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Abstract
State of the art reinforcement learning has enabled
training agents on tasks of ever increasing com-
plexity. However, the current paradigm tends to fa-
vor training agents from scratch on every new task
or on collections of tasks with a view towards gen-
eralizing to novel task configurations. The former
suffers from poor data efficiency while the latter
is difficult when test tasks are out-of-distribution.
Agents that can effectively transfer their knowl-
edge about the world pose a potential solution to
these issues. In this paper, we investigate trans-
fer learning in the context of model-based agents.
Specifically, we aim to understand when exactly
environment models have an advantage and why.
We find that a model-based approach outperforms
controlled model-free baselines for transfer learn-
ing. Through ablations, we show that both the
policy and dynamics model learnt through explo-
ration matter for successful transfer. We demon-
strate our results across three domains which vary
in their requirements for transfer: in-distribution
procedural (Crafter), in-distribution identical (Ro-
boDesk), and out-of-distribution (Meta-World).
Our results show that intrinsic exploration com-
bined with environment models present a viable
direction towards agents that are self-supervised
and able to generalize to novel reward functions.

1. Introduction
A fundamental component of intelligence is generalization:
the ability to transfer knowledge to novel situations and
tasks. Although the field of reinforcement learning (RL)
focused for many years on single-task settings in which
generalization is not required (Mnih et al., 2015; Schulman
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et al., 2017; Haarnoja et al., 2018), there has been a recent
surge of interest in designing agents which can successfully
transfer their knowledge after training in both multi-task
(Kirk et al., 2021; Hospedales et al., 2021) and unsuper-
vised (Hansen et al., 2019; Campos et al., 2021) settings. At
the same time, another thread of research has focused on
developing ever-more powerful model-based agents (Schrit-
twieser et al., 2020b; Hafner et al., 2023) to excel on a wide
range of environments but have not focused on the problem
of transfer. However, many expect model-based RL to be
an essential ingredient in generalization and transfer (Tol-
man, 1948; Dayan et al., 1995; Ha & Schmidhuber, 2018;
Schmidhuber, 1991a; Sutton, 1991). Indeed, previous work
has shown that model-based RL is advantageous for gen-
eralization under certain assumptions (Sekar et al., 2020;
Anand et al., 2021), lending weight to the hypothesis that
model-based reasoning is important for transfer.

Although previous work has demonstrated the efficacy of
model-based learning for generalization in some cases, it
has not shed much insight as to when we ought to expect it
to help or why. In this paper, we address these questions by
studying the performance of agents trained with intrinsic ex-
ploration and fine-tuned on downstream tasks (see Figure 1
for an overview of our setup). By utilizing unsupervised
pre-training via intrinsic exploration, we control the type
of knowledge the agent can potentially transfer: it knows
about the world it inhabits, but not about possible tasks that
are achievable in this world. To identify how much differ-
ent components such as the model or policy contribute to
transfer performance, we fine-tune with either pre-trained or
reinitialized weights; were we in a zero-shot generalization
setting, any such ablations would lead to catastrophic (and
thus uninformative) losses in performance.

To conduct our experiments, we make a variety of imple-
mentation choices regarding model-based and model-free
learning and intrinsic exploration; however, we emphasize
that our contribution is less about these particular choices
and more about the insights that our experiments bring. For
the model-based agent, we employ a self-supervised variant
of MuZero (Schrittwieser et al., 2020b) trained with self-
predictive representations (SPR; Schwarzer et al., 2020).
This variant of MuZero has previously been shown to per-
form well at zero-shot generalization Anand et al. (2021),
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Figure 1. Model-based unsupervised pre-training and fine-tuning. (a) A model-based agent is comprised of an observation encoder
(OE), prior heads (PH), model (M), and dynamics heads (DH). These components are trained via a MuZero-style loss (Schrittwieser
et al., 2020b) and self-supervision (Schwarzer et al., 2020). (b) During pre-training, the agent interacts with an environment attempting
to optimize an intrinsic exploration objective. (c-d) Transfer is evaluated by fine-tuning an agent on a task-based reward in the same
environment while carrying over various components from the pre-trained agents. Colored blocks indicate components that are transferred
while gray blocks indicate those that are re-initialized. Red indicates transfer from a pre-trained model-free agent, while blue indicates
transfer from a pre-trained model-based agent. MB denotes model-based, and MF represents model-free.

thus making it a sensible candidate to test transfer, too. We
contrast its performance with a model-free Q-learning agent
based on the same architecture. During pre-training, both
model-free and model-based agents are trained with random
network distillation (RND; Burda et al., 2018b), a straight-
forward and robust approach to exploration. We evaluate
transfer across a number of task suites with different char-
acteristics including procedurally generated environments
(Crafter; Hafner, 2021), settings where the environment
in the pre-training is the same (RoboDesk; Kannan et al.,
2021), and settings where the fine-tuned environment is
partially out-of-distribution (Meta-World; Yu et al., 2020).

Overall, we find that model-based exploration combined
with model-based fine-tuning results in better transfer per-
formance than model-free baselines. More precisely, we
show that: (1) Model-based methods perform better ex-
ploration than their model-free counterparts in reward-free
environments. (2) Knowledge is transferred most effectively
when performing model-based (as opposed to model-free)
pre-training and fine-tuning. (3) System dynamics present in
the world model seem to improve transfer performance. (4)
The model-based advantage is stronger when the dynamics
model is trained on the same environment.

2. Background
2.1. Transfer learning in RL

Learning complex tasks from scratch can be prohibitively
expensive, if not impossible, and many approaches have
been attempted to alleviate this difficulty. One approach
is to pre-train an agent on high quality data obtained from

humans (Vinyals et al., 2019; Baker et al., 2022); however,
this can be costly if data is not readily available. Another
approach is to pre-train an agent on a family of (potentially
easier) tasks which are related to the task of interest, and
then transfer to the target task either directly, within a few
attempts, or through fine-tuning (Zhu et al., 2020; Kirk et al.,
2021). Generally, the knowledge being transferred can take
different forms, such as data (or demonstrations), skills and
behaviors, value functions, and dynamics (or world models).
Most recently, a new area of focus has been unsupervised
reinforcement learning (Watters et al., 2019; Laskin et al.,
2021; Campos et al., 2021) in which an agent is pre-trained
using without task rewards using intrinsic exploration and
then fine-tuned on a task of interest. Our work falls into this
category and investigates the differences between model-
free and model-based unsupervised RL.

A number of previous works have explored directions re-
lated to model-based transfer learning, though most do not
fit under the umbrella of unsupervised RL. Some works have
investigated training models on source tasks and transfer-
ring them to target tasks with model predictive control, but
do not consider policy fine-tuning (e.g. Dasari et al., 2019;
Bucher et al., 2021; Lutter et al., 2021; Byravan et al., 2021).
Others do consider policy fine-tuning, but as with most other
approaches, utilize a distribution of source tasks rather than
unsupervised exploration Byravan et al. (e.g. 2020). Another
approach is to use a pre-trained model as a way to speed up
policy transfer by learning a policy from interaction with
the model (e.g Nagabandi et al., 2018; Sekar et al., 2020).
Of note is work by Sekar et al. (2020), which also incorpo-
rates an unsupervised exploration phase for model learning.
However, their approach to transfer relies on being able
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to relabel previously collected experience with the target
reward function, whereas we make no such assumption.

Our framework consists of an unsupervised pre-training
phase in a no reward environment followed by fine-tuning
with task-specific reward functions. This is in contrast to
other frameworks such as dataset sharing and policy reuse.
Dataset sharing (Lambert et al., 2022) assumes access to
the downstream task reward functions which is used for re-
labelling the offline dataset. Our framework does not need
such an assumption which is non-trivial in most applica-
tions. In addition, storing the whole exploration experience
is more expensive than storing the network weights. Policy
reuse (Zhang et al.) assumes that source policies are readily
available and a higher level policy is learned to perform
on the target domain. In this case, source policies are ob-
tained with extrinsic rather than intrinsic rewards. Unlike
fine-tuning, the source policies are kept unchanged in the
adaptation. If policy reuse is combined with unsupervised
skill discovery, it would make the policy reuse framework
similar to our setup.

2.2. Intrinsic exploration

The goal of intrinsic exploration is to learn a policy which
explores the environment in a general manner without the
need for an explicit task-based reward function. This per-
mits the agent to learn from environments where reward
labels are unavailable or sparse. Count-based exploration
methods (Bellemare et al., 2016; Ostrovski et al., 2017; Tang
et al., 2017) keep track of how often each state has been vis-
ited, and reward the agent for visiting novel or infrequently
visited states. Another approach based on state frequency
is to directly maximize the entropy of the state distribution
(Hazan et al., 2019; Yarats et al., 2021). However, most
real-world environments are not tabular and it is therefore
not straightforward how to keep track of visitation counts.
As an alternative, curiosity-driven exploration computes a
measure of surprise (such as prediction error or uncertainty)
and rewards the agent for visiting surprising states (Schmid-
huber, 1991b; Oudeyer et al., 2007; Pathak et al., 2017;
Burda et al., 2018b). Ensemble-based methods are a sub-
class of curiosity-based approaches and estimate uncertainty
in a principled way by leveraging an ensemble of predic-
tions (Osband et al., 2016; Lowrey et al., 2018; Pathak et al.,
2019; Sekar et al., 2020); however, they are often computa-
tionally expensive and challenging to implement. Finally,
instead of seeking surprising states (as in curiosity-based
approaches), empowerment focuses on learning skills to con-
trol the environment and which support exploring the state
space more efficiently (Klyubin et al., 2005; Gregor et al.,
2016; Eysenbach et al., 2018). In this paper, we leverage
Random Network Distillation (Burda et al., 2018b), which
is a curiosity-based approach in which prediction error is
computed using a fixed randomly initialized neural network

as the target. RND is straightforward to implement and has
been shown to work robustly across a variety of domains
(Burda et al., 2018b; Laskin et al., 2021).

3. Methods
To investigate the efficacy of model-based transfer, we be-
gin by considering a model-based architecture (Figure 1a),
described in more detail in Section 3.1. During unsuper-
vised pre-training (Figure 1b), we train agents based on
this architecture to explore using an intrinsic motivation
signal derived from curiosity, as described in Section 3.2.
Then, during fine-tuning (Figure 1c-d), we transfer various
components of these agents and train them on downstream
tasks using only the task reward and no intrinsic reward.
Using this framework, we consider the following questions:

Q1: Is there an advantage to an agent being model-based
during unsupervised exploration and/or fine-tuning? We in-
vestigate this question by first pre-training both model-free
and model-based agents to maximize an intrinsic reward in
an unsupervised exploration phase. We then fine-tune these
agents using either model-based (MB) or model-free (MF)
learning, resulting in four variations: MB→MB, MB→MF,
MF→MB, and MF→MF. We also consider a further base-
line, ‘Scratch’, in which the model-based agent is trained
on the test task with randomly initialize weights (i.e. with-
out any pre-training). Additional details are provided in
Appendix A. By comparing these different agents, we can
determine whether model-based pre-training leads to im-
proved transfer performance.

Q2: What are the contributions of each component of a
model-based agent for downstream task learning? We in-
vestigate this by looking at various ablations of the full
model-based agent (MB→MB), where only certain compo-
nents are transferred whereas others are reset. In particular,
we investigate the effect of the dynamics heads (DH), the
dynamics model (M), and the prior heads (PH). We also
specifically ablate the prior policy head (PP) apart from the
prior reward and value heads (PRV). By performing these
ablations over the various combinations of agent compo-
nents, we can understand the contributions of each model to
downstream task performance.

Q3: How well does the model-based agent deal with envi-
ronmental shift between the unsupervised and downstream
phases? Finally, by investigating transfer performance in
different classes of environments we can consider the effects
of environment mismatch on downstream performance. We
propose three environments to look at: a procedurally gen-
erated environment with the same distribution in both the
unsupervised and the downstream phase (Crafter; Hafner,
2021), one with the same MDP (reward function put aside)
during both the unsupervised phase and the downstream
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phase (RoboDesk; Kannan et al., 2021), and one with a
stronger shift where system dynamics are maintained but
the objects the agent interacts in downstream tasks have
various degrees of novelty relative to ones seen during unsu-
pervised exploration (Meta-World; Yu et al., 2020).

3.1. Agents

Model-Based We use MuZero (Schrittwieser et al.,
2020b) as the “backbone” of our agent. As MuZero has
shown superior generalization capabilities when combined
with representation learning techniques, we use a variant of
MuZero with self-predictive (SPR) loss as the auxiliary loss
(Anand et al., 2021).

MuZero learns a partial world model that predicts rewards,
actions, and values. Similar to AlphaZero (Silver et al.,
2018), it then incorporates this model in Monte-Carlo Tree
Search (Kocsis & Szepesvári, 2006; Coulom, 2006) to plan
and choose optimal actions. The reward, value, and policy
are learned as the agent collects experience from the world
and plans. The loss at time-step t is the following:

lt(θ) =

K∑
k=0

lkπ + lkv + lkr + lkSPR (1)

=

K∑
k=0

CE(π̂k, πk) + CE(v̂k, vk)

+ CE(r̂k, rk) + CS(ŷk, yk),

where K represents the number of steps MuZero plans in
the future. π̂k, v̂k and r̂k are predictions for policy πk

from the search tree, vk is an n-step return bootstrapped
by a target network, and rk is the true reward from the
environment. As in the original MuZero (Schrittwieser
et al., 2020a), we define the loss for training the value and
reward functions via a cross-entropy (CE) distributional RL
loss. The SPR loss is computed as a cosine similarity (CS)
between the projections predicted by the dynamics model
ŷk and projections computed using observations at timestep
t+ k, yk. We also use replay via Reanalyse (Schrittwieser
et al., 2021) for better data efficiency. For environments with
a continuous action space, we use sampled MuZero (Hubert
et al., 2021) which plans over sampled actions. More details
of the MuZero agent are provided in Section A.2.

Model-Free As a model-free baseline for pre-training,
we use the Q-Learning agent as described in Anand et al.
(2021). The Q-Learning baseline is based on the same ar-
chitecture as MuZero agent, and in particular, utilizes the
same architecture for the observation encoder and prior
heads. This allows us to transfer the component weights
from the model-free baseline to the model-based agent, and
vice versa (see Figure 1). To transfer MuZero weights to
a Q-Learning agent (MB→MF), we transfer only the ob-

servation encoder and prior heads. To transfer Q-Learning
weights to a MuZero agent (MF→MB), we transfer over the
observation encoder and prior heads while initializing the
dynamics model and dynamics heads from scratch. More
details of the Q-Learning agent are provided in Section A.3.

3.2. Exploration

To drive exploration during the unsupervised pre-training
phase, we use intrinsic rewards computed from Random Net-
work Distillation (RND; Burda et al., 2018b). RND can be
seen as a method for approximately quantifying uncertainty,
and which has proven empirically to be a robust approach
to intrinsic exploration (Burda et al., 2018a; Laskin et al.,
2021). We found that RND worked well with relatively
less tuning with our framework versus approaches such as
BYOL-explore (Guo et al., 2022).

RND defines an intrinsic reward by randomly projecting an
observation to feature space z = frand(o). For a given obser-
vation o, the agent attempts to predict the random projection
via ẑ = fθ(o), where θ are learnable parameters. The error
between the agent’s prediction and the random projection,
e = (z − ẑ)2, provides an intrinsic reward signal. Intu-
itively, since frand is not known, the value of frand in a state
can only be known (predictable) to the agent if the agent
has visited the state before; novel states in the environment
so far unvisited by the agent should have large error, and
correspondingly high curiosity signal.

To incorporate RND into MuZero, we replace rk with
ek = (zk − ẑk)2 in Equation 1, where zk is the random
projection of observation ok, and ẑk is the output of the
observation encoder given observation ok. Through ex-
perimentation we found that a few modifications from the
standard RND improved the performance of RND specifi-
cally for our architectural setup. We made z convolutional
features, and our projector for z shares the same architecture
as the observational encoder for simplicity.

We also investigated using the output of the dynamics model
to construct the prediction ẑk which led to inferior explo-
ration performance. Note that in contrast to model-free
methods, MuZero optimizes the predicted RND signal as
opposed to the measured RND signal.

3.3. Environments

We conduct our transfer experiments in three settings. The
first, Crafter (Hafner, 2021)), has the fine-tuning envi-
ronments in-distribution with the pre-training phase, but
episodes are procedurally generated (so that test environ-
ments are never encountered during training); the second
RoboDesk, (Kannan et al., 2021)), is the same environ-
ment during pre-training and fine-tuning phase, the only
difference being the availability of tasks rewards during the
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Figure 2. Exploration performance of model-based and model-free agents on Crafter as measured by the per-task and aggregate success
rates after pre-training for 150 million environment steps.
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(b) Crafter scores and final rewards

Method Score Reward

Human Experts (Hafner, 2021) 50.5± 6.8 14.3± 2.3

MB→MB 16.4 ± 1.5 12.7 ± 0.4
MB→MF 8.8± 0.4 5.0± 0.2
MF→MB 6.2± 0.5 9.3± 0.3
MF→MF 6.7± 0.6 5.0± 0.2

DreamerV3 (Hafner et al., 2023) 14.5± 1.6 11.7± 1.9
LSTM-SPCNN (Stanić et al., 2022) 12.1± 0.8 -
DreamerV2 (Hafner, 2021) 10.0± 1.2 9.0± 1.7
MB Scratch 4.4± 0.4 8.5± 0.1
MF Scratch 2.6± 0.1 4.4± 0.1

Figure 3. Agent performance on Crafter. (a) Return as a function
of the environment steps; (b) Comparison of score and final reward
at 1M steps across different fine-tuned agents and published results
for agents without fine-tuning. In all our experiments, we used
3 seeds. In line with the literature (Stanić et al., 2022) we report
mean and standard deviation across seeds when computing the
score.

fine-tuning phase; the third, Meta-World, (Yu et al., 2020))
has fine-tuning environments which share some similari-

ties with the pre-training environment, but are nevertheless
different (and therefore out of distribution).

Crafter (Hafner, 2021) is a survival game inspired by the
popular game Minecraft. In Crafter, the agent inhabits a
two-dimensional procedurally generated world. The en-
vironment is multi-task, and these tasks are hierarchical.
In order to achieve certain tasks, the agent must complete
other tasks first. These include gathering resources, building
tools, and defending against potential threats. There are
22 potential achievements. The reward signal comprises
+1 for each task achieved for the first time in an episode,
and, in addition, the agent needs to maintain a given health
level to survive by e.g. eating and drinking. As in the
original paper, we report the success rate as the fraction
of all training episodes up to 1M environment steps where
the agent has achieved the task at least once. There are 17
discrete actions. As in Hafner (2021), we also report the
score, which is the geometric mean of the success rates:
S = exp

(
1
N

∑N
i=1 log(1 + si)

)
− 1. Unlike the return,

the score favors unlocking difficult achievements over re-
peatedly completing easier ones, and being an aggregate
measure, it also reflects data-efficiency of the agent.

Although we constrain the agent to use 1M environment
steps for fine-tuning, we do not impose such constraint on
the data consumption during unsupervised exploration. Our
focus is on a relative analysis of model-based transfer and
not necessarily to benchmark the efficacy of exploration
techniques.

RoboDesk (Kannan et al., 2021) is a control environment
simulating a robotic arm interacting with a table and a fixed
set of objects. The benchmark features nine core tasks
with consistent dynamics but randomized object locations.
During exploration, the agent can learn to interact with the
objects via optimising intrinsic rewards. Then, we fine-tune
the agent individually on the nine different task-rewards.
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(a) Average success rate
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(b) Success rate on 9 individual tasks
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Figure 4. Success rate on RoboDesk. (a) Average success rate over
9 tasks and 3 seeds; (b) Success rate on individual tasks by taking
the median over 3 seeds. We also report the standard deviation in
both plots. Scratch: MuZero trained from scratch on individual
tasks with extrinsic reward; MF → MB: model-free exploration
transferred to MuZero agent fine-tuned on individual task; MB →
MB: model-based exploration transferred to MuZero agent fine-
tuned on individual task.

Note that there are no novel objects introduced in the fine-
tuning phase; the only differences between pre-training and
fine-tuning are the rewards. As the action space for Ro-
bodesk is continuous, we adapted our model-based agent
according to sampled MuZero (Hubert et al., 2021) for this
environment. Similar to the experimental setup of Dadashi
et al. (2021), the episode length is 2000 environment steps
with action repeat of 5. However, we use the pixel obser-
vations only and sparse rewards for our study. The action
space consists of five continuous dimensions in (-1, 1).

Meta-World (Yu et al., 2020) is a robotic control suite
of up to 50 tasks with a SAWYER arm. We focus on a
Meta-World v2 benchmark intended for task generalization,
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Figure 5. Here we perform an ablation analysis of which trans-
ferred components contribute to improved performance on Crafter.
OE represents transferring only the observation encoder, OE +
PRV additionally adds the prior reward and value heads, OE + PH
adds prior reward, value, and policy heads, OE + PH + M adds the
dynamics function, and OE + PH + M + DH adds all (equivalent to
MB→MB). For ablations, we use finetuning parameters specified
in the appendix in Table 1.

ML-10. In this benchmark, the training suite consists of ten
tasks that differ from the testing suite of five tasks. Meta-
world provides different challenges for model-based transfer
compared to Crafter and RoboDesk: while the robotic arm
is shared among all environments, the test environments
include unseen objects and configurations which allows us
to repurpose this benchmark to study model-based transfer
in an out-of-distribution configuration. Note that unlike in
the original ML-10 benchmark, our agents do not receive re-
ward observations in the training environments. The action
space consists of four continuous dimensions in (-1, 1).

We use pixels from the corner3 angle as observations and
do not use state information from the robot arm. We use
sparse rewards which are the average episodic task success
rates. We did not find any substantial differences in per-
formance between approaches when using dense reward as
these likely made the tasks relatively easy to solve. We ex-
plore and fine-tune on about 85 million frames. We also use
sampled MuZero (Hubert et al., 2021) in this environment.

4. Results
Through our experiments, we generally find that model-
based exploration and fine-tuning outperforms model-free
approaches. In what follows, we investigate the questions
from Section 3 in detail. We restate each question, give a
summary of our answer, and then explain the results in more
depth.

Q1: Is there an advantage to an agent being model-based
during unsupervised exploration and/or fine-tuning?

A1: Yes. Compared to model-free exploration, model-based
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exploration is more performant and transfers more effec-
tively. Model-based fine-tuning also outperforms model-free
fine-tuning.

To answer this question, we compare different combina-
tions of model-based and model-free pre-training and fine-
tuning (i.e., MB→MB, MB→MF, MF→MB, MF→MF, and
Scratch described in Section 3).

In Crafter (Figure 3), we find that model-based pre-training
with model-based fine-tuning (MB→MB) substantially out-
performs all other agent variations including training from
scratch, achieving a score of 16.4 ± 1.5 and reward of
12.7 ± 0.4 at 1M environment steps. In fact, this result
improves performance over state-of-the-art model-based
agents without a pre-training phase, namely DreamerV3
(Hafner et al., 2023), and demonstrates the benefits of com-
bining model-based learning with unsupervised pre-training.
We find that the fully model-free agent (MF→MF) per-
forms worst, consistent with other results demonstrating
inferior model-free performance in other generalization set-
tings (Anand et al., 2021). However, these results raise the
question: is the improved performance of MB→MB due
to pre-training, fine-tuning, or both? The performance of
the MF→MB agent suggests that a good enough agent can
leverage knowledge acquired during pre-training, even if
the pre-training was with an inferior algorithm. However,
the performance of the MB→MF agent—which provides no
improvement over MF→MF—suggests that the fine-tuning
algorithm plays an important role, too. It also suggests
that additional knowledge may be encoded in the dynamics
components, which the model-free agent cannot use.

As Crafter is, in part, designed to evaluate agents’ ability
to explore efficiently in the absence of reward, we have
also quantified differences between the model-based and
model-free exploration agents during pre-training. While
both agents aim to maximise RND intrinsic rewards, model-
based optimisation leads to significantly more effective ex-
ploration as measured by the average and individual success
rates across achievements (see Figure 2).

In RoboDesk, we fine-tuned the pre-trained agents sepa-
rately on nine core tasks and see a similar pattern of re-
sults as in Crafter. Due to resource limitations, we focused
our comparisons on the agent trained from scratch and
the two agents that provided the best transfer in Crafter,
namely MB→MB and MF→MB. We find that fine-tuning
from model-based exploration (MB→MB) consistently
outperforms fine-tuning from the model-free counterpart
(MF→MB) (Figure 4). Transferring from model-free also
appears to result in a larger variance during fine-tuning.
This, again, suggests model-based pre-training is superior to
model-free pre-training. Additionally, compared to MuZero
training from scratch ( 4a), warm-starting from the pre-
trained weights of the model-based exploration agent shows

benefits in terms of sample-efficiency but not in final per-
formance. This is more evident on tasks such as upright
block off table, lift ball, lift upright block, and flat block
in shelf ( 4b). Interestingly, these are relatively difficult
tasks to solve because they involve multiple steps or more
challenging object manipulation. The improvements are
less obvious on easy tasks (e.g. push green, open slide, open
drawer). Similarly to Crafter, we found that model-based
exploration outperformed its model-free counterpart when
evaluating success-rates across different tasks during pre-
training (Section B.2). When looking across tasks, we did
not observe a correlation between success rates during pre-
training and positive transfer during fine-tuning, suggesting
that transfer is not mediated by the alignment of intrinsic
and task rewards.

Q2: What are the contributions of each component of a
model-based agent for downstream task learning?

A2: Both the dynamics components (model and dynamics
heads) and the prior heads (in particular, the prior policy)
play an important role in transfer performance.

To answer this question, we return to the Crafter environ-
ment and perform an ablation analysis on MB→MB where
different parts of the fine-tuning agent are initialized from
the model-based exploration agent. These ablations involve
the observation encoder (OE), the prior heads (PH), the
model (M) and the dynamics heads (DH), as described in
Figure 1 and Section 3. In Figure 5, we show the perfor-
mance of the fine-tuning agent when incrementally remov-
ing these various elements. First, removing the dynamics
heads from the full agent results in a small drop in perfor-
mance. Additionally removing the dynamics model results
in a further drop, indicating that the dynamics components
(both DH and M) do encode useful knowledge that is lever-
aged during transfer. However, it is not the only knowledge
that can be transferred. When we remove the prior heads,
we find performance further deteriorates. Moreover, this
seems to be driven mostly by the policy prior (PP), as per-
formance appears to be the same regardless of whether we
include the prior reward and value heads (PRV) or not. In
our model-based agent based off of MuZero, the policy prior
plays an important role in guiding action selection in the
search tree and, consistent with that, these ablations show
that transferring both the dynamics model and policy prior
contribute most to positive transfer. This result suggests
that other model-based approaches to transfer which only
transfer the model (e.g. Sekar et al., 2020) could benefit
from transferring policy components as well.

Q3: How well does the model-based agent deal with envi-
ronmental shift between the unsupervised and downstream
phases?

A3: Model-based agents can successfully transfer knowl-
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Figure 6. Here we report the return curves (top) of various fine-
tuning strategies on Meta-World ML-10 test set.

edge to novel tasks when the dynamics are identical or
in-distribution to those observed during training; however,
transfer works less well to out-of-distribution dynamics.

Our results on Crafter and, to some extent, Robodesk
suggest that model-based agents can successfully transfer
knowledge from an unsupervised exploration phase to new
reward functions when the pre-training and fine-tuning en-
vironments are identical or come from the same distribu-
tion. This setting is the most likely to benefit from learning
and transferring dynamics models as the train and test en-
vironments differ only in the reward function. To better
understand the limits of model-based transfer in the case
of out-of-distribution environments, we also run a set of
transfer experiments on the ML-10 Meta-World benchmark.
Similarly to our results on Crafter and Robodesk, we find
that that MB→MB outperforms other pre-trained baselines
(Figure 6, top). However, when compared with an agent
trained from random initialization, MB→MB has a small
advantage only early in training, up to ∼20 million frames
(Figure 6, bottom). Interestingly, model-free baselines ap-
pear to have inhibited transfer performance in this domain vs
randomly initialized, and model-based transfer only helps
mildly. We speculate this difference in results between
Meta-World and the other two benchmarks is due to out-
of-distribution environment dynamics. Due to the different
objects between the train and test environment the agent is
able to transfer its knowledge only about the dynamics in
the robotic arm, and our empirical results suggest that that
alone may be insufficient for positive transfer.

5. Discussion
In this paper we propose to study when and why model-
based learning is beneficial for transferring knowledge. We
make use of a framework which consists of an unsupervised
pre-training phase in a no reward environment, followed by
fine-tuning with task-specific reward functions. We argue
that this is a suitable framework to ask (and answer) these
questions. We present a specific instantiation of a model-
based agent as a strong baseline, as well as a model-free
counterpart using the same “backbone”. We study a number
of key factors that may contribute to successful transfer,
namely the agent’s ability to explore the environment even
in the absence of any rewards and to summarize its expe-
rience and knowledge about the environment in the form
of representations, policies and dynamics models that lend
themselves to transfer. By conducting the same experiments
on three distinct environments (in-distribution procedural,
in-distribution identical, and out-of-distribution), we investi-
gate transfer under environment shift.

Overall, we find that model-based optimization dominates
model-free variants both during unsupervised exploration
and fine-tuning performance. Our analysis reveals that trans-
ferring the dynamics model (and heads) as well as the prior
policy learned during exploration contributes most to trans-
fer. We observe that environment shift between unsuper-
vised and downstream phases is detrimental for knowledge
transfer. We speculate that the significantly stronger trans-
fer results on Crafter, compared to Robodesk, are enabled
partly by the procedural environment variations seen during
pre-training.

While the model-based approach has a clear advantage for
in-distribution transfer, our result on Meta-World suggests
that out-of-distribution (OOD) generalization is still chal-
lenging. Within our framework, OOD performance could be
potentially be improved if the agent could learn an accurate
world model during the pre-training phase. One solution
is to design better pre-training tasks—procedural environ-
ments with consistency. Better exploration algorithms can
also help the world model to uncover the true dynamics
rather than learning a biased model induced by a basic pol-
icy. Since our investigation suggests that policy also matters
for successful transfer, an open research question how to
induce the agent to learn more relevant policy during the
pre-training phase.

Our study fixes the intrinsic exploration mechanism, this is
because we focus on contrasting model-based versus model-
free approaches rather than different choices of the intrinsic
reward. Since our investigation shows that policy trans-
fer matters, alternative approaches such as empowerment
maybe beneficial.
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A. Agent Details
A.1. Network Architecture

Both the model-free and model-based agents utilize the same network architectures. It’s identical to the ones used in MuZero
ReAnalyse (Schrittwieser et al., 2021). The pixel input resolution is 96 × 96 for Crafter and Meta-World; 64 × 64 for
RoboDesk. The images are first sent through a convolutional stack that downsamples to an 6× 6 tensor (for Meta-World) or
8× 8 tensor (for RoboDesk and Crafter). This tensor then serves as input to the encoder. Both the encoder and the dynamics
model were implemented by a ResNet with 10 blocks, each block containing 2 layers. Each layer of the residual stack was
convolutional with a kernel size of 3x3 and 256 planes.

A.2. Model-based Agent

MuZero + SPR To add the SPR as an auxiliary loss, we add a projection and a prediction head, similar to Grill et al.
(2020). The projection and prediction networks have an identical architecture: a two convolutional layers with stride 1 and
kernel size 3 and relu non-linearity in between; then flatten the output to a vector. The input to the projection network is
the output of dynamics function; the input to the prediction network is the output of the projector. Since the dynamics
model unrolls n steps into the future, it results in n prediction vectors xn. The target vector yn is the output of the projector
computed with the target network weights. The target network weights is the same as the one used to compute the temporal
difference loss in MuZero. The input for computing the target vectors are the corresponding image observation at that future
step n. The encoder of MuZero uses 15 past images as history. However, when we compute the target vectors, our treatment
of the encoding history is different from that of the agent; instead of stacking all of the historical images (n− 15...n− 1) up
to the corresponding step n, we simply replace the history stack with 15 copies of the image at the current step n. This is
the same treatment as in Anand et al. (2021). We then attempt to match xn with the corresponding target vector yn with a
cosine distance between xi and yi.

Hyper-parameters Table 1 listed the hyper-parameters of our model-based agent for both pre-training and fine-tuning. If
no special indication in Table 1, pre-training and fine-tuning use the same value. For all the agents, we use the Adam (Kingma
& Ba, 2014) optimizer. The batch size for the training is 1024. The Scratch baseline uses the pre-train hyper-parameters, but
always with initial learning rate of 10−4 and cosine learning rate schedule.

Table 1. Hyper-parameters for Model-based Pre-training and Fine-tuning

HYPER-PARAMETER CRAFTER ROBODESK META-WORLD
(Pre-train / Fine-tune) (Pre-train / Fine-tune) (Pre-train / Fine-tune)

TRAINING

Model Unroll Length 5 5 5
TD-Steps 5 0 0
ReAnalyse Fraction 0.8 / 0.99 0.925 0.925
Replay Size (in sequences) 50000 2000 2000

MCTS

Number of Simulations 50 50 50
UCB-constant 1.25 1.25 1.25
Number of Samples n/a 20 20

SELF-SUPERVISION

SPR Loss Weight 1.0 1.0 1.0

OPTIMIZATION

Initial Learning Rate 10−4 / 10−5 10−4 10−4 / 10−5

Learning Rate Schedule cosine / constant constant / cosine cosine

A.3. Model-free Agent

Q-Learning The Q-Learning setup is identical to Anand et al. (2021). We describe here for completeness of the paper.
Our controlled Q-Learning agent has an identical network architecture to the model-based agent, but modifies it in a few key
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ways to make it model-free rather than model-based.

The Q-Learning baseline uses n-step targets for action value function. Given a trajectory {st, at, rt}Tt=0, the target action
value is computed as follow

Qtarget(st, at) =

n−1∑
i=0

γirt+i + γn max
a∈A

Qξ(st+n, a) (2)

Where Qξ is the target network whose parameter ξ is updated every 100 training steps.

In order to make the model architecture most similar to what is used in the MuZero agent, we decompose the action value
function into two parts: a reward prediction r̂ and a value prediction V , and model these two parts separately. The total loss
function is, therefore, Ltotal = Lreward + Lvalue. The reward loss is exactly the same as that of MuZero. For the value
loss, we can decompose Equation 2 in the same way:

Qtarget(st, at) = r̂t + γVtarget(s)

=

n−1∑
i=0

γirt+i + γn max
a∈A

(
r̂t+n + γVξ(s

′
)
)

=⇒ Vtarget(s) =

n−1∑
i=1

γi−1rt+i + γn−1 max
a∈A

(
r̂t+n + γVξ(s

′
)
)

(3)

Since the reward prediction should be taken care of by Lreward and it usually converges fast, we assume r̂t = rt and the
target is simplified to Equation 3. We can then use this value target to compute the value loss Lvalue = CE(Vtarget(s), V (s)).

In RoboDesk and Meta-World, since it has a continuous action space, maximizing over the entire action space is infeasible.
We follow the Sampled Muzero approach (Hubert et al., 2021) and maximize only over the sampled actions.

Hyper-parameters Table 2 lists the hyper-parameters for our model-free baselines. For the model-free agent, we only
unroll a single-step for computing action and values.

Table 2. Hyper-parameters for Model-free Pre-training and Fine-tuning

HYPER-PARAMETER CRAFTER ROBODESK META-WORLD
(Pre-train / Fine-tune) (Pre-train) (Pre-train / Fine-tune)

TRAINING

Model Unroll Length 1 1 1
TD-Steps 5 1 1
ReAnalyse Fraction 0.75 / 0.99 0.945 0.9325
Replay Size (in sequences) 50000 2000 2000

SELF-SUPERVISION

SPR Loss Weight 1.0 1.0 1.0

OPTIMIZATION

Initial Learning Rate 10−4 / 10−5 10−4 10−4 / 10−5

Learning Rate Schedule cosine / constant constant / cosine cosine

A.4. Random Network Distillation

Our modified version of RND utilizes the same encoder architecture as the agent network described previously. A projector
network takes the output of the encoder and projects into a vector. The projector network is of the same architecture as the
projector/predictor described for SPR. The target vector z is computed with randomly initialized weights. The prediction
vector ẑ is computed with the learned weights. The observation encoder receives training signals from both the RND loss
and the usual MuZero losses. The prediction error is the L2 distance between the prediction and target e = (z − ẑ)2.
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The intrinsic reward is computed as a function of the prediction error e. We keep an exponential moving average of the
error with a decay of 0.99 and bias correction technique applied (Kingma & Ba, 2014). This gives us the mean and standard
deviation ê and σ̂e. Then the reward is the normalized prediction error rintrinsic = (e − ê)/σ̂e. We do not apply any
clipping to the reward.

B. Additional Results
B.1. Crafter

Figure 7 reports the success rates of the sub-tasks after fine-tuning. We find that the performance margins of MB→MB are
particularly large on the more advanced tasks—especially those requiring or involving stone. We also trained a model-based
agent from scratch with combined extrinsic and intrinsic rewards. We found a weighting of the intrinsic (RND) loss relative
to the extrinsic loss around 0.001 to be optimal with a score of 2.9± 0.1 and reward of 4.5± 0.1 across three seeds.
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Figure 7. Success rates on Crafter after fine-tuning. Comparison of sub-task success rates of various transfer agents and baselines.

B.2. RoboDesk

Figure 8 shows the success rate on all the 18 tasks of RoboDesk during pre-training. Unlike Crafter, we do not observe
significant correlation between exploration and task rewards.

In addition to the success rate reported in Figure 4, we report the return curve of model-based and model-free transfer agents,
as well as the training from scratch agent, in Figure 9. The relative comparison between agents judging from return is very
similar to that from the success rate we presented in the main paper.
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Figure 8. Success rates on all 18 RoboDesk tasks during pre-training (reported for a single seed).
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Figure 9. Fine-tuning return curve on 9 RoboDesk core tasks. We take the median of 3 seeds and report the standard deviation.
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B.3. Meta-World

Similar to RoboDesk, Figure 10a shows that there is no correlation between exploration and downstream tasks rewards.
Figure 10b provides the results for an ablation study on Meta-World. However, since there is no tangible benefits from the
transfer in Meta-World, the various transfer setting results in similar performance.
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(b) Average success rate on test tasks
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Figure 10. Average success rate on Meta-World. (a) Average success rates on train tasks during pre-training phase. (b) Average success
rate on test tasks during fine-tuning phase for the ablation analysis.
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