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Abstract
We investigate the online bandit learning of the
monotone multi-linear DR-submodular functions,
designing the algorithm BanditMLSM that attains
O(T 2/3 log T ) of (1 − 1/e)-regret. Then we re-
duce submodular bandit with partition matroid
constraint and bandit sequential monotone maxi-
mization to the online bandit learning of the mono-
tone multi-linear DR-submodular functions, at-
taining O(T 2/3 log T ) of (1−1/e)-regret in both
problems, which improve the existing results. To
the best of our knowledge, we are the first to give
a sublinear regret algorithm for the submodular
bandit with partition matroid constraint. A special
case of this problem is studied by Streeter et al.
(2009). They prove a O(T 4/5) (1 − 1/e)-regret
upper bound. For the bandit sequential submod-
ular maximization, the existing work proves an
O(T 2/3) regret with a suboptimal 1/2 approxi-
mation ratio (Niazadeh et al., 2021).

1. Introduction
Research on multi-armed bandit problems has developed
rapidly in the last two decades. After the classical finite-arm
bandit and linear bandit were well-studied in both stochastic
and adversarial settings, people were starting to consider
more general bandit problems. Submodular bandit is such
an object being considered due to its ability to character-
ize the diminishing property of reward function in realistic
applications.

In submodular bandit, an optimizer/decision-maker needs
to select a feasible subset each round, then a monotone
submodular reward function of this round is determined
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stochastically or adversarially, and the decision maker ob-
tains a reward according to the reward function of this round.
In this paper, we consider the adversarial setting. In the
adversarial submodular bandit literature, the meta-action
technique proposed by Streeter & Golovin (2008) is com-
monly used to obtain a sublinear regret algorithm. This
technique employs online optimizers for each offline step of
an offline algorithm to mimic it in an online manner. This
technique reaches O(T 2/3) (1− 1/e)-regret with the cardi-
nality constraint (Streeter & Golovin, 2008). Subsequently,
Streeter et al. applied this technique to the assignment con-
straint (Streeter et al., 2009), which is a special partition
matroid where the feasible set can only select one item from
each partition. They obtained an O(T 4/5) (1− 1/e)-regret
in this situation. A recent work (Niazadeh et al., 2021)
uses a Blackwell algorithm to turn offline greedy algorithms
into online regret minimization algorithms. As an applica-
tion, they reproduced the O(T 2/3) (1− 1/e)-regret for the
cardinality constraint.

In this paper, we present a different approach for the adver-
sarial submodular bandit. We reduce the submodular bandit
into a bandit multi-linear DR-submodular maximization
problem. The DR-submodular function is a kind of non-
convex function with theoretical guarantees in optimization,
which has received much attention in recent years (Bian
et al., 2017a;b; Niazadeh et al., 2020). There are several
works considering the online full information or bandit feed-
back learning of the DR-submodular function (Chen et al.,
2018; Zhang et al., 2019; Raut et al., 2020; Thang & Sri-
vastav, 2021; Zhang et al., 2022a;b). DR-submodularity
is inspired by the submodular set function, and we find it
useful for designing submodular bandit algorithms due to its
continuity. Specifically, we propose the function class called
the multi-linear DR-submodular function. A multi-linear
DR-submodular function is a DR-submodular function, and
we additionally require it to be a multi-variable polynomial
with the degree of each variable not exceeding 1. We pro-
pose the algorithm BanditMLSM for the bandit maximiza-
tion of this function class and reach the (1− 1/e)-regret of
Õ(T 2/3), which is far better than the O(T 5/6) (1 − 1/e)-
regret bound achieved on the general bandit DR-submodular
maximization problem (Niazadeh et al., 2021). Multi-linear
DR-submodular function captures the property of the multi-
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linear extension of a submodular set function. In fact, a
multi-linear extension is a special case of multi-linear DR-
submodular functions.

Our next goal is to reduce discrete submodular bandit to
bandit multi-linear DR-submodular maximization problem.
A natural idea is to run BanditMLSM on the multi-linear
extension of a submodular set function. However, this idea
fails to reduce the submodular bandit to bandit multi-linear
DR-submodular maximization problem. This is because the
function value of the multi-linear extension cannot be esti-
mated unbiasedly while the constraint is not trivial, which
is because the value of the multi-linear extension may re-
quire obtaining feedback on a set function value f(S) where
the set S is outside the constraint (e.g. the cardinality con-
straint). This is not allowed in the bandit feedback model.
To address this issue, we propose a new kind of continu-
ous extension which is also multi-linear DR-submodular.
Then we run BanditMLSM on that extension. We try our
continuous approach on submodular bandit with partition
matroid constraint and bandit sequential submodular maxi-
mization, generalizing and improving the previous results,
see Section 1.2.

More related works There is also some research on the
stochastic submodular bandit. A model named linear sub-
modular bandit has been studied (Yue & Guestrin, 2011;
Chen et al., 2017). The model assumes that the reward func-
tion is a linear combination of several known submodular
functions, only the weights of each submodular function
are unknown to the decision maker, and the model requires
the noisy marginal gain as the stochastic feedback. Many
studies focus on the online influence maximization prob-
lem (Vaswani et al., 2015; Chen et al., 2016; Wang & Chen,
2017; Wu et al., 2019; Li et al., 2020; Zhang et al., 2022c),
where the submodular reward function is induced by an
information diffusion process on a social network. In this
problem, different feedback models are studied. However,
all the studies above assume extra information more than a
full-bandit feedback model where the decision maker can
only observe the reward of the action played. We only notice
two works studying the full-bandit feedback model: (Nie
et al., 2022; 2023). Nie et al. (2022) studied the bandit
monotone submodular maximization with cardinality con-
straint, attaining (1−1/e)-regret of order O(T 2/3); Nie et al.
(2023) design a framework which adapts an α-approximate
offline algorithm into a stochastic bandit algorithm with
O(T 2/3(log(T ))1/3) α-regret. The framework needs the
offline algorithm to be robust to small errors. Besides the
above, Foster & Rakhlin (2021) studied the submodular
contextual bandit.

Remark on the stochastic submodular bandit While
Nie et al. (2022) make in their paper a weaker assumption

that the online reward function need not be a monotone
submodular but only need to be monotone submodular in
expectation, we find our algorithm can also be applied in
this setting even our adversarial submodular bandit model
requires the reward function to be monotone submodular.
The key observation is, when we apply the adversarial sub-
modular bandit problem on a stochastic submodular bandit
environment, we should see the expected submodular func-
tion rather than the stochastically realized reward function
as the online reward function selected by the adversary, and
see the stochastic feedback as an unbiased estimate of the
true value of the expected function. We will explain this in
Appendix F.

1.1. Bandit Optimization Model

Adversarial bandit optimization problems can be formalized
as a repeated game between an optimizer and an adversary.
The game lasts for T rounds and T is known to both players.
In t-th round, the optimizer chooses an action xt from an
action set K, then the adversary chooses a reward function
ft ∈ F . The action set K and the reward function set F
are determined by specific bandit problems. Generally, ft
maps K to a bounded interval [0,M ] ⊆ R. The optimizer
gets reward ft(xt) and it can only observe the value ft(xt),
which is called the bandit feedback model. Sometimes
people also call it the full-bandit model to distinguish it
from the semi-bandit model where the optimizer can observe
more information, in this paper bandit and full-bandit are
the same thing.

In this paper, we consider oblivious adversary, which means
the reward functions ft can not be adaptively selected ac-
cording to x1, x2, . . . , xt. In other words, we can think the
adversary selects ft ∈ F for each 1 ≤ t ≤ T before the
game starts and these functions are not revealed to the opti-
mizer. Our goal is to design a strategy for the optimizer to
minimize its cumulative α-regret during T rounds,

Rα(T ) = max
x∗∈K

E

[
T∑

t=1

(αft(x
∗)− ft(xt))

]
.

The action set K could be some structured set, maybe in-
finite or finite size. For the convenience of subsequent
descriptions, we use S to denote the finite action set of the
optimizer and use K to denote the infinite action set. Given
K and F , we call the game a (K,F)-bandit.

When we consider the bandit multi-linear monotone DR-
submodular maximization and bandit DR-submodular max-
imization in Section 3 and Section 4, we focus on the situa-
tion that K satisfies Assumption 1.1.

Assumption 1.1. We assume K is a compact convex subset
of Rd containing 0 , and K ⊆ DBd for some constant D,
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where Bd is a d-dimensional unit ball.

Before further describing the model we are considering, we
give several definitions.

Definition 1.2 (Monotonicity). There is a natural partial
order on Rd. For x,y ∈ Rd, if xi ≥ yi ∀i ∈ [d], then
x ≥ y. For a function f : Rd → R, if for any x ≥ y,
f(x) ≥ f(y), we call f a monotone function.

Definition 1.3 (DR-submodularity). Let X =
∏d

i=1 Xi be
a subset of Rd, where Xi is an interval [0, ai]. A continuous
function f : X → R+ is called a DR-submodular function
if for any x ≥ y, λ ∈ R+, and the i-th base vector ei for
any i ∈ [d],

f(x+ λei)− f(x) ≤ f(y + λei)− f(y).

Moreover, if f is second-order differentiable, then the DR-
submodularity is equivalent to ∂2f

∂xi∂xj
≤ 0,∀i, j ∈ [d].

Definition 1.4 (Multi-linearity). We say function f : Rd →
R a multi-linear function if f is polynomial of d variables,
and for any variable xi, the degree of xi in each term of f
is no more than 1.

Definition 1.5 (Lipschitz condition and smoothness). Let
∥ · ∥ be the L2-norm. For continuous differentiable function
f : Rd → R, if |f(x)−f(y)| ≤ L1∥x−y∥ for any x,y, we
say f is L1-lipschitz continuous. If ∥∇f(x)−∇f(y)∥ ≤
L2∥x− y∥, we say f is L2-smooth.

With the above definitions, we consider two reward function
sets in Section 3 and Section 4:

• FDS : The set of monotone DR-submodular functions,
which are L1-lipschitz continuous, L2-smooth, and
f(0) = 0.

• FMDS : The set of monotone multi-linear DR-
submodular functions, which are L1-lipschitz continu-
ous, and f(0) = 0.

1.2. Our Results

We are the first to consider the (K,FMDS)-bandit,
i.e. Bandit Monotone Multi-linear DR-Submodular
Maximization (BMMDSM). We observe that the gradient
of multi-linear functions can be written as a linear combi-
nation of finite function values. Therefore, compared to
the standard one-point gradient estimator proposed in (Flax-
man et al., 2005) which is used in previous works (Zhang
et al., 2019; Niazadeh et al., 2021), we propose a better
one-point gradient estimator for monotone multi-linear DR-
submodular functions. Along with other techniques includ-
ing self-concordant barrier and non-oblivious technique,
we propose the algorithm BanditMLSM, which achieves

(1 − 1/e)-regret of Õ(T 2/3). Here the Õ hides the log T
factor.

As a secondary result, we also improved the (1 − 1/e)-
regret of general (K,FDS)-bandit. This bandit is studied in
(Zhang et al., 2019; Niazadeh et al., 2021), where they gave
the (1 − 1/e)-regret bounds of O(T 8/9) and O(T 5/6) re-
spectively. We proposed the algorithm BanditDRSM which
achieves the (1− 1/e)-regret of Õ(T 3/4). Compared with
their assumptions on functions, we add a new assumption
that ft(0) = 0. Fortunately, this assumption is satisfied by
many applications of DR-submodular maximization, includ-
ing optimal budget allocation with continuous assignment,
senser placement, softmax extension and so on (Bian et al.,
2017a;b). For the constraint set, they assumeK is downward
closed while we do not make this assumption.

Our main contribution is to propose a continuous approach
for combinatorial full-bandit, for example, the case where
online functions are submodular set functions and the con-
straint is a partition matroid. Talking about the continuous
approach, a natural idea is reducing combinatorial bandit to
Bandit Monotone Multi-linear DR-submodular Maximiza-
tion using the classical multi-linear extension technique.
For a submodular set function g over the ground set G =
{1, 2, . . . , n}, its multi-linear extension f : [0, 1]n → R+

is defined as

f(x) =
∑
S⊆G

g(S)
∏
i∈S

xi

∏
i/∈S

(1− xi).

From the definition of the multi-linear extension, we can
see that it needs the value information of set function g over
all subsets of G. However, in the submodular bandit, one
can only take the action which satisfies the constraint, thus
the algorithm can not explore the value information outside
the constraint. As a result, Zhang et al. (2019) proved that it
is impossible to construct an unbiased estimate of f and the
gradient of f . That is to say, classical multi-linear extension
is not a good candidate for our goal.

To overcome the above difficulties, we propose other contin-
uous multi-linear DR-submodular extensions which require
only the information of the feasible action. We select two
submodular bandit problems to clarify our methodology:
Bandit Monotone Submodular Maximization with Partition
Matroid Constraint (BMSMPM) and Bandit Sequential Sub-
modular Maximization (BSSM). The results are summarized
in Table 1. Previous works have studied two special cases
of BMSMPM: cardinality constraint (Streeter & Golovin,
2008) and the assignment problem (Streeter et al., 2009). We
improve the regret bound of the bandit assignment problem
and reproduce an Õ(T 2/3) (1− 1/e)-regret for cardinality
constraint. To our best knowledge, we are the first to give a
sublinear (1− 1/e)-regret algorithm for bandit monotone
submodular maximization with general partition matroid
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Table 1. Our results comparing to the previous results.

Problem Our α and regret Previous α and regret

Bandit DR-submodular maximization results
Bandit Multi-linear Monotone
DR-Submodular Maximization

Theorem 3.3
1− 1/e,O

(
d4/3T 2/3 log(T )

) \

Bandit Monotone
DR-Submodular Maximization

Theorem 4.1
1− 1/e,O

(
d1/2T 3/4 log(T )

) (Niazadeh et al., 2021)
1− 1/e,O(d(log(d))1/6T 5/6)

Applications on adversarial submodular bandits

Bandit Assignment Problem
Corollary 5.4†

1− 1/e,O
(
(|G|)5/3T 2/3 log(T )

) (Streeter et al., 2009)
1− 1/e,O

(
T 4/5

)‡
Bandit Monotone

Submodular Maximization
over Partition Matroid

Corollary 5.4

1− 1/e,O

((∑K
k=1 rk|Gk|

)5/3
T 2/3 log T

)
\

Bandit Sequential
Submodular Maximization¶

Corollary 5.6
1− 1/e,O

(
|G|10/3T 2/3 log(T )

) (Niazadeh et al., 2021)
1/2, O(|G|5/3(log(|G|))1/3T 2/3)

† Bandit assignment problem is a special case of Bandit Monotone Submodular Maximization over Partition Matroid where rk = 1 and
Gk = G, so this regret bound can be directly derived from Corollary 5.4. ‡ In the original paper (Streeter et al., 2009), the regret is
written in the form which contains the optimal cumulative reward value, which will continue to be bounded to T usually, leading to a bad
dependent on T . So we re-trade off their regret and write it in terms of T so that it can be compared with our regret bound. ¶ Compared
with the setting in (Niazadeh et al., 2021), we actually add a new assumption that there is a dummy element in the ground set that always
has 0 marginal gain. This assumption can be satisfied easily in realistic applications, see Section 5.3.

constraint. BSSM is motivated by maximizing user engage-
ment on online retailing platforms. It is first studied in
(Niazadeh et al., 2021), and their algorithm attains O(T 2/3)
1/2-regret while the 1/2 approximation ratio is not tight.
We improve this result to Õ(T 2/3) (1−1/e)-regret, leading
to the tight approximation ratio.

In summary, we make the following contributions:

• We are the first to study the bandit maximization of
multi-linear monotone DR-submodular functions and
propose a Õ(T 2/3) (1− 1/e)-regret algorithm.

• We improve the previous result of bandit maximiza-
tion of general monotone DR-submodular functions
to Õ(T 3/4) (1 − 1/e)-regret by better exploiting the
smoothness.

• We propose a continuous approach to reducing combi-
natorial bandit to multi-linear DR-submodular bandit.
Using this continuous approach, we propose the first
sublinear regret algorithm for submodular bandit with
partition matroid constraint, which also improves the
result of a previous work (Streeter et al., 2009) that
studied the special case of this problem. We also im-
prove the previous approximation ratio of Bandit Se-
quential Submodular Maximization from 1/2 to tight
1− 1/e.

2. Preliminary
2.1. Regularized Follow the Leader and

Self-Concordant Functions

Regularized Follow The Leader(RFTL) is a commonly used
algorithm for online optimization. While applying on a se-
quence of vector {gq}

Q
q=1 with constraint K, RFTL outputs

a sequence of point {xq}Qq=1, where

x1 = argmin
x∈K

Φ(x)

xq+1 = argmin
x∈K

(
η

q∑
s=1

⟨−gs,x⟩+Φ(x)

)
.

Here Φ(x) is an arbitrary regularizer, η is a parameter. In
this paper, we use a self-concordant barrier of K as the regu-
larizer of RFTL. Self-concordant barrier was first proposed
in convex optimization literature, and it was introduced to
the bandit optimization problem in (Abernethy et al., 2008).

Definition 2.1 (Self-concordant Barrier (Hazan et al., 2016)).
Let K ∈ Rd be a convex set with non empty interior int(K).
We call the function Φ : int(K) −→ R a ν-self-concordant
barrier of K if:
(1) Φ is three-times continuously differentiable, convex, and
approaches infinity along any sequence of points approach-
ing the boundary of K;
(2) For every h ∈ Rd and x ∈ int(K), the fol-
lowing holds:|∇3Φ(x)[h,h,h]| ≤ 2(∇2Φ(x)[h,h])3/2,
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|∇Φ(x)[h]| ≤ ν1/2(∇2Φ(x)[h,h])1/2. where the third-
order differential is defined as ∇3Φ(x)[h,h,h] :=

∂3

∂t1∂t2∂t3
Φ(x+ t1h+ t2h+ t3h)|t1=t2=t3=0.

Definition 2.2 (Local norm). The Hessian of self-
concordant barrier induces a local norm at every x ∈ int(K),
denoted as ∥ · ∥Φ,x. We denote its dual norm as ∥ · ∥Φ,x,∗.
For any v ∈ Rd,

∥v∥Φ,x =
√
vT∇2Φ(x)v

∥v∥Φ,x,∗ =
√
vT (∇2Φ(x))−1v.

The following theorem is proved in (Abernethy et al., 2008).
It shows that, if we set the regularizer to be a self-concordant
barrier of K and the algorithm can access the unbiased
estimator of gt, then the regret of the generated solution
sequence {xq}Qq=1 can be bounded in terms of the local
norm of the estimator.

Theorem 2.3 ((Abernethy et al., 2008)). Let K be a convex
set, Φ(x) be a self-concordant barrier on K, {g̃q}

Q
q=1 be

a vector sequence. If g̃q is an unbiased estimation of gq,
then running RFTL on vector sequence g̃q with Φ(x) as the
regularizer will produce a sequence of point {xq}Qq=1, xq ∈
K. For {xq}Qq=1 and any y ∈ K, we have

Q∑
q=1

E
[
⟨gq,y − xq⟩

]
≤ η

Q∑
q=1

E
[
∥g̃q∥2Φ,xq,∗

]
+

Φ(y)− Φ(x1)

η

2.2. Ellipsoid Gradient Estimator

Ellipsoid gradient estimator is proposed in (Abernethy et al.,
2008), where the authors use it along with the tool from
Section 2.1 to design an Õ(

√
T ) regret algorithm for bandit

linear optimization. For a continuous function f : Rd → R
and an invertible matrix H ∈ Rd×d, we define the H-
smoothed version of f .

Definition 2.4 (H-smoothed function). For function f(x) :
Rd → R and invertible matrix H ∈ Rd×d, we call fH(x)
an H-smoothed version of f(x), where

fH(x) = E
v∼Bd

[f(x+Hv)] .

Here v ∼ Bd means that v is sampled from the unit ball Bd

uniformly at random.

There is a surprising fact that there is an unbiased estimator
of ∇fH(x) for any x, and the estimator uses only one
query to the value oracle of f .

Lemma 2.5 (Ellipsoid estimator (Abernethy et al., 2008)).
Let H ∈ Rd×d be an invertible matrix, f(x) : Rd → R be
an arbitrary function. Then

∇fH(x) = d E
v∼Sd−1

[
f(x+Hv)H−1v

]
.

Here v ∼ Sd−1 means that v is sampled from the (d− 1)-
dimensional unit sphere Sd−1 uniformly at random.

For linear f , fH(x) = f(x), so Lemma 2.5 gives a one-
sample unbiased estimator of the gradient of the linear func-
tion. The ellipsoid gradient estimator is usually used along
with RFTL with a self-concordant regularizer Φ ofK. When
the invertible matrix H is set to be (∇2Φ(x))−1/2 and
x ∈ int(K), the sampled action x +Hv is located in the
surface of a so-called Dikin ellipsoid centered at x, i.e.
{x′ | ∥x′ − x∥Φ,x ≤ 1}. The fact that Dikin ellipsoid is
entirely contained in K is useful for reducing regret.

2.3. Non-oblivious Techniques for Monotone
DR-Submodular Maximization

The non-oblivious technique was first proposed to improve
the approximation ratio of the solution returned by a local
search algorithm. The idea is to run a local search on an
auxiliary function rather than the original objective, and
the local optima of the auxiliary function have a higher
approximation ratio, thus the search algorithm will return a
better solution.

In monotone submodular maximization literature, Filmus
& Ward (2014) improved the approximation ratio of the
greedy algorithm to 1− 1/e using the non-oblivious tech-
nique. Zhang et al. (2022a) generalized this result to the
continuous DR-submodular maximization problem, improv-
ing the approximation ratio of projected gradient ascent to
1 − 1/e. For a monotone DR-submodular function f(x)
satisfying f(0) = 0, they consider following auxiliary func-
tion,

F (x) =

∫ 1

0

ez−1

z
f(z · x)dz. (1)

We need the following lemma about the auxiliary function
proved in their paper.

Lemma 2.6 (Auxiliary function(Zhang et al., 2022a)). Let
f be a monotone DR-submodular function defined on X
and f(0) = 0, x,y ∈ X . Let F be defined as (1). Then

∇F (x) =

∫ 1

0

ez−1∇f(z · x)dz (2)

and the following inequality holds,

⟨y − x,∇F (x)⟩ ≥ (1− 1/e)f(y)− f(x).
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Algorithm 1 BanditMLSM(η, L,Φ)

Input: block size L, block number Q = T/L, learning rate
η, self-concordant barrier Φ

1: initiate x1 ∈ int(K) such that∇Φ(x1) = 0
2: for q = 1, 2, . . . , Q do
3: Draw tq ∼ Unif{(q−1)L+1, (q−1)L+2, . . . , qL}
4: for t = (q − 1)L+ 1, (q − 1)L+ 2, . . . , qL do
5: if t = tq then
6: Hq =

(
∇2Φ(xq)

)−1/2

7: sample zq from Z where P (Z ≤ z) =∫ z

0
eu−1

1−e−1 I [u ∈ [0, 1]] du
8: draw vq ∼ Sd−1

9: draw uq from {0, e1, e2, . . . , ed} with proba-
bility: Pr(uq = 0) = 1

2 , Pr(uq = ei) =
1
2d

10: play ytq = zq · xq + zq⟨Hqvq,uq⟩uq

11: Set l̃q(Hqvq) as (5)
12: ∇̃F q(xq)← d · l̃q(Hqvq)H

−1
q vq

13: xq+1 ← argmin
x∈K

∑q
s=1⟨−η∇̃Fs(xs),x⟩ +

Φ(x)
14: else
15: play yt = xq

16: end if
17: end for
18: end for

3. Bandit Monotone Multi-linear
DR-Submodular Maximization

In this section, we present our algorithm BanditMLSM for
BMMDSM. The pseudo-code is shown in Algorithm 1. For
some technical reason we will explain later, we divide the
whole T rounds into Q equal-size blocks, and each block has
L consecutive rounds. Here Q and L are to be determined
later, L = T/Q. without loss of generality, we assume both
L and Q are integers. We define the average function fq(x)
of each block,

fq(x) =
1

L

qL∑
t=(q−1)L+1

ft(x). (3)

Let F q(x) be the auxiliary function of fq(x),

F q(x) =

∫ 1

0

ez−1

zL

qL∑
t=(q−1)L+1

ft(z · x)dz. (4)

In high level, BanditMLSM runs RFTL with a self-
concordant regularizer Φ(x) on the vector sequence
{∇F q(xq)}Qq=1 and controls the regret w.r.t. the linear
function sequence {lq}Qq=1 where lq(u) := ⟨u,∇F q(xq)⟩.
Now the question is how to estimate ∇F q(xq). Recall

Lemma 2.5, we can estimate∇F q(xq) = ∇lq(0) with the
ellipsoid estimator by querying one function value of lq(u).
That is, we fix an invertible matrix Hq = (∇2Φ(xq))

−1/2,
sample a random direction vq in the (d − 1)-dimensional
sphere, then query lq(Hqvq), and return ∇̃F q(xq) :=
d · lq(Hqvq)H

−1
q vq as the estimate.

The problem here is that we cannot query lq directly. The
algorithm can only query the function value of ft by play-
ing the corresponding action in round t. We construct the
unbiased estimator of lq(Hqvq) as follows. First, we sam-
ple a uniformly random tq ∈ [(q − 1)L + 1, qL] ∩ Z
and sample zq from the distribution Z where Pr(Z ≤
z) =

∫ z

0
eu−1

1−e−1 I [u ∈ [0, 1]] du. Then we pick a vector uq

from the set {0, e1, e2, . . . , ed} following the distribution:
Pr(uq = 0) = 1

2 , Pr(uq = ei) = 1
2d . Then we play

ytq := zqxq + zq⟨Hqvq,uq⟩uq in round tq to obtain the
feedback ftq (ytq ). We replace lq(Hqvq) with an estimate

l̃q(Hqvq) :=


− 2(1− 1/e)

d

zq
· ftq (ytq ) if uq = 0,

2(1− 1/e)
d

zq
· ftq (ytq ) if uq ̸= 0.

(5)

If zq = 0, we define l̃q(Hqvq) := 0. The following Lemma
shows that l̃q(Hqvq) is an unbiased estimator of lq(Hqvq).
Its proof is deferred to Appendix B. In the rounds other than
tq in block q, we play yt := xq output by RFTL at the end
of (q − 1)-th block to exploit the regret bound of RFTL.

Lemma 3.1. LetHq−1 be the history of the algorithm in the
first q blocks, that is, the realization of ts, zs,vs,us,∀s ≤ q.
Then E[l̃q(Hqvq) | Hq−1,vq] = lq(Hqvq).

So ∇̃F q(x) is actually defined as

∇̃F q(x) := d · l̃q(Hqvq)H
−1
q vq. (6)

We show that ∇̃F q(xq) is an unbiased estimator of
∇F q(xq), and its dual local norm is O(d4) in the following
lemma. The proof is deferred to Appendix B.

Lemma 3.2. The following properties hold for ∇̃F q(xq):

(i) E
[
∇̃F q(xq) | Hq−1

]
= ∇F q(xq),

(ii) E
[
∥∇̃F q(xq)∥2xq,∗ | Hq−1

]
≤ 4(1− 1/e)2L2

1D
2d4.

Note that, to estimate∇F q(xq), we must sample an action
that is far from xq. This means we cannot do exploration
and exploitation at the same time, which is different from
the linear bandit. This is the reason why previous works
on bandit submodular maximization and our work divide
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rounds into blocks. We need to do the exploitation in most
of the rounds of a block to maintain the regret bound.

Now recall Theorem 2.3, running RFTL with a self-
concordant barrier of K will generate a series of action
{xq}Qq=1, which has low regret w.r.t. the linear function se-
quence ⟨· , ∇F q(xq)⟩. F q is the auxiliary function of the
block average of {ft}Tt=1. In block q, our algorithm plays
yt = xq most of the time. Intuitively, the rerget of yt

w.r.t. function sequence ⟨·,∇Ft(yt)⟩ is low, where Ft is the
auxiliary function of ft. By Lemma 2.6, we can bound the
(1−1/e)-regret of BanditMLSM. The proof of Theorem 3.3
is deferred to Appendix B.

Theorem 3.3. Set η = d−4T−2/3, L = d−2T 1/3 in Algo-
rithm 1, if Φ is a ν-self-concordant barrier of K, then the
expected (1−1/e)-regret of Algorithm 1 can be bounded as

R1−1/e(T ) ≤ O(νd4/3T 2/3 log T ).

About the computational complexity The computational
cost mainly comes from two tasks: (1) Calculating the in-
verse and square root of the Hessian matrix of the regular-
izer; (2) Minimizing the convex function over a convex body.
These tasks are commonly performed, so BanditMLSM can
be implemented efficiently.

4. Bandit DR-submodular Maximization
Combining RFTL with a self-concordant barrier and non-
oblivious technique, we can also improve the result of
the general bandit DR-submodular maximization problem
where the online reward functions are not required to be
multi-linear functions. Due to the space limitation, the algo-
rithmic details and the proof are deferred to the Appendix C.
Here we only give the regret bound of our algorithm.

Theorem 4.1. If there is a ν-self-concordant barrier of K.
Then there is an algorithm that attains the following regret
upper bound in any (K,FDS)-bandit instance:

R1−1/e(T ) ≤ O(νd1/2T 3/4 log T ).

5. A Continuous Approach for Submodular
Full-Bandit

In this section, we show reductions from two selected sub-
modular full-bandit problems to the bandit multi-linear DR-
submodular maximization problem. All proofs in this sec-
tion are deferred to Appendix E due to space limitations.

5.1. Reduction Framework

A natural reduction for our task is to consider the multi-
linear extension of the submodular function. That is, we
consider the multi-linear extension of each submodular set

Algorithm 2 MLSMWrapper(η, L,Φ,EXT)
Input: learning rate η, block size L, self-concordant barrier
Φ, an extension mapping EXT

1: for t = 1, 2, . . . , T do
2: Get yt from BanditMLSM4PS(η, L,Φ)
3: Sample St from distribution EXT(yt)
4: Play St and feed gt(St) back to

BanditMLSM4PS(η, L,Φ)
5: end for

function, running the BanditMLSM on the function sequence
of the multi-linear extensions. If we could estimate the func-
tion value of the multi-linear extension unbiasedly by using
only one query to the corresponding discrete submodular
function, then we would complete the reduction success-
fully. This idea is already considered in (Zhang et al., 2019).
However, it does not work in the full-bandit setting here.
The main reason is that the definition of multi-linear exten-
sion uses information of the values of the submodular set
function on all subsets, including those not satisfying the
constraint. This makes it impossible to find an unbiased es-
timator for the multi-linear extension under bandit feedback
setting. To address this problem, Zhang et al. (2019) con-
sider a relaxed responsive bandit model, where they allow
the algorithm to query the function value of an infeasible
action and gain zero reward. Through this relaxation, they
prove a O(T 8/9) (1 − 1/e)-regret upper bound for bandit
submodular maximization with a matroid constraint. We do
not make this relaxation and consider the original full-bandit
model, that is, the algorithm must play a feasible action each
round.

Assume we want to transform a (S,G)-bandit to a bandit
multi-linear DR-submodular maximization instance, where
S is a finite set and we use gt ∈ G to denote the online
reward function. The central component of our reduction
framework is a mapping from a product of standard sim-
plexes, denoted as K, to the set of all distributions over S,
denoted as ∆(S). The d-dimensional standard simplex is a
set {(x1, x2, . . . , xd) | x1 + · · ·+ xd ≤ 1, xi ≥ 0,∀i}.

We denote the extension mapping as EXT : K → ∆(S).
The dimension d of the set K varies with different S and
G. The extension mapping naturally defines an extension
of any function g ∈ G, that is, f(x) = ES∈EXT(x)[g(S)].
This extension has a good property, if we sample an
element S ∈ S according to the distribution EXT(x),
then g(S) is an unbiased estimator of f(x). The idea is
to run BanditMLSM on such extensions {ft}Tt=1 of the
online functions sequence {gt}Tt=1. When we received an
action yt from BanditMLSM, we sample an action St ∈ S
from EXT(yt), and feed gt(St) back to BanditMLSM.
However, if we replace the ft(ytq ) with gt(St) in (5), the
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estimator l̃(Hqvq) can be unbounded when zq is very
small which makes the regret uncontrollable. Fortunately,
when K is a product of simplexes, we can slightly modify
BanditMLSM to address this problem. We denote the
modified algorithm as BanditMLSM4PS. In this algorithm,
we use another estimator to substitute (5) when zq < 1

2 .
That is, we draw uq ∈ {e1, . . . , ed} uniformly at random.
Then we let ytq = zqxq or ytq = zqxq + 1

2uq with

equal probability. The estimator is set to be l̃q(Hqvq) :=
− 4(1− 1/e)d⟨Hqvq,uq⟩ftq (ytq ) if ytq = zqxq,

4(1− 1/e)d⟨Hqvq,uq⟩ftq (ytq ) if ytq = zqxq +
1

2
uq.

To show the estimator is feasible, we need to prove that
zqxq +

1
2uq ∈ K such that the value ftq (zqxq +

1
2uq) can

be observed in bandit feedback model. Consider the simplex
to which the basis vector uq belongs, without loss of gen-
erality, we assume that uq = e1 and e1, e2, . . . , ed1

form
the basis of the simplex. Then x1 + . . .+ xd1

≤ 1, which
means zq

∑d1

i=1 xi < 1
2 , therefore 1

2 + zq
∑d1

i=1 xi ≤ 1,
zqxq +

1
2uq ∈ K.

The reduction algorithm is shown in Algorithm 2 and the
detailed pseudo-code of BanditMLSM4PS can be found in
Algorithm 4 of Appendix E. For product simplexes, we
give an O(d)-self-concordant barrier in Appendix D. To
obtain the regret guarantee, we need to make sure that the
extension induced by the extension mapping satisfies the
assumption BanditMLSM4PS requires. Formally, we prove
the following lemma.

Lemma 5.1. For a finite set S, and a function family G ⊆
SR+ , where SR+ is the set of all functions that map element
in S to R+. If there is an extension mapping EXT : K →
∆(S) satisfying following conditions:

1. K ⊆ Rd is a product of standard simplexes.

2. For any g ∈ G, f(x) = ES∈EXT(x)[g(S)] is a multi-
linear, monotone, DR-submodular function, and f is
L1-lipschitz continuous, f(0) = 0.

3. For any S ∈ S , there exist x ∈ K such that EXT(x) =
1s. Where 1S assign probability 1 to S and 0 to other
elements of S.

then the algorithm MLSMWrapper attains expected (1−1/e)-
regret

R1−1/e(T ) ≤ O
(
d5/3T 2/3 log(T )

)
on (S,G)-bandit.

5.2. Bandit Monotone Submodular Maximization with
Partition Matroid Constraint

We consider a (SPM ,GMS)-bandit this section, here SPM

is a partition matroid, and GMS is the family of monotone

submodular set function. We assume the functions in GMS

take value 0 on the empty set.
Definition 5.2 (Partition Matroid). Let G be a finite ground
set. A set system S ⊆ 2G is called a partition matroid if
there exist K > 0 and positive integers r1, r2, . . . , rK such
that G can be partitioned into K subsets G =

⋃K
k=1 Gk,

and S = {A | A ∈ 2G and |A ∩Gk| ≤ rk ∀ k}.

By Lemma 5.1, all we need is to find an appropriate exten-
sion mapping. Let ∆d be a d-dimensional standard simplex,
Let K =

∏K
k=1

(∏rk
i=1 ∆

k,i
|Gk|

)
be the product of standard

simplexes. Here ∆k,i
|Gk| is a |Gk|-dimensional standard sim-

plex and (k, i) is the index of this simplex. Next, we con-
struct an extension mapping EXTPM : K → SPM .

For x ∈ K, write x = (xk,i,s)(k,i,s)∈Λ, Λ = {(k, i, s) |
1 ≤ k ≤ K, 1 ≤ i ≤ rk, s ∈ Gk, k, i ∈ N} is the index
set. xk,i,s means the coordinate of the simplex ∆k,i

|Gk|, and

x ∈ R
∑K

k=1 rk|Gk|
+ satisfies

∑
s∈Gk

xk,i,s ≤ 1, ∀k, i. We
see the point in the standard simplex ∆k,i

|Gk| as a probability
distribution over Gk∪{◦}where ◦ /∈ Gk is an extra element
which means no element in Gk is chosen. We sample ele-
ments according to the coordinate of each simplex indepen-
dently, then x can be seen as a probability distribution over
the set Ω :=

∏K
k=1 (Gk ∪ {◦})rk , we use pre-EXTPM (x)

to denote this distribution on Ω. We now define a mapping
ρ : Ω −→ S as follows. For ω ∈ Ω, assume ω can be
represented as ω = (ωk,i)(k,i)∈Γ, where ωk,i ∈ Gk ∪ {◦}
and Γ = {(k, i) | 1 ≤ k ≤ K, 1 ≤ i ≤ rk, k, i ∈ N} is the
index set. Then ρ(ω) = {ωk,i | (k, i) ∈ Γ}\{◦}.

It’s easy to check ρ(ω) ∈ S. Thus, for x, we first sample
an ω ∼ pre-EXTPM (x), then map the sample to ρ(ω) ∈
S. This process defines a distribution over S. We let this
distribution be EXTPM (x).
Lemma 5.3. For GMS , the extension mapping EXTPM :
K → ∆(SPM ) satisfies the conditions in Lemma 5.1. More-
over, K is in a

∑K
k=1 rk dimensional real vector space.

For any g ∈ GMS , the continuous extension f(x) =

ES∈EXTPM (x)[g(S)] is M
√∑K

k=1 rk|Gk|-lipschitz.

Corollary 5.4. There is an algorithm attaining
the expected (1 − 1/e)-regret of R1−1/e(T ) ≤

O

((∑K
k=1 rk|Gk|

)5/3
T 2/3 log T

)
on any (SPM ,GMS)-

bandit.

5.3. Bandit Sequential Submodular Maximization

Bandit sequential submodular maximization is first studied
in (Niazadeh et al., 2021). It is motivated by online retailing
platforms where the platform needs to show its products
in sequence. There are many types of customers who have
different patience and preference. Rarely customers will
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see all the products in the list. They will stop browsing
the product after seeing some products according to their
patience, and the click probability after a customer sees a set
of products is submodular. This situation can be formalized
into an (SOL,GSS)-bandit. Let G be the ground set of all
products, and the constraint SOL is the set of all ordered
lists of length |G| consisting of elements in G. GSS consists
of function g : SOL → [0,M ] in this form,

g(S) =

|G|∑
i=1

λigi({Sj | j ≤ i}),

where λi’s with λi ≥ 0 are positive weights, gi’s are mono-
tone submodular set functions, and Sj is the i-th element in
the ordered list S. If we interpret g(S) as a click probability,
then M = 1.

For technical reasons, we assume that there is a dummy
element ◦ in G, which has 0 marginal gain for all gi. That
is, ∀i,∀S ⊆ G, we have gi(S ∪ {◦}) = gi(S). We denote
G′ = G\{◦} This assumption can be satisfied by adding a
non-clickable item that is not related to the products to G′.

Next, we construct an extension mapping EXTSS . Let
K be the cartesian product of standard simplexes, K =∏|G|

i=1 ∆
i
|G′|. We see x ∈ K as |G| probability distributions

over G, the component of x ∈ K in ∆i
|G′| represents the

distribution of the i-th element of the ordered list, all these
distributions are independent. Any x ∈ K can be seen as a
distribution over SOL. Let this distribution be EXTSS(x).
Lemma 5.5. For GSS , the extension mapping EXTSS :
K → ∆(SOL) satisfies the conditions in Lemma 5.1.
Moreover, K is in a |G|2 − |G| dimensional real vec-
tor space. For any g ∈ GSS , the continuous extension
f(x) = ES∈EXTSS(x)[g(S)] is M |G|-lipschitz.

Corollary 5.6. There is an algorithm for attain-
ing the expected (1 − 1/e)-regret of R1−1/e(T ) ≤
O
(
(|G|)10/3T 2/3 log T

)
on any (SOL,GSS)-bandit.

6. Conclusion
In this paper, we propose two bandit algorithms,
BanditMLSM for monotone multilinear DR-submodular
functions and BanditDRSM for general monotone DR-
submodular functions. We then show an approach to design
the Õ(T 2/3) (1−1/e)-regret algorithm for two special com-
binatorial full-bandits submodular maximization problems,
that is, reducing the combinatorial bandits to a multilinear
DR-submodular bandit.

There are some remaining open problems that need to be
studied. Firstly, we notice that Õ(T 2/3)-type regret bounds
show up frequently in the submodular bandit literature.
However, as far as we know no one has proved or disproved
the optimality of this bound, which may be an interesting

and challenging problem. Secondly, we still know less about
the relationship between the combinatorial constraint and
sublinear regret. For submodular set functions, we show
that one can achieve sublinear regret with partition matroid
constraint in this paper. However, we conjecture that it does
not hold for all matroid constraints. How to characterize
such a relationship is also a fascinating open question.
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A. Technical Lemmas
This section provides some technical lemmas that will be used in the proofs of this appendix later.

Definition A.1 (Minkowski function and Minkowski set). Let K be a compact convex set, the Minkowski function
πx : K → R parameterized by a pole x ∈ int(K) is defined as πx(y) ≜ inf{t ≥ 0 | x+ t−1(y − x) ∈ K}. Given δ ∈ R+

and x1 ∈ int(K), we define the Minkowski set Kγ,x1
≜ {x ∈ K | πx1

(x) ≤ (1 + γ)−1}.

The following lemma provides an upper bound of the difference between the function value of a self-concordant barrier at
two different points.

Lemma A.2 ((Nesterov & Nemirovskii, 1994)). Let Φ be a ν-self-concordant barrier over a compact convex set K, then for
all x, y ∈ int(K):

Φ(y)− Φ(x) ≤ ν log
1

1− πx(y)
.

The following lemma is already proved in (Abernethy et al., 2008), we include the proof for completeness.

Lemma A.3 ((Abernethy et al., 2008)). Let K be a compact convex set, x ∈ int(K) with diameter D, x∗ ∈ K and
x̂∗ ≜ argminz∈Kγ,x

∥z − x∗∥ be the projection of x∗ onto the Minkowski set Kγ,x, then

∥x∗ − x̂∗∥ ≤ γD

Proof. Consider the point y in the segment [x,x∗] satisfying ∥y−x∥
∥x∗−x∥ = 1

1+γ . Since x+ (1 + γ)(y − x) = x∗ ∈ K, we
can deduce that y ∈ Kγ,x. Thus,

∥x̂∗ − x∗∥ ≤ ∥y − x∗∥ =
(
1− 1

1 + γ

)
∥x∗ − x∥ ≤ γD.

The following two lemmas show that the average auxiliary functions and the H-smoothed functions both inherent good
properties of the original online functions. And they will be used later.

Lemma A.4. If ∀t ∈ [(q − 1)L+ 1, qL], ft is twice differentiable, L1-lipschitz and L2-smooth, monotone, DR-submodular,
then following holds for the average functions fq , F q .

(i) fq is L1-lipschitz and L2-smooth.

(ii) fq is a monotone DR-submodular function.

(iii) F q is L2

e -smooth.

(iv) F q is a monotone DR-submodular function.

Proof. (i)

∥fq(x)− fq(y)∥ =
1

L

∥∥∥∥∥∥
qL∑

t=(q−1)L+1

ft(x)−
qL∑

t=(q−1)L+1

ft(y)

∥∥∥∥∥∥
≤ 1

L

qL∑
t=(q−1)L+1

∥ft(x)− ft(y)∥

≤ 1

L

qL∑
t=(q−1)L+1

L1∥x− y∥ = L1∥x− y∥

11
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∥∇fq(x)−∇fq(y)∥ =
1

L

∥∥∥∥∥∥
qL∑

t=(q−1)L+1

∇ft(x)−
qL∑

t=(q−1)L+1

∇ft(y)

∥∥∥∥∥∥
≤ 1

L

qL∑
t=(q−1)L+1

∥∇ft(x)−∇ft(y)∥

≤ 1

L

qL∑
t=(q−1)L+1

L2∥x− y∥ ≤ L2∥x− y∥

(ii) For any i ∈ [d],

∂fq

∂xi
(x) =

1

L

qL∑
t=(q−1)L+1

∂ft
∂xi

(x) ≥ 0

For any i ∈ [d], j ∈ [d],

∂2

∂xi∂xj
fq(x) =

1

L

qL∑
t=(q−1)L+1

∂2ft
∂xi∂xj

(x) ≤ 0

Thus fq is monotone DR-submodular.

(iii)

∥∇F q(x)−∇F q(y)∥ =

∥∥∥∥∥∥∇
∫ 1

0

ez−1

zL

qL∑
t=(q−1)L+1

ft(z · x)dz −∇
∫ 1

0

ez−1

zL

qL∑
t=(q−1)L+1

ft(z · y)dz

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫ 1

0

ez−1

L

qL∑
t=(q−1)L+1

∇ft(z · x)dz −
∫ 1

0

ez−1

L

qL∑
t=(q−1)L+1

∇ft(z · y)dz

∥∥∥∥∥∥
≤
∫ 1

0

ez−1

L

qL∑
t=(q−1)L+1

∥∇ft(z · x)dz −∇ft(z · y)∥dz

≤
∫ 1

0

ez−1

L

qL∑
t=(q−1)L+1

L2z∥x− y∥dz

= L2

∫ 1

0

zez−1dz∥x− y∥ = L2

e
∥x− y∥

(iv) For any i ∈ [d],

∂

∂xi
F q(x) =

∂

∂xi

∫ 1

0

ez−1

zL

qL∑
t=(q−1)L+1

ft(z · x)dz

=

∫ 1

0

ez−1

L

qL∑
t=(q−1)L+1

∂

∂xi
ft(z · x)dz

≥ 0

For any i ∈ [d], j ∈ [d],

∂

∂xixj
F q(x) =

∫ 1

0

zez−1

L

qL∑
t=(q−1)L+1

∂

∂xixj
ft(z · x)dz

12
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≤ 0

Thus F q is monotone and DR-submodular.

Lemma A.5. Following properties hold for H-smoothed version of a twice differentiable function f(x).

(i) If f(x) is a monotone DR-submodular function, then for any invertible matrix H , its H-smoothed version fH(x) is a
monotone DR-submodular function.

(ii) If f(x) is L1-lipschitz continuous and L2-smooth, then fH(x) is L1-lipschitz continuous and L2-smooth.

Proof. (i) By Leibnez integral rule, for any i ∈ [d],

∂

∂xi
fH(x) =

∫
v∈Bd

1

Vol(Bd)

∂

∂xi
f(x+Hv)dv

≥ 0

The last inequality is because ∂
∂xi

f(x+Hv) ≥ 0 for any i ∈ [d].

∂

∂xixj
fH(x) =

∫
v∈Bd

1

Vol(Bd)

∂

∂xixj
f(x+Hv)dv

≤ 0

The last inequality is because ∂
∂xixj

f(x+Hv) ≤ 0 for any i, j ∈ [d].

(ii)

fH(x)− fH(y) =

∫
v∈Bd

1

Vol(Bd)
(f(x+Hv)− f(y +Hv)) dv

≤
∫
v∈Bd

1

Vol(Bd)
L1∥x+Hv − y −Hv∥dv

= L1∥x− y∥

Thus, fH(x) is L1-lipschitz continuous.

∇fH(x)−∇fH(y) = ∇
∫
v∈Bd

1

Vol(Bd)
(f(x+Hv)− f(y +Hv)) dv

=

∫
v∈Bd

1

Vol(Bd)
∇ (f(x+Hv)− f(y +Hv)) dv

≤
∫
v∈Bd

1

Vol(Bd)
L2∥x− y∥dv

= L2∥x− y∥

B. Missing Proofs in Section 3
We first show a property of multi-linear functions, which is the key observation of our estimator for the gradient of
multi-linear functions.

Lemma B.1. If f : K → R is a multi-linear function, where K ⊆ Rd, then for any basis vector ei, i ∈ [d] and any x ∈ K
and λ > 0 satisfying x+ λei ∈ K. We have,

∂f(x)

∂xi
=

f(x+ λei)− f(x)

λ
(7)

13
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Proof. When we fix the components of x except xi, f is a linear function of xi. Thus (7) directly comes from the
linearity.

Lemma 3.1. Let Hq be the history of the algorithm in the first q blocks, that is, the realization of ts, zs,vs,us,∀s ≤ q.
Then E[l̃q(Hqvq) | Hq−1,vq] = lq(Hqvq).

Proof of Lemma 3.1. When zq > 0, we have

E[l̃q(Hqvq) | Hq−1,vq, tq, zq] =
1

2
(−2(1− 1/e)

d

zq
· ftq (zqxq)) +

d∑
i=1

1

2d
(2(1− 1/e)

d

zq
· ftq (zqxq + zq⟨Hqvq, ei⟩ei)

= (1− 1/e)

d∑
i=1

1

zq

(
ftq (zqxq + zq⟨Hqvq, ei⟩ei)− ftq (zqxq)

)
= (1− 1/e)

d∑
i=1

1

zq
zq⟨Hqvq, ei⟩

∂ftq
∂xi

(zq · xq)

= (1− 1/e)

d∑
i=1

⟨Hqvq, ei⟩⟨ei,∇ftq (zq · xq)⟩

= (1− 1/e)⟨Hqvq,∇ftq (zq · xq)⟩

Then we take the expectations over tq and zq, note the value of l̃(Hqvq) when zq = 0 does not affect the result of the
integral since zq = 0 is a zero measured event.

E[l̃q(Hqvq) | Hq−1,vq] =

qL∑
tq=(q−1)L+1

∫ 1

0

Pr(tq, zq)E[l̃q(Hqvq) | Hq−1,vq, tq, zq]dzq

=

qL∑
tq=(q−1)L+1

∫ 1

0

1

L

ezq−1

1− 1/e
(1− 1/e)⟨Hqvq,∇ftq (zq · xq)⟩dzq

=

〈
Hqvq,

∫ 1

0

ezq−1

L

qL∑
tq=(q−1)L+1

∇ftq (zq · xq)dzq

〉

Since

∇F q(xq) = ∇
∫ 1

0

ez−1

zL

qL∑
t=(q−1)L+1

ft(z · xq)dz

=

∫ 1

0

ez−1

L

qL∑
t=(q−1)L+1

∇ft(z · xq)dz

Therefore,

E[l̃q(Hqvq) | Hq−1,vq] = ⟨Hqvq,∇F q(xq)⟩
= lq(Hqvq)

Lemma 3.2. The following properties hold for ∇̃F q(xq)

(i) E
[
∇̃F q(xq) | Hq−1

]
= ∇F q(xq)

(ii) E
[
∥∇̃F q(xq)∥2xq,∗ | Hq−1

]
≤ 4(1− 1/e)2L2

1D
2d4

14
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Proof of Lemma 3.2.

(i)

E
[
∇̃F q(xq) | Hq−1

]
=

∫
vq∈Sd−1

d · E[l̃q(Hqvq) | Hq−1,vq]H
−1
q vqdvq

=

∫
vq∈Sd−1

1

Vol(Sd−1)
d · lq(Hqvq)H

−1
q vqdvq (8)

= E
vq∼Sd−1

[d · lq(Hqvq)H
−1
q vq]

= ∇lHq
q (0) (9)

= ∇lq(0) (10)

= ∇F q(xq)

(8) is due to Lemma 3.1, (9) is due to Lemma 2.5, (10) is because that lq is a linear function.

(ii)

E
[
∥∇̃F q(xq)∥2xq,∗ | Hq−1

]
= E

[
1

2
(1− 1/e)2(2d2)2

1

z2q
ftq (zq · xq)

2 · vT
q HqΦ(xq)

−1H−1
q vq | Hq−1

]

+

d∑
i=1

E
[
1

2d
(1− 1/e)24d4

1

z2q
ftq (zq · xq + zq⟨Hqvq, ei⟩ei)2 vT

q HqΦ(xq)H
−1
q vq | Hq−1

]

≤ 2(1− 1/e)2d4
L2
1z

2
q∥xq∥2

z2q
E
[
vT
q H

−1
q Φ(xq)

−1H−1
q vq | Hq−1

]
+ 2(1− 1/e)2d4

L2
1z

2
q∥xq + ⟨Hqvq, ei⟩ei∥2

z2q
E
[
vT
q H

−1
q Φ(xq)

−1H−1
q vq | Hq−1

]
(11)

= 4(1− 1/e)2d4L2
1D

2 E
[
vT
q (Φ(xq)

−1/2)−1Φ(xq)
−1(Φ(xq)

−1/2)−1vq | Hq−1

]
≤ 4(1− 1/e)2d4L2

1D
2∥vq∥22

= 4(1− 1/e)2d4L2
1D

2 (12)

Inequality (11) is because ftq is L1-lipschitz continuous and xq + ⟨Hqvq, ei⟩ei is in the Dikin ellipsoid {x |
∥x− xq∥Φ,xq

≤ 1}, which is contained in K. (12) is because vq ∈ Sd−1, thus ∥vq∥ = 1.

Theorem 3.3. Set η = d−4T−2/3, L = d−2T 1/3, Q = T/L = d2T 2/3 in Algorithm 1, if Φ is a ν-self-concordant barrier
of K, then the expected (1− 1/e)-regret of Algorithm 1 can be bounded as

R1−1/e(T ) ≤ (4(1− 1/e)2L2
1D

2 +M)d4/3T 2/3 + (1− 1/e)L1D + νd4/3T 2/3 log(T )

Proof of Theorem 3.3. Set g̃q = ∇̃F q(xq), gq = ∇F q(xq) in Theorem 2.3. We have proved E
[
∇̃F q(xq) | Hq−1

]
=

∇F q(xq). Let x̂∗ ≜ argminx∈Kγ,x1
∥x∗ − x∥ be the projection of x∗ onto the Minkowski set Kγ,x1

defined in Def-

inition A.1, here the pole is x1, and γ is a parameter to be determined later, x∗ = argminx∈K
∑T

t=1 ft(x). We have
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Q∑
q=1

E
[
⟨∇F q(xq), x̂

∗ − xq⟩ | Hq−1

]
≤ η

Q∑
q=1

E
[
∥∇̃F q(xq)∥2xq,∗ | Hq−1

]
+

Φ(x̂∗)− Φ(x1)

η

≤ 4(1− 1/e)2L2
1D

2ηd4Q+
Φ(x̂∗)− Φ(x1)

η

≤ 4(1− 1/e)2L2
1D

2ηd4Q+
ν log( 1

1−(1+γ)−1 )

η

(13)

The last inequality is because πx1
(x̂∗) ≤ (1 + γ)−1 and Lemma A.2. Since fq is a monotone DR-submodular function by

Lemma A.4 and F q is its auxiliary function, we lower bound the left hand side of (13) by Lemma 2.6,

Q∑
q=1

E
[
⟨∇F q(xq), x̂

∗ − xq⟩ | Hq−1

]
≥

Q∑
q=1

E
[(
(1− 1/e)fq(x̂

∗)− fq(xq)
)
| Hq−1

]
=

Q∑
q=1

qL∑
t=(q−1)L+1

1

L
E [((1− 1/e)ft(x̂

∗)− ft(xq)) | Hq−1]

=
1

L

T∑
t=1

E
[
(1− 1/e)ft(x̂

∗)− ft

(
x⌈ t

L ⌉

)
| H⌈ t

L ⌉−1

]
=

1

L

T∑
t=1

E
[
(1− 1/e)ft(x̂

∗)− (1− 1/e)ft(x
∗) | H⌈ t

L ⌉−1

]
︸ ︷︷ ︸

(A)

+
1

L

T∑
t=1

E
[
(1− 1/e)ft(x

∗)− ft (yt) | H⌈ t
L ⌉−1

]
+

1

L

Q∑
q=1

E
[
ftq (ytq )− ftq

(
x⌈ tq

L ⌉

)
| Hq−1

]
︸ ︷︷ ︸

(B)

Since |ft(x̂∗)− ft(x
∗)| ≤ L1∥x̂∗ − x∗∥ ≤ L1γD and |ftq (ytq )− ftq

(
x⌈ tq

L ⌉

)
| ≤M , we have

|(A)| ≤ (1− 1/e)
L1

L
γDT |(B)| ≤ MQ

L
(14)

Therefore,

E

[
T∑

t=1

(1− 1/e)ft(x
∗)− ft(yt)

]
≤ L

Q∑
q=1

E
[
⟨∇F q(xq), x̂

∗ − xq⟩ | Hq−1

]
− L× (A)− L× (B)

≤ 4(1− 1/e)2L2
1D

2ηd4T +
νL log( 1

1−(1+γ)−1 )

η
+ (1− 1/e)L1γDT +MQ

The last inequality is because of (13) and (14). set η = d−8/3T−1/3, L = d−4/3T 1/3, Q = T/L = d4/3T 2/3, γ = 1
T , we

have,

E

[
T∑

t=1

(1− 1/e)ft(x
∗)− ft(yt)

]
≤ (4(1− 1/e)2L2

1D
2 +M)d4/3T 2/3 + (1− 1/e)L1D + νd4/3T 2/3 log(T + 1)

= O(νd4/3T 2/3 log(T ))
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Algorithm 3 BanditDRSM(η, δ, L,Φ)

Input: Smoothing radius δ, block size L, block number Q = T/L, learning rate η,self-concordant barrier Φ
1: initiate x1 ∈ int(K) such that ∇Φ(x1) = 0
2: for q = 1, 2, . . . , Q do
3: Draw tq ∼ Unif{(q − 1)L+ 1, (q − 1)L+ 2, . . . , qL}
4: for t = (q − 1)L+ 1, (q − 1)L+ 2, . . . , qL do
5: if t = tq then
6: Hq =

(
∇2Φ(xq)

)−1/2

7: sample zq from Z where P (Z ≤ z) =
∫ z

0
eu−1

1−e−1 I [u ∈ [0, 1]] du
8: draw vq ∼ Sd−1

9: play yt = zq · xq + δzq ·Hqvq

10: ∇̃F q(xq)← (1− 1/e) d
δzq

ftq (yt)H
−1
q vq

11: xq+1 ← argmin
x∈K

∑q
s=1⟨−η∇̃F s(xs),x⟩+Φ(x)

12: else
13: play yt = xq

14: end if
15: end for
16: end for

C. Bandit DR-submodular Maximization
In this section we present our algorithm BanditDRSM for general bandit monotone DR-submodular maximization, the
pseudocode is shown in Algorithm 3. BanditDRSM is very similar to BanditMLSM, it also divides T rounds into Q equal
size blocks. We use again fq(x) and F q(x) to denote the average function of q-th block and the auxiliary function of it,
defined as (3) and (4). BanditDRSM runs RFTL with self-concordant regularizer on vector sequence {∇F q(xq)}Qq=1. Here
the difference compared with BanditMLSM is, we cannot find an unbiased estimator for ∇F q(xq). We use the ellipsoid

estimator directly to estimate ∇F δHq

q (xq), the gradient of the δHq-smoothed function, here Hq = (∇2Φ(xq))
−1/2 is the

same as BanditMLSM, δ is a parameter to be determined. Specifically, in block q, we select a uniform random exploration
round tq ∈ [(q − 1)L+ 1, qL] ∩ Z, a random direction vq ∈ Sd−1, zq ∼ Z where Pr(Z ≤ z) =

∫ z

0
eu−1

1−e−1 I[u ∈ {0, 1}]du.
In round tq, we play ytq = zq · xq + δzq ·Hqvq and feedback the gradient estimate as follow to RFTL and define the

estimator ∇̃F (xq).

∇̃F (xq) := (1− 1/e)
d

zqδ
· ftq (ytq )H

−1
q vq. (15)

ytq = zq(xq + δHqvq), if we let δ ≤ 1, then xq + δHqvq is in the Dikin ellipsoid {x | ∥x − xq∥Φ,xq ≤ 1}, therefore

xq + δH−1
q vq ∈ K. Since 0 ∈ K, zq ∈ [0, 1] and K is convex, ytq ∈ K. When zq = 0, we define ∇̃F (xq) := 0, since

Pr(zq = 0) = 0, the value of ∇̃F (xq) when zq = 0 does not matter.

We prove that ∇̃F (xq) is an unbiased gradient estimator for the δHq-smoothed function F
δHq

q (xq). Moreover, the dual
local norm of the estimator can be bounded as O(d

2

δ2 ). To formalize the above arguments, we have the following lemma.

Lemma C.1. Let ∇̃F q(xq) be defined as (15). Assume ft for t ∈ [(q − 1)L+ 1, qL] is L1-lipschitz, ft(0) = 0, then the
following hold,

(i) E
[
∇̃F q(xq) | Hq−1

]
= ∇F δHq

q (xq).

(ii) ∥∇̃F q(xq)∥2xq,∗ ≤
(1−e)2d2L2

1D
2

δ2
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Proof. (i) Let H = δHq in Lemma 2.5, let ftq,zq (x) ≜ ftq (zq · x),we have

E
[
∇̃F q(xq) | Hq−1, tq, zq

]
=

1− 1/e

zq
∇fδHq

tq,zq (xq)

Thus,

E
[
∇̃F q(xq) | Hq−1

]
=

qL∑
tq=(q−1)L+1

∫ 1

0

Pr (tq, zq | Hq−1)
1− 1/e

zq
∇fδHq

tq,zq (xq)dzq

=

qL∑
tq=(q−1)L+1

∫ 1

0

ezq−1

(1− 1/e)L

1− 1/e

zq
∇fδHq

tq,zq (xq)dzq

=

qL∑
tq=(q−1)L+1

∫ 1

0

ezq−1

zqL
∇fδHq

tq,zq (xq)dzq

= ∇F δHq

q (xq)

(ii)

∥∇̃F q(xq)∥2xq,∗ = (1− 1/e)2
d2

δ2z2q
f2
tq (zq · xq + δzq ·Hqvq)v

T
q H

−1
q

(
∇2Φ(xq)

)−1
H−1

q vq

≤ (1− 1/e)2
d2

δ2z2q
z2qL

2
1∥xq + δHqvq∥2∥vq∥2

≤ (1− e)2d2L2
1D

2

δ2

The first inequality is because ftq is L1-lipschitz continuous.

Intuitively, we can control the regret of {xq}Qq=1 w.r.t. the linear function sequence {⟨·,∇F δHq

q (xq)⟩}Qq=1 by using

Theorem 2.3. In Lemma A.5, We proved that f
δHq

q is also DR-submodular. Since F
δHq

q (xq) is the auxiliary function of

f
δHq

q , this allows us to control the (1− 1/e)-regret of {xq} w.r.t. {fδHq

q } by using Lemma 2.6. A key observation here is

∥fδHq

q − fq∥∞ ≤ O(δ2) assuming the online functions are smooth, which means we can bound the (1− 1/e)-regret of

{xq} w.r.t. {fq} in term of the (1− 1/e)-regret w.r.t. {fδHq

q } with an extra O(δ2) additive term. Previous works (Zhang
et al., 2019; Niazadeh et al., 2021) use the FKM estimator proposed in (Flaxman et al., 2005), where the sample sphere is
fixed(which can be seen as a special case of the ellipsoid estimator when Hq = I), to prevent the sample action jump out K,
they must run their algorithm on a smaller interior Kδ which is δ-far from ∂K. So this only guarantees the regret competing
with the point in Kδ , this adds an O(δ) term to the overall regret, which is bigger than O(δ2) since the δ is set to o(1) latter.

With this improved gradient estimator and non-oblivious technique, we prove a Õ(T 3/4) (1− 1/e)-regret of BanditDRSM.

Theorem 4.1 (restatement). Set η = D−2d−1T−1/2, δ = d1/4T−1/8, L = d−1/2T 1/4, Q = T/L = d1/2T 3/4 in
Algorithm 3. If Φ is a ν-self concordant function of K, then the expected (1− 1/e)-regret of Algorithm 3 can be bounded as

R1−1/e(T ) ≤ O(νd1/2T 3/4 log(T ))

Proof of Theorem 4.1. Let x̂∗ = argminx∈Kγ,x1
∥x∗ − x∥, where x∗ = argmaxx∈K

∑T
t=1 ft(x

∗). Let gq = ∇F δHq

q ,

g̃q = ∇̃F q(xq), y = x̂∗ in Theorem 2.3. Since we proved ∇̃F q(xq) is an unbiased estimate of∇F δHq

q (xq) in Lemma C.1,
we have

Q∑
q=1

E
[
⟨∇F δHq

q (xq), x̂
∗ − xq⟩ | Hq−1

]
≤ η

Q∑
q=1

E
[
∥∇̃F q(xq)∥2Φ,xq,∗ | Hq−1

]
+

Φ(x̂∗)− Φ(x1)

η
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≤ η

Q∑
q=1

(1− e)2d2L2
1D

2

δ2
+

Φ(x̂∗)− Φ(x1)

η

≤ (1− e)2ηQd2L2
1D

2

δ2
+

ν log( 1
1−(1+γ)−1 )

η

Since ∇F δHq

q (x) is monotone DR-submodular due to Lemma A.5, and it is the auxiliary function of f
δHq

q (x), by
Lemma 2.6, we have

Q∑
q=1

E
[
⟨∇F δHq

q (xq), x̂
∗ − xq⟩ | Hq−1

]
≥

Q∑
q=1

E
[
(1− 1/e)f

δHq

q (x̂∗)− f
δHq

q (xq) | Hq−1

]
The RHS can be further decomposed into several terms,

Q∑
q=1

E
[
(1− 1/e)f

δHq

q (x̂∗)− f
δHq

q (xq) | Hq−1

]

=

Q∑
q=1

E
[
(1− 1/e)f

δHq

q (x̂∗)− (1− 1/e)f
δHq

q (x∗) | Hq−1

]
︸ ︷︷ ︸

(A)

+

Q∑
q=1

E
[
(1− 1/e)f

δHq

q (x∗)− (1− 1/e)fq(x
∗) | Hq−1

]
︸ ︷︷ ︸

(B)

+

Q∑
q=1

E
[
(1− 1/e)fq(x

∗)− fq(xq) | Hq−1

]
+

Q∑
q=1

E
[
fq(xq)− f

δHq

q (xq) | Hq−1

]
︸ ︷︷ ︸

(C)

(16)

Bounding (A): Since ft(x) is L1-lipschitz continuous for any t, fq is also L1-lipschitz continuous by Lemma A.4, thus

f
δHq

q is L1-lipschitz continuous by Lemma A.5. Since ∥x̂∗ − x∗∥ ≤ γD by Lemma A.3,

Q∑
q=1

E
[
(1− 1/e)f

δHq

q (x̂∗)− (1− 1/e)f
δHq

q (x∗) | Hq−1

]
≥ −

Q∑
q=1

(1− 1/e)E
[
|fδHq

q (x̂∗)− f
δHq

q (x∗)| | Hq−1

]

≥ −
Q∑

q=1

(1− 1/e)L1γD = −(1− 1/e)L1γDQ

(17)

Bounding (B): Since ft(x) is L2-smooth for any t, by Lemma A.4 and Lemma A.5, f
δHq

q is L2-smooth. Thus,

f
δHq

q (x∗)− fq(x
∗) =

1

Vol(Bd)

∫
v∈Bd

fq(x
∗ + δHqv)− fq(x

∗)dv

≥ 1

Vol(Bd)

∫
v∈Bd

⟨∇fq(x
∗), δHqv⟩ −

L2

2
∥δHqv∥2dv

=
1

Vol(Bd)

〈
∇fq(x

∗), δHq

∫
v∈Bd

vdv

〉
− 1

Vol(Bd)

∫
v∈Bd

L2

2
∥δHqv∥2dv

≥ − 1

Vol(Bd)

∫
v∈Bd

L2

2
δ2D2dv

≥ −L2δ
2D2

2

Therefore,

Q∑
q=1

E
[
(1− 1/e)f

δHq

q (x̂∗)− (1− 1/e)fq(x̂
∗) | Hq−1

]
≥ − (1− 1/e)L2δ

2D2Q

2
(18)
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Bounding (C): Similarly,

fq(xq)− f
δHq

q (xq) =
1

Vol(Bd)

∫
v∈Bd

fq(xq)− fq(xq + δHqv)dv

≥ 1

Vol(Bd)

∫
v∈Bd

〈
∇fq(xq), δHqv

〉
− L2

2
∥δHqv∥2dv

≥ −L2δ
2D2

2

Therefore,

Q∑
q=1

E
[
fq(xq)− f

δHq

q (xq) | Hq−1

]
≥ −L2δ

2D2Q

2
(19)

Put (17),(18),(19) in (16) and rearrange it,

Q∑
q=1

E
[
(1− 1/e)fq(x

∗)− fq(xq) | Hq−1

]
≤

Q∑
q=1

E
[
⟨∇F δHq

q (xq), x̂
∗ − xq⟩ | Hq−1

]
+ (1− 1/e)L1γDQ+

(1− 1/e)L2δ
2D2Q

2
+

L2δ
2D2Q

2

≤ (1− e)2ηQd2L2
1D

2

δ2
+

ν log( 1
1−(1+γ)−1 )

η
+ (1− 1/e)L1γDQ+

(2− 1/e)L2δ
2D2Q

2

Then we bound the expected regret,

R1−1/e(T ) =

T∑
t=1

E
[
(1− 1/e)ft(x

∗)− ft(yt) | H⌈ t
L ⌉−1

]
=

T∑
t=1

E
[
(1− 1/e)ft(x

∗)− ft(x⌈ t
L ⌉) | H⌈ t

L ⌉−1

]
+

Q∑
q=1

E
[
ftq (xq)− ftq (ytq ) | Hq−1

]

≤ L

Q∑
q=1

E
[
(1− 1/e)fq(x

∗)− fq(xq) | Hq−1

]
+MQ

≤ (1− e)2ηLQd2L2
1D

2

δ2
+

νL log( 1
1−(1+γ)−1 )

η
+ (1− 1/e)L1γDLQ+

(2− 1/e)L2δ
2D2LQ

2
+MQ

=
(1− e)2ηd2L2

1D
2T

δ2
+

ν log( 1
1−(1+γ)−1 )L

η
+ (1− 1/e)L1γDT +

(2− 1/e)L2δ
2D2T

2
+MQ

Set η = D−2d−1T−1/2, δ = D−1/2d1/4T−1/8, L = D−1d−1/2T 1/4, Q = T/L = Dd1/2T 3/4, γ = 1
T

R1−1/e(T ) ≤ (1− e)2L2
1Dd1/2T 3/4 + νDd1/2T 3/4 log(T + 1) + (1− 1/e)L1D

+
(2− 1/e)L2δ

2Dd1/2T 3/4

2
+MDd1/2T 3/4

= O(νd1/2T 3/4 log(T ))

The idea of using a self-concordant regularizer RFTL on smooth online functions is motivated by (Saha & Tewari, 2011).
Where the authors studied the bandit convex optimization problem, and they find that RFTL with the self-concordant
regularizer works well when the convex functions are smooth. We find this idea also works here in the bandit DR-submodular
maximization problem.
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D. Self-Concordant Barrier of Product Simplexes
In this section, we give a self-concordant barrier for the product simplex, which is a cartesian product of several simplexes.

Let K be the product of n simplexes, and their dimensions are d1, d2, . . . , dn respectively. We write K as

K =

n∏
i=1

∆di
.

For x ∈ K, we represent it as x = (x1,1, x1,2, . . . , x1,d1 , x2,1, . . . , x2,d2 , . . . , xn,dn). x ∈ K iff
xi,j ≥ 0, ∀1 ≤ i ≤ n and 1 ≤ j ≤ di
di∑
j=1

xi,j ≤ 1, ∀1 ≤ i ≤ n

Define the function Φ : int(K)→ R,

Φ(x) = −
n∑

i=1

log(1− 1⃗Tdi
· xi)−

n∑
i=1

di∑
j=1

log(xi,j).

Here 1⃗di = (1, 1, . . . , 1)︸ ︷︷ ︸
di

T , xi = (xi,1, xi,2, . . . , xi,di). We prove that Φ is a n-self-concordant barrier of K.

Lemma D.1. Φ(x) is a
∑n

i=1(di + 1)-self-concordant barrier of K.

Proof. It’s easy to see that Φ(x) is three-times continuously differentiable and approaches infinity alone any sequence of
points approaching the boundary of K. We first calculate the gradient and the hessian matrix of Φ.

∂Φ

∂xi,j
(x) = −

n∑
i=1

∂ log(1− 1⃗Tdi
· xi)

∂xi,j
−

n∑
i=1

di∑
j=1

∂ log(xi,j)

∂xi,j

=
1

1− 1⃗T · xi

− 1

xi,j

∂2Φ(x)

∂xi1,j1∂xi2,j2

(x) =
∂(1− 1⃗T · xi1)

−1

∂xi1,j1

−
∂x−1

i2,j2

∂xi1,j1

=
1

(1− 1⃗T · xi1)
2
I[i1 = i2] +

1

x2
i1,j1

I[i1 = i2, j1 = j2]

For any direction h = (h1,1, . . . , h1,d1
, h2,1, . . . , hn,dn

)T ,

hT∇2Φ(x)h =

n∑
i1=1

di∑
j1=1

n∑
i2=1

di∑
j2=1

hi1,j1hi2,j2

∂2Φ(x)

∂xi1,j1∂xi2,j2

(x)

=

n∑
i1=1

di∑
j1=1

n∑
i2=1

di∑
j2=1

(
hi1,j1hi2,j2

(1− 1⃗T · xi1)
2
I[i1 = i2] +

hi1,j1hi2,j2

x2
i1,j1

I[i1 = i2, j1 = j2]

)

=

n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2
+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

≥ 0
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Therefore, Φ is convex. Next, we check the condition 2 of Definition 2.1. Let h = (h1,1, h1,d1
, h2,1, . . . , h2,d2

, . . . , hn,dn
),

hi = (hi,1, . . . , hi,di). Then,

∇3Φ(x)[h,h,h]

=
∂3

∂t1∂t2∂t3

− n∑
i=1

log(1− 1⃗Tdi
· xi − t11⃗

T
di
· hi − t21⃗

T
di
· hi − t31⃗

T
di
· hi)−

n∑
i=1

di∑
j=1

log(xi,j + (t1 + t2 + t3)hi,j)

∣∣∣∣∣∣
t1=t2=t3=0

=

n∑
i=1

2(⃗1Tdi
· hi)

3

(1− 1⃗Tdi
· xi − t11⃗Tdi

· hi − t21⃗Tdi
· hi − t31⃗Tdi

· hi)3
−

n∑
i=1

di∑
j=1

2h3
i,j

(xi,j + (t1 + t2 + t3)hi,j)3

∣∣∣∣∣∣
t1=t2=t3=0

=

n∑
i=1

2(⃗1Tdi
· hi)

3

(1− 1⃗Tdi
· xi)3

−
n∑

i=1

di∑
j=1

2h3
i,j

x3
i,j

We check the first inequality in the condition 2 of Definition 2.1.

2(∇2Φ(x)[h,h])3/2 = 2

 n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2
+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

3/2

= 2

 n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2
+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

 n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2
+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

1/2

= 2

 n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2

 n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2
+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

1/2

+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

 n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2
+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

1/2


≥ 2

 n∑
i=1

∣∣∣∣∣ (
∑di

j=1 hi,j)
3

(1− 1⃗T · xi1)
3

∣∣∣∣∣+
n∑

i=1

di∑
j=1

∣∣∣∣∣h3
i,j

x3
i,j

∣∣∣∣∣


≥

∣∣∣∣∣∣
n∑

i=1

2(⃗1Tdi
· hi)

3

(1− 1⃗Tdi
· xi)3

−
n∑

i=1

di∑
j=1

2h3
i,j

x3
i,j

∣∣∣∣∣∣ = |∇3Φ(x)[h,h,h]|

Then we check the inequality between∇Φ(x)[h] and ∇2Φ(x)[h,h].

|∇Φ(x)[h]| = |hT∇Φ(x)|

≤
n∑

i=1

∣∣∣∣∣ 1⃗Tdi
· hi

1− 1⃗T · xi

∣∣∣∣∣+
n∑

i=1

di∑
j=1

∣∣∣∣hi,j

xi,j

∣∣∣∣
≤

√√√√ n∑
i=1

(di + 1)

 n∑
i=1

(
∑di

j=1 hi,j)
2

(1− 1⃗T · xi1)
2
+

n∑
i=1

di∑
j=1

h2
i,j

x2
i,j

1/2

=

(
n∑

i=1

(di + 1)

)1/2 (
∇2Φ(x)[h,h]

)1/2
Therefore, Φ(x) is a (

∑n
i=1(di + 1))-self-concordant barrier of K.
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Algorithm 4 BanditMLSM4PS(η, L,Φ)

Input: block size L, block number Q = T/L, learning rate η, potential function Φ

1: initiate x1 ∈ int(K) such that∇Φ(x1) = 0
2: for q = 1, 2, . . . , Q do
3: Draw tq ∼ Unif{(q − 1)L+ 1, (q − 1)L+ 2, . . . , qL}
4: for t = (q − 1)L+ 1, (q − 1)L+ 2, . . . , qL do
5: if t = tq then
6: Hq =

(
∇2Φ(xq)

)−1/2

7: sample zq from Z where P (Z < z) =
∫ z

0
eu−1

1−e−1 I [u ∈ [0, 1]] du
8: draw vq ∼ Sd−1

9: if zq ≥ 1
2 then

10: draw uq from {0, e1, e2, . . . , ed} with probability: Pr(uq = 0) = 1
2 , Pr(uq = ei) =

1
2d

11: ytq ← zq · xq + zq⟨Hqvq,uq⟩uq

12: l̃q(Hqvq)←


− 2(1− 1/e)

d

zq
· ftq (ytq ) if uq = 0,

2(1− 1/e)
d

zq
· ftq (ytq ) if uq ̸= 0.

13: else
14: draw uq from {e1, e2, . . . , ed} uniformly at random
15: let ytq = zqxq +

1
2uq or ytq = zqxq with equal probability.

16: play ytq and observe the feedback ftq (ytq )

17: l̃q(Hqvq)←


− 4(1− 1/e)d · ⟨Hqvq,uq⟩ftq (ytq ) if ytq = zqxq,

4(1− 1/e)d · ⟨Hqvq,uq⟩ftq (ytq ) if ytq = zqxq +
1

2
uq.

18: end if
19: ∇̃F q(xq)← d · l̃q(Hqvq)H

−1
q vq

20: xq+1 ← argmin
x∈K

∑q
s=1⟨−η∇̃Fs(xs),x⟩+Φ(x)

21: else
22: yt ← xq ,
23: sample St from EXT(yt) and play St.
24: end if
25: end for
26: end for

E. Missing Proofs in Section 5
The detailed pseudo-code of BanditMLSM4PS is shown in Algorithm 4, the only difference between BanditMLSM4PS and
BanditMLSM is the line 9 to line 17 in Algorithm 4.

E.1. Proof of Lemma 5.1

In Algorithm 2, the algorithm MLSMWrapper feeds gtq (Stq ) back to BanditMLSM4PS to replace the value ftq (ytq ). There-

fore MLSMWrapper are actually using a new estimator for lq(Hqvq), we denote the new estimator l̃′(Hqvq). If zq ≥ 1
2 :

l̃′q(Hqvq) :=


− 2(1− 1/e)

d

zq
· gtq (Stq ) if uq = 0,

2(1− 1/e)
d

zq
· gtq (Stq ) if uq ̸= 0.
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else:

l̃′q(Hqvq) :=


− 4(1− 1/e)d · ⟨Hqvq,uq⟩gtq (Stq ) if ytq = zqxq,

4(1− 1/e)d · ⟨Hqvq,uq⟩gtq (Stq ) if ytq = zqxq +
1

2
uq.

(20)

We first show l̃(Hqvq) is an unbiased estimator of l(Hqvq).

Lemma E.1. The estimator l̃′q(Hqvq) is an unbiased estimator for lq(Hqvq), that is,

E
[
l̃′q(Hqvq) | Hq,vq

]
= lq(Hqvq)

Proof. Condition onHq−1,vq, tq, zq,uq . If zq ≥ 1
2 and uq = 0,

E
[
l̃′q(Hqvq) | Hq−1,vq, tq, zq,uq

]
= −2(1− 1/e)

d

zq
E[gtq (Stq ) | Hq−1,vq, tq, zq,uq]

= −2(1− 1/e)
d

zq
ftq (zqxq).

The last equality is because that Stq ∼ EXT(zqxq) and ftq (x) = ES∼EXT(x)[gtq (S)]. If zq ≥ 1
2 and uq ̸= 0,

E
[
l̃′q(Hqvq) | Hq−1,vq, tq, zq,uq

]
= 2(1− 1/e)

d

zq
E[gtq (Stq ) | Hq−1,vq, tq, zq,uq]

= 2(1− 1/e)
d

zq
ftq (zqxq + zq⟨Hqvq,uq⟩uq).

Condition onHq−1,vq, tq, zq , then

E
[
l̃′q(Hqvq) | Hq−1,vq, tq, zq

]
=

1

2
(−2(1− 1/e)

d

zq
ftq (zqxq)) +

d∑
i=1

1

d
2(1− 1/e)

d

zq
ftq (zqxq + zq⟨Hqvq,uq⟩uq)

= (1− 1/e)⟨Hqvq,∇ftq (zq · xq)⟩

where the last equality is already proved in the proof of Lemma 3.1.

If zq < 1
2 ,

E
[
l̃′q(Hqvq) | Hq−1,vq, zq, tq,uq,ytq

]
=


− 4(1− 1/e)d · ⟨Hqvq,uq⟩E[gtq (Stq ) | Hq−1,vq, zq, tq,uq,ytq ] if ytq = zqxq,

4(1− 1/e)d · ⟨Hqvq,uq⟩E[gtq (Stq ) | Hq−1,vq, zq, tq,uq,ytq ] if ytq = zqxq +
1

2
uq.

=


− 4(1− 1/e)d · ⟨Hqvq,uq⟩ftq (ytq ) if ytq = zqxq,

4(1− 1/e)d · ⟨Hqvq,uq⟩ftq (ytq ) if ytq = zqxq +
1

2
uq.

Condition onHq−1,vq, tq, zq ,

E
[
l̃′q(Hqvq) | Hq−1,vq, tq, zq

]
=

d∑
i=1

1

d

(
1

2
· (−4(1− 1/e)d · ⟨Hqvq, ei⟩f(zqxq)) +

1

2
· (4(1− 1/e)d · ⟨Hqvq, ei⟩f(zqxq +

1

2
ei))

)

=

d∑
i=1

2(1− 1/e)⟨Hqvq, ei⟩
(
f(zqxq +

1

2
ei)− f(zqxq)

)
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=

d∑
i=1

2(1− 1/e)⟨Hqvq, ei⟩
1

2

∂f

∂xi
(zqxq)

= (1− 1/e)

d∑
i=1

⟨Hqvq, ei⟩⟨ei,∇f(zqxq)⟩

= (1− 1/e)⟨Hqvq,∇ftq (zq · xq)⟩

Combining with the case zq ≥ 1
2 , we proved this equation whatever zq is:

E
[
l̃′q(Hqvq) | Hq−1,vq, tq, zq

]
= (1− 1/e)⟨Hqvq,∇ftq (zq · xq)⟩

Then follow the calculation in Lemma 3.1, we can prove

E[l̃′q(Hqvq) | Hq−1,vq] = lq(Hqvq).

Lemma 5.1. For a finite set S , and a function family G ⊆ SR+ , where SR+ is the set of all functions that map element in S
to R+. If there is an extension mapping EXT : K → ∆(S) satisfying following conditions:

1. K ⊆ Rd is a product of standard simplexes.

2. For any g ∈ G, f(x) = ES∈EXT(x)[g(S)] is a multi-linear, monotone, DR-submodular function, and f is L1-lipschitz
continuous, f(0) = 0.

3. For any s ∈ S . Here exist x ∈ K such that EXT(x) = 1s. Where 1S assign probability 1 to S and 0 to other elements
of S.

then the algorithm MLSMWrapper attains expected (1− 1/e)-regretR1−1/e(T ) ≤ O
(
d5/3T 2/3 log(T )

)
on (S,G)-bandit.

Proof of Lemma 5.1. We first note that gt(St) is an unbiased estimator of ft(yt) by the definition of ft. The analysis is the
same as the analysis of Algorithm 1 except that Algorithm 2 is actually using a new estimator l̃′q(Hqvq)for l(Hqvq). We
first bound this new estimator.

If zq ≥ 1
2 ,

|l̃′q(Hqvq)| = 2(1− 1/e)d
gtq (Stq )

zq

≤ 4(1− 1/e)dM

If zq < 1
2 ,

|l̃′q(Hqvq)| = 4(1− 1/e)d⟨Hqvq,uq⟩gtq (Stq )

≤ 4(1− 1/e)dM

The inequality is because that zqxq + ⟨Hqvq,uq⟩uq ∈ K, and uq is a basis vector. Therefore ⟨Hqvq,uq⟩ ≤ D∞, here
the D∞ is the∞-norm diameter of K. Since K is a cartesian product of standard simplexes, D∞ = 1.

Let ∇̃F ′
q(xq) be the estimator replacing l̃′q(Hqvq) with l̃q(Hqvq), that is

∇̃F ′
q(xq) = d · l̃′q(Hqvq)H

−1
q vq

We bound the dual local norm of ∇̃F ′
q(xq)

E
[
∥∇̃F ′

q(xq)∥Φ,xq,∗ | Hq−1

]
= E

[
d2 · (l̃(Hqvq))

2vT
s H

−1
q Φ(xq)H

−1
q vq | Hq−1

]
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≤ 16(1− 1/e)2d4M2 E
[
vT
q Φ(xq)

−1/2Φ(xq)Φ(xq)
−1/2vq | Hq−1

]
≤ 16(1− 1/e)2d4M2∥vq∥2

≤ 16(1− 1/e)2d4M2

Since we have proved E[l̃′q(Hqvq) | Hq−1,vq] = lq(Hqvq), then follow the proof of Lemma 3.2 (i), we can prove

E
[
∇̃F ′

q(xq) | Hq−1

]
= ∇F q(xq)

Then follow the proof of Theorem 3.3, we have for any x∗ ∈ K,

E

[
T∑

t=1

(1− 1/e)ft(x
∗)− ft(yt)

]
≤ ηL

Q∑
q=1

E
[
∥∇̃F ′

q(xq)∥2Φ,xq,∗ | Hq−1

]
+ (1− 1/e)L1D +MQ+

νL log( 1δ )

η

≤ 16(1− 1/e)2M2d4ηT + (1− 1/e)L1D +MQ+
νL log(T )

η

Let S∗ = argmaxS∈S
∑T

t=1 gt(S), x
∗ be the point satisfies EXT(x∗) = 1S∗ , then ft(x

∗) = gt(S
∗).

Let H′
t be the history of the first t-rounds, including the realization of vq, tq, zq,uq, ∀q ≤ ⌈ t

L⌉ and the realization of
Sk, ∀k ≤ t. Since ft(yt) = E [gt(St) | Ht−1], we have,

E

[
T∑

t=1

(1− 1/e)gt(S
∗)− gt(St)

]
= E

[
T∑

t=1

(1− 1/e)ft(x
∗)− E [gt(St) | Ht−1]

]

= E

[
T∑

t=1

(1− 1/e)ft(x
∗)− ft(yt)

]

≤ 16(1− 1/e)2M2d4ηT + (1− 1/e)L1 +MQ+
νL log(T )

η

If we use the self-concordant barrier described in Appendix D as the input Φ here, by Lemma D.1, ν = O(d). Then we set
η = d−7/3T−1/3, L = d−5/3T 1/3, Q = T/L = d5/3T 2/3. Then

R1−1/e(T ) = E

[
T∑

t=1

(1− 1/e)gt(S
∗)− gt(St)

]
= O

(
d5/3T 2/3 log(T )

)
.

E.2. Proof of Lemma 5.3 and Corollary 5.4

Before proving Lemma 5.3, we first prove a useful lemma.
Lemma E.2. Let g : 2G −→ R+ be a monotone submodular set function, S is a subset of G, s1, s2 ∈ G and there
is no any other restriction on s1 and s2, they may be the same element or not, and they may be in S or not. Then
g(S ∪ {s1, s2})− g(S ∪ {s1}) ≤ g(S ∪ {s2})− g(S).

Proof. If s1 ∈ S and s2 /∈ S, then g(S ∪ {s1, s2}) − g(S ∪ {s1}) = g(S ∪ {s2}) − g(S). If s1 /∈ S and s2 ∈ S, then
g(S ∪ {s1, s2}) − g(S ∪ {s1}) = g(S ∪ {s1}) − g(S ∪ {s1}) = 0 and g(S ∪ {s2}) − g(S) = g(S) − g(S) = 0. If
s1 ∈ S, s2 ∈ S, then g(S ∪ {s1, s2})− g(S ∪ {s1}) = g(S ∪ {s2})− g(S) = g(S)− g(S) = 0, the inequality holds.

If s1 /∈ S, s2 /∈ S and s1 ̸= s2, then the result holds due to the submodularity of g. If s1 = s2 /∈ S, then g(S ∪ {s1, s2})−
g(S ∪ {s1}) = 0 and g(S ∪ {s2})− g(S) ≥ 0 by the monotonicity of g.

Lemma 5.3. For GMS , the extension mapping EXTPM : K → ∆(SPM ) satisfies the conditions in Lemma 5.1. Moreover, K
is in a

∑K
k=1 rk|Gk| dimensional real vector space. For any g ∈ GMS , the continuous extension f(x) = Es∈EXT(x)[g(s)]

is M
√∑K

k=1 rk|Gk|-lipschitz.
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Proof of Lemma 5.3. We first prove that for any S ∈ SPM , there is a x ∈ K such that EXTPM (x) = 1S . For any
S ∈ SPM , it can be partitioned into S = ∪Kk=1Sk such that Sk ⊆ Gk and |Sk| ≤ rk. For any k, we select |Sk| standard
simplexes ∆k,i

Gk
, i ∈ [|Sk|], and we assign probability 1 to the elements in Sk respectively in these standard simplexes. Thus

the condition 1 and 3 of Lemma 5.1 is satisfied, the dimension of K is obvious. It’s enough to show that f(x) satisfies the
condition 2.

EXTPM (0) assigns probability 1 to the empty set, thus f(0) = 0.

Now we check the multi-linearity of f . Consider a sample ω ∈ Ω, the probability of ω is Pr(ω) =
∏K

k=1

∏rk
i=1 Pr(ωk,i),

and Pr(ωk,i) ∈ {xk,i,s | s ∈ Gk} ∪ {1 −
∑

s∈Gk
xk,i,s}, thus Pr(ω) is multi-linear with respect to the variables xk,i,s.

Then we write f(x) as follows,

f(x) = E
S∼EXTPM (x)

[g(S)]

=
∑

S∈SPM

Pr(S)g(S)

=
∑

S∈SPM

∑
ω∈ρ−1(S)

Pr(ω)g(S)

=
∑
ω∈Ω

Pr(ω)g(ρ(ω))

Since g(ρ(ω)) is a constant independent from x, f(x) is a linear combination of multi-linear functions, thus f(x) is also
multi-linear.

Since f(x) is multi-linear, its partial derivative is

∂f

∂xk,i,s
(x) =

f
(
x ∨ (1−

∑
s′∈Gk,s′ ̸=s xk,i,s′)ek,i,s

)
− f(x ∧ ēk,i,s)

1−
∑

s′∈Gk,s′ ̸=s xk,i,s′

Here ∧ is the coordinate-wise minimal, and ∨ is the coordinate-wise maximal. ek,i,s is the basis vector which takes 1 only
for the component indexed (k, i, s), and 0 for the other components. ēk,i,s is the vector that take 0 for the component
indexed (k, i, s) and 1 for the other components.

We define two mappings ρk,i,s∨ , ρk,i,s∧ : Ω −→ Ω. For ω = (ωk′,i′)k′,i′∈Γ, Γ = {(k′, i′) | 1 ≤ k′ ≤ K, 1 ≤ i′ ≤ rk, i, k ∈
N}. ρk,i,s∨ and ρk,i,s∧ only change the component indexed (k, i), for any (k′, i′) ̸= (k, i), (ρk,i,s∨ (ω))k′,i′ = (ρk,i,s∧ (ω))k′,i′ =
ωk′,i′ . For the component indexed (k, i), let

(
ρk,i,s∨ (ω)

)
k,i

=

{
s if ωk,i = ◦
ωk,i if ωk,i ̸= ◦

(21)

and

(
ρk,i,s∧ (ω)

)
k,i

=

{
◦ if ωk,i = s

ωk,i if ωk,i ̸= s
(22)

We make the following important claim

Claim E.3.

f

x ∨

1−
∑

s′∈Gk,s′ ̸=s

xk,i,s′

 ek,i,s

 = E
ω∼pre-EXT

PM
(x)

[
g
(
ρ
(
ρk,i,s∨ (ω)

))]
(23)

and
f(x ∧ ēk,i,s) = E

ω∼pre-EXT
PM

(x)

[
g
(
ρ
(
ρk,i,s∧ (ω)

))]
. (24)
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proof of Claim E.3. Let x∨,k,i,s := x ∨
(
1−

∑
s′∈Gk,s′ ̸=s xk,i,s′

)
ek,i,s.

f(x∨,k,i,s) = E
ω∼pre-EXT

PM
(x∨,k,i,s)

[g(ρ(ω))]

Let ω ∼ pre-EXTPM (x), it’s enough to show ρk,i,s∨ (ω) ∼ pre-EXT(x∨,k,i,s). Let ω∨ ∼ pre-EXTPM (x∨,k,i,s). For
(k′, i′) ̸= (k, i) and s′ ∈ Gk′ , Pr((ω∨)k′,i′ = s′) = Pr((ρk,i,s∨ )k′,i′ = s′) = xk′,i′,s′ , and Pr((ω∨)k′,i′ = ◦) =

Pr((ρk,i,s∨ (ω))k′,i′ = ◦) = 1 −
∑

s′∈Gk′ xk′,i′,s′ . For (k, i)-component and s′ ̸= s, Pr((ω∨)k,i = s′) = xk,i,s′ =

Pr((ρk,i,s∨ (ω))k,i = s′). For s and ◦,

Pr((ω∨)k,i = s) = 1−
∑

s′∈Gk,s′ ̸=s

xk,i,s′ , Pr((ω∨)k,i = ◦) = 0

(ρk,i,s∨ (ω))k,i = s whenever ω ∈ {s, ◦}, thus

Pr((ρk,i,s∨ (ω))k,i = s) = 1−
∑

s′∈Gk,s′ ̸=s

xk,i,s′ = Pr((ω∨)k,i = s)

Since ρk,i,s∨ (ω))k,i never be ◦, Pr(ρk,i,s∨ (ω))k,i = ◦) = 0. Thus ρk,i,s∨ (ω) ∼ pre-EXT(x∨,k,i,s), and

f(x∨,k,i,s) = E
ω∼pre-EXT

PM
(x∨,k,i,s)

[g(ρ(ω))] = E
ω∼pre-EXT

PM
(x)

[
g
(
ρ
(
ρk,i,s∨ (ω)

))]
.

In brief, whenever ωk,i ∈ {s, ◦}, ρk,i,s∨ (ω) = s. That is, Pr((ρk,i,s∨ (ω))k,i = s) = Pr(ωk,i ∈ {s, ◦}) = 1 − Pr(ωk,i /∈
{s, ◦}) = 1−

∑
s′ ̸=s,s′∈Gk

xk,i,s′ which is the same as a sample in pre-EXTPM (x∨,k,i,s).

For (24), we can define x∧,k,i,s := xēk,i,s and let ω∧ ∼ pre-EXTPM (x∧,k,i,s). One can check that for (k′, i′, s′) ̸=
(k, i, s), Pr((ρk,i,s∧ (ω))k′,i′ = s′) = Pr((ω∧)k′,i′ = s′) = xk′,i′,s′ and Pr((ρk,i,s∧ (ω))k′,i′ = ◦) = Pr((ω∧)k′,i′ = ◦) =
1−

∑
s′∈Gk′ xk′,i′,s′ . For (k, i, s),

Pr((ρk,i,s∧ (ω))k,i = ◦) = Pr((ω∧)k,i = ◦) = 1−
∑

s′∈Gk,s′ ̸=s

xk,i,s′

and
Pr((ρk,i,s∧ (ω))k,i = s) = Pr((ρk,i,s∧ (ω))k,i = s) = 0.

So ρk,i,s∧ (ω) ∼ pre-EXT(x∧,k,i,s) and (24) holds.

If ωk,i = ◦ or ωk,i = s, one can check that
(
ρk,i,s∨ (ω)

)
k,i

= s and
(
ρk,i,s∧ (ω)

)
k,i

= ωk,i = ◦, therefore ρ(ρk,i,s∨ (ω)) =

ρ(ρk,i,s∧ (ω)) ∪ {s}, so ρ
(
ρk,i,s∧ (ω)

)
⊆ ρ

(
ρk,i,s∨ (ω)

)
. if ωk,i /∈ {◦, s}, then ρk,i,s∨ (ω) = ρk,i,s∧ (ω), so ρ

(
ρk,i,s∧ (ω)

)
=

ρ
(
ρk,i,s∨ (ω)

)
. Thus we proved ρ

(
ρk,i,s∧ (ω)

)
⊆ ρ

(
ρk,i,s∨ (ω)

)
for any ω. Since g is monotone, we have

∂f

∂xk,i,s
(x) =

E
ω∼pre-EXT

PM
(x)

[
g
(
ρ
(
ρk,i,s∨ (ω)

))
− g

(
ρ
(
ρk,i,s∧ (ω)

))]
1−

∑
s′∈Gk,s′ ̸=s xk,i,s′

≥ 0

Note that ρk,i,s∧ (ω) ̸= ρk,i,s∨ (ω) only happens when ωk,i = s or ωk,i = ◦, thus,∣∣∣∣ ∂f

∂xk,i,s
(x)

∣∣∣∣ ≤ M Pr(ωk,i ∈ {s, ◦})
1−

∑
s′∈Gk,s′ ̸=s xk,i,s′

=
M(1−

∑
s′∈Gk,s′ ̸=s xk,i,s′)

1−
∑

s′∈Gk,s′ ̸=s xk,i,s′
= M

28



Bandit Multi-linear DR-Submodular Maximization and Its Applications on Adversarial Submodular Bandits

which shows that ∥∇f∥∞ ≤ M . Since ∇f ∈ R
∑K

k=1 rk|Gk|, ∥∇f∥2 ≤
√∑K

k=1 rk|Gk|∥∇f∥∞ = M
√∑K

k=1 rk|Gk|.

Therefore, f is M
√∑K

k=1 rk|Gk|-lipschitz continuous.

Since the partial derivative of a multi-linear function is also multi-linear, ∂f
∂xk,i,s

(x) is multi-linear for any k, i, s. Then the
second derivative of f can be writen as

∂2f

∂xk1,i1,s1∂xk2,i2,s2

(x) =

∂f
∂xk2,i2,s2

(
x ∨ (1−

∑
s′∈Gk1

,s′ ̸=s1
xk,i,s′)ek1,i1,s1

)
− ∂f

∂xk2,i2,s2
(x ∧ ēk1,i1,s1)

1−
∑

s′∈Gk1
,s′ ̸=s1

xk1,i1,s′

=
f
(
x ∨ (1−

∑
s′∈Gk1

,s′ ̸=s1
xk′,i′,s′)ek1,i1,s1 ∨ (1−

∑
s′∈Gk1

,s′ ̸=s2
xk′,i′,s′)ek2,i2,s2

)
(1−

∑
s′∈Gk2

,s′ ̸=s1
xk1,i1,s′)(1−

∑
s′∈Gk2

,s′ ̸=s2
xk2,i2,s′)

−
f
(
(x ∧ ēk2,i2,s2) ∨ (1−

∑
s′∈Gk1

,s′ ̸=s2
xk′,i′,s′)ek1,i1,s1

)
(1−

∑
s′∈Gk1

,s′ ̸=s1
xk1,i1,s′)(1−

∑
s′∈Gk2

,s′ ̸=s2
xk2,i2,s′)

−
f
(
(x ∨ (1−

∑
s′∈Gk2

,s′ ̸=s2
xk′,i′,s′)ek2,i2,s2) ∧ ēk1,i1,s1

)
(1−

∑
s′∈Gk2

,s′ ̸=s1
xk1,i1,s′)(1−

∑
s′∈Gk2

,s′ ̸=s2
xk2,i2,s′)

+
f (x ∧ ēk2,i2,s2 ∧ ēk1,i1,s1)

(1−
∑

s′∈Gk2
,s′ ̸=s1

xk1,i1,s′)(1−
∑

s′∈Gk2
,s′ ̸=s2

xk2,i2,s′)

To prove the DR-submodularity of f , We define 4 mappings ρk1,i1,s1,k2,i2,s2
∨,∨ , ρk1,i1,s1,k2,i2,s2

∨,∧ , ρk1,i1,s1,k2,i2,s2
∧,∨ ,

ρk1,i1,s1,k2,i2,s2
∧,∧ : Ω −→ Ω.

ρk1,i1,s1,k2,i2,s2
∨,∨ (ω) = ρk1,i1,s1

∨

(
ρk2,i2,s2
∨ (ω)

)
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω) = ρk1,i1,s1

∨

(
ρk2,i2,s2
∧ (ω)

)
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω) = ρk1,i1,s1

∧

(
ρk2,i2,s2
∨ (ω)

)
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω) = ρk1,i1,s1

∧

(
ρk2,i2,s2
∧ (ω)

)
Same as Claim E.3, we have

∂f

∂xk1,i1,s1∂xk2,i2,s2

(x)

=

E
ω∼pre-EXT

PM
(x)

[
ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)]
(1−

∑
s′∈Gk2

,s′ ̸=s1
xk1,i1,s′)(1−

∑
s′∈Gk2

,s′ ̸=s2
xk2,i2,s′)

+

E
ω∼pre-EXT

PM
(x)

[
−ρ
(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
+
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)]
(1−

∑
s′∈Gk2

,s′ ̸=s1
xk1,i1,s′)(1−

∑
s′∈Gk2

,s′ ̸=s2
xk2,i2,s′)

.

We first consider the situation where k1 = k2 and i1 = i2. Recall that Pr(ωk1,i1) ∈ {xk1,i1,s | s ∈ Gk} ∪ {1 −∑
s∈Gk1

xk1,i1,s}, so ∂f
∂xk1,i1,s1

∂xk2,i2,s2
Pr(ωk1,i1) = 0 when k1 = k2 and i1 = i2. In this situation,

∂f

∂xk1,i1,s1∂xk2,i2,s2

(x) =
∑
ω∈Ω

g(ρ(ω))
∂f

∂xk1,i1,s1∂xk2,i2,s2

Pr(ω)

=
∑
ω∈Ω

g(ρ(ω))

 ∏
k′∈[K],i′∈[r

k′ ]
k′ ̸=k1 or i′ ̸=i1

Pr(ωk′,i′)

 ∂f

∂xk1,i1,s1∂xk2,i2,s2

Pr(ωk1,i1)

= 0 if k1 = k2 and i1 = i2

(25)

Then we consider the situation that k1 ̸= k2 or i1 ̸= i2,
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Case 1 : k1 ̸= k2 or i1 ̸= i2, ωk1,i1 ∈ {s1, ◦} and ωk2,i2 ∈ {s2, ◦}. In this case,(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
k1,i1

= s1

(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
k2,i2

= s2(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
k1,i1

= s1

(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
k2,i2

= ◦(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
k1,i1

= ◦
(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
k2,i2

= s2(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
k1,i1

= ◦
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
k2,i2

= ◦

ρk1,i1,s1,k2,i2,s2
∨,∨ (ω), ρk1,i1,s1,k2,i2,s2

∨,∨ (ω), ρk1,i1,s1,k2,i2,s2
∨,∨ (ω), ρk1,i1,s1,k2,i2,s2

∨,∨ (ω) are equal in all but above two components
k1, i2 and k2, i2. Thus

ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
= ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
∪ {s1, s2}

ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
= ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
∪ {s1}

ρ
(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
= ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
∪ {s2}

For monotone submodular g, by Lemma E.2,

g
(
ρ
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
∪ {s1, s2}

)
− g

(
ρ
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
∪ {s1}

)
≥ g

(
ρ
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
∪ {s2}

)
− g

(
ρ
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

))
thus,

ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
+
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
≤ 0

Case 2 : k1 ̸= k2 or i1 ̸= i2, ωk1,i1 ∈ {s1, ◦} and ωk2,i2 /∈ {s2, ◦}. In this case,

ρk2,i2,s2
∨ (ω) = ρk2,i2,s2

∧ (ω) = ω

thus,

ρk1,i1,s1,k2,i2,s2
∨,∨ (ω) = ρk1,i1,s1

∨ (ω) ρk1,i1,s1,k2,i2,s2
∨,∧ (ω) = ρk1,i1,s1

∨ (ω)

ρk1,i1,s1,k2,i2,s2
∧,∨ (ω) = ρk1,i1,s1

∧ (ω) ρk1,i1,s1,k2,i2,s2
∧,∧ (ω) = ρk1,i1,s1

∧ (ω)

and

ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
+
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
= 0

Case 3 : k1 ̸= k2 or i1 ̸= i2, ωk1,i1 /∈ {s1, ◦} and ωk2,i2 ∈ {s2, ◦}. Since (k1, i1) ̸= (k2, i2), ρ
k2,i2,s2
∨ and ρk2,i2,s2

∧ do
not change the k1, i1 component of ω, that is,(

ρk2,i2,s2
∨ (ω)

)
k1,i1

=
(
ρk2,i2,s2
∧ (ω)

)
k1,i1

= ωk1,i1

Therefore,

ρk1,i1,s1,k2,i2,s2
∨,∨ (ω) = ρk2,i2,s2

∨ (ω) ρk1,i1,s1,k2,i2,s2
∨,∧ (ω) = ρk2,i2,s2

∧ (ω)

ρk1,i1,s1,k2,i2,s2
∧,∨ (ω) = ρk2,i2,s2

∨ (ω) ρk1,i1,s1,k2,i2,s2
∧,∧ (ω) = ρk2,i2,s2

∧ (ω)

and

ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
+
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
= 0
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Case 4 : k1 ̸= k2 or i1 ̸= i2, ωk1,i1 /∈ {s1, ◦} and ωk2,i2 /∈ {s2, ◦}. In this case,

ρk1,i1,s1,k2,i2,s2
∨,∨ (ω) = ρk1,i1,s1,k2,i2,s2

∨,∧ (ω) = ρk1,i1,s1,k2,i2,s2
∧,∨ (ω) = ρk1,i1,s1,k2,i2,s2

∧,∧ (ω) = ω

thus

ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
+
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
= 0.

In all 4 cases above, whatever ω is,

ρ
(
ρk1,i1,s1,k2,i2,s2
∨,∨ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∨,∧ (ω)

)
− ρ

(
ρk1,i1,s1,k2,i2,s2
∧,∨ (ω)

)
+
(
ρk1,i1,s1,k2,i2,s2
∧,∧ (ω)

)
≤ 0

holds. Thus,

∂f

∂xk1,i1,s1∂xk2,i2,s2

(x) ≤ 0 if k1 ̸= k2 or i1 ̸= i2. (26)

Combining (25) and (26), ∂f
∂xk1,i1,s1

∂xk2,i2,s2
(x) ≤ 0 for any k1, i1, s1, k2, i2, s2, which shows the DR-submodularity of f .

Corollary 5.4. There is an algorithm attaining the expected (1− 1/e)-regret of

R1−1/e(T ) ≤ O

( K∑
k=1

rk|Gk|

)5/3

T 2/3 log T


on any (SPM ,GMS)-bandit.

Proof of Corollary 5.4. Since EXTPM satisfies the conditions in Lemma 5.1 and the dimension of K is d =
∑K

k=1 rk|Gk|.
This is a direct corollary of Lemma 5.1.

E.3. Proof of Lemma 5.5 and Corollary 5.6

Lemma 5.5. For GSS , the extension mapping EXTSS : K → ∆(SOL) satisfies the conditions in Lemma 5.1. Moreover, K
is in a |G|2 − |G| dimensional real vector space. For any g ∈ GSS , the continuous extension f(x) = Es∈EXT(x)[g(s)] is
M |G|-lipschitz.

Proof of Lemma 5.5. The condition 1 and 3 of Lemma 5.1 are obviously satisfied. Now we check the multi-linearity of f .
For x ∈ K, we write x = (xi,s)i∈|G|,s∈G′ . Consider S ∈ SOL, given x, the probability of S in distribution EXTSS(x) is
Pr(S) =

∏|G|
i=1 Pr(Si). For any 1 ≤ i ≤ |G|, Pr(Si) ∈ {xi,s | s ∈ G′} ∪ {1 −

∑
s∈G′ xi,s}, thus Pr(S) is multi-linear

with respect to the variables xi,s. Then we write f(x) as follows,

f(x) = E
S∼EXTSS(x)

[g(S)]

=
∑

S∈SOL

Pr(S)g(S)

Since g(S) is a constant independent from x, f(x) is a linear combination of multi-linear functions, thus f(x) is also
multi-linear.

EXT(0) assigns probability 1 to the ordered list {◦}|G|, thus f(0) = g({◦}|G|) = 0. Next we check the monotonicity and
DR-submodularity of f(x).

Define ρi,s∨ , ρi,s∧ : SOL −→ SOL. ρi,s∨ (S) ̸= S only when the i-th position of S is ◦, ρi,s∨ (S) change the i-th position of S to
s and keep other positions unchanged. ρi,s∧ (S) ̸= S only when the i-th position of S is s, ρi,s∨ (S) change the i-th position of
S to ◦ and keep other positions unchanged. Then,

∂f

∂xi,s
(x) =

E
S∼EXTSS(x)

[
g(ρi,s∨ (S))− g(ρi,s∧ (S))

]
1−

∑
s′∈G,s′ ̸=s xi,s′
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Let S≤k be the set containing the first k elements in the ordered list S. Then (ρi,s∧ (S))≤k ⊆ (ρi,s∨ (S))≤k, ∀k, recall gk is
monotone and λk > 0 for any k,

∂f

∂xi,s
(x) =

E
S∼EXTSSM (x)

[∑|Gk|
k=1 λk

(
gk((ρ

i,s
∨ (S))≤k)− g((ρi,s∧ (S))≤k)

)]
1−

∑
s′∈G,s′ ̸=s xi,s′

≥ 0

Thus f is monotone. Since Pr(ρi,s∨ (S) ̸= ρi,s∧ (S)) ≤ 1 −
∑

s′∈G,s′ ̸=s xi,s′ and ∂f
∂xi,s

(x) ≤ M . Thus ∥∇f(x)∥∞ ≤ M ,

∥∇f(x)∥2 ≤M
√
|G|(|G| − 1) ≤M |G|, f(x) is M |G|-lipschitz.

We then define

ρi1,s1,i2,s2∨,∨ (S) = ρi1,s1∨

(
ρi2,s2∨ (S)

)
ρi1,s1,i2,s2∨,∧ (S) = ρi1,s1∨

(
ρi2,s2∧ (S)

)
ρi1,s1,i2,s2∧,∨ (S) = ρi1,s1∧

(
ρi2,s2∨ (S)

)
ρi1,s1,i2,s2∧,∧ (S) = ρi1,s1∧

(
ρi2,s2∧ (S)

)
Then,

∂f

∂xi1,s1∂xi2,s2

(x) =

E
S∼EXTSSM (x)

[
g(ρi1,s1,i2,s2∨,∨ (S))− g(ρi1,s1,i2,s2∨,∧ (S))− g(ρi1,s1,i2,s2∧,∨ (S)) + g(ρi1,s1,i2,s2∧,∧ (S))

]
(1−

∑
s′∈G,s′ ̸=s1

xi1,s′)(1−
∑

s′∈G,s′ ̸=s2
xi2,s′)

We then prove g(ρi1,s1,i2,s2∨,∨ (S)) − g(ρi1,s1,i2,s2∨,∧ (S)) − g(ρi1,s1,i2,s2∧,∨ (S)) + g(ρi1,s1,i2,s2∧,∧ (S)) ≤ 0 for any S ∈ S. It’s
enough to prove gi((ρ

i1,s1,i2,s2
∨,∨ (S))≤i)− gi((ρ

i1,s1,i2,s2
∨,∧ (S))≤i)− gi((ρ

i1,s1,i2,s2
∧,∨ (S))≤i)+ gi((ρ

i1,s1,i2,s2
∧,∧ (S))≤i) ≤ 0 for

any i ∈ [|G|]. Note that if max{i1, i2} > i then gi((ρ
i1,s1,i2,s2
∨,∨ (S))≤i)− gi((ρ

i1,s1,i2,s2
∨,∧ (S))≤i)− gi((ρ

i1,s1,i2,s2
∧,∨ (S))≤i)+

gi((ρ
i1,s1,i2,s2
∧,∧ (S))≤i) = 0, so we now consider the case max{i1, i2} ≤ i.

Case 1 : i1 = i2. In this case, since Pr(Si1) ∈ {xi1,s | s ∈ G′} ∪ {1−
∑

s∈G′ xi1,s},
∂2 Pr(Si1

)

∂xi1,s1∂xi2,s2
= 0 when i1 = i2. we

have

∂2f

∂xi1,s1∂xi2,s2

(x) =
∂2

∂xi1,s1∂xi2,s2

∑
S∈SOL

g(S)

|G|∏
i=1

Pr(Si)

=
∑

S∈SOL

g(S)

∏
i̸=i1

Pr(Si)

 ∂2 Pr(Si1)

∂xi1,s1∂xi2,s2

= 0

Case 2 : i1 ̸= i2, Si1 ∈ {s1, ◦} and Si2 ∈ {s2, ◦}. In this case,(
ρi1,s1,i2,s2∨,∨ (S)

)
i1

= s1

(
ρi1,s1,i2,s2∨,∨ (S)

)
i2

= s2(
ρi1,s1,i2,s2∨,∧ (S)

)
i1

= s1

(
ρi1,s1,i2,s2∨,∧ (S)

)
i2

= ◦(
ρi1,s1,i2,s2∧,∨ (S)

)
i1

= ◦
(
ρi1,s1,i2,s2∧,∨ (S)

)
i2

= s2(
ρi1,s1,i2,s2∧,∧ (S)

)
i1

= ◦
(
ρi1,s1,i2,s2∧,∧ (S)

)
i2

= ◦

ρ1,s1,i2,s2
∨,∨ (S), ρi1,s1,i2,s2∨,∨ (S), ρi1,s1,i2,s2∨,∨ (S), ρi1,s1,i2,s2∨,∨ (S) are equal in all but above two components i2 and i2. Thus,(

ρi1,s1,i2,s2∨,∨ (S)
)≤i

=
(
ρi1,s1,i2,s2∧,∧ (S)

)≤i

∪ {s1, s2}(
ρi1,s1,i2,s2∨,∧ (S)

)≤i

=
(
ρi1,s1,i2,s2∧,∧ (S)

)≤i

∪ {s1}
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ρi1,s1,i2,s2∧,∨ (S)

)≤i

=
(
ρi1,s1,i2,s2∧,∧ (S)

)≤i

∪ {s2}

By Lemma E.2,

gi((ρ
i1,s1,i2,s2
∨,∨ (S))≤i)− gi((ρ

i1,s1,i2,s2
∨,∧ (S))≤i)− gi((ρ

i1,s1,i2,s2
∧,∨ (S))≤i) + gi((ρ

i1,s1,i2,s2
∧,∧ (S))≤i) ≤ 0

Then ∂2f
∂xi1,s1∂xi2,s2

(x) ≤ 0.

Case 3 : i1 ̸= i2, Si1 /∈ {s1, ◦} or Si2 /∈ {s2, ◦}: If Si1 /∈ {s1, ◦}, then ρi1,s1,i2,s2∨,∨ (S) = ρi1,s1,i2,s2∧,∨ (S) and
ρi1,s1,i2,s2∨,∧ (S) = ρi1,s1,i2,s2∧,∧ (S). If Si2 /∈ {s2, ◦}, then ρi1,s1,i2,s2∨,∨ (S) = ρi1,s1,i2,s2∨,∧ (S) and ρi1,s1,i2,s2∧,∨ (S) = ρi1,s1,i2,s2∧,∧ (S).
Either way, we have,

gi((ρ
i1,s1,i2,s2
∨,∨ (S))≤i)− gi((ρ

i1,s1,i2,s2
∨,∧ (S))≤i)− gi((ρ

i1,s1,i2,s2
∧,∨ (S))≤i) + gi((ρ

i1,s1,i2,s2
∧,∧ (S))≤i) = 0.

Then ∂2f
∂xi1,s1

∂xi2,s2
(x) = 0.

In all cases, ∂f
∂xi1,s1∂xi2,s2

(x) ≤ 0, thus f(x) is DR-submodular.

Corollary 5.6. There is an algorithm for attaining the expected (1− 1/e)-regret of

R1−1/e(T ) ≤ O
(
(|G|)10/3T 2/3 log T

)
on any (SOL,GSS)-bandit.

Proof of Corollary 5.6. Since EXTSS satisfies the conditions in Lemma 5.1 and the dimension of K is d = |G|(|G| − 1) =
O(|G|2). This is a direct corollary of Lemma 5.1.

F. Remark on the Stochastic Submodular Bandit
In this section, we show how our algorithms for adversarial setting can be applied to the stochastic setting proposed by Nie
et al. (2022). We take the stochastic monotone submodular bandit with cardinality constraint investigated in (Nie et al.,
2022) as an example.

Stochastic submodular bandit model In the stochastic model, there is an unknown distribution D, its support is a set of
set functions, we denote the set supp(D). Any set function g ∈ supp(D) is defined on the power set of the ground set G,
mapping a subset of G to a reward between [0, 1], that is, g : 2G → [0, 1]. In t-th round, the reward function g′t is drawn
from D and we can only select a subset St ⊆ G such that |St| ≤ k, which is a cardinality constraint. Then we gain reward
g′t(St). Note that the model does not need g′t to be a monotone submodular function, but requires g = Eg′

t∼D[g
′
t] to be

monotone submodular. Our goal is to minimize the (1− 1/e)-regret:

Rsto
1−1/e(T ) = (1− 1

e
)T · max

S∗⊆G,|S∗|≤k
g(S∗)− E

[
T∑

t=1

g′t(St)

]
= (1− 1

e
)T · max

S∗⊆G,|S∗|≤k
g(S∗)− E

[
T∑

t=1

g(St)

]

The last equality is because the randomness of St is independent of the randomness of g′t.

Apply our algorithm on stochastic bandit model Since cardinality constraint is a special case of the partition matroid
constraint, we use our algorithm in Section 5.2. While applying our algorithm on the stochastic model, we see gt = g =
Eg′

t∼D[g
′
t] as the online function selected by the adversary, thus the online functions are monotone submodular. Note

that, to obtain a regret bound w.r.t. the online reward function {gt}Tt=1, we need to query the value of gt at some subset
St in round t. However, since the algorithm is actually running on the stochastically realized function sequence {g′t}Tt=1,
if we query the function value of St, the feedback is g′t(St) rather than gt(St) = g(St). Fortunately, this is not a big
issue since g′t(St) is an unbiased estimate of gt(St). Now we go back to the proof of Lemma 5.1, and replace all the
gtq (Stq ) = g(Stq ) with g′tq (Stq ). Since g′tq (Stq ) ≤ 1, it won’t affect our bound for the dual local norm of the gradient
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estimator. And since the randomness of the stochastic function g′tq is independent of all the randomness introduced in our
algorithm and [E][g′tq (Stq )] = gtq (Stq ), the new gradient estimator constructed by replacing gtq (Stq ) with g′tq (Stq ) is still
an unbiased estimator. Thus, as the same as the proof of our algorithm for adversarial submodular bandit with partition
matroid constraint, we have the same regret bound,

Radv
1−1/e(T ) = max

S∗⊆G,|S∗|≤k
E

[
(1− 1

e
)

T∑
t=1

g(S∗)−
T∑

t=1

g(St)

]
≤ O((k|G|)5/3T 2/3 log T )

That is,

(1− 1

e
)T · max

S∗⊆G,|S∗|≤k
g(S∗)− E

[
T∑

t=1

g(St)

]
≤ O((k|G|)5/3T 2/3 log T )
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