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Abstract
Model-based imitation learning (MBIL) is a
popular reinforcement learning method that im-
proves sample efficiency on high-dimension input
sources, such as images and videos. Following the
convention of MBIL research, existing algorithms
are highly deceptive by task-irrelevant informa-
tion, especially moving distractors in videos. To
tackle this problem, we propose a new algorithm -
named Separated Model-based Adversarial Imita-
tion Learning (SeMAIL) - decoupling the environ-
ment dynamics into two parts by task-relevant de-
pendency, which is determined by agent actions,
and training separately. In this way, the agent
can imagine its trajectories and imitate the expert
behavior efficiently in task-relevant state space.
Our method achieves near-expert performance on
various visual control tasks with complex observa-
tions and the more challenging tasks with different
backgrounds from expert observations.

1. Introduction
Reinforcement learning enables agents to autonomously
learn specific behaviors and acquire diverse skills by in-
teracting in environments. However, the rewards used for
agent training are hard to define due to the expensive pro-
fessional knowledge in domains (Hadfield-Menell et al.,
2017; Everitt et al., 2021). One promising direction is imi-
tation learning (Ross et al., 2011; Osa et al., 2018), where
agents learn desired behaviors directly from expert demon-
strations, especially from more readily available data such as
images and videos (Stadie et al., 2017; Young et al., 2020).
With model-based methods introduced in this field (Baram
et al., 2016; Fu et al., 2021; Rafailov et al., 2021; Hu et al.,
2022), agents can sample data and train policy in the learned
model, which significantly improves the sample efficiency
and representation learning ability in visual observations.
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Figure 1. Illustration of convention model-based imitation learning
which trains the policy in a single environment model. Real-world
cases may contain a large number of distractors, especially moving
distractors like walkers walking on the roadside. The model trained
in these cases will tell the agent not only the result of its action but
also something else irrelevant to the task. The discriminator may
mistakenly use those imagined distractors to distinguish the agent
and expert, even if they have similar task-relevant behaviors.

In model-based visual imitation learning algorithms, there
is a common issue caused by distractors that majorly hin-
der learning ability in complex real-world scenarios, as
shown in Figure 1. In this case, the agent already obtained
task-completion information from the expert by exploring
specific actions. However, the environment model contains
various task-irrelevant details and will take that irrelevant
information into the next predicted state. Because of the
difference in task-irrelevant parts, the agent only can receive
a low reward from the discriminator even if the action in the
task-relevant part nicely dovetails with the target.

Recent studies attempted to exclude distractors by bottle-
necking the information between latent states and observa-
tions (Peng et al., 2019) or extracting features unrelated to
the task from the initial frames explicitly (Zolna et al., 2020).
Other works match the policy and expert by minimizing mu-
tual information using randomly pre-collected data in both
domains (Stadie et al., 2017; Cetin & Çeliktutan, 2021). In
real-world practice, these methods still have shortcomings :
(1) Only address IL problems on low-dimensional inputs or
images with static distractors. (2) Pre-collected data is re-
quired for aligning the agent and the expert. To close the gap,
we focus on excluding task-irrelevant information without
additional requirements, which benefits solving real-world
cases.
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When the agent executes the same action based on the same
states, the task-relevant parts will have a similar transition;
contrariwise, the task-irrelevant parts will have independent
transitions. We claim that only the task-relevant states in
observation will change consistently when the agent and
expert make a specific action. Based on this finding, we
make the Action-conditioned Transition (AcT) assumption.
We propose a practical method named Separated Model-
based Adversarial Imitation Learning (SeMAIL) based on
the assumption. For model learning, we design two models
to estimate the forward dynamics for these two parts and
dissociate the irrelevant one from the action input. The
two separated models are trained on data from both expert
and agent buffer. After that, We enforce task-relevant and
irrelevant latent states together to reconstruct the original
observation to learn the corresponding representations. We
train the agent by adversarial imitation learning for policy
learning, but the policy data used in discriminator and policy
training is collected only in the task-relevant latent state
space.

To begin with, we evaluate our method on modified Deep-
Mind Control Suite tasks (Tassa et al., 2018), which have
complex real-scene video distractors in the background, and
a 2-D classical control task from OpenAI Gym (Brockman
et al., 2016). The results show that SeMAIL achieves near-
expert performance on various tasks. Further, SeMAIL and
its variants outperform compared methods on a series of
tasks with different distractors from expert demonstrations.
From those sides, our proposed method can capture the most
helpful information (e.g. agent joints or target body) for
completing tasks, especially for tasks with complex and
time-correlated distractors.

To summarize our contributions in this work: (i) We pro-
pose a new approach, Separated Model-based Adversarial
Imitation Learning (SeMAIL), which aims to solve IL tasks
from visual observations with complex or time-correlated
distractors. (ii) We provide a theoretical analysis that shows
the performance gap between agent and expert in observa-
tion space can also be bounded in the task-relevant latent
state space. (iii) We show the superior performance of poli-
cies learned by SeMAIL across multiple visual control tasks
with complex distractors, including learning from expert
demonstrations with backgrounds different from observa-
tions.

2. Related Work
Reward Estimation in Visual Imitation Learning. A
practical way for imitation learning is to get the expert’s
supervised signal directly from high-dimensional inputs like
images or videos (Finn et al., 2017; Pathak et al., 2018;
Young et al., 2020; Haldar et al., 2022). Matching the agent
and expert distribution based on extracting representations

from visual observations and estimating the correct reward is
an inherently challenging task. Previous research generates
rewards for agent training based on aligned expert and agent
trajectories through proprioceptive information (Torabi et al.,
2019). P-SIL (Cohen et al., 2021) uses the Sinkhorn distance
(Cuturi, 2013) to estimate the reward to guide the agent
learning. Recent work (Liu et al., 2022) proposes a new
approach that recovers the reward based on the similarity of
the image patch between the agent and expert observations,
but it can not estimate the reward precisely if the observation
contains much task-irrelevant information. Our method
aims to provide task-relevant-based rewards so that it can
solve visual imitation learning tasks with complex and time-
correlated distractors.

Model-based Imitation Learning. Several works have in-
troduced model-based approaches (Sutton & Barto, 1990;
Deisenroth & Rasmussen, 2011) to imitation learning to
address the problem of sampling efficiency. MAIL (Baram
et al., 2016) trains the model and the discriminator on off-
policy data for adversarial imitation learning, but it only
focuses on solving low-dimensional state tasks. GCL (Finn
et al., 2016) equips inverse reinforcement learning with a
local linear dynamics model to learn a good cost function
but can not directly learn from natural images. For visual
inputs, V-MAIL (Rafailov et al., 2021) is a representative
model-based imitation learning method that learns a surro-
gate model for underlying MDPs and provides a theoretical
analysis of the performance bound between the agent and
the expert on partially observed MDPs. MILE (Hu et al.,
2022) trains a recurrent state-space model on an offline set
of expert data without any interaction with the environment
and can handle the image observation with a large size. All
of these methods learn an environment model to approxi-
mate the underlying dynamics to improve sample efficiency
in imitation learning. However, they ignore the possible
distractors with their own transition dynamics, common in
real-world cases, and can not prioritize task-relevant features
in the learning process. If these distractors are absorbed into
latent states, it will not only influence the next stage in
the model learning process but further make the agent and
discriminator focus on some task-irrelevant features.

Reinforcement Learning with Noisy Observations. Many
recent RL studies have explored ways for better perfor-
mance in environments with noise or distractors. These
methods can be divided into two categories: reconstruction-
free and reconstruction-based. As reconstruction-free meth-
ods, DBC (Zhang et al., 2021) learns a compact latent state
by bisimulation metric to filter out distractors in the envi-
ronment. InfoPower (Bharadhwaj et al., 2022) combines a
variational empowerment term into the state-space model to
capture task-relevant features at first. These works substitute
the reconstruction’s functionality with other designs. For
reconstruction-based methods, Denoised MDPs (Wang et al.,
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2022) decomposites the visual observation into four parts by
action and reward, and constructs the corresponding models.
The most similar method to our approach is TIA (Fu et al.,
2021), which also designs two models to capture the task
and distractor features. All these methods, including TIA,
separate the task-related and distractor information through
rewards based on human-designed prior knowledge. Our
method has essential differences from TIA in model learning
and policy learning. For model learning, we design a model
to model task-relevant and irrelevant dynamics through con-
ditioned actions instead of using ground-truth rewards as
in TIA. For policy learning, we use a discriminator to train
the agent by expert demonstrations in the task-relevant state
space, while TIA trains it using rewards decoded by the
learned model.

3. Preliminaries
A partially observed Markov decision process (POMDP)
is an MDP in which agents must make decisions based on
incomplete information (Kaelbling et al., 1998). POMDP
can be formalized as a 7-tuple ⟨S,A, r, p,O,Ω, γ⟩ where S
is the state space,A is the action space, r : S ×A×S → R
is the reward function, O is the observation space, p :
S ×A× S → [0, 1] is the state transition probability func-
tion, Ω : S ×A×O → [0, 1] is the observation probability
function and γ ∈ [0, 1) is the discount factor. In a POMDP,
the agent infers the belief state with incomplete observa-
tions of the environment and uses this information to make
decisions that maximize its cumulative reward. Since the
agent in imitation learning with complex distractors has no
access to the ground-truth state, we can regard it as a type
of POMDP1. The agent can only infer the belief state from
the historical observations and accept the supervised sig-
nal from demonstrations collected by the optimal expert’s
policy πE in an inverse RL fashion.

Adversarial Imitation Learning (AIL) (Ho & Ermon, 2016;
Fu et al., 2018) is a typical sort of inverse RL algorithm,
which takes the advantage of Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014) to train a discrimina-
tor Dψ to distinguish between the agent trajectory collected
from the environment and the expert data from fixed demon-
strations. AIL aims to learn a policy π to minimize the di-
vergence between the expert and agent occupancy measures,
meanwhile maximizing its entropy. It can be formulated as
argminπ −H(π)+ψ⋆(ρπ−ρπE ), where ψ is a regularizer
and ψ⋆ is convex conjugate of it. There are various choices
for ψ (Ghasemipour et al., 2019), and we adopt the JS diver-
gence used in GAIL (Ho & Ermon, 2016). The objective is

1More discussions about the POMDP assumption are in Ap-
pendix E.2.

as follows:

max
π

min
Dψ

E(s,a)∼ρEM

[
− logDψ(s, a)

]
+ E(s,a)∼ρπM

[
− log(1−Dψ(s, a))

] (1)

4. Approach
In this section, we first introduce the basic assumptions and
overall architecture of SeMAIL (Section 4.1). SeMAIL sep-
arates the model learning into two branches: task-relevant,
which captures the task information with action inputs, and
task-irrelevant, which learns the environmental background
and other distractors dynamics without action inputs. We
derive the lower bound of the mutual information between
the observations and the latent states for observation recon-
struction. We encourage the two models to reconstruct the
original observations cooperatively to maximize the mu-
tual information (Section 4.2). For policy learning, we use
the GAIL framework to optimize the policy based on the
theoretical result of Theorem 4.1 (Section 4.3).

4.1. Learning Separated Models

We make a basic assumption, named Action-conditioned
Transition (AcT), of the underlying mechanism of the envi-
ronment, whose latent state zt consists of the task-relevant
part z+t and irrelevant part z−t at time t. We assume that z+t
depends on the last task-relevant part z+t−1 and action at−1,
and z−t only depends on the last task-irrelevant part z−t−1.
These two components z+t and z−t process independently2.
Thus, we can decompose the forward dynamics into two
independent transition functions such that

p(zt|zt−1, at−1) = p(z+t |z+t−1, at−1)p(z
−
t |z−t−1) (2)

The overall architecture is shown in Figure 2(a). First, we
use two separated encodersEϕ+ andEϕ− to extract the low-
dimensional embedding z+t and z−t from original image ob-
servations ot. Then, we design two forward transition mod-
els for learning the task and environment background dy-
namics separately: the task model pθ+(z

+
t+1|z

+
t , at) which

predicts the next task-relevant latent state, and the back-
ground model pθ−(z

−
t+1|z

−
t ) which infers the next irrele-

vant latent state. We simultaneously learn two variational
encoders qψ+(z+t |ot, z+t−1, at−1) and qψ−(z−t |ot, z−t−1) to
infer the posterior estimation of task-relevant and irrelevant
latent states, respectively. To obtain compact representa-
tions of these two latent states, we jointly optimize the loss
function in Equation (3) to minimize the KL divergence
between the prior and posterior estimation of z+t and z−t .
We train the separated models on the data both from expert

2More discussions about the practice of AcT assumption can
be found in Appendix E.3.
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(a) Model learning (b) Adversarial imitation learning in imagination

Figure 2. Overview of SeMAIL. (a) The model learning consists of two branches: the top branch learns p(z+t |z+t−1, at−1) for task-relevant
transition, and the bottom branch learns p(z−t |z−t−1) for distractor transition. z+t and z−t cooperatively reconstruct the observation ôt by
decoders Dϕ+ and Dϕ− . (b) For policy learning, the agent samples trajectories in the learned task-relevant latent state space and updates
its policy using rewards provided by the discriminator Dψ .

and agent buffers. The derivation of the loss function below
is in Appendix B.

LM̃ = E(oτ ,aτ )∼Bπ∪BE[
T∑
t=1

Eq(z+t−1|o1:t−1,a1:t−2)q(z
−
t−1|o1:t−1)(

DKL
[
qψ−(z−t |ot, z−t−1)||pθ−(z

−
t |z−t−1)

]
+

DKL
[
qψ+(z+t |ot, z+t−1, at−1)||pθ+(z+t |z+t−1, at−1)

])]
(3)

4.2. Joint Observation Reconstruction

Most of previous model-based reinforcement learning meth-
ods consider auxiliary reconstruction-loss to optimize the
observation encoder (Hafner et al., 2020; Rafailov et al.,
2021). They formulate this loss as maximizing the mutual
information I(ot; zt) between the observations and latent
states. We can optimize it by maximizing its BA lower
bound (Barber & Agakov, 2003):

I(ot; zt) ≥ Ep(ot,zt)[ln qϕ(ot|zt)] +H(p(ot))

Because the observations do not depend on the latent state,
optimization only considers maximizing the first term. How-

ever, enforcing the decoder to recover the whole observa-
tions from the encoded latent states will introduce bias when
observations contain distractors. For imitation learning, it
is catastrophic if the discriminator focuses on some task-
irrelevant information and results in providing misleading
reward to the agent. To avoid the latent state trained from
all the details in observation, we maximize the mutual in-
formation between the observation ot and the combination
of the task-relevant latent state z+t and the irrelevant latent
state z−t as follows:

I(ot; z
+
t , z

−
t ) ≥ Ep(ot,z+t ,z−t )[ln qϕ(ot|z

+
t , z

−
t )]

To implement it, we design two decoders Dϕ+ and Dϕ− .
With the given learned representation z+t and z−t , decoder
Dϕ+ and Dϕ− will output the task-relevant visual compo-
nent ô+t with mask M+

t and the irrelevant visual component
ô−t with mask M−

t . We use a 2D-convolutional layer to
generate the final image mask Mt from these two masks, a
technique commonly utilized in prior works (He et al., 2017;
Fu et al., 2021). These two visual components cooperatively
recover the original observation at time t, formulated as
ôt =Mt ⊙ ô+t + (1−Mt)⊙ ô−t .

Reconstructing the original image observation from two la-
tent states may result in z+t dominating the whole reconstruc-
tion process and thus containing some irrelevant information
at time t. We assume that the task-relevant information is
only a small proportion of the observation, which is also
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posed in (Fu et al., 2021; Wang et al., 2022). To avoid the
learning collapse of z−t and too much information captured
by z+t , we design an additional observation decoder qϕ̃ fol-
lowing TIA to decode the whole observation. This term is
designated as background-only reconstruction (BoR), with
the aim that the non-controllable latent state z−t can recover
the task-irrelevant background as much as possible. The
reconstruction loss3 can be written as:

LO = E(oτ ,aτ )∼Bπ∪BE[
T∑
t=1

(
E q(z

+
t |o1:t,a1:t−1)

q(z
−
t |o1:t)

[ln qϕ+,ϕ−(ot|z+t , z−t )]

+ λEq(z−t |o1:t)[ln qϕ̃(ot|z
−
t )]

)]
(4)

where λ is a hyper-parameter that controls the weight of the
BoR term. In contrast to TIA, the task-irrelevant hidden
state z−t in the expectation of BoR loss does not rely on
actions, as postulated by the AcT assumption.

4.3. Policy Learning

In this section, we provide a theoretical upper bound on the
performance gap between the expert and the policy trained
on the task-relevant transition model. The agent can perform
planning and adversarial imitation learning in task-relevant
latent states and reach a similar performance to the expert
theoretically. Based on the Lemma 1 stated in V-MAIL
(Rafailov et al., 2021), we extend the policy and model
deviation from the original dynamics of MDPs to the task-
relevant dynamics. Suppose there is a model M̃+ which
approximates the underlying task-relevant MDPM+ such
that ϵ = Dmax

TV (p̃(s, a), p(s, a)),∀(s, a). Then, the expected
returns gap between expert πE and learned policy π can be
bounded as

|J(πE ,M+)− J(π,M̃+)| ≤
Rmax

1− γ
DTV(ρ

π
M̃+ , ρ

E
M+) +

ϵ ·Rmax

(1− γ)2
(5)

where Rmax = max(s,a)R(s, a),∀(s, a) is the maximum
of the reward in the MDP with task-relevant dynamics.
We need to minimize the divergence DTV(ρ

π
M̃+

, ρEM+) to
achieve near-expert performance. We provide a theory that
this divergence can also be bounded in the task-relevant
latent state space Z+, which makes our proposed SeMAIL
method available under the adversarial imitation learning
framework.

Theorem 4.1. Consider a POMDP M with high-
dimensional inputs such as images. Let st be the ground-
truth state and zt be the latent representation of the whole

3The derivation of the loss function is in Appendix B

observation ot. z+t and z−t represent for the task-relevant
and irrelevant component, respectively, which meets the
condition of p(st|zt, at) = p(st|z+t , at)p(st|z−t ) based on
the AcT assumption mentioned in Section 4.1. Then, we
have

Df (ρπM(o, a)||ρEM(o, a)) ≤Df (ρπM(s, a)||ρEM(s, a))

≤Df (ρπM(z+, a)||ρEM(z+, a))

(6)

where Df is a generic f -divergence.

Theorem 4.1 illustrates that the divergence of occupancy
measures in the observation space can be upper-bounded
in the learned task-relevant latent state space. The proof
is in A.1. As the learned model M̃+ well approximates
the true MDPM+, we can apply the adversarial imitation
learning method in Z+ space to minimize the divergence
f(ρπ

M̃+
(z+, a)||ρEM+(z+, a)) and reduce the performance

gap between the agent and the expert. The objective is

max
π

min
Dψ

E(z+,a)∼ρEM

[
− logDψ(z

+, a)
]

+ E(z+,a)∼ρπ
M̃

[
− log(1−Dψ(z

+, a))
] (7)

The discriminator Dψ serves as an approximated reward
function that gives an estimated reward rt of the agent’s
state-action pair at time t. The agent uses the pseudo reward
to fit the value function bootstrapped and maximizes the
expected return. To improve sample efficiency, we only
train the discriminator on the fixed expert’s demonstrations
and the agent’s rollouts in the learned model. The agent
only samples actions based on the task-relevant state.

Action model: at ∼ π(at|z+t )

Value model: v(z+t ) ≈ Eπ(·|z+t )

[ T∑
k=t

γk−t logDψ(z
+
k , ak)

]
The policy learning process is presented in detail in Fig-
ure 2(b).

5. Experiments
In our experiments part, we aim to answer the following
questions:

1. How good is SeMAIL’s performance on learning tasks
with complex distractors observations?

2. What are the roles played by the critical designs of
SeMAIL in learning?

3. Could SeMAIL perform well with distractors that never
appear in expert observations?

4. How well does the task-relevant space imagination
benefit adversarial imitation learning?
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Figure 3. Evaluation results of our method SeMAIL and the baselines over four seeds in six visual control tasks. The solid curves present
the average episodic returns, and the shaded region represents the range of performance under different runs. SeMAIL consistently
outperforms the three compared methods in almost all environments.

Environments and Expert’s demonstrations. We test our
algorithm on six visual control tasks, i.e., five locomotion
tasks from DeepMind Control (DMC) Suite (Tassa et al.,
2018) with videos under the class “driving car” of the Ki-
netics dataset (Kay et al., 2017) as background, and another
Car Racing task from OpenAI Gym (Brockman et al., 2016).
These videos are grayscaled as in DBC (Zhang et al., 2021).
Instead of rendering the images from low-dimensional states
or adding the distractors on the pure observations, we train
RL policies from complex visual inputs until optimal as
experts. Then we use the expert to collect demonstrations
from the above environments directly. More details about
environments and demonstrations are in Appendix C.

Baselines. We design three versions of SeMAIL and com-
pare them with baselines against three types of visual imi-
tation learning approaches: model-based, data-augmented,
and feature-space-shared.

• SeMAIL: The full proposed method.

• SeMAIL (No AcT): SeMAIL without the action-
free constraint in the task-irrelevant model. The for-
ward dynamics and posterior encoder of the task-
irrelevant model are modified as pθ−(z

−
t |z−t−1, at−1)

and qψ−(z−t |ot, z−t−1, at−1), respectively.

• SeMAIL (No BoR): SeMAIL without the background-
only reconstruction loss.

• V-MAIL: The variational model-based adversarial im-
itation learning method (Rafailov et al., 2021).

• DA-DAC: The DrQ data augmentation (Yarats et al.,
2021) version of Discriminator Actor Critic (Kostrikov
et al., 2019) used in (Rafailov et al., 2021).

• DisentanGAIL: The feature-space-shared IRL method
that regularizes the latent representation with mutual
information constraints (Cetin & Çeliktutan, 2021).

5.1. How good is SeMAIL’s performance on learning
tasks with complex distractors observations?

In Figure 3, we show the performance curves of all six vi-
sual control tasks. It is clear that SeMAIL outperforms all
the baseline methods and enables high sampling efficiency
in most of these tasks. SeMAIL achieves near-expert per-
formance in Finger and Walker tasks while other methods
struggle to solve them. On the Hopper Hop environment, Se-
MAIL has an outstanding average performance with a wider
range of variance than the baselines. That is because the
compared methods fail to learn the expert behavior, while
for SeMAIL, there are more successful and fewer failed
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(b) SeMAIL (c) SeMAIL (No AcT) (d) SeMAIL (No BoR)

Figure 4. Reconstruction results of SeMAIL and its ablated variants for different semantics in observations from the agent (green) and the
expert (red). (a) SeMAIL can successfully separate the task-relevant part and irrelevant part from observations and reconstruct them.
(b) SeMAIL (No AcT) reverses the reconstructions for these two parts. There is no task information in ô+. (c) SeMAIL (No BoR) can
reconstruct ô+ and ô− well but contain some task-irrelevant information in the former.

runs. In the Car Racing environment, V-MAIL obtains high
episodic returns in the early stage, but the performance
quickly drops to a value lower than SeMAIL as training
goes on because the discriminator captures irrelevant parts
in observations and distinguishes the agent from the expert.

The performance on all six tasks has a considerable drop if
we ignore the AcT assumption. Notably, the performances
of SeMAIL (No AcT) become sharply unstable in Walker
Walk and Walker Run. It indicates that dissociating task-
irrelevant part from actions is crucial for task completion
when some distractors have underlying dynamics. Remov-
ing BoR loss also leads to a significant performance drop on
several tasks, except for Car Racing, since the distractors in
this environment are not visually visible. Although remov-
ing AcT or BoR component, the average performances of
SeMAIL still outperform the DA-DAC and DisentanGAIL
in almost all environments. The quantitative result is in
Table 2.

5.2. What are the roles played by the critical designs of
SeMAIL in learning?

To further study the factors that cause the performance drop
on SeMAIL (No AcT) and SeMAIL (No BoR), we visualize
reconstructions of different semantics of observations from
the agent and the expert in Figure 4. SeMAIL learns a dis-
tinct mask and reconstructs the observations well for both
tasks and backgrounds. SeMAIL (No AcT) fails to learn
an accurate mask and its two parts of the reconstruction
are reversed, implying that the AcT assumption is crucial
for extracting the corresponding features from o+ and o−.
For SeMAIL (No BoR), the task model captures the task-
relevant information in the correct semantics but also con-
tains some background information, which may lead to poor

performance results. Based on these ablation test results, the
action-conditioned transition can help the model capture the
corresponding representation with task-relevant information
and majorly improves its learning ability. Background-only
reconstruction tries to recover the whole background as
much as possible via non-controllable latent state z− and
can filter some irrelevant information that may be miscon-
tained in controllable latent state z+. We conclude that both
of these two designs are absolutely necessary for imitation
learning in environments with complex observations.

5.3. Could SeMAIL perform well with distractors that
never appear in expert observations?

To test SeMAIL’s ability by solving tasks with distractors
that the expert has never seen before, we train the agent
and expert in environments with non-overlap video back-
grounds for Walker Run, Cheetah Run, and Finger Spin
tasks. Due to the different backgrounds, the discriminator
tends to distinguish the agent’s observations from the ex-
pert’s, which leads to low rewards and failure to learn expert
behaviors. We record the mean and standard error of the
maximum expected episodic returns over all the methods in
tests and scale the values such that 0 represents the random
agent performance and 1 represents the expert performance.
The results in Table 1 show V-MAIL and DA-DAC fail to
solve the task with very low performances. DisentanGAIL
performs well in the Finger Spin task but poorly in Walker
and Cheetah tasks. It indicates that regularizing the mutual
information between the agent and expert observations can
mitigate the misdistinguishing problem to some extent in
this experiment. The reason that SeMAIL (No BoR) un-
expectedly got an outstanding performance in the Walker
task may be its task model remains more observation In-
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Figure 5. The adversarial imitation learning process of SeMAIL and V-MAIL. In latent space, both of SeMAIL and V-MAIL imagine the
trajectory based on the observations of t0 ∼ t3 and imitate the expert behavior from all expert demonstrations. The reconstructions of the
task model for the expert observation and the agent imagination are presented in red and green boxes, respectively. The value PE denotes
the probability that discriminator Dψ predicts agent behaviors as expert behaviors, which is closer to 0.5 will be better.

Table 1. Performance on tasks with non-overlap video back-
grounds from expert observations, scaled by the expert and random
agent returns.

METHOD WALKER RUN CHEETAH RUN FINGER SPIN

V-MAIL 0.16 ± 0.01 0.17 ± 0.02 0.02 ± 0.01
DA-DAC 0.13 ± 0.02 0.19 ± 0.02 0.09 ± 0.03
DISENTANGAIL 0.27 ± 0.04 0.19 ± 0.03 1.47 ± 0.07
SEMAIL (NO ACT) 0.10 ± 0.01 0.31 ± 0.04 0.07 ± 0.02
SEMAIL (NO BOR) 0.84 ± 0.01 0.38 ± 0.03 0.75 ± 0.08
SEMAIL 0.38 ± 0.04 0.86 ± 0.04 0.82 ± 0.05

formation, which could benefit some different background
situations. Although all the methods can not reach expert
performance, our method still has a substantial advantage
over other baselines.

5.4. How well does the task-relevant space imagination
benefit adversarial imitation learning?

To answer this question, we visualize the reconstruction of
Cheetah Run’s task information for expert observations and

agent imaginations by SeMAIL and V-MAIL in Figure 5.
The agent and the expert are trained in environments with
the same task but with non-overlap video backgrounds. In
expert observations, SeMAIL only extracts the cheetah’s
body as task information, while V-MAIL reconstructs all the
information from the original image. In agent observations,
SeMAIL imagines its behavior in the task-relevant latent
space Z+, while V-MAIL imagines in the latent space con-
taining all the information. Based on the reconstruction of
the imagined data, we can see SeMAIL filter out irrelevant
information while V-MAIL largely retains it. To evaluate
the learning ability in the adversarial imitation learning pro-
cess, we use the probability of whether the discriminator
can distinguish behaviors from the agent or the expert. For
agent imagination using V-MAIL, the discriminator gives
a near-zero probability value since it carries all observed
information which leads to distinguish from the expert (as
the example mentioned in Figure 1). The agent of V-MAIL
nearly can not receive positive training signals from the
discriminator and underperforms in the task as a result. The
discriminator of SeMAIL scores a probability close to 0.5
based on task-relevant information, which guides the agent’s
policy learning toward the expert.
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6. Conclusion
In model-based imitation learning, irrelevant information
will cause the discriminator to have deceptive biases on the
reward. We introduce the Action-conditioned Transition
assumption to model task-relevant and distractor dynam-
ics separately, and we name this new approach Separated
Model-based Adversarial Imitation Learning (SeMAIL). Se-
MAIL extracts task-correlated features from the environ-
ment, which helps mitigate the problem of current MBIL
methods struggling to learn in tasks with complex distrac-
tors. We provide a theoretical demonstration that the perfor-
mance gap between the expert and the agent can be upper-
bounded in task-relevant space. We verify the performance
of SeMAIL on six frequently-used continuous control tasks,
with complex distractors in observations. Further, we de-
sign ablation studies and visualize the adversarial imitation
learning process to display the contribution of the key com-
ponents. We conclude that SeMAIL can provide a relatively
clean task-relevant latent space for the adversarial imitation
learning process and largely improve performance on VIL
tasks with complex observations.

In our experiments, we claim that irrelevant information in
most environments is a distraction to the agent’s action deci-
sion and try to eliminate it. In particular cases, the irrelevant
distractor may become task-relevant in a certain condition
and influence the agent’s decision-making. In this case, we
can add a short period of the particular distractor states in
the policy function and train the agent. We will consider
this improvement in future work. Another further improve-
ment is training the task-irrelevant models of the expert and
the agent separately, which may benefit the scenario where
distractors in their observations are majorly different.
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A. Proof
A.1. Proof of Theorem 4.1

Theorem A.1. Consider a POMDPM with high-dimensional inputs such as images. Let st be the ground-truth state
and zt be the latent representation of the whole observation ot. z+t and z−t represent for the task-relevant and irrelevant
component, respectively, which meets the condition of p(st|zt, at) = p(st|z+t , at)p(st|z−t ) based on the AcT assumption
mentioned in Section 4.1. Then, we have

Df (ρπM(o, a)||ρEM(o, a)) ≤ Df (ρπM(s, a)||ρEM(s, a)) ≤ Df (ρπM(z+, a)||ρEM(z+, a)) (8)

where Df is a generic f -divergence.

Proof. We get the result that Df (ρπM(o, a)||ρEM(o, a)) ≤ Df (ρπM(s, a)||ρEM(s, a)) ≤ Df (ρπM(z, a)||ρEM(z, a)) from
Theorem 1 which is proved in Rafael Rafailov’s work (2021). Next, we need to prove Df (ρπM(z, a)||ρEM(z, a)) ≤
Df (ρπM(z+, a)||ρEM(z+, a)), which means that the gap between the agent and the expert occupancy measures upper-
bounded in the latent state space Z can also be upper-bounded in the task-relevant state space Z+.

Df (ρπM(z, a)||ρEM(z, a)) = Ez,a∼ρEM(z,a)

[
f

(
ρπM(z, a)

ρEM(z, a)

))]
(9)

= Ez+,z−,a∼ρEM(z,a)

[
f

(
ρπM(z+, a)P (z−|z+)
ρEM(z+, a)P (z−|z+)

))]
(10)

= Ez+,z−,a∼ρEM(z,a)

[
f

(
ρπM(z+, a)

ρEM(z+, a)

))]
(11)

≤ Ez+,a∼ρEM(z+,a)

[
f

(
ρπM(z+, a)

ρEM(z+, a)

))]
(12)

= Df (ρπM(z+, a)||ρEM(z+, a)) (13)

The equality (10) follows the fact that ρM(z, a) = ρM (z+, z−, a) = ρM(z+, a)P (z−|z+, a) = ρM(z+, a)P (z−|z+),
which means the task-relevant and -irrelevant parts can be partitioned, as mentioned in Section 4.1. The inequality (12) is
deflated with the help of our AcT assumption, which assumes that the forward dynamics in Z can be decoupled into two
independent forward dynamics in Z+ and Z−.

B. Derivations
Previous model-based RL studies (Hafner et al., 2020; 2021) use the information bottleneck objective (Tishby & Slonim,
2000) to encourage model states to predict observations and rewards while limiting the capacity of information that contained
in states. We remove the reward prediction in the objective for model-based imitation learning as follows:

max I(o1:T , z1:T |a1:T )− βI(i1:T , z1:T |a1:T ) (14)

Here, it is indices of the dataset such that p(ot|it) = δ(ot−o′t). The first term can be simplified using the mutual information
definition and the non-negativity of the KL-divergence.
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I(o1:T , z1:T |a1:T ) = Ep(o1:T ,z1:T ,a1:T ) [ln p(o1:T |z1:T , a1:T )− ln p(o1:T |a1:T )] (15)
+
= Ep(o1:T ,z1:T ,a1:T ) [ln p(o1:T |z1:T , a1:T )] (16)

≥ Ep(o1:T ,z1:T ,a1:T ) [ln p(o1:T |z1:T , a1:T )]− DKL

(
p(o1:T |z1:T , a1:T )||

T∏
t=1

q(ot|zt)
)

(17)

= Eq(z1:T |o1:T ,a1:T )[
T∑
t=1

ln q(ot|zt)] (18)

=

T∑
t=1

[
Eq(z+t |o1:t,a1:t−1)q(z

−
t |o1:t) ln q(ot|z

+
t , z

−
t )

]
(19)

The second term in the equality (15) can be regarded as constant for the observed data. The equality (19) is obtained by the
fact that the representation of observation zt can be decoupled into the task-relevant part z+t and irrelevant part z−t .

For the second term, we obtain the upper bound of it with the non-negativity of the KL-divergence and the AcT assumption
below:

I(z1:T , i1:T |a1:T ) = Ep(o1:T ,z1:T ,a1:T ,i1:T )

[
T∑
t=1

ln p(zt|zt−1, at−1, it)− ln p(zt|zt−1, at−1)

]
(20)

≤ Eq(z1:T |o1:T ,a1:T−1)

[
T∑
t=1

ln
q(zt|ot, zt−1, at−1)

p(zt|at−1, zt−1)

]
(21)

= Eq(z1:t−1|o1:t−1,a1:t−2)

[
T∑
t=1

Eq(zt|ot,zt−1,at−1) ln
q(zt|ot, zt−1, at−1)

p(zt|at−1, zt−1)

]
(22)

= Eq(z1:t−1|o1:t−1,a1:t−2)

[
T∑
t=1

Eq(zt|ot,zt−1,at−1) ln
q(z+t |ot, z+t−1, at−1)q(z

−
t |ot, z−t−1)

p(z+t |z+t−1, at−1)p(z
−
t |z−t−1)

]
(23)

= Eq(z+1:t−1|o1:t−1,a1:t−2)

[
T∑
t=1

Eq(z+t |ot,z+t−1,at−1)
ln
q(z+t |ot, z+t−1, at−1)

p(z+t |z+t−1, at−1)

]

+ Eq(z−1:t−1|o1:t−1)

[
T∑
t=1

Eq(z−t |ot,z−t−1)
ln
q(z−t |ot, z−t−1)

p(z−t |z−t−1)

]
(24)

=
T∑
t=1

(
Eq(z+t−1|o1:t−1,a1:t−2)

[
DKL(q(z

+
t |ot, z+t−1, at−1)∥p(z+t |z+t−1, at−1))

]
+ Eq(z−t−1|o1:t−1)

[
DKL(q(z

−
t |ot, z−t−1)∥p(z

−
t |z−t−1))

] )
(25)

In practice, we use two pairs of observation decoders qϕ+ and qϕ− , forward dynamics models pθ+ and pθ− , and variational
posterior models qψ+ and qψ− for the task-relevant and irrelevant branches respectively. We obtain the final objective of the
separated models to be optimized as follows:

max
θ+,θ−,ψ+,ψ−
ϕ+,ϕ−,ϕ̃

E(oτ ,aτ )∼Bπ∪BE

[ T∑
t=1

(
Eq(z−t−1|o1:t−1)

[−DKL
(
qψ−(z−t |ot, z−t−1)||pθ−(z

−
t |z−t−1)

)
]

+Eq(z+t−1|o1:t−1,a1:t−2)
[−DKL

(
qψ+(z+t |ot, z+t−1, at−1)||pθ+(z+t |z+t−1, at−1)

)
]

+Eq(z+t |o1:t,a1:t−1)q(z
−
t |o1:t)[ln qϕ+,ϕ−(ot|z+t , z−t ) + λ ln qϕ̃(ot|z

−
t )]

)]
(26)

where we add the background-only reconstruction loss mentioned in Section 4.2.
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Figure 6. The environments used in our experiments: Walker Walk, Walker Run, Cheetah Run, Finger Spin, Hopper Hop, and Car Racing,
where the first five replace backgrounds with natural videos except for Car Racing.

C. Implementation Details
C.1. Environments and Tasks

DeepMind Control Suite (DMC) (Tassa et al., 2018) is a set of reinforcement learning environments that includes a range
of tasks, such as locomotion, manipulation, and navigation. We choose five locomotion tasks from DMC and replace the
background wall with the grayscaled videos in the “driving car” class from the kinematic dataset (Kay et al., 2017). These
natural video backgrounds contain complex task-irrelevant information. The Car Racing environment from OpenAI Gym
(Brockman et al., 2016) is a classic control task from pixels. The agent must learn to control the speed, steering, and other
parameters to maximize its cumulative rewards. We cut out the bottom part of the frames to avoid the agent learning directly
from the reward signals. The size of image observation in all environments is 64× 64× 3. The example observations of
these environments are shown in Figure 6.

In the first part of our experiments, we test our method SeMAIL and the baselines on all six environments. On the five
environments of DMC, the agent and the expert observations background walls are replaced with the frames from the same
videos. We design this task to verify SeMAIL’s learning ability in environments with complex and noisy observations. We
adopt the original image input for the Car Racing environment because it already contains much irrelevant information as
time-varying blocks in observations.

In the following experiment, we use Walker Run, Cheetah Run, and Finger Spin tasks to test SeMAIL’s ability with
backgrounds not appeared in expert observations. To achieve this, we design two non-overlap environments for each task.
We train the expert in the first eight videos under the ”driving car” class and collect the demonstration, then we train the
agent in the last eight videos in the same class with the expert demonstration.

C.2. Demonstration Data

To make sure agent actions can be inferred from image inputs with distractors, we train an expert from scratch for each task
and obtain the demonstration data. We train the expert with TIA (Fu et al., 2021) for locomotion tasks from DMC and train
it with Dreamer (Hafner et al., 2020) for the Car Racing task. We prepare for all the methods with 10 expert demonstrations
in each task.

C.3. Pseudo Code

The pseudo-code of our proposed SeMAIL is provided in Algorithm 1.

C.4. Networks and Hyperparameters

Implementation. We implement the proposed algorithm with TensorFlow 2 and run all the experiments on NVIDIA RTX
3090 for about 1000 GPU hours. We use the recurrent state space model (Hafner et al., 2019) for the forward dynamics
and the posterior encoder. The hidden sizes for the deterministic part and stochastic part are 200 and 30. We adopt the
convolutional encoder and decoder used in TIA (Fu et al., 2021). The size of all dense layers is 300, and the activation
function is ELU. We use ADAM optimizer to train the network with batches of 64 sequences of length 50. The learning rate
for the task and background model is 6e-5, and for the action net, value net, and discriminator is 8e-5. We clip gradient
norms to 100 to stabilize the training process. To prevent training a too-strong discriminator, we add a gradient penalty term
(Gulrajani et al., 2017) on the discriminator loss and set the value of weight as 1.0. The codes of SeMAIL are released in
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Algorithm 1 Training Procedure of SeMAIL
Input: Policy replay buffer Bπ , Expert demonstrations BE
Initialize forward dynamics model pθ+ , pθ− , posterior encoder qψ+ , qψ− , observation decoder qϕ+ , qϕ− , qϕ̃, policy π.
for each time step t = 1 · · ·T do

// Rollout trajectories
Infer the task-relevant latent state z+t ∼ qψ+(·|ot, z+t−1, at−1)

Sample action from policy at ∼ π(·|z+t )
Execute action and get the next observation ot+1 ← env.step(at)

end for
Add samples into the replay buffer Bπ ← Bπ ∪ {(ot, at)Tt=1}
for training iteration i = 1 · · · It do

// Learn separated models
Sample minibatch (o1:T , a1:T−1)1:b from the union buffer Bπ ∪ BE
Update the forward dynamics model pθ+ , pθ− and the posterior encoder qψ+ , qψ− with Equation (3)
Update the observation decoder qϕ+ , qϕ− , qϕ̃ with Equation (4)
// Optimize policy
Imagine the task-relevant latent states zπ+1:H by policy π using the forward dynamics model pθ+
Sample expert’s trajectories (oE1:T , a

E
1:T−1) from demonstration buffer BE

Infer the task-relevant latent states zE+
1:T using the posterior encoder qψ+

Train the discriminator on the data (zπ+1:H−1, a
π
1:H−1), (z

E+
1:T−1, a

E
1:T−1) using Equation (7)

Update the policy π to imitate the expert’s behavior using Equation (8)
end for

https://github.com/yixiaoshenghua/SeMAIL.

Environment Hyperparameters. For Walker Walk, Walker Run, Cheetah Run, Finger Spin, Hopper Hop, and Car Racing
tasks, the values of background-only reconstruction λ are 1.5, 0.25, 2, 1.5, 2, and 1, respectively. To encourage exploration,
we add N (0, 0.3) noise on the output actions for locomotion tasks and N (0, 0.1) noise for Car Racing as used in (Rafailov
et al., 2021). The imagination horizon H for locomotion tasks is 15, and for Car Racing is 10.

Training Details. To make this a fair comparison, all environments and network parameters are kept the same over SeMAIL
and the compared algorithms. We initialize the dataset with 5 randomly collected episodes and train 100 iterations after
collecting one episode in environments. We keep the action repeat times as 2 and set the discounting factor as 0.99 for
all tasks. On five locomotion tasks, we adopt the official implementation for DisentanGAIL (Cetin & Çeliktutan, 2021),
which obtains pseudo rewards from the discriminator on the agent observations and learns policy based on the raw state
observations.

D. Extra Experimental Results
D.1. Quantitative Results

In Table 2, we show the quantitative results of the experiments in Section 5.1. SeMAIL significantly outperforms the
baselines in almost all tasks and achieves near-expert performance. Without the AcT assumption or removing the BoR
loss, the performances of SeMAIL in locomotion tasks significantly decrease in either case. On the Car Racing task, the
performance of SeMAIL (No BoR) outperforms SeMAIL, and V-MAIL achieves better performance than on other tasks. It
is because the background of the car racing environment is relatively simple, and the task-relevant part takes up the large
proportion. DisentanGAIL performs well on Finger Spin but fails on other tasks due to its agent actions change little in
observations, which regularizing the mutual information between the expert and the agent data can help solve this task.

D.2. Additional Visualization

We use the t-SNE plot (van der Maaten & Hinton, 2008) to visualize training result through the agent’s and expert’s
observation embeddings of SeMAIL and V-MAIL in Figure 7. We randomly select images from observations of the
initial stage, the learned policy, and the expert, then generate the latent representation z+ ∼ q+ϕ (z+|o) from SeMAIL and
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Table 2. Performance on six visual control tasks. We present the mean and std of final performance by running 10 trajectories over 4 seeds
for SeMAIL and the baselines.

METHOD WALKER WALK WALKER RUN CHEETAH RUN FINGER SPIN HOPPER HOP CAR RACING

EXPERT 964.5 ± 14.7 539.5 ± 6.5 629.5 ± 44.6 332.0 ± 24.4 263.2 ± 7.4 936.3 ± 5.7
V-MAIL 314.9 ± 295.6 155.1 ± 73.9 74.6 ± 48.9 3.3 ± 4.8 0.2 ± 1.0 537.8 ± 228.4
DA-DAC 25.4 ± 13.3 27.7 ± 21.2 32.9 ± 17.0 0.1 ± 0.6 0.0 ± 0.1 -57.9 ± 38.7
DISENTANGAIL 61.0 ± 6.6 68.7 ± 13.4 36.6 ± 17.3 133.2 ± 77.9 1.0 ± 1.1 -62.0 ± 20.0
SEMAIL (NO ACT) 124.9 ± 14.1 100.0 ± 7.4 71.9 ± 4.4 30.5 ± 4.3 66.3 ± 8.5 24.1 ± 36.2
SEMAIL (NO BOR) 93.7 ± 15.5 337.5 ± 14.7 72.9 ± 5.8 23.4 ± 5.4 19.1 ± 2.1 942.9 ± 1.6
SEMAIL 900.1 ± 57.6 463.4 ± 42.7 217.9 ± 125.8 161.1 ± 68.7 90.5 ± 75.6 901.2 ± 19.8

Figure 7. The t-SNE plot of data representations of the initial agent, the final learned agent, and the expert. Compared with the V-MAIL
plot on the left, the embedding of our method SeMAIL shows that the learned agent behavior blends well with the expert, which indicates
well-trained by eliminating distractors.

z ∼ q(z|o) from V-MAIL. Since misguided by complex distractors, the embeddings cluster of V-MAIL shows a large gap
between the trained agent and the expert. In SeMAIL, the sample embeddings almost cover the representation space of the
expert observations, which indicates a well-trained result through our distractor-eliminating policy. It confirms that SeMAIL
is qualified to solve real-world cases which may contain complex distractors.

E. Additional Discussions
E.1. Pre-trained Visual Encoders

Equipping visual RL with a pre-trained encoder is an exciting direction like recent research (Xiao et al., 2022; Seo et al.,
2022). In this paper, we are concerned about the practical problem in visual imitation learning (VIL) - how to extract
task-relevant information from noisy observations without access to ground-truth rewards. To solve this, a good alignment
between the agent and the expert behaviors (by separating the dynamics of task-relevant and -irrelevant parts) is a more
important contributor than a good representation of observations (by pre-training or data augmentation). The compared
method in our experiments, DA-DAC, only considers obtaining a good representation via augmenting the observed data, and
its agent finally receives the wrong guidance from the expert and fails to complete the tasks (see the quantitative results in
Table 2). We leave the pre-training approach combined with the SeMAIL framework for future exploration.
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Table 3. Performance on five DMC tasks. We present the mean and std of 10 trajectories’ return for SeMAIL and SeMAIL (No Exp-M).

METHOD WALKER WALK WALKER RUN CHEETAH RUN FINGER SPIN HOPPER HOP

SEMAIL 900.1 ± 57.6 463.4 ± 42.7 217.9 ± 125.8 161.1 ± 68.7 90.5 ± 75.6
SEMAIL (NO EXP-M) 62.8 ± 11.5 63.7 ± 17.4 15.1 ± 13.3 3.0 ± 4.5 1.2 ± 2.5

E.2. The Rationality of POMDP Assumption

POMDP (Kaelbling et al., 1998) addresses that the agent can not directly access the ground truth states but only infer the
belief states from observations. In previous RL work (Rafailov et al., 2021; Bharadhwaj et al., 2022) using the similar
environments with us, they adopted POMDP as their basic environmental assumption. We follow their assumption because
we aim to solve imitation learning tasks with noisy observations, which have some common ground with theirs. As detailed
in Appendix C.4, our transition model is built upon a recurrent state space model, which will generate belief hidden states
from historical rollouts for policy action outputs. BMDP (Du et al., 2019) highlights the block structure that each context
determines its generating state uniquely, which can be regarded as an alternative formulation of our problem. We highly
encourage researchers with an interest in BMDP to consult the original paper.

E.3. The Practice of the AcT Assumption

The AcT assumption claims that the forward dynamics p(zt|zt−1, at−1) can be independently decomposed into the product
of task-relevant dynamics p(z+t | z+t−1, at−1) and -irrelevant dynamics p(z−t |z−t−1), and each one is implemented by a
stochastic probabilistic model. Recent studies, including Denoised MDPs (Wang et al., 2022) and Iso-Dream (Pan et al.,
2022), consider modeling the environmental dynamics using controllable information and pre-defined rewards. Denoised
MDPs categorize information with controllablity and reward relativity. Iso-Dream posits that the latent states can be separated
into controllable and noncontrollable part, while the agent makes decisions influenced by future noncontrollable states
and subsequently affecting controllable states. Motivated by experimental observations and in light of the computational
savings afforded by the independence hypothesis, we propose the AcT assumption. In contrast to previous work, the AcT
assumption is stronger, positing that task-relevant and -irrelevant dynamics are independent. During the initial phase of
training, due to the limited data collected by the agent, the separated models primarily rely on expert data for training.
Because expert policies are optimal and focus only on task-relevant information to make actions unaffected by distractors,
task-relevant and -irrelevant models can be considered independent at this stage. As training progress progresses and the
agent’s policy approaches optimality, the agent becomes more resistant to irrelevant information interference, which supports
the independence assumption in AcT. To testify the necessity of expert data for the AcT assumption in model learning of
SeMAIL, we conduct an additional experiment in which separated models are trained without expert data while all other
settings remained consistent. This method is denoted as SeMAIL (No Exp-M) in Table 3. SeMAIL (No Exp-M) exhibits a
significant performance decline, indicating the crucial role of expert data in model training for imitation learning under the
AcT assumption.

In the implementation of SeMAIL based on the AcT assumption, we utilize a unimodal Gaussian distribution as the policy
output. The environments and expert’s data in our experiments all feature an optimal unimodal action distribution. This
implicit environmental assumption which fits SeMAIL’s policy output, may contribute to SeMAIL’s near-expert performance
shown in Table 2. In complex environments with multimodal optimal behavior distributions, direct using current SeMAIL’s
policy may result in performance degradation. A potential solution is to modify the policy’s action output to a mixture of
Gaussian distributions and introduce an additional loss, which aligns the policy’s action output with the expert’s action
distribution without explicitly altering the AcT assumptions or other components of SeMAIL.

In particular cases, a previous distractor could turn into a task-relevant factor in a certain condition and influence the agent’s
further decision-making. In this case, we can add a short period of the particular distractor states in the policy function and
train the agent. We will consider these extensions in our future work.

E.4. Modifications of Non-IL Methods in Noisy Observations

In Section 2, we have clarified that the Non-IL methods in noisy observations heavily rely on using environmental rewards to
exclude distractions. Our concern is how to learn a good policy under noisy observations (e.g., natural background videos)
in imitation learning, which is free from reward-design issues. To our knowledge, our work is the first to consider this setting
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Table 4. Performance on three DMC tasks. We present the mean and std of 10 trajectories’ return for random policy and Non-IL method
with pseudo reward.

METHOD WALKER RUN FINGER SPIN HOPPER HOP

RANDOM POLICY 29.0 ± 11.8 2.1 ± 2.8 0.0 ± 0.0
WITH PSEUDO REWARD 50.4 ± 17.2 3.3 ± 5.0 0.7 ± 2.2

in IL. When designing the experiments, we attempted to modify related methods to adapt the setting of our work by utilizing
the estimated pseudo rewards given by the discriminator to separate task-relevant and -irrelevant information. However,
they failed to solve the tasks (the “with pseudo reward” row in Table 4). Using ill-estimated rewards can result in biased
task-related representations and further mistaken estimation of rewards, which leads to a vicious cycle.
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