saddle points for
α-coherent saddle point problems which are not strictly
α-coherent.

Our main contributions are as follows:

• We propose CGO that utilizes bilinear approximation
of the game in Eq. (1) and accordingly weights the
interaction terms between agents in the updates.

• In order to study whether CGO provides a fundamen-
tally new component, we study CGO ’s and its prede-
cessors’ behaviors in continuous-time. We observe that
in the limit of the learning rate approaching zero, i.e.,
continuous-time regime, the CGD and OMDA reduce
to their GDA and MDA counterparts and CGO gives
rise to a distinct update in the continuous-time.

• Using the Lyapunov analysis in the continuous time
regime, we show that while CGD and GDA converge
for strictly convex-concave functions, CGO allows for
a deviation below zero in eigenvalues of the pure Hes-
sian block of the minimizer and above zero for that of
the maximizer. A deviation from the convex-concave
condition proportional to the lowest eigenvalue of
the cross-terms of the Hessian is allowed.

• We extend the definition of coherence function
class (Mertikopoulos et al., 2019) to α-coherent func-
tions for which we show the optimistic variant of CGO ,
optimistic CGO (oCGO ) converges to saddle points
with a rate of O

(
1
n

)
while CGO converges to the

saddle points which satisfy the strict α-coherence con-
dition. We provide functions that are not coherent and
explain the success of CGD in bilinear functions by
setting α = η.

2. Related works
Largely the algorithms proposed to solve the minimax op-
timization problem can be divided into two groups: those
containing simultaneous update which solve a simultaneous
game locally at each iteration and those containing sequen-
tial updates. While our work focuses on the simultaneous
updates, sequential updates are relevant due to their close
proximity and the fact that they often give rise to relevant
solutions. We discuss the work done in the aforementioned
categories below.

Sequential updates. A sequential version GDA in an
alternating form is alternating gradient descent ascent
(AGDA ) is often time shown to be more stable than its
simultaneous counter-part (Gidel et al., 2019; Bailey et al.,
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2020). Yang et al. (2020) introduces the 2-sided Polyak-
Lojasiewicz (PL)-inequality. The PL-inequality was first
introduced by Polyak (1963) as a sufficient condition for
gradient descent to achieve a linear convergence rate, Yang
et al. (2020) shows that the same can be extended to achieve
convergence of AGDA to saddle points, which are the only
stationary points for the said functions. Yet, AGDA also cy-
cles in several problems including bi-linear functions show-
ing the persisting difficulty of cycling behavior for any GDA
algorithm. To solve this problem, 2-time scale gradient de-
scent ascent has been proposed (Heusel et al., 2017; Good-
fellow et al., 2014; Metz et al., 2016; Prasad et al., 2015)
which uses different learning rates for the descent and as-
cent. Heusel et al. (2017) proves its convergence to local
Nash-equilibrium (saddle points). Jin et al. (2020) discusses
the limit points of 2-time scale GDA by defining local min-
imax points, analogues of the local Nash-equilibrium in
the sequential game setting and shows that for vanishing
learning rate for the descent, 2-time scale GDA provably
converges to local mini-max points. Another line of work
concerns itself with finding stationary points of the func-
tion F (x) = maxy f(x, y), (Lin et al., 2020; Rafique et al.,
2018; Nouiehed et al., 2019; Jin et al., 2019). The 2-time
scale approaches mainly rely on the convergence of one
player per update step of the other player, which makes
these updates generally slow to converge.

Simultaneous updates. Simultaneous update methods
preserve the simultaneous nature of the game at each step,
such methods include OMDA (Daskalakis et al., 2018),
its extra-gradient version (Mertikopoulos et al., 2019),
ConOpt (Mescheder et al., 2017), CGD (Schäfer and Anand-
kumar, 2019), LOLA (Foerster et al., 2017), predictive up-
date (Yadav et al., 2017) and symplectic gradient adjust-
ment (Balduzzi et al., 2018). Of the above, (Daskalakis
et al., 2018; Mertikopoulos et al., 2019; Foerster et al., 2017)
are inspired from no-regret strategies formulated in (Rakhlin
and Sridharan, 2013; Jadbabaie et al., 2015) based on fol-
low the leader (Shalev-Shwartz and Singer, 2006; Grnarova
et al., 2017) for online learning. (Schäfer and Anandkumar,
2019) uses the cross-term of the Hessian, while (Mescheder
et al., 2017) uses the pure terms to come up with a second or-
der update. (Balduzzi et al., 2018) proposes an update based
on the asymmetric part of the game Hessian obtained from
its Helmholtz decomposition. Some of these algorithms
converge to stationary points that need not correspond to
saddle points, Daskalakis and Panageas (2018) shows that
GDA , as well as optimistic GDA , may converge to station-
ary points which are not saddle points. ConOpt is shown
to converge to stationary points which are not local Nash
equilibrium in the experiments (Schäfer and Anandkumar,
2019).

3. Preliminaries
In this section, we describe the simultaneous minimax op-
timization problem and notations to express the properties
of functions we use in the analysis. We discuss the class
of α-coherent functions which extends the definition of co-
herence in (Mertikopoulos et al., 2019) and for different
versions of which CGO and oCGO converge to the saddle
point.

Throughout the paper we often denote the concatenation of
the arguments x and y to be z := (x, y).

Definition 3.1 (First order stationary point). A point z∗ =
(x∗, y∗) ∈ X × Y is a stationary point of the optimization
Eq. (1) if it satisfies the following,

∇xf(x
∗, y∗) = 0,∇yf(x

∗, y∗) = 0 (4)

We say a function f is L Lipschitz continuous if for any two
points z1 := (x1, y1) ∈ X×Y and z2 =: (x2, y2) ∈ X×Y ,
it satisfies

|f(z1)− f(z2)| ≤ L∥z1 − z2∥2

where | · | denote the absolute value and ∥ · ∥2 denote the
corresponding 2-norm in the product space X×Y . Similarly,
for a given function f , we say it has L′-Lipschitz continuous
gradient if for any two points z1 := (x1, y1) ∈ X × Y and
z2 =: (x2, y2) ∈ X × Y , it satisfies

∥∇f(z1)−∇f(z2)∥2 ≤ L′∥z1 − z2∥2

And finally, we say a function has (Lxx, Lyy, Lxy)-
Lipschitz continuous Hessian, if similarly, for any two
points z1 := (x1, y1) ∈ X ×Y and z2 := (x2, y2) ∈ X ×Y
the followings hold,

∥∇2
xxf(z1)−∇2

xxf(z2)∥2 ≤ Lxx∥z1 − z2∥2
∥∇2

yyf(z1)−∇2
yyf(z2)∥2 ≤ Lyy∥z1 − z2∥2

∥∇2
xyf(z1)−∇2

xyf(z2)∥2 ≤ Lxy∥z1 − z2∥2

where all the norms are 2-norms with respect to their corre-
sponding suitable definition of native spaces. We present the
notation for the minimum and maximum value of matrices
derived from the Hessian of f . The extrema are evaluated
over the complete domain of f .

Table 1. Eigenvalue notations for matrices derived from 2nd

derivates to simplify notation

Matrix Min Eigenvalue Max Eigenvalue
∇2

xxf λxx λxx

∇2
yyf λyy λyy

∇2
xyf∇2

yxf λxy λxy

∇2
yxf∇2

xyf λyx λyx

3



Competitive Gradient Optimization

Further we define λ1 = max(λxx,−λyy), λ2 =

max(λxx, λyy). We also have λxy, λyx ≥ 0 since
∇2

xyf∇2
yxf,∇2

yxf∇2
xyf are positive semi-definite.

Definition 3.2 (Bregman Divergence). The Bregman diver-
gence with a strongly convex and differentiable potential
function h is defined as

Bh(x, y) = h(x)− h(y)− ⟨x− y,∇h(y)⟩

Saddle point (SP). We define the solutions of the follow-
ing problems to be min-max and max−min saddle points
respectively,

• min-max saddle point: min
x∈X

max
y∈Y

f(x, y) (5)

• max-min saddle point: max
x∈X

min
y∈Y

f(x, y) (6)

We now introduce modified forms of the Stampacchia and
Minty variational inequalities and present the definition of
α-coherent saddle point problems.

Definition 3.3 (α-Variational inequalities). α-coherence
generalizes the definition of coherent saddle points in (Mer-
tikopoulos et al., 2019) which sets α = 0. The definition
of α-coherence hinges on the following two variational in-
equalities (gα as in Eq. (2)),

• α-MV I : gα(x, y)⊤(z − z∗) ≥ 0 for all z : (x, y) ∈
X × Y

• α-SV I : gα(x∗, y∗)⊤(z− z∗) ≥ 0 for all z : (x, y) ∈
X × Y

Definition 3.4 (α-coherence). We say that min-max SP
problem is α-coherent if,

• Every solution of α-SV I is also a min-max SP

• There exists a min-max SP, p that satisfies α-MV I

• Every min-max SP, (x∗, y∗) satisfies α-MV I locally,
i.e., for all (x, y) sufficiently close to (x∗, y∗)

The α-coherent max-min SP problem is defined similarly.

In the above, if α-MV I holds as a strict inequality whenever
x is not a solution thereof, SP problem will be called strictly
α-coherent; by contrast, if α-MV I holds as an equality for
all (x, y) ∈ X × Y , we will say that the SP problem is null
α-coherent. Note that in the unconstrained setting α-SVI is
satisfied iff gα = 0 which occurs iff g0 = 0

4. Motivation
In this section, we present the main motivations of our ap-
proach. The first is the popularity of the damped Newton

method (Algorithm 9.5, (Boyd and Vandenberghe, 2004))
which scales the second-order term in the Taylor-series ex-
pansion of the function to come up with the local update.
The second is the observation that both CGD and OMDA
reduce to GDA and MDA in the continuous-time limit
which calls for a new algorithm that is distinct from GDA
and MDA in continuous-time. The third is the observation
that several functions give rise to (SP) problems which are
strictly α-coherent, ∀α > 0 but not strictly-coherent as
defined in (Mertikopoulos et al., 2019) which coincides with
α-coherence when we set α = 0

4.1. Adjustable learning rate Newton method
The celebrated Newton method in one player optimization
gives rise to an update which is the solution to the following
local optimization problem. For a function f : X → R, x ∈
X ,X ⊆ Rm, we have,

min
δx∈X

∇f⊤δx+
1

2
δx⊤∇2

xxfδx (7)

which does not have the notion of learning rate. However,
prior work provides strong learning and regret guarantees,
even in adversarial cases, for the adjusted Newton method
where the Newton term is replaced with its weighted version
α
2 δx

⊤∇2
xxfδx (Hazan et al., 2007). This scaling allows for

different learning updates that adjust how much the update
weighs the second term. This is a similar approach taken in
CGO update.

4.2. Continuous-time version of CGD and
OMDA

In this section, we analyze the continuous-time versions
of CGD , OMDA , and CGO . We show that while, in
continuous-time, CGD and OMDA reduce to their GDA
and MDA counterparts, CGO gives rise to a distinct up-
date.

CGD. Following the discussion in the introduction, CGD
can be obtained by setting α = η in the CGO update rule.
Doing so in Eq. (2), we obtain

δx = −η
(
I + η2∇2

xyf∇2
yxf
)−1 (∇xf + η∇2

xyf∇yf
)
(8)

δy = −η
(
I + η2∇2

yxf∇2
xyf
)−1 (−∇yf + η∇2

yxf∇xf
)
.

(9)

For the continuous-time analysis, the learning rate η corre-
sponds to the time discretization ∆t with scaling factor β,
i.e., η = β∆t. The ratios of the changes in x := δx and y :=
δy to η then become the time derivative of x and y in the
limit η → 0. Ergo, for CGD update we obtain,

ẋ = −β∇xf (10)
ẏ = β∇yf (11)
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Where ẋ = dx
dt , ẏ = dy

dt are the time derivatives of x and
y. This is the same as the update rule for GDA and the
interaction information is lost in continuous-time.

OMDA. To present the updates for OMDA we first define
the proximal map,

Pz(p) = arg min
z′∈X×Y

{⟨p, z − z′⟩+ Bh(z
′, z)} (12)

Where Bh is the Bregman Divergence with the potential
function h. The OMDA update rule is then given by,

zn+ 1
2
=Pzn(−ηgn) = ∇h−1(∇h(zn)− ηgn)

=zn − η∇(∇h−1)⊤gn + o(ηgn) (13)

zn+1 =Pzn(−ηgn+ 1
2
) = ∇h−1(∇h(zn)− ηgn+ 1

2
)

=zn − η∇(∇h−1)⊤gn+ 1
2
+ o(ηgn+ 1

2
) (14)

where gn, gn+ 1
2

are the vector (∇xf(x, y),−∇yf(x, y))
evaluated at zn, zn+ 1

2
respectively. We now analyze the

updates of OMDA in continuous-time. In the limit η →
0 we have ∂z

∂t = −β(∇(∇h)−1(z))⊤∇f(z) which is the
same as the update rule of MDA and the effect of half time
stepping vanishes in continuous-time. It is interesting to
note that Diakonikolas et al. (2021) use different learning
rates in the two steps of (13) and avoid this issue, which
allows them to show convergence of the augmented OMDA
for a larger class of weak-MVI functions.

CGO. Taking the continuous-time limit η → 0 of the
CGO updates Eq. (2) we obtain,

ẋ = −β
(
I + α2∇2

xyf∇2
yxf
)−1 (∇xf + α∇2

xyf∇yf
)

ẏ = −β
(
I + α2∇2

yxf∇2
xyf
)−1 (−∇yf + α∇2

yxf∇xf
)
,

(15)

which is a distinct update from GDA and the interaction
information is preserved in continuous-time. We simulate
the continuous-time setting by using a very small learning
rate and observe that while CGD cycles around the origin
(Figure (7a)), CGO is able to take a somewhat direct path to
the saddle point solution (Figure (1b)). This is an encourag-
ing experiment, validating our hypothesis on the importance
of CGO update.

4.3. Families of functions which give rise to α-coherent
SP

The following examples establish a few families of α-
coherent functions. First we present the important re-
sult that all bi-linear games f = x⊤Ay, are strictly α-
coherent.

Example 4.1. All functions of the form f(x, y) =
x⊤Ay,A ∈ Rm×n, give rise to strictly α-coherent min-
max SP problems ∀α > 0 and are null coherent for α = 0.

(a) CGD (b) CGO

Figure 1. Modeling of the continuous-time regime for f(x, y) =
xy: CGD cycles while CGO takes a direct path. The exact analysis
of the resulting ODE’s is provided in Appendix E.1

Proof Sketch. The origin is the only saddle point of the
above function, we evaluate SVI and α-SVI at the origin,

i) We have ⟨g0, z⟩, g0 = (Ay,−A⊤x). Hence, ⟨g0, z⟩ =
x⊤Ay − y⊤A⊤x = 0, ∀ (x, y) ∈ X × Y

ii) Also we have

⟨gα, z⟩ ≥ αλmin((I + α2AA⊤)−1AA⊤)∥x∥2 (16)

+ αλmin((I + α2A⊤A)−1A⊤Ay)∥y∥2 > 0

Where the final inequality follows from the fact that
min(λmin(A

⊤A), λmin(AA⊤)) > 0, ∀A ∈ Rm×n. See
Appendix A for a detailed proof.

We present another family of functions parameterized by a
scalar k. For k ≥ 0 the functions exhibit a min-max saddle
point at the origin (a max-min saddle point is at (∞,−∞)),
while for k < 0 the function has a max-min saddle point
at the origin (a min-max saddle point is at (−∞,∞)). For
both cases, origin satisfies the α-variational inequalities for
α ≥ −k, strictly for α > k.

Example 4.2. The family of functions fk(x, y) = k
2 (x

2 −
y2) + xy with k ≥ 0 gives rise to an α-coherent min-max
SP problem for α = −k and a strictly α-coherent min-max
SP problem ∀α > −k. For k < 0, it gives rise to an α-
coherent max-min SP problem for α = −k and a strictly
α-coherent max-min SP problem ∀α > −k

Proof Sketch. We evaluate the variational inequalities at the
origin. For g0 we have

⟨g0, z⟩ = x(kx+ y)− y(−ky + x) = kx2 + ky2 > 0
(17)

For gα we have:

⟨gα, z⟩ =
k + α

1 + α2
(x2 + y2) > 0, ∀α > −k (18)
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Finally we present α-coherent functions that do not sat-
isfy the weak-MVI condition and establish that the class is
strictly larger than the coherent class.

Example 4.3. Consider the family of functions fk(x, y) =
x2y+kxy. For k = 0 it gives rise to a min-max SP problem
such that the region where the α-MVI is not satisfied, shrinks
as α increases. For k = 1, it gives rise to a min-max SP
problem which is α-coherent for large α. Furthermore, both
the above mentioned problems do not satisfy the weak-MVI
condition in Diakonikolas et al. (2021).

Proof Sketch. Since the Nash Equilibrium is at the origin
for both the problems we evaluate the α-VIs at the origin
and obtain the conditions for α-coherence as,

• x2y+2α(x4 +2x2y2) ≥ 0 or y+2α(x2 +4y2) ≥ 0
since x can be non-zero.

• x2y + α(x2(x+ 1)(2x+ 1) + y2(2x+ 1)2) ≥ 0

The first condition is satisfied for all but sufficiently small
(x, y), furthermore it is clear from the expression that the
region where it is not satisfied reduces as α increases, this is
also shown in Figure (6a). The second condition is satisfied
for large α(∼ 10) for the restricted domain x ≥ − 1

3 . We
numerically verify this through plots in Appendix C

We numerically verify that the weak-MVI condition is not
satisfied for both the above examples and demonstrate it
through heat maps in the Appendix C.

5. Convergence results of CGO and the oCGO
algorithm

In this section we present the convergence results of our
CGO algorithm. We first consider the convergence to sta-
tionary points and present the conditions and rate for the
continuous-time and discrete-time regimes. Then, we state
the convergence results of the CGO algorithm to strictly
α-coherent saddle points. Then, we introduce the oCGO
updates and present its rate of convergence to α-coherent
saddle points. Finally we showcase the working of CGO
and oCGO by simulating them on a few benchmark func-
tions from the families presented in Subsection 4.3.

5.1. Convergence analysis in continuous-time
We present our first result for convergence of CGO in
continuous-time. We present the proof sketch and refer
the readers to Appendix D for the complete proof. To high-
light the difference in convergence rate and condition of
CGO from GDA we also derive the conditions for con-
vergence of GDA using a Lyapunov-style analysis. By
carefully choosing the parameter α we show that we can
accommodate arbitrary deviation from the strictly convex-
concave condition which is required for the convergence of

continuous-time GDA .

Theorem 5.1. Continuous-time CGO runs on a twice dif-
ferentiable function f with parameters α, β on functions
satisfying λ > 0 where

λ := βmin(2λxx − 2αλxx
2
+ c

λxy

1 + α2λxy
, (19)

−2λyy − 2αλyy
2
+ c

λyx

1 + α2λyx
)

converges exponentially to a stationary point with rate λ.
Where c = β(α− 2α2λ1 − 2α3λ2

2
).

Proof Sketch. We choose ∥g0∥2 to be our Lyapnuov func-
tion where,

g0 := (∇x(f(x, y),−∇yf(x, y))

Evaluating the time derivative of ∥g∥2, we obtain

d∥g0∥2

dt
= 2g⊤0 ġ0

= 2
[
∇xf

⊤ −∇yf
⊤] [ ∇xxf ∇xyf

−∇xyf
⊤ −∇yyf

] [
ẋ
ẏ

]
= 2ẋ⊤∇xxf∇xf + 2∇xf

⊤∇xyfẏ

+ 2ẏ⊤∇yyf∇yf + 2∇yf
⊤∇xyf

⊤ẋ
(20)

By plugging in CGO updates and manipulating we show
that

d∥g0∥2

dt
≤ −λ∥g0∥2

where λ is as stated in the theorem. The detailed proof is in
Appendix E.

To compare, we also derive the conditions for GDA Eq. (10)
in continuous-time in Appendix D. We obtain

d∥g0∥2

dt
≤ −∥g0∥2 min(λmin(2β∇xx), λmin(−2β∇yy))

= −2β∥g0∥2 min(λxx,−λyy)
(21)

For convergence, we require min(λxx,−λyy) ≥ 0 which is
the convex-concave condition.

This theorem implies that in the presence of interaction,
particularly, when

λxy

1+α2λxy
and

λyx

1+α2λyx
are positive, it

allows to break free from the convex-concave condition by
appropriately setting α.

We set α such that λxx ≤ 1
5α ;λxx ≥ − 1

5α ;λyx, λxy ∼
K
α2 ;λyy ≥ − 1

5α ;λyy ≤ 1
5α ;K ≫ 1 which implies

λ1, λ2 < 1
5α and we obtain λmin ≥ 1

50α . This shows
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that continuous-time CGO allows arbitrary deviation of
λxx, λyy (from the convex-concave condition i.e. λxx ≥
0, λyy ≤ 0), if λyx, λxy are proportional to the square of
the deviation of the pure terms.

5.2. Convergence analysis in discrete-time
Convergence to stationary points. We derive the condi-
tions required for CGO to converge to a stationary point and
show that large singular values of the interaction terms help
in convergence. By tuning the hyperparameters we are able
to control the influence of this interactive term and obtain
faster convergence.

Theorem 5.2. CGO with parameters α and η when initial-
ized in the neighborhood of a first-order stationary point z∗

on a Lipschitz-continuous and thrice differentiable function
f that has Lipschitz-continuous gradients and Hessian and
1 ≥ λ > 0 where

λ := min(η(2λxx − 2
10η + 8α

η
λxx

2
) + c

λxy

1 + α2λxy
),

(22)

−η(2λyy + 2
10η + 8α

η
λyy

2
) + c

λyx

1 + α2λyx
))

converges exponentially to z∗ with rate r(λ) = 1−λ. Where
c is a polynomial function of η, α, λ1, λ2.

Similar to the continuous-time setting, the terms
λxy

1+α2λxy
,

λyx

1+α2λyx
are non-negative and appropriately choosing α and

η allows us to tune c and obtain convergence for functions
not satisfying the convex-concave condition. CGD restricts
the flexibility of c by choosing α = η and CGO utilizes
this extra degree of freedom granted by α to allow con-
vergence for a larger class of functions. The proof of the
above theorem is provided in Appendix G, for completeness
we also provide the analysis of discrete time GDA in the
Appendix F.

Convergence to strictly α-coherent saddle points. Now
we discuss the convergence properties of CGO for the class
of strictly α-coherent functions. The detailed proof can be
found in Appendix H.

Theorem 5.3. Suppose that a Lipschitz-continuous function
f has Lipschitz-continuous gradients and Hessian and gives
rise to a strictly α-coherent SP. If CGO is run with perfect
gradient and competitive Hessian oracles and parameter
α and parameter sequence {ηn} such that

∑∞
1 η2n < ∞

and
∑∞

1 ηn = ∞, then the sequence of CGD iterates {zn},
converges to a solution of SP.

Convergence to α-coherent saddle points. For conver-
gence to the saddle points for α-coherent functions which

are not strictly α-coherent, we propose the optimistic CGO
algorithm.

Optimistic CGO The update rule is given by:

zn+ 1
2
= Pzn(−ηgα,n)

(a)
= zn − ηgα,n (23)

zn+1 = Pzn(−ηgα,n+ 1
2
)
(b)
= zn − ηgα,n+ 1

2
(24)

where gα,n, is as in (2) and η is the learning rate. Where a
and b hold for the unconstrained setting .

Theorem 5.4. Suppose that a L-Lipschitz-continuous func-
tion f that has L′-Lipschitz-continuous gradients and Lxy

Lipschitz-continuous Hessian gives rise to an α-coherent SP.
If oCGO is run with parameter α and parameter sequence
{ηn} such that,

• 0 < α2 <

√
L′4+4L2

xyL
2−L′2

2L2
xyL

2

• 0 < ηn

<

√
α2L2L2

xy+L′2−2α4L2L′2L2
xy−α2L′4−α3L2

0L
2
xy

α2L2L2
xy+L′2 ,∀n

then the sequence of iterates zn converges to z∗ where z∗ :=
(x∗, y∗) ∈ X × Y is a saddle point. Moreover, the oCGO
converges with the rate of 1

n , i.e., for the average of the
gradients, we have,

1

n

n∑
k=1

∥gα,k∥2 = O

(
1

n

)

The detailed proof of the above theorem is provided in
Appendix H.2.

5.3. Simulation of CGO and oCGO on families from
Section 4

We now evaluate the performance1 of CGO and oCGO on
families discussed in examples (4.1) and (4.2). We first con-
sider a function f(x, y) = x⊤Ay,A ∈ R4×5, x ∈ R4, y ∈
R5 . We sample all the entries of A independently from
a standard Gaussian, A = (aij), aij ∼ N (0, 1). We con-
sider the plot of the L2 norm of x vs. that of y, since
the only saddle point is the origin, the desired solution is
∥x∥2, ∥y∥2 → 0. We plot the iterates of CGO and oCGO
for different α, and observe that oCGO converges to the
saddle point for α ≥ 0 (at a very slow rate for α = 0) while
CGO does so for α > 0. The results at α = 0 are that of
GDA and optimistic GDA . We see similar results for the
case where A is the scalar 1, i.e. f(x, y) = xy. This is in
accordance with the analysis in example (4.1).

We then proceed to perform experiments on the family from
example (4.2) for k = 2,−2. For both values of k we see
that oCGO converges to the origin for α ≥ −k and CGO

1The code for the experiments is available at Link to code
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Figure 2. CGO and optimistic CGO on bilinear functions
f(x, y) = xy, (x, y) ∈ R2 : (a,b) and f(x, y) = x⊤Ay, x ∈
R4, y ∈ R5 : (c,d) for 100 iterations.

converges for α > −k, following the analysis in example
(4.2). For k = 2 the origin is a min-max saddle point,
while for k = −2 it is a max-min saddle point. Finally we
perform experiments on α-coherent functions from example
(4.3) that do not satisfy the weak-MVI assumption.

6. Conclusion
We propose the CGO algorithm which allows us to con-
trol the effect of the cross derivative term in CGD . This
increases the size of the class of functions for which the
algorithm converges. In the realm of continuous-time we
observe that CGD reduces to GDA , CGO on the other hand
gives rise to a distinct update which allows for a margin of
deviation from the strictly convex-concave convergence con-
dition of GDA . Furthermore, we generalize the definition of
coherent saddle point problems defined in (Mertikopoulos
et al., 2019) to α-coherent saddle points for which we prove
convergence of Optimistic CGO and of CGO in the strict
version of α-coherence, we show order O( 1n ) rate of the
average gradients for CGO . Finally we present a short ex-
periment study on some α-coherent functions. Future work
would involve using CGO in various machine learning tasks
such as GANs, competitive reinforcement learning (RL) and
adversarial machine learning.
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Figure 3. CGO and optimistic CGO on functions from the family
f(x, y) = k

2
(x2 − y2)−xy. k = 2 : (a,b) and k = −2 : (c,d) for

100 iterations.
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Figure 4. CGO and optimistic CGO on the function f(x, y) =
x2y + xy from multiple initializations for 500 iterations with
increasing α.
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Figure 5. CGO and optimistic CGO on the function f(x, y) =
x2y from multiple initializations for 500 iterations with increasing
α. The shrinking yellow region is where α-MVI is not satisfied.
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In this section we present proofs for statements pertaining to example (4.1) and (4.2).

A. Proof of example (4.1)
For clarity we restate the statement of the example (4.1). All functions of the form x⊤Ay are strictly α-coherent ∀α > 0
and are null coherent for α = 0.

Proof of example (4.1). In order to show the above mentioned statement, we first note that the origin is the only saddle point
of this function. We now evaluate ⟨g0, z⟩, where g0 = (Ay,−A⊤x). Hence, ∀ (x, y) ∈ X × Y . we have,

⟨g0, z⟩ = x⊤Ay − y⊤A⊤x = 0.

ergo, the function x⊤Ay is null-coherent.

Similarly, we evaluate the α-SVI. We observe for the function x⊤Ay,

gα = ((I + α2AA⊤)−1(Ay + αAA⊤x), (I + α2A⊤A)−1(−A⊤x+ αA⊤Ay))

Hence for ⟨gα, z⟩ we have,

⟨gα, z⟩ = x⊤(I + α2AA⊤)−1(Ay + αAA⊤x) + y⊤(I + α2A⊤A)−1(−A⊤x+ αA⊤Ay) (25)

We further observe that, following the statement of Lemma (E.1), we have

(I + α2AA⊤)−1A = A(I + α2A⊤A)−1,

and therefore, incorporating it in to the Eq. (25), we have,

x⊤(I + α2AA⊤)−1Ay = x⊤A(I + α2A⊤A)−1y = y⊤(I + α2A⊤A)−1A⊤x.

Thus, for ⟨gα, z⟩ we have,

⟨gα, z⟩ =x⊤(I + α2AA⊤)−1αAA⊤x+ y⊤(I + α2A⊤A)−1αA⊤Ay

≥αλmin((I + α2AA⊤)−1AA⊤)∥∆x∥2 + αλmin((I + α2A⊤A)−1A⊤Ay)∥∆y∥2

Finally, observing that min(λmin(A
⊤A), λmin(AA⊤)) ≥ 0 for any A, and following the statement in the Lemma (E.3) we

also have,

αλmin((I + α2AA⊤)−1AA⊤)∥∆x∥2 + αλmin((I + α2A⊤A)−1A⊤Ay)∥∆y∥2 > 0, ∀α > 0,

and hence ⟨gα, z⟩ > 0, ∀α > 0. Ergo, the function x⊤Ay is strictly α coherent.

B. Proof of example (4.2)
Now, we restate the statement of the example (4.2). The family ofunctions fk(x, y) = k

2 (x
2 − y2) + xy for k ≥ 0 gives rise

to

• min-max α-coherent SP problem when α = −k,

• min-max strictly α-coherent SP problem when α > −k.

and for k < 0 the family gives rise to,

• max−min α-coherent SP problem when α = −k,

• max−min strictly α-coherent SP problem when α > −k.

Proof of example (4.2). We first note that the origin is the only saddle point of the above family. Further, the origin is a
min-max saddle point when k ≥ 0 and a max−min saddle point when k < 0.

For this family we evaluate ⟨gα, z⟩,

⟨gα, z⟩ =x((1 + α2)−1(kx− y − α(−x− ky))) + y((1 + α2)−1(x+ ky − α(kx− y)))

=(1 + α2)−1(kx2 − xy + αx2 + αkxy + xy + ky2 − αkxy + αy2)

11
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Simplifying this expression for α > −k we obtain,

⟨gα, z⟩ =
k + α

1 + α2
(x2 + y2) > 0, ∀α > −k

Ergo, the above mentioned function class is strictly α-coherent when α > −k. Furthermore, when α = −k we have
⟨gα, z⟩ = 0, ergo the class is null α-coherent for α = −k.

C. Proof of example (4.3)
Beyond the explanation in the main text we provide numerically generated heat-maps for the weak-MVI condition for the
counter-examples provided in example (4.3) and the α-coherence region for f(x, y) = x2y + xy, x ≥ − 1

3

(a) CGO (b) CGO (c) CGO

(d) CGO (e) CGO

Figure 6. (a),(b) and (c) : where α-MVI condition is not satisfied for the function f(x, y) = x2y + xy for increasing α. (d) and (e) :
weak-MVI condition for f(x, y) = x2y and f(x, y) = x2y + xy;x ≥ − 1

3

.

A detailed simulation of the α-MVI condition for f(x, y) = x2y + xy;x ≥ − 1
3 is available here.

D. Continuous time GDA
In this section, we state the update rule for GDA and derive sufficient convergence conditions using Lyapunov analysis. The
update rule of GDA is computed through the following optimization problem,

min
δx∈Rm

δx⊤∇xf + δy⊤∇yf +
1

2η
δx⊤δx

max
δy∈Rn

δy⊤∇yf + δx⊤∇xf − 1

2η
δy⊤δy.

(26)

Which gives the following closed form update,

12
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[
∆x
∆y

]
= −η

[
∇xf
−∇yf

]
(27)

where η is the learning rate. Taking the limit η → 0 and scaling the flow of time with β we get the continuous time dynamics
as follows,

[
ẋ
ẏ

]
= −β

[
∇xf
−∇yf

]
= −βg0 (28)

where g0 =

[
∇xf
−∇yf

]
is the concatenation of the gradients. Furthermore, for the second order curvature of this dynamics,

i.e., the gradient of g0, we have,

ġ0 =

[
∇2

xxf ∇2
xyf

−∇2
yxf −∇2

yyf

] [
ẋ
ẏ

]
(29)

For the Lyapunov analysis, we now choose ∥g0∥2 as our Lyapunov function and evaluate its time-derivative, i.e.,

˙∥g0∥2 =
d∥g0∥2

dt
= 2g⊤0 ġ0 = 2

[
∇xf

⊤ −∇yf
⊤] [ ∇2

xxf ∇2
xy

−∇2
yxf −∇2

yyf

] [
ẋ
ẏ

]
= 2ẋ⊤∇2

xxf∇xf + 2∇xf
⊤∇2

xyfẏ + 2ẏ⊤∇2
yyf∇yf + 2∇yf

⊤∇2
yxfẋ

Using the update rule of GDA , i.e., Eq. (28), we substitute ẋ and ẏ in the above equation and have,

˙∥g0∥2 = −2β∇xf
⊤∇2

xxf∇xf + 2β∇yf
⊤∇2

yyf∇yf

− 2β∇xf
⊤∇2

xyf∇yf + 2β∇yf
⊤∇2

yxf∇xf

= −2β∇xf
⊤∇2

xxf∇xf − (−2β∇yf
⊤∇2

yyf∇yf) (30)

For the right hand side, we know,

2β∇xf
⊤∇2

xxf∇xf + (−2β∇yf
⊤∇2

yyf∇yf) ≥ λmin(2β∇2
xxf)∥∇xf∥2 + λmin(−2β∇2

yyf)∥∇yf∥2

Therefore, following the Eq. (30), we have,

− ˙∥g0∥2 ≥ λmin(2β∇2
xxf)∥∇xf∥2 + λmin(−2β∇2

yyf)∥∇yf∥2

Resulting in the following Lyapunov key inequality,

˙∥g0∥2 ≤ −∥g0∥2 min{λmin(2β∇2
xxf), λmin(−2β∇2

yyf)}

Since, for convex-concave functions, min{λmin(2β∇2
xxf), λmin(−2β∇2

yyf)} is always non-negative, which guarantees
convergence of this dynamical system.

E. Continuous time CGO
In this section, we first derive the continuous-time update rule of CGO and then show convergence by choosing the norm
squared of the gradient of f as the Lyapunov function. Taking the CGO update rule,[

∆x
∆y

]
= −η

[
I α∇2

xyf
−α∇yxf I

]−1 [ ∇xf
−∇yf

]

13
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and taking the limit η → 0, treating η as time, and scaling time with β, we get,[
ẋ
ẏ

]
= −β

[
I α∇2

xyf
−α∇2

yxf I

]−1 [ ∇xf
−∇yf

]
(31)

We further simplify Eq. (31) by re-arranging the matrix inverse,[
ẋ+ α∇2

xyfẏ
−α∇2

yxfẋ+ ẏ

]
=

[
−β∇xf
β∇yf

]
(32)

The above form will be useful in showing convergence. By solving for variable ẋ, ẏ, we get the explicit form,

ẋ = −β
(
I + α2∇2

xyf∇2
yxf
)−1 (∇x + α∇2

xyf∇y

)
ẏ = −β

(
I + α2∇2

yxf∇2
xyf
)−1 (

α∇2
yxf∇x −∇y

)
(33)

We use this construction to prove Theorem (5.1).

Proof of Theorem (5.1). We choose ∥g0∥2 as our Lyapunov function and evaluate its time derivative to observe,

˙∥g0∥2 =
d∥g0∥2

dt

= 2g⊤0 ġ0

= 2
[
∇xf

⊤ −∇yf
⊤] [ ∇2

xxf ∇2
xyf

−∇2
yxf −∇2

yyf

] [
ẋ
ẏ

]
= 2ẋ⊤∇2

xxf∇xf + 2∇xf
⊤∇2

xyfẏ + 2ẏ⊤∇2
yyf∇yf + 2∇yf

⊤∇2
yxfẋ (34)

Ignoring the factor 2, we expand the terms containing ∇2
xyf in Eq. (34) by replacing ẋ and ẏ using Eq. (33) as follows,

ẋ⊤∇2
xyf∇yf +∇xf

⊤∇2
xyfẏ = −β

(
∇x + α∇2

xyf∇y

)⊤ (
I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇yf

−∇xf
⊤∇2

xyfβ
(
I + α2∇2

yxf∇2
xyf
)−1 (

α∇2
yxf∇x −∇y

)
= −β∇xf

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇yf

− αβ∇yf
⊤∇2

yxf
(
I + α2∇2

yxf∇2
xyf
)−1 ∇2

xyf∇yf

+ β∇xf
⊤∇2

xyf
(
I + α2∇2

yxf∇2
xyf
)−1 ∇yf

− αβ∇xf
⊤∇2

xyf
(
I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇yf (35)

Using the equality proven in Lemma (E.1) we have,

ẋ⊤∇2
xyf∇yf +∇xf

⊤∇2
xyfẏ = −αβ∇xf

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf

− αβ∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf

Using the expanded terms in RHS of Eq. (35) back into Eq. (34), we obtain a unified expression,

˙∥g0∥2 = 2ẋ⊤∇2
xxf∇xf − 2αβ∇xf

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf

+ 2ẏ⊤∇2
yyf∇yf − 2αβ∇yf

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf

We now observe that α∇2
xyfẏ + β∇xf = −ẋ and α∇2

yxfẋ+ β∇yf = ẏ, yielding in,

˙∥g0∥2 = −2β∇xf
⊤∇2

xxf∇xf − 2αβ∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
xyf∇xf

− 2αẏ⊤∇2
yxf∇2

xxf∇x (36)

+ 2β∇yf
⊤∇2

yyf∇yf − 2αβ∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf

+ 2αẋ⊤∇2
xyf∇2

yyf∇yf (37)

14
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Substituting ∇xf and ∇yf in lines (36) and (37) with their equivalences in Eq. (32), we get,

˙∥g0∥2 = −2β∇xf
⊤∇2

xxf∇xf − 2αβ∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
xyf∇xf

− 2αẏ⊤∇2
yxf∇2

xxf(−
ẋ+ α∇2

xyfẏ

β
) (38)

+ 2β∇yf
⊤∇2

yyf∇yf − 2αβ∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf

+ 2αẋ⊤∇2
xyf∇2

yyf
ẏ − α∇2

yxfẋ

β
(39)

Taking transpose of the final terms in lines (38) and (39), we obtain,

˙∥g0∥2 = −2β∇xf
⊤∇2

xxf∇xf − 2αβ∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
xyf∇xf

⊤

+
2

β

(
αẋ+ α2∇2

xyfẏ
)⊤ ∇2

xxf∇2
xyfẏ

+ 2β∇yf
⊤∇2

yyf∇yf − 2αβ∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf

⊤

+
2

β

(
αẏ − α2∇2

yxfẋ
)⊤ ∇2

yyf∇2
yxfẋ (40)

We utilize the Peter-Paul inequality to further expand ∇2
xxf and ∇2

yyf terms in Eq. (40). In particular, we derive the
following inequalities,

2ẋ⊤∇2
xxf∇2

xyfẏ ≤ ∥ẋ⊤∇2
xxf∥2 + ∥∇2

xyfẏ∥2

and
2ẋ⊤∇2

xxf∇2
xyfẏ ≤ ∥ẋ⊤∇2

xxf∥2 + ∥∇2
xyfẏ∥2.

Using these inequalities in Eq. (40), we have,

∥ġ0∥2 ≤ −2β∇xf
⊤∇2

xxf∇xf − 2αβ∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
xyf∇xf

+
1

β
ẏ⊤∇2

yxf
(
αI + 2α2∇2

xxf
)
∇2

xyfẏ + 2β∇yf
⊤∇2

yyf∇yf

− 2αβ∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf +

1

β
ẋ⊤∇2

xyf
(
αI − 2α2∇2

yyf
)
∇2

yxfẋ

+
α

β
ẏ⊤∇2

yyf∇2
yyfẏ +

α

β
ẋ⊤∇2

xxf∇2
xxfẋ

Considering that ∇2
xxf and ∇2

yyf are symmetric matrices, we have,

˙∥g0∥2 ≤ −2β∇xf
⊤∇2

xxf∇xf − 2αβ∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
xyf∇xf

+
α

β
ẋ⊤∇2

xxf∇2
xxfẋ+

1

β

(
α+ 2α2λxx

)
∥∇2

xyfẏ∥2

+ 2β∇yf
⊤∇2

yyf∇yf − 2αβ∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf

+
α

β
ẏ⊤∇2

yyf∇2
yyfẏ +

1

β

(
α− 2α2λyy

)
∥∇2

yxfẋ∥2 (41)

Setting λ1 = max(λxx,−λyy) we obtain,

˙∥g0∥2 ≤ −2β∇xf
⊤∇2

xxf∇xf − 2αβ∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
xyf∇xf

+
α

β
ẋ⊤∇2

xxf∇2
xxfẋ+

1

β

(
α+ 2α2λ1

)
∥∇2

xyfẏ∥2

+ 2β∇yf
⊤∇2

yyf∇yf − 2αβ∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf

+
α

β
ẏ⊤∇2

yyf∇2
yyfẏ +

1

β

(
α+ 2α2λ1

)
∥∇2

yxfẋ∥2 (42)
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Using the update rule in Eq. (33), we compute,∥∥∇2
yxfẋ

∥∥2 = β2
(
∇xf + α∇2

xyf∇yf
)⊤ (

I + α2∇2
xyf∇2

yxf
)−2 ∇2

xyf∇2
yxf

(
∇xf + α∇2

xyf∇yf
)∥∥∇2

xyfẏ
∥∥2 = β2

(
−∇yf + α∇2

yxf∇xf
)⊤ (

I + α2∇2
yxf∇2

xyf
)−2 ∇2

yxf∇2
xyf

(
−∇yf + α∇2

yxf∇xf
)
.

by adding up the two equalities above, we obtain,∥∥∇2
yxfẋ

∥∥2 + ∥∥∇2
xyfẏ

∥∥2 = β2∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−2 ∇2

xyf∇2
yxf∇xf

+ β2∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−2 ∇2

yxf∇2
xyf∇yf

+ αβ2∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−2 ∇2

xyf∇2
yxf∇2

xyf∇yf

+ αβ2∇yf
⊤∇2

yxf
(
I + α2∇2

yxf∇2
xyf
)−2 ∇2

xyf∇2
yxf∇xf

− αβ2∇xf
⊤∇2

xyf
(
I + α2∇2

xyf∇2
yxf
)−2 ∇2

yxf∇2
xyf∇yf︸ ︷︷ ︸

(i)

− αβ2∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−2 ∇2

yxf∇2
xyf∇2

yxf∇xf︸ ︷︷ ︸
(ii)

+ α2β2∇xf
⊤∇2

xyf
(
I + α2∇2

xyf∇2
yxf
)−2 ∇2

yxf∇2
xyf∇2

yxf∇xf︸ ︷︷ ︸
(iii)

+ α2β2∇yf
⊤∇2

yxf
(
I + α2∇2

yxf∇2
xyf
)−2 ∇2

xyf∇2
yxf∇2

xyf∇yf︸ ︷︷ ︸
(iv)

(43)

We further analyze the last four terms of the Eq. (43). In particular, we utilize the statement of Lemma (E.1) and for the
term (i) in the above equality, we have,

αβ2∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−2 ∇2

xyf∇2
yxf∇2

xyf∇yf

= αβ2∇xf
⊤∇2

xyf
(
I + α2∇2

xyf∇2
yxf
)−2 ∇2

yxf∇2
xyf∇yf

correspondingly, for the term (ii), we have,

αβ2∇yf
⊤∇2

yxf
(
I + α2∇2

yxf∇2
xyf
)−2 ∇2

xyf∇2
yxf∇xf

= αβ2∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−2 ∇2

yxf∇2
xyf∇2

yxf∇xf

for the term (iii), we have,

α2β2∇xf
⊤∇2

xyf
(
I + α2∇2

xyf∇2
yxf
)−2 ∇2

yxf∇2
xyf∇2

yxf∇xf

= α2β2∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−2 ∇2

xyf∇2
yxf∇2

xyf∇2
yxf∇xf

correspondingly, for the term (iv), we have,

α2β2∇yf
⊤∇2

yxf
(
I + α2∇2

yxf∇2
xyf
)−2 ∇2

xyf∇2
yxf∇2

xyf∇yf

= α2β2∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−2 ∇2

yxf∇2
xyf∇2

yxf∇2
xyf∇yf

Putting these equalities together in Eq. (43), we have,

∥∥∇2
yxfẋ

∥∥2 + ∥∥∇2
xyfẏ

∥∥2
= β2∇xf

⊤ (I + α2∇2
xyf∇2

yxf
)−2 (∇2

xyf∇2
yxf + α2∇2

xyf∇2
yxf∇2

xyf∇2
yxf
)
∇xf

+ β2∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−2 (∇2

yxf∇2
xyf + α2∇2

yxf∇2
xyf∇2

yxf∇2
xyf
)
∇yf

= β2∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf∇xf

+ β2∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf (44)
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Plugging this into Eq. (42) we obtain,

˙∥g0∥2 ≤− 2β∇xf
⊤∇2

xxf∇xf + β(2α2λ1 − α)∇xf
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
xyf∇xf

+
α

β
ẋ⊤∇2

xxf∇2
xxfẋ+

α

β
ẏ⊤∇2

yyf∇2
yyfẏ

+ 2β∇yf
⊤∇2

yyf∇yf

+ β(2α2λ1 − α)∇yf
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf (45)

We now do the following set of computations,

ẋ⊤∇2
xxf∇2

xxfẋ+ ẏ⊤∇2
yyf∇2

yyfẏ
(a)
= (−α∇2

xyfẏ − β∇xf)
⊤∇2

xxf∇2
xxf(−α∇2

xyfẏ − β∇xf)

+ (α∇2
yxfẋ+ β∇yf)

⊤∇2
yyf∇2

yyf(α∇2
yxfẋ+ β∇yf)

(b)
= ∥(α∇2

xyfẏ + β∇xf)
⊤∇2

xxf∥2

+ ∥(α∇2
yxfẋ+ β∇yf)

⊤∇2
yyf∥2

(c)

≤ 2α2∥∇2
xyfẏ∥2∥∇2

xxf∥2 + 2α2∥∇2
yxfẋ∥2∥∇2

yyf∥2

+ 2β2∥∇xf∇2
xxf∥2 + 2β2∥∇yf∇2

yyf∥2

(d)

≤ 2β2α2λxx
2∥∇2

xyfẏ∥2 + 2β2α2λyy
2∥∇2

yxfẋ∥2

+ 2β2λxx
2∇xf

⊤∇xf + 2β2λyy
2∇yf

⊤∇yf

(e)

≤ 2β2α2λ2
2
(∥∇2

xyfẏ∥2 + ∥∇2
yxfẋ∥2)

+ 2β2λxx
2∇xf

⊤∇xf + 2β2λyy
2∇yf

⊤∇yf

(f)

≤ 2β2α2λ2
2∇xf

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf

+ 2β2α2λ2
2∇yf

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf

+ 2β2λxx
2∇xf

⊤∇xf + 2β2λyy
2∇yf

⊤∇yf

Where for (a) we use Eq. (32) to substitute ∆x and ∆y, in (b) we re-write the terms as norms, in (c) we use the inequality
∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, in (d) we bound the terms using the maximum eigenvalues, in (e) we set λ2 = max(λxx, λyy)
and finally for (f) we use Eq. (44).

Using the above inequality in Eq. (45), we have,

˙∥g0∥2 ≤ −∇xf
⊤(2β∇2

xxf − 2βαλxx
2
I)∇xf +∇yf

⊤(2β∇2
yyf + 2βαλyy

2
I)∇yf

− β(α− 2α2λ1 − 2α3λ2
2
)∇yf

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf

− β(α− 2α2λ1 − 2α3λ2
2
)∇xf

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
xyf∇xf

By rearranging the above inequality, we get,

˙∥g0∥2 ≤ −∇xf
⊤
(
(2β∇2

xxf − 2βαλxx
2
I) + β(α− 2α2λ1 − 2α3λ2

2
)
(
I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf
)
∇xf

−∇yf
⊤
(
−(2β∇2

yyf + 2βαλyy
2
I) + β(α− 2α2λ1 − 2α3λ2

2
)
(
I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf
)
∇yf

≤ −∥g0∥2 min{λmin((2β∇2
xxf − 2βαλxx

2
I) + β(α− 2α2λ1 − 2α3λ2

2
)
(
I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf),

λmin(−(2β∇2
yyf + 2βαλyy

2
I) + β(α− 2α2λ1 − 2α3λ2

2
)
(
I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf)}
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which is the key Lyapunov inequality. Thus, under the conditions expressed in the statement of the main Theorem, i.e., λ, as
defined in the following is positive,

λ := min{λmin((2β∇2
xxf − 2βαλxx

2
I) + β(α− 2α2λ1 − 2α3λ2

2
)
(
I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf), (46)

λmin(−(2β∇2
yyf + 2βαλyy

2
I) + β(α− 2α2λ1 − 2α3λ2

2
)
(
I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf)} (47)

the quantity ∥g0∥2 converges to zero exponentially fast with the rate at least λ.

Now, we simplify the above expression of the rate using Lemmas (E.2) and (E.3) to address the 1st and 2nd terms respectively
in lines (46) and (47),

λmin ≥ βmin{2λxx − 2αλxx
2
+ β(α− 2α2λ1 − 2α3λ2

2
)

λxy

1 + α2λxy
,

− 2λyy − 2αλyy
2
+ β(α− 2α2λ1 − 2α3λ2

2
)

λyx

1 + α2λyx
}

To better understand the above results, we set some relations between the quantities in the above expression. If we set α
such that λxx ≤ 1

5α ;λxx ≥ − 1
5α ;λyx, λxy ∼ K

α2 ;λyy ≥ − 1
5α ;λyy ≤ 1

5α ;K ≫ 1. We have λ1, λ1 ≤ 1
5α and we obtain

λmin ≥ 1
50α .

This shows that as long as the interaction terms λyx, λxy are of the order of the square of the deviation of the pure terms
λxx, λyy (from the convex-concave condition i.e. λxx ≥ 0, λyy ≤ 0), we can guarantee convergence for CGO

Statements and proofs of the Lemmas used in the above derivation are provided below,

Lemma E.1. The following equality holds,

∇2
yxf(I + α2∇2

xyf∇2
yxf)

−1 = (I + α2∇2
yxf∇2

xyf)
−1∇2

yxf.

Proof. To prove this equality statement, we write,

∇2
yxf + α2∇2

yxf∇2
xyf∇2

yxf = (I + α2∇2
yxf∇2

xyf)∇2
yxf

and at the same time,

∇2
yxf + α2∇2

yxf∇2
xyf∇2

yxf = ∇2
yxf(I + α2∇2

xyf∇2
yxf)

therefore, we have,

(I + α2∇2
yxf∇2

xyf)∇2
yxf = ∇2

yxf(I + α2∇2
xyf∇2

yxf)

Multiplying both sides with the inverse of (I + α2∇2
yxf∇2

xyf) from the left, and the inverse of (I + α2∇2
xyf∇2

yxf) from
the right results in,

∇2
yxf(I + α2∇2

xyf∇2
yxf)

−1 = (I + α2∇2
yxf∇2

xyf)
−1∇2

yxf

which is the statement of the Lemma.

Lemma E.2. The following inequality holds, λmin(A+B) ≥ λmin(A) + λmin(B), ∀A,B ∈ Sn
+.

Proof. We know,

∥∆x∥2λmin(A+B) ≥ x⊤(A+B)x = x⊤Ax+ x⊤Bx, ∀x

the following also holds,

x⊤Ax+ x⊤Bx ≥ ∥∆x∥2λmin(A) + ∥∆x∥2λmin(B), ∀x
Choosing x not equal to zero we complete the proof.
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Lemma E.3. Let B ∈ Sn
+, if (I+B) is invertible, λmin((I +B)−1B) ≥ λb

1+λb
, where λb = λmin(B)

Proof. We can write the following,

(I +B)−1B = (I +B)−1B = I − (I +B)−1

From the statement of Lemma (E.2) we can write,

λmin((I +B)−1B) ≥ λmin(I) + λmin(−(I +B)−1)

Hence we have,

λmin((I +B)−1B) ≥ 1 + (− 1

1 + λb
) =

λb

1 + λb

which is the statement of the Lemma.

E.1. Sample continuous time analysis
For the function f(x, y) = xy. The continuous time equations for GDA/CGD are,

ẋ = −βy (48)
ẏ = βx (49)

The solution to the above ODE is,

x = c1cos(βt)− c2sin(βt) (50)
y = c1sin(βt) + c2cos(βt) (51)

For the aforementioned x and y we have,

x2 + y2 = c21 + c22

which is the equation of a circle indicating that the iterates circle around the nash equillibrium.

for CGO we have,

ẋ = − β

1 + α2
(y + αx) (52)

ẏ = − β

1 + α2
(−x+ αy) (53)

The solution is,

x(t) = c1
e−αβt

α2 + 1
cos(

βt

α2 + 1
)− c2

e−αβt

α2 + 1
sin(

βt

α2 + 1
) (54)

y(t) = c1
e−αβt

α2 + 1
sin(

βt

α2 + 1
) + c2

e−αβt

α2 + 1
cos(

βt

α2 + 1
) (55)

Thus x and y satisfy,
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x2 + y2 = (c21 + c22)
e−2αβt

(α2 + 1)2

Indicating that the distance of the iterates from center falls exponentially.

The figure below illustrates the trajectories of the 2 algorithms.

2 1 0 1 2

x

2

1

0

1

2

y
α=0 (GDA/CGD)
α=1 (CGO)
α=2 (CGO)
α=3 (CGO)
start

(a) Exact Trajectories

Figure 7. The exact trajectories of GDA and CGO in continuous time
with time scale β = 1, t ∈ [0, 2π] and starting point x0, y0 = 1, 1

F. Discrete time GDA
In this section, we present the analysis of the discrete time GDA algorithm for completeness. We first present the optimization
problem and then derive GDA convergence conditions and convergence rate.

To come up with the update rule, we solve the below optimization problem,

min
δx∈Rm

δx⊤∇xf + δy⊤∇yf +
1

2η
δx⊤δx

max
δy∈Rn

δy⊤∇yf + δx⊤∇xf − 1

2η
δy⊤δy.

(56)

Which gives, [
∆x
∆y

]
= −η

[
∇xf
−∇yf

]
(57)

We now write the Taylor expansion of ∇xf,∇yf around the (x, y),

∇xf(∆x+ x,∆y + y) = ∇xf(x, y) +∇2
xxf∆x+∇2

xyf∆y +Rx(∆x,∆y)

∇yf(∆x+ x,∆y + y) = ∇yf(x, y) +∇2
yyf∆y +∇2

yxf∆x+Ry(∆x,∆y)

where the remainder terms Rx and Ry are defined as,

Rx(∆x,∆y) ..=

1∫
0

((
∇2

xxf(t∆x+ x, t∆y + y)−∇2
xxf
)
∆x+

(
∇2

xyf(t∆x+ x, t∆y + y)−∇2
xyf
)
∆y
)
dt (58)

Ry(∆x,∆y) ..=

1∫
0

((
∇2

yyf(t∆x+ x, t∆y + y)−∇2
yyf
)
∆y +

(
∇2

yxf(t∆x+ x, t∆y + y)−∇2
yxf
)
∆x
)
dt
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Using this equality, we obtain,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= 2∆x⊤∇2
xxf∇xf(x, y) + 2∇xf(x, y)

⊤∇2
xyf∆y +∆x⊤∇2

xxf∇2
xxf∆x

+ 2∆y⊤∇2
yyf∇yf(x, y) + 2∇yf(x, y)

⊤∇2
yxf∆x+∆y⊤∇2

yyf∇2
yyf∆y+

+∆y⊤∇2
yxf∇2

xyf∆y +∆x⊤∇2
xyf∇2

yxf∆x+ 2∆x⊤∇2
xxf∇2

xyf∆y + 2∆y⊤∇2
yyf∇2

yxf∆x

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∆x⊤∇2

xxfRx(∆x,∆y) + 2∆y⊤∇2
yxfRx(∆x,∆y) + ∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 2∆y⊤∇2

yyfRy(∆x,∆y) + 2∆x⊤∇2
xyfRy(∆x,∆y) + ∥Ry(∆x,∆y)∥2

Substituting ∆x = −η∇xf (x, y) and ∆y = η∇yf (x, y) we obtain,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= −2η∇xf(x, y)
⊤∇2

xxf∇xf(x, y) + 2η∇yf(x, y)
⊤∇2

yyf∇yf(x, y)

+ 2η2∇yf (x, y)
⊤ ∇2

yyf∇2
yxf∇xf (x, y)− 2η2∇xf (x, y)

⊤ ∇2
xxf∇2

xyf∇yf (x, y)

+ 2η∇xf(x, y)
⊤∇2

xyf∇yf(x, y)︸ ︷︷ ︸
(i)

− 2η∇yf(x, y)
⊤∇2

yxf∇xf (x, y)︸ ︷︷ ︸
(ii)

+ η2∇yf (x, y)
⊤ ∇2

yyf∇2
yyf∇yf (x, y) + η2∇xf(x, y)

⊤∇2
xxf∇2

xxf∇xf(x, y)

+ η2∇yf (x, y)
⊤ ∇2

yxf∇2
xyf∇yf (x, y) + η2∇xf (x, y)

⊤ ∇2
xyf∇2

yxf∇xf (x, y)

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∆x⊤∇2

xxfRx(∆x,∆y) + 2∆y⊤∇2
yxfRx(∆x,∆y) + ∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 2∆y⊤∇2

yyfRy(∆x,∆y) + 2∆x⊤∇2
xyfRy(∆x,∆y) + ∥Ry(∆x,∆y)∥2

The terms (i) and (ii) in the RHS cancel out. Using the Cauchy-Schwarz inequality we obtain,

2∇xf(x, y)
⊤Rx(∆x,∆y) ≤ 2∥∇xf(x, y)∥∥Rx(∆x,∆y)∥

2∇yf(x, y)
⊤Ry(∆x,∆y) ≤ 2∥∇yf(x, y)∥∥Ry(∆x,∆y)∥ (59)

Using the upper bounds on 2∇xf(x, y)
⊤Rx(∆x,∆y) and 2∇yf(x, y)

⊤Ry(∆x,∆y) derived in Eq. (59) we obtain,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= −2η∇xf(x, y)
⊤∇2

xxf∇xf(x, y) + 2η∇yf(x, y)
⊤∇2

yyf∇yf(x, y)

+ 2η2∇yf (x, y)
⊤ ∇2

yyf∇2
yxf∇xf (x, y)− 2η2∇xf (x, y)

⊤ ∇2
xxf∇2

xyf∇yf (x, y)

+ 2η2∇yf (x, y)
⊤ ∇2

yyf∇2
yyf∇yf (x, y) + 2η2∇xf(x, y)

⊤∇2
xxf∇2

xxf∇xf(x, y)

+ η2∇yf (x, y)
⊤ ∇2

yxf∇2
xyf∇yf (x, y) + η2∇xf (x, y)

⊤ ∇2
xyf∇2

yxf∇xf (x, y)

+ 2∥∇xf (x, y) ∥∥Rx(∆x,∆y)∥+ 2∥∇yf (x, y) ∥∥Ry(∆x,∆y)∥
+ 4∥Rx(∆x,∆y)∥2 + 4∥Ry(∆x,∆y)∥2

Rearranging we obtain,
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∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= ∇xf(x, y)
⊤ (η2∇2

xxf
2 − 2η∇2

xxf + η2∇2
xyf∇2

yxf
)
∇xf(x, y)

+∇yf(x, y)
⊤ (η2∇2

yyf
2 + 2η∇2

yyf + η2∇2
yxf∇2

xyf
)
∇yf(x, y)

+ 2η2∇xf (x, y)
⊤ (∇2

xyf∇2
yyf −∇2

xxf∇2
xyf
)
∇yf (x, y)

+ 4∥Rx(∆x,∆y)∥2 + 4∥Ry(∆x,∆y)∥2 + 2∥∇xf (x, y) ∥∥Rx(∆x,∆y)∥
+ 2∥∇yf (x, y) ∥∥Ry(∆x,∆y)∥

To conclude, we need to bound the R terms. Using the Lipschitz-continuity of the Hessian and Eq. (58), we can bound the
remainder terms as,

∥Rx(∆x,∆y)∥, ∥Ry(∆x,∆y)∥ ≤ Lxy(∥∆x∥+ ∥∆y∥)2 (60)

Using Eq. (57), we get,

∥∆x∥2 + ∥∆y∥2 = η2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)

Hence we have,

Lxy(∥∆x∥+ ∥∆y∥)2 ≤ 2Lxy(∥∆x∥2 + ∥∆y∥2) ≤ 2η2Lxy(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)

Thus,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

≤ ∇xf(x, y)
⊤
(
η2∇2

xxf
2 − 2η∇2

xxf + 2η2∇2
xyf∇2

yxf

+ 4η2Lxy(∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)
)
∇xf(x, y)

+∇yf(x, y)
⊤
(
η2∇2

yyf
2 + 2η∇2

yyf + 2η2∇2
yxf∇2

xyf

+ 4η2Lxy(∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)
)
∇yf(x, y)

+ 2η2∇xf (x, y)
⊤ (∇2

xyf∇2
yyf −∇2

xxf∇2
xyf
)
∇yf (x, y)︸ ︷︷ ︸

(i)

+ 8η2Lxy(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)

We further use the following inequality,

a⊤Ab =
1

2
a⊤Ab+

1

2
b⊤A⊤a

(a)

≤ 1

4
(a⊤(AA⊤ + I)a+ b⊤(A⊤A+ I)b)

(where in (a) we use the Peter-Paul inequality on both the terms) to bound the term (i) in the above inequality. We
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obtain,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= ∇xf(x, y)
⊤
(
(η2∇2

xxf
2 − 2η∇2

xxf + 2η2∇2
xyf∇2

yxf)

+ I(8η2Lxy + 4η2Lxy(∥∇xf(x, y)∥+ ∥∇yf(x, y)∥))
)
∇xf(x, y)

+∇yf(x, y)
⊤
(
(η2∇2

yyf
2 + 2η∇2

yyf + 2η2∇2
yxf∇2

xyf)

+ I(8η2Lxy + 4η2Lxy(∥∇xf(x, y)∥+ ∥∇yf(x, y)∥))
)
∇yf(x, y)

+ η2∇xf(x, y)
⊤ ((∇2

xyf∇2
yyf −∇2

xxf∇2
xyf)(∇2

xyf∇2
yyf −∇2

xxf∇2
xyf)

⊤)∇xf(x, y)

+ η2∇yf(x, y)
⊤ ((∇2

xyf∇2
yyf −∇2

xxf∇2
xyf)

⊤(∇2
xyf∇2

yyf −∇2
xxf∇2

xyf)
)
∇yf(x, y)

+ η2/2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)

This gives,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 ≤ (1− λmin)(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)

Where,

λmin = η min
{
λmin(2∇2

xxf − η(∇2
xxf

2 − 2∇2
xyf∇2

yxf − I(8Lxy + 4Lxy(∥∇xf∥+ ∥∇yf∥) +
1

2
)

− (∇2
xyf∇2

yyf −∇2
xxf∇2

xyf)(∇2
xyf∇2

yyf −∇2
xxf∇2

xyf)
⊤)),

λmin(−2∇2
yyf − η(∇2

yyf
2 − 2∇2

yxf∇2
xyf − I(8Lxy + 4Lxy(∥∇xf∥+ ∥∇yf∥) +

1

2
)

− (∇2
xyf∇2

yyf −∇2
xxf∇2

xyf)
⊤(∇2

xyf∇2
yyf −∇2

xxf∇2
xyf)))

}
Hence for 1 ≥ λmin > 0 we have exponentially fast convergence. For sufficiently small η, we have convergence for all
strongly convex-concave functions with rate 1− λmin where,

λmin = η(min{λmin(2∇2
xxf), λmin(−2∇2

yyf)})

G. Discrete time CGO
In this section, we restate the update rule for the CGO algorithm and then derive its convergence rate and a condition for
convergence. Recall the update rule for CGO ,[

∆x
∆y

]
= −η

[
I α∇2

xyf
−α∇2

yxf I

]−1 [ ∇xf
−∇yf

]

The following form of the above equation will be useful in the proof,

∆x = −η∇xf − α∇2
xyf∆y

∆y = η∇yf + α∇2
yxf∆x (61)

Finally, writing the updates explicitly,

∆x = −η
(
I + α2∇2

xyf∇2
yxf
)−1 (∇xf + α∇2

xyf∇yf
)

∆y = η
(
I + α2∇2

yxf∇2
xyf
)−1 (∇yf − α∇2

yxf∇xf
)
, (62)
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Proof of Theorem (5.2). Using the Taylor expansion of (∇xf,∇yf), around the point (x, y) we obtain,

∇xf(∆x+ x,∆y + y) = ∇xf(x, y) +∇2
xxf∆x+∇2

xyf∆y +Rx(∆x,∆y)

∇yf(∆x+ x,∆y + y) = ∇yf(x, y) +∇2
yyf∆y +∇2

yxf∆x+Ry(∆x,∆y)

where the remainder terms Rx and Ry are defined as,

Rx(∆x,∆y) ..=

1∫
0

((
∇2

xxf(t∆x+ x, t∆y + y)−∇2
xxf
)
∆x+

(
∇2

xyf(t∆x+ x, t∆y + y)−∇2
xyf
)
∆y
)
dt (63)

Ry(∆x,∆y) ..=

1∫
0

((
∇2

yyf(t∆x+ x, t∆y + y)−∇2
yyf
)
∆y +

(
∇2

yxf(t∆x+ x, t∆y + y)−∇2
yxf
)
∆x
)
dt (64)

Using these equalities, we obtain the value of the difference between norm of the vector (∇xf,∇yf) at points (x, y) and
updated ones, (∆x+ xk,∆y + yk).

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= 2∆x⊤∇2
xxf∇xf(x, y) + 2∇xf(x, y)

⊤∇2
xyf∆y +∆x⊤∇2

xxf∇2
xxf∆x+ 2∆x⊤∇2

xxf∇2
xyf∆y

+ 2∆y⊤∇2
yyf∇yf(x, y) + 2∇yf(x, y)

⊤∇2
yxf∆x+∆y⊤∇2

yyf∇2
yyf∆y + 2∆y⊤∇2

yyf∇2
yxf∆x

+∆y⊤∇2
yxf∇2

xyf∆y +∆x⊤∇2
xyf∇2

yxf∆x

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∆x⊤∇2

xxfRx(∆x,∆y) + 2∆y⊤∇2
yxfRx(∆x,∆y) + ∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 2∆y⊤∇2

yyfRy(∆x,∆y) + 2∆x⊤∇2
xyfRy(∆x,∆y) + ∥Ry(∆x,∆y)∥2

(65)

We now observe using Eq. (61) that,

∆y⊤∇2
yxf∇2

xyf∆y = −∆y⊤∇2
yxf

∆x+ η∇xf(x, y)

α
(66)

∆x⊤∇2
xyf∇2

yxf∆x = ∆x⊤∇2
xyf

∆y − η∇yf(x, y)

α
(67)

Adding up Eq. (66) and Eq. (67) we obtain,

∆x⊤∇2
xyf∇2

yxf∆x+∆y⊤∇2
yxf∇2

xyf∆y = − η

α
(∆y⊤∇2

yxf∇xf(x, y) + ∆x⊤∇2
xyf∇yf(x, y))

Substituting this into Eq. (65) yields,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= 2∆x⊤∇2
xxf∇xf(x, y) + (2− η

α
)∇xf(x, y)

⊤∇2
xyf∆y +∆x⊤∇2

xxf∇2
xxf∆x+ 2∆x⊤∇2

xxf∇2
xyf∆y

+ 2∆y⊤∇2
yyf∇yf(x, y) + (2− η

α
)∇yf(x, y)

⊤∇2
yxf∆x+∆y⊤∇2

yyf∇2
yyf∆y + 2∆y⊤∇2

yyf∇2
yxf∆x

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∆x⊤∇2

xxfRx(∆x,∆y) + 2∆y⊤∇2
yxfRx(∆x,∆y) + ∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 2∆y⊤∇2

yyfRy(∆x,∆y) + 2∆x⊤∇2
xyfRy(∆x,∆y) + ∥Ry(∆x,∆y)∥2
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We use the update rule of CGO , Eq. (62) to substitute ∆x and ∆y and observe that ∇2
yxf(I + ∇2

xyf∇2
yxf)

−1 = (I +
∇2

yxf∇2
xyf)

−1∇2
yxf as stated in Lemma (E.1) to obtain the following equality,

∆x⊤∇2
xyf∇yf(x, y) +∇xf(x, y)

⊤∇2
xyf∆y

= −ηα∇xf(x, y)
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

− ηα∇yf(x, y)
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y).

Yielding,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= 2∆x⊤∇2
xxf∇xf(x, y)− ηα(2− η

α
)∇xf(x, y)

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

+ 2∆x⊤∇2
xxf∇2

xyf∆y + 2∆y⊤∇2
yyf∇2

yxf∆x+∆x⊤∇2
xxf∇2

xxf∆x+∆y⊤∇2
yyf∇2

yyf∆y

+ 2∆y⊤∇2
yyf∇yf(x, y)− ηα(2− η

α
)∇yf(x, y)

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y)

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∆x⊤∇2

xxfRx(∆x,∆y) + 2∆y⊤∇2
yxfRx(∆x,∆y) + ∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 2∆y⊤∇2

yyfRy(∆x,∆y) + 2∆x⊤∇2
xyfRy(∆x,∆y) + ∥Ry(∆x,∆y)∥2.

We now substitute ∆x and ∆y using Eq. (61) yielding,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

= −2η∇xf(x, y)
⊤∇2

xxf∇xf(x, y) + 2η∇yf(x, y)
⊤∇2

yyf∇yf(x, y)

− ηα(2− η

α
)∇xf(x, y)

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

+ ∆x⊤∇2
xxf∇2

xxf∆x+
2

η

(α+ η)∆x︸ ︷︷ ︸
(i)

+α2∇2
xyf∆y


⊤

∇2
xxf∇2

xyf∆y

+∆y⊤∇2
yyf∇2

yyf∆y +
2

η

(α+ η)∆y︸ ︷︷ ︸
(ii)

−α2∇2
yxf∆x


⊤

∇2
yyf∇2

yxf∆x

− ηα(2− η

α
)∇yf(x, y)

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y)

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∆x⊤∇2

xxfRx(∆x,∆y)︸ ︷︷ ︸
(iii)

+2∆y⊤∇2
yxfRx(∆x,∆y) + ∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 2∆y⊤∇2

yyfRy(∆x,∆y)︸ ︷︷ ︸
(iv)

+2∆x⊤∇2
xyfRy(∆x,∆y) + ∥Ry(∆x,∆y)∥2 (68)

Now we use Peter-Paul inequality, and bound the terms (i) and (ii) respectively as follows,

2(α+ η)

η
∆x⊤∇2

xxf∇2
xyf∆y ≤ 8

α+ η

η
∥∆x⊤∇2

xxf∥2 +
α+ η

8η
∥∇2

xyf∆y∥2

2(α+ η)

η
∆y⊤∇2

yyf∇2
yxf∆x ≤ 8

α+ η

η
∥∆y⊤∇2

yyf∥2 +
α+ η

8η
∥∇2

yxf∆x∥2 (69)

and terms (iii) and (iv) as,

2∆x⊤∇2
xyfRy(∆x,∆y) ≤ ∥Ry(∆x,∆y)∥2 + ∥∇2

xyf∆y∥2

2∆y⊤∇2
yxfRx(∆x,∆y) ≤ ∥Rx(∆x,∆y)∥2 + ∥∇2

yxf∆x∥2 (70)
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Using the bounds obtained in Eqs. (69) and (70) we get,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

≤ −2η∇xf(x, y)
⊤∇2

xxf∇xf(x, y)

− ηα(2− η

α
)∇xf(x, y)

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

+
10η + 8α

η
∆x⊤∇2

xxf∇2
xxf∆x+∆y⊤∇2

yxf

(
α+ η

8η
I +

2α2∇2
xxf

η

)
∇2

xyf∆y

+ 2η∇yf(x, y)
⊤∇2

yyf∇yf(x, y)

− ηα(2− η

α
)∇yf(x, y)

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y)

+
10η + 8α

η
∆y⊤∇2

yyf∇2
yyf∆y +∆x⊤∇2

xyf

(
α+ η

8η
I −

2α2∇2
yyf

η

)
∇2

yxf∆x

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∆y⊤∇2

yxfRx(∆x,∆y)︸ ︷︷ ︸
(i)

+2∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 2∆x⊤∇2

xyfRy(∆x,∆y)︸ ︷︷ ︸
(ii)

+2∥Ry(∆x,∆y)∥2.

We use the Peter-Paul inequality to bound the term (i) as,

2∆y⊤∇2
yxfRx(∆x,∆y) ≤ 4∥Rx(∆x,∆y)∥2 + 1

4
∥∇2

yxf∆x∥2

and the term (ii) as,

2∆x⊤∇2
xyfRy(∆x,∆y) ≤ 4∥Ry(∆x,∆y)∥2 + 1

4
∥∇2

xyf∆y∥2

Substituting the above obtained bounds and noting that ∇xxf and ∇yyf are symmetric matrices we obtain,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

≤ −2η∇xf(x, y)
⊤∇2

xxf∇xf(x, y)

− ηα(2− η

α
)∇xf(x, y)

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

+
10η + 8α

η
∆x⊤∇2

xxf∇2
xxf∆x+

(
α+ 3η

8η
+

2α2λxx

η

)
∥∇2

xyf∆y∥2

+ 2η∇yf(x, y)
⊤∇2

yyf∇yf(x, y)

− ηα(2− η

α
)∇yf(x, y)

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y)

+
10η + 8α

η
∆y⊤∇2

yyf∇2
yyf∆y +

(
α+ 3η

8η
−

2α2λyy

η

)
∥∇2

yxf∆x∥2

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 6∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 6∥Ry(∆x,∆y)∥2

Using Eq. (61) to substitute ∆x and ∆y we compute,∥∥∇2
yxf∆x

∥∥2 = η2
(
∇xf(x, y) +∇2

xyf∇yf(x, y)
)⊤(

I +∇2
xyf∇2

yxf
)−2 ∇2

xyf∇2
yxf

(
∇xf(x, y) +∇2

xyf∇yf(x, y)
)
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And,

∥∥∇2
xyf∆y

∥∥2 = η2
(
−∇yf(x, y) +∇2

yxf∇xf(x, y)
)⊤(

I +∇2
yxf∇2

xyf
)−2 ∇2

yxf∇2
xyf

(
−∇yf(x, y) +∇2

yxf∇xf(x, y)
)

By adding up the two, we obtain,

∥∥∇2
yxf∆x

∥∥2 + ∥∥∇2
xyf∆y

∥∥2 = η2∇xf(x, y)
⊤ (I +∇2

xyf∇2
yxf
)−2 (∇2

xyf∇2
yxf +∇2

xyf∇2
yxf
)
∇xf(x, y)

+ η2∇yf(x, y)
⊤ (I +∇2

yxf∇2
xyf
)−2 (∇2

yxf∇2
xyf +∇2

yxf∇2
xyf
)
∇yf(x, y)

= η2∇xf(x, y)
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

+ η2∇yf(x, y)
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y) (71)

Setting λ1 = max(λxx,−λyy) and using Eq. (71) to substitute ∥∇2
xyf∆y∥2 + ∥∇2

yxf∆x∥2, we have,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

≤ −2η∇xf(x, y)
⊤∇2

xxf∇xf(x, y) +
10η + 8α

η
∆x⊤∇2

xxf∇2
xxf∆x︸ ︷︷ ︸

(i)

+ η

(
11η + 16α2λ1

8
− 15

8
α

)
∇xf(x, y)

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

+ 2η∇yf(x, y)
⊤∇2

yyf∇yf(x, y) +
10η + 8α

η
∆y⊤∇2

yyf∇2
yyf∆y︸ ︷︷ ︸

(ii)

+ η

(
11η + 16α2λ1

8
− 15

8
α

)
∇yf(x, y)

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y)

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 6∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 6∥Ry(∆x,∆y)∥2 (72)

Substituting ∆x and ∆y from Eq. (61) we bound the sum of terms (i) and (ii) as follows,

∆x⊤∇2
xxf∇2

xxf∆x+∆y⊤∇2
yyf∇2

yyf∆y

= (−α∇2
xyf∆y − η∇xf(x, y))

⊤∇2
xxf∇2

xxf(−α∇2
xyf∆y − η∇xf(x, y))

+ (α∇2
yxf∆x+ η∇yf(x, y))

⊤∇2
yyf∇2

yyf(α∇2
yxf∆x+ η∇yf(x, y))

= ∥∇2
xxf(∇2

xyf∆y + η∇xf(x, y))∥2

+ ∥∇2
yyf(α∇2

yxf∆x+ η∇yf(x, y))∥2

≤ 2α2∥∇2
xyf∆y∥2∥∇2

xxf∥2 + 2α2∥∇2
yxf∆x∥2∥∇2

yyf∥2

+ 2η2∥∇2
xxf∇xf(x, y)∥2 + 2η2∥∇2

yyf∇yf(x, y)∥2

= 2α2∥∇2
xyf∆y∥2λxx

2
+ 2α2∥∇2

yxf∆x∥2λyy
2

+ 2η2∥∇2
xxf∇xf(x, y)∥2 + 2η2∥∇2

yyf∇yf(x, y)∥2
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Setting λ2 = max(λxx, λyy) and using Eq. (71) to substitute ∥∇2
xyf∆y∥2 + ∥∇2

yxf∆x∥2,

∆x⊤∇2
xxf∇2

xxf∆x+∆y⊤∇2
yyf∇2

yyf∆y

≤ 2α2λ2
2
(∥∇2

xyf∆y∥2 + ∥∇2
yxf∆x∥2)

+ 2η2∥∇2
xxf∇xf(x, y)∥2 + 2η2∥∇2

yyf∇yf(x, y)∥2

≤ 2α2η2λ2
2∇xf(x, y)

⊤ (I + α2∇2
xyf∇2

yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y)

+ 2α2η2λ2
2∇yf(x, y)

⊤ (I + α2∇2
yxf∇2

xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y)

+ 2λxx
2∇xf(x, y)

⊤∇xf(x, y)

+ 2λyy
2∇yf(x, y)

⊤∇yf(x, y)

Substituting the above bound in Eq. (72) we obtain,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

≤ −η∇xf(x, y)
⊤
(
2∇2

xxf − 2
10η + 8α

η
λxx

2
)
∇xf(x, y)

+ η∇yf(x, y)
⊤
(
2∇2

yyf + 2
10η + 8α

η
λyy

2
)
∇yf(x, y)

+

(
η(

11η + 16α2λ1

8
− 15

8
α) + 2(10η + 8α)α2ηλ2

2
)

(∇yf(x, y)
⊤ (I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf∇yf(x, y)

+∇xf(x, y)
⊤ (I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf∇xf(x, y))

+ 2∇xf(x, y)
⊤Rx(∆x,∆y) + 6∥Rx(∆x,∆y)∥2

+ 2∇yf(x, y)
⊤Ry(∆x,∆y) + 6∥Ry(∆x,∆y)∥2. (73)

To conclude, we need to bound the R-terms. Using the Lipschitz-continuity of the Hessian, and equations Eq. (63) and
Eq. (64) we can bound,

∥Rx(∆x,∆y)∥, ∥Ry(∆x,∆y)∥ ≤ Lxy(∥∆x∥+ ∥∆y∥)2 (74)

Using Eq. (61) we get,

(∥∆x∥2 + ∥∆y∥2) =η2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)
+ 2ηα(∇xf(x, y)

⊤∇2
yxf∆x+∇yf(x, y)

⊤∇2
xyf∆y)

+ α2(∥∇2
yxf∆x∥2 + ∥∇2

xyf∆y∥2)

From Eq. (71) we have,

α2(
∥∥∇2

yxf∆x
∥∥2 + ∥∥∇2

xyf∆y
∥∥2) =η2∇xf(x, y)

⊤ (I + α2∇2
xyf∇2

yxf
)−1

α2∇2
xyf∇2

yxf∇xf(x, y)

+ η2∇yf(x, y)
⊤ (I + α2∇2

yxf∇2
xyf
)−1

α2∇2
yxf∇2

xyf∇yf(x, y)

≤η2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2) (75)

And observe,
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∇xf(x, y)
⊤∇2

yxf∆x+∇yf(x, y)
⊤∇2

xyf∆y = (∇xf(x, y),∇yf(x, y))
⊤(∇2

yxf∆x,∇2
xyf∆y)

(c)

≤ ∥(∇xf(x, y),∇yf(x, y)∥∥(∇2
yxf∆x,∇2

xyf∆y)∥
(d)

≤ η

α
(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2) (76)

Where in (c) we use the Cauchy-Schwarz inequality and in (d) we use the bound derived in Eq. (75). We then substitute ∆x
and ∆y using Eq. (62) to obtain,

Lxy(∥∆x∥+ ∥∆y∥)2 ≤ 2Lxy(∥∆x∥2 + ∥∆y∥2)
≤ 2Lxy(η

2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)
+ 2ηα (∇xf(x, y)

⊤∇2
yxf∆x+∇yf(x, y)

⊤∇2
xyf∆y)︸ ︷︷ ︸

(i)

+ α2 (∥∇2
yx∆x∥2 + ∥∇2

xyf∆y∥2))︸ ︷︷ ︸
(ii)

(e)

≤ 8η2Lxy(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2) (77)

Where in (e) we have used Eq. (76) to bound term (i) and Eq. (75) to bound (ii). Combining Eq. (74) and Eq. (77) we
obtain,

∥Rx(∆x,∆y)∥, ∥Ry(∆x,∆y)∥ ≤ 8η2Lxy(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2) (78)

Also we have,

2∇xf(x, y)
⊤Rx(∆x,∆y) + 2∇yf(x, y)

⊤Ry(∆x,∆y)

(a)

≤ 2(∥∇xf(x, y)∥∥Rx(∆x,∆y)∥+ ∥∇yf(x, y)∥∥Ry(∆x,∆y)∥)
(b)

≤ 16Lxyη
2(∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2) (79)

Where we use Cauchy-Schwarz inequality in (a) and Eq. (74) in (b). Finally we use the bounds in Eq. (78) and Eq. (79) to
bound the terms containing Rx(∆x,∆y) and Ry(∆x,∆y) in Eq. (73) and further set k = η( 11η+16α2λ1

8 − 15
8 α)+2(10η+

8α)α2ηλ2
2

to obtain,

∥∇xf (∆x+ x,∆y + y)∥2 + ∥∇yf (∆x+ x,∆y + y)∥2 − ∥∇xf(x, y)∥2 − ∥∇yf(x, y)∥2

≤ −∇xf(x, y)
⊤(η

(
2∇2

xxf − 2
10η + 8α

η
λxx

2
)
+ k

(
I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf

− 16η2Lxy (∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)
− 384η4L2

xy(∥∇xf(x, y)∥2 + ∥∇xf(x, y)∥2))∇xf(x, y)

−∇yf(x, y)
⊤(−η

(
2∇2

yyf + 2
10η + 8α

η
λyy

2
)
+ k

(
I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf

− 16η2Lxy (∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)
− 384η4L2

xy(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2))∇yf(x, y)
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Rearranging we obtain,

∥(∇xf(x+ x, y + y),∇yf(x+ x, y + y)∥ ≤ (1− λmin)∥(∇xf(x, y),∇yf(x, y)∥

Thus for 1 ≥ λmin > 0 where,

λmin =min
{
λmin(η

(
2∇2

xxf − 2
10η + 8α

η
λxx

2
)
+ k

(
I + α2∇2

xyf∇2
yxf
)−1 ∇2

xyf∇2
yxf

− 16η2L (∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)
− 384η4L2(∥∇xf(x, y)∥2 + ∥∇xf(x, y)∥2)),

λmin(−η

(
2∇2

yyf + 2
10η + 8α

η
λyy

2
)
+ k

(
I + α2∇2

yxf∇2
xyf
)−1 ∇2

yxf∇2
xyf

− 16η2L (∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)

− 384η4L2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)
}

we have exponential convergence with rate (1− λmin).

Now, we simplify the above expression using Lemmas (E.2) and (E.3) to obtain,

λmin ≥ min
{
η(2λxx − 2

10η + 8α

η
λxx

2
) + k

λxy

1 + α2λxy
− 16η2L (∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)

− 384η4L2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2),

− η(2λyy + 2
10η + 8α

η
λyy

2
) + k

λyx

1 + α2λyx
− 16η2L (∥∇xf(x, y)∥+ ∥∇yf(x, y)∥)

− 384η4L2(∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2)
}

When initializing close to the stationary point, the Lipschitz-continuity of the gradient guarantees that the terms
(∥∇xf(x, y)∥+ ∥∇yf(x, y)∥) and ∥∇xf(x, y)∥2 + ∥∇yf(x, y)∥2 are small and we have,

λmin ≥ min
{
η(2λxx − 2

10η + 8α

η
λxx

2
) + k

λxy

1 + α2λxy
,

− η(2λyy + 2
10η + 8α

η
λyy

2
) + k

λyx

1 + α2λyx

}
which is the statement of our Theorem.

H. Convergence for α-coherent functions
H.1. CGO converges to a saddle point under strictly α-coherent functions

Proof of Theorem (5.3). We prove the convergence through contradiction. Let us assume that the algorithm does not
converge to a saddle point. Let zn := (xn, yn) denote the parameters at the n’th iterate of the algorithm. gα,n := gα(zn)
denote the vector gα evaluated at zn. Let the set of saddle points be Z∗, and let all the iterates of the algorithm lie in a
compact set C. Then from the assumption we have Z∗ ∩ C = ϕ. Now from the definition of strict coherence we have
⟨gα,n, z − z∗⟩ ≥ a for some a > 0 and z∗ ∈ Z∗ and ,∀z ∈ C. Such a z∗ is guaranteed by definition (3.4)(2nd point).

Recall the proximal map defined in Eq. (12),

z+ = Pz(y) = argmin
z′∈Z

{⟨y, z − z′⟩+D(z′, z)} = argmax
z′∈Z

{⟨y +∇h(z), z′⟩ − h(z′)}. (80)
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Then for Bregmann Divergence Dh(x, y) with K-strongly convex potential function h and 2-norm ∥.∥ we have, (Mer-
tikopoulos et al., 2019)(Proposition B.3),

D(p, z+) ≤ D(p, z) + ⟨y, z − p⟩+ K

2
∥∆y∥2. (81)

To obtain the CGO update we substitute y = −ηngα,n, z = zn, z
+ = zn+1, p = z∗, h =

∥.∥2
2

2 in Eq. (81) we get,

D(z∗, zn+1) = D(z∗, Pzn(−ηngα,n)) ≤ D(z∗, zn)− ηn⟨gα,n, zn − z∗⟩+ η2n∥gα,n∥2

2

Note that the above substitution in Eq.(81) is equivalent to CGO only in the interior of the domain. At the boundary we
need an additional projection step since in Eq. (81) we only look within the domain for the minimum.

Since the saddle point is α-coherent we have ⟨gα,n, z − z∗⟩ ≥ a for some a > 0.

D(z∗, zn+1) ≤ D(z∗, zn)− ηna+
η2n∥gα,n∥2

2
≤ D(z∗, z0)− (a−

∑n
k=1 ∥ηk∥2

2
∑n

k=1 ηk
)

n∑
k=1

ηk

Since we have
∑n

k=1 ηk = ∞ and
∑n

k=1 ∥ηk∥2 < ∞, we obtain limn→∞ Dn = −∞, which is a contradiction since the
divergence is positive. Hence CGO converges to a saddle point.

H.2. oCGO converges to a saddle point under α-coherent functions

Proof of Theorem (5.4). Let Pz(y) be as in Eq. (12) and z+1 = Pz(y1), z
+
2 = Pz(y2). We then have for Bregmann

Divergence Dh(x, y) with K-strongly convex potential function h, 2-norm ∥.∥ and a fixed point p (Mertikopoulos et al.,
2019)(Proposition B.4),

D(p, x+
2 ) ≤ D(p, x) + ⟨y2, x+

1 − p⟩+ 1

2K
∥∆y2 − y1∥2 −

K

2
∥∆x+

1 − x∥2. (82)

Let p∗ be a solution of the SP problem such that α-MVI holds ∀z ∈ X × Y , the existence of such a p is guaranteed via the
definition of α-coherence Def. (3.4)(2nd point).

In order to obtain the oCGO update we substitute y1 = −ηngα,n, y2 = −ηngα,n+ 1
2
, x = zn, x

+
1 = zn+ 1

2
, x+

2 = zn+1, p =

p∗ and set h = ∥.∥2

2 (for this h we have K = 1),

D(x∗, zn+1) ≤ D(x∗, zn)− ηn⟨gα,n+ 1
2
, zn+ 1

2
− x∗⟩+ η2n

2
∥gα,n+ 1

2
− gα,n∥2 −

1

2
∥zn+ 1

2
− zn∥2

From coherence condition we have,

D(p∗, zn+1) ≤ D(p∗, zn) +
η2n
2
∥gα,n+ 1

2
− gα,n∥2 −

1

2
∥zn+ 1

2
− zn∥2 (83)

Using Eq. (61) we get,

∥gα,n+ 1
2
− gα,n∥2 ≤ ∥g0,n+ 1

2
− g0,n∥2 +

α2

η2n
(∥∇xy,n+ 1

2
f∆yn+ 1

2
−∇xy,nf∆yn∥2

+ ∥∇xy,n+ 1
2
f⊤∆xn+ 1

2
−∇xy,nf

⊤∆xn∥2)

Where (∆xn,∆yn) = −ηngα,n, (∆xn+ 1
2
,∆yn+ 1

2
) = −ηngα,n+ 1

2
and ∇xy,nf,∇xy,n+ 1

2
f are the second order cross
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terms evaluated at zn, zn+ 1
2

. We can re-write the above as,

1

η2n
∥(∆xn+ 1

2
−∆xn,∆yn+ 1

2
−∆yn)∥2

≤ ∥g0,n+ 1
2
− g0,n∥2

+
α2

η2n
∥∇xy,n+ 1

2
f∆yn+ 1

2
−∇xy,n+ 1

2
f∆yn +∇xy,n+ 1

2
f∆yn −∇xy,nf∆yn∥2

+
α2

η2n
∥∇xy,n+ 1

2
f⊤∆xn+ 1

2
−∇xy,n+ 1

2
f⊤∆xn +∇xy,n+ 1

2
f⊤∆xn −∇xy,nf

⊤∆xn∥2

≤ ∥g0,n+ 1
2
− g0,n∥2

+
α2

η2n
(∥∇xy,n+ 1

2
f∥2∥∆yn+ 1

2
−∆yn∥2 + ∥∆yn∥2∥∇xy,n+ 1

2
f −∇xy,nf∥2)

+
α2

η2n
(∥∇xy,n+ 1

2
f⊤∥2∥∆xn+ 1

2
−∆xn∥2 + ∥∆xn∥2∥∇xy,n+ 1

2
f⊤ −∇xy,nf

⊤∥2)

Using the Lipschitz continuity of the Hessian terms, setting α2∥∇xy,n+ 1
2
f∥2 = α2∥∇xy,n+ 1

2
f⊤∥2 = α2L2

xy ≤ 1, and
rearranging we get,

1

η2n
∥∆xn+ 1

2
−∆xn,∆yn+ 1

2
−∆yn∥2 ≤ 1

1− ∥∇xy,n+ 1
2
f∥2α2

∥g0,n+ 1
2
− g0,n∥2

+
α2

η2n(1− ∥∇xy,n+ 1
2
f∥2α2)

(∥∆yn∥2∥∇xy,n+ 1
2
f −∇xy,nf∥2)

+
α2

η2n(1− ∥∇xy,n+ 1
2
f∥2α2)

(∥∆xn∥2∥∇xy,n+ 1
2
f⊤ −∇xy,nf

⊤∥2)

≤ L2

η2n(1− ∥∇xy,n+ 1
2
f∥2α2)

∥zn+ 1
2
− zn∥2

+
L2
xyα

2

η2n(1− ∥∇xy,n+ 1
2
f∥2α2)

(∥∆xn∥2 + ∥∆yn∥2)∥zn+ 1
2
− zn∥2

Finally we have,

∥gα,n+ 1
2
− gα,n∥2 ≤

L2 + L2
xyα

2(∥∆xn∥2 + ∥∆yn∥2)
η2n(1− ∥∇xy,n+ 1

2
f∥2α2)

∥zn+ 1
2
− zn∥2

≤
L2 + L2

xyα
2(α+ η)2∥g0,n∥2

η2n(1− ∥∇xy,n+ 1
2
f∥2α2)

∥zn+ 1
2
− zn∥2 (84)

Substituting in Eq. (83) we get,

D(p∗, zn+1) ≤D(p∗, zn) + ∥zn+ 1
2
− zn∥2(

η2nL
′2 + L2

xyα
2(α+ ηn)

2∥g0,n∥2

2(1− ∥∇xy,n+ 1
2
f∥2α2)

− 1

2
)

≤D(p∗, zn) + ∥zn+ 1
2
− zn∥2(

η2nL
′2 + L2

xyα
2(α+ ηn)

2L2

2(1− ∥∇xy,n+ 1
2
f∥2α2)

− 1

2
) (85)

Hence if α satisfies the following,
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α4L2
xyL

2 + α2L′2 − 1 < 0

or equivalently we have,

−

√√√√√L′4 + 4L2
xyL

2 − L′2

2L2
xyL

2
< α <

√√√√√L′4 + 4L2
xyL

2 − L′2

2L2
xyL

2
(86)

and also ηn satisfying the following,

0 < ηn <

√
α2L2L2

xy + L′2 − 2α4L2L′2L2
xy − α2L′4 − α3L2

0L
2
xy

α2L2L2
xy + L′2 (87)

We have,

η2nL
′2 + L2

xyα
2(α+ ηn)

2L2

2(1− ∥∇xy,n+ 1
2
f∥2α2)

− 1

2
< 0

and the divergence decreases at each step. By telescoping Eq. (85) we obtain,

n∑
k=1

∥zk+ 1
2
− zk∥2(1−

η2kL
′2 + L2

xyα
2(α+ ηk)

2L2

(1− ∥∇xy,k+ 1
2
∥2α2)

) ≤2D(x∗, z1). (88)

We also know zk+ 1
2
− zk = −ηkgα,k, thus for α and ηn satisfying Eq. (86) and Eq. (87), we have,

1

n

n∑
k=1

∥zk+ 1
2
− zk∥2 =

1

n

n∑
k=1

η2k∥gα,k∥2 ≤ 2

nc
D(x∗, z1). (89)

Where 1− η2
kL

′2+L2
xyα

2(α+ηk)
2L2

(1−∥∇
xy,k+1

2
∥2α2) > c,∀ηk. If we assume without loss of generality that ηk converges to η, then we have

from Eq. (89) that the average of ∥gα,n∥ and ∥zn+ 1
2
− zn∥ falls with order O( 1n ) where n is the iteration count.

Taking limit of zk+ 1
2

we have,
z∗ = lim

k→∞
zk+ 1

2
= Pz∗(−ηgα(z

∗)),

this implies z∗ satisfies α-SVI and is hence a solution of the SP problem via definition of α-coherence Def. (3.4) (1st point ).

Coherence condition Def. (3.4)(3rd point) implies that α-MVI holds locally around z∗. Thus for, α and ηn satisfying
Eq. (86) and Eq. (87) respectively, and sufficiently large n, we have,

D(z∗, zn+1) ≤D(z∗, zn) + ∥z∗ − zn∥2(
η2nL

′2 + L2
xyα

2(α+ ηn)
2L2

2(1− ∥∇xy,n+ 1
2
f∥2α2)

− 1

2
)
(a)

≤ D(z∗, zn)

Where the equality in (a) holds if and only if z∗ = zn. Thus D(z∗, zn) is non-increasing and zn → z∗ which is a saddle
point.
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I. Additional examples and simulations
We now present some more simulations of CGO and oCGO on the function x⊤Ay with multiple samples of the matrix
A = (aij), aij ∼ N (0, 1).
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Figure 8. CGO and oCGO on bilinear function family f(x, y) = x⊤Ay, x ∈ R4, y ∈ R5 for 100 iterations. In each row, the 1st and 2nd

as well as the 3rd and 4th figures correspond to the same sample of A
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