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Abstract
Regret minimization in streaming multi-armed
bandits (MABs) has been studied extensively, and
recent work has shown that algorithms with o(K)
memory have to incur Ω(T 2/3) regret, where K
and T are the numbers of arms and trials. How-
ever, the previous best regret upper bound is still
O(K1/3T 2/3 log1/3(T )), which is achieved by
the simple uniform exploration algorithm. In this
paper, we close this gap and complete the pic-
ture of regret minimization in single-pass stream-
ing MABs. We first improve the regret lower
bound to Ω(K1/3T 2/3) for algorithms with o(K)

memory. We then show that the log1/3(T ) fac-
tor is not necessary by designing algorithms with
at most O(log∗(K))-arm memory and achieve
O(K1/3T 2/3) expected regret based on stream-
ing ε-best arm algorithms. We further tested the
empirical performances of our algorithms on sim-
ulated MABs instances, where the proposed al-
gorithms outperform the benchmark uniform ex-
ploration algorithm by a large margin and, on
occasion, reduce the regret by up to 70%.

1 Introduction

The stochastic multi-armed bandits (MABs) is a classical
model in machine learning and theoretical computer science
that captures various real-world applications. The model
was first introduced by Robbins (Robbins, 1952) for more
than 70 years ago; since then, extensive research efforts have
been devoted to two main problems under this model: pure
exploration and regret minimization. Both problems start
with a collection of K arms with unknown sub-Gaussian
reward distributions. In pure exploration, we are interested
in finding the best arm, defined as the arm with the highest
mean reward, with as small as possible number of arm pulls
(Even-Dar et al., 2002; Mannor & Tsitsiklis, 2003; Audibert
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et al., 2010; Karnin et al., 2013; Jamieson et al., 2014; Chen
& Li, 2015; Kaufmann et al., 2016; Agarwal et al., 2017;
Chen et al., 2017). On the other hand, in regret minimiza-
tion, we are additionally given a parameter T as the total
number of trials – also known as the ‘horizon’ – and we are
interested in generating a plan for T arm pulls to minimize
the cumulative reward gap compared to the perfect plan that
puts all T pulls on the best arm (Thompson, 1933; Berry &
Fristedt, 1985; Bubeck & Cesa-Bianchi, 2012; Komiyama
et al., 2015; Liau et al., 2018; Slivkins, 2019; Dong et al.,
2019; Chaudhuri & Kalyanakrishnan, 2020; Maiti et al.,
2021; Agarwal et al., 2022). Although the two lines of
research are developed relatively independently, they both
have found rich applications like experiment design (Rob-
bins, 1952; Chow & Chang, 2008), search ranking (Agarwal
et al., 2008; Radlinski et al., 2008), economics (Sauré &
Zeevi, 2013; Kremer et al., 2013), to name a few.

In recent years, with the strong demand to process massive
data, the study of multi-armed bandits under the streaming
model has attracted considerable attention (Liau et al., 2018;
Chaudhuri & Kalyanakrishnan, 2020; Assadi & Wang, 2020;
Jin et al., 2021; Maiti et al., 2021; Agarwal et al., 2022).
Under this model, the arms arrive one after another in a
stream, and the algorithm is only allowed to store a number
of arms substantially smaller than K. In the single-pass
streaming setting, if an arm is not stored or discarded from
the memory, it cannot be retrieved later and is lost forever.
We shall assume the order of the stream is generated by an
adversary, i.e. the worst-case order. The model is a natural
adaptation of the MABs to the streaming problems studied
extensively in algorithms (e.g. (Alon et al., 1996; Henzinger
et al., 1998; Guha et al., 2000; McGregor, 2014)).

The limited memory poses unique challenges for algorithms
under this setting. Indeed, for the regret minimization ap-
plication, under the classical (RAM) setting, a worst-case
regret of Θ(

√
KT ) is necessary and achievable. However,

in the single-pass streaming setting, if an algorithm is only
given o(K) arm memory, the recent work of (Maiti et al.,
2021; Agarwal et al., 2022) proved that an Ω(T 2/3)1 re-

1(Maiti et al., 2021) includes another regret lower bound of
Ω(K1/3T 2/3/m7/3), where m is the memory of the streaming
algorithm. However, their bound is only almost-tight when m =

no(1).
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gret is inevitable. Since T could be (and is usually) much
larger than K, these results already separated the regret
minimization under the classical vs. the streaming settings.

Despite the progress on the lower bounds, to the best of
our knowledge, there is only limited exploration on the
algorithms for single-pass regret minimization. (Maiti
et al., 2021) noted that a streaming implementation of
the folklore uniform exploration algorithm, which pulls
each arm O((T/K)2/3 log1/3(T )) times and commits to
the arm with the best average empirical reward, achieves
O(K1/3T 2/3 log1/3(T )) expected regret. Moreover, (Agar-
wal et al., 2022) proposed a (multi-pass) algorithm with
O(T 2/3

√
K log(T )) regret in a single pass, but it is clearly

sub-optimal in the single-pass setting. As such, there re-
mains an O((K log(T ))1/3) gap between the upper and
lower bounds.

Our Contributions. We close this gap and complete and
picture for regret minimization in single-pass MABs in this
work. In particular, we first tighten the regret lower bound
for any algorithm with o(K) memory to Ω(K1/3T 2/3) –
this effectively reduces the gap between the upper and lower
bounds to log1/3(T ). We then find that this logarithmic
factor is not essential: by using an ε-best arm algorithm with
O(K/ε2) arm pulls, setting ε = (K/T )1/3, and committing
to the returned arm for the rest of the trials, we can already
get a regret of O(K1/3T 2/3) with high constant probability.

To explore algorithms that achieve expected optimal regret
of O(K1/3T 2/3), we investigate the case when the ε-best
arm algorithm fail. To elaborate further, the ε-arm algo-
rithms usually succeed with constant probability, and by
the tightness of concentration bounds, it is necessary to
pay an extra O(log(K)) factor if we want 1 − poly(1/K)
success probability. However, doing so will inevitably in-
troduce an O(log(K)) multiplicative factor on the regret.
As such, we proceed differently by observing a smooth fail-
ure probability property for a large family of ε-best arm
algorithms. On the high level, for many algorithms, even
if it does not return an ε-best arm, it could still capture a
2ε-best arm with a high probability, as opposed to return
an absolutely low-reward arm. We use this observation to
prove a smooth-failure bounded-regret lemma, and use it
to devise an algorithm with O(K1/3T 2/3) expected regrets
and a memory of O(log∗(K)) arms.

Our results imply that the “right way” to minimize regret
in single-pass streaming is to use optimal pure exploration
algorithms. This establishes a connection between pure
exploration and regret minimization tasks. Previous work
like (Degenne et al., 2019) studied such a connection for
the MABs in the offline setting; however, to the best of our
knowledge, our results are the first to find the connection in
the streaming setting, and it can be of independent interests.

Experiments. We evaluate the performances of the ε-best
arm-based algorithm with simulated Bernoulli arms. We
find that under various settings, the ε-best arm-based algo-
rithms can consistently produce smaller regret comparing
to the benchmark. In particular, we find the most stable and
competitive algorithm can produce up to 70% of regret re-
duction, and the average regret, even account of the outliers,
is at most 70% of the benchmark regret (i.e. 30% reduction).
The codes of the experiment are available on github page
streaming-regret-minimization-MABs.

Additional discussions about the streaming MABs model.
The original motivation for (Assadi & Wang, 2020) to intro-
duce the model was to capture the large-scale applications
of MABs. For example, in the online search ranking, each
arm can be viewed as a product that arrives every hour. For
memory efficiency, we only want to store a limited number
of products to find the best seller. We further remark that
some other problems inherently require storing few arms,
even when memory is not a major concern, e.g., in crowd-
sourcing, each arm can be viewed as a solution or a model,
and storing all of them may cause management issues.

1.1 Related Work

We focus on regret minimization in streaming MABs in
this work; nonetheless, it is worth mentioning that the
pure exploration problem in the streaming setting also
enjoys rich literature. The streaming pure exploration
MABs was first introduced and studied by (Assadi & Wang,
2020), and together with the work of (Maiti et al., 2021),
there are known algorithms that finds an ε-best arms with
O(log(K)), O(log log(K)), O(log∗(K)), and O(1) mem-
ory and O(K/ε2) arm pulls2. (Jin et al., 2021) later intro-
duced an algorithm with a single-arm memory to find an
ε-best arms with O(K/ε2) pulls, and they also studied al-
gorithms in the multi-pass settings. The single pass pure
exploration lower bound was developed recently by (Assadi
& Wang, 2022). We remark that our algorithms and lower
bounds are heavily inspired by the techniques developed
by the aforementioned work. Furthermore, since we used
ε-best arm algorithms as a subroutine in our upper bounds,
our work also establish an interesting connection between
the pure exploration and the regret minimization objectives.

In addition to the single-pass setting, the regret minimization
problem is studied through the lens of multi-pass streams.
In fact, earlier algorithms of (Liau et al., 2018; Chaudhuri
& Kalyanakrishnan, 2020) all focus on regret minimization
under the multi-pass settings ((Chaudhuri & Kalyanakrish-
nan, 2020) additionally requires random-order stream). In
light of this, (Agarwal et al., 2022) provides the upper and

2Their O(1)-memory algorithm includes an additive
Θ(log2(K)/ε3) term.
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lower regret bounds that are tight in T : they show that
any P -pass algorithm with memory o(K/P 2) has to incur
Ω(T 2P /(2P+1−1)/2P ) regret; and there exists an algorithm
with O(T 2P /(2P+1−1)

√
KP log(T )) regret and O(1)-arm

memory. Compared to their bounds, our results only apply
to the single-pass, but it is tight in all asymptotic terms.

Finally, the MABs algorithms with limited memory is also
explored under other models, and there are problems in the
streaming setting that are closely related to MABs. For
instance, (Tao et al., 2019; Karpov et al., 2020) studies the
pure exploration MABs in the distributed settings, which
is related to the collaborative learning with limited rounds.
Furthermore, a recent line of work (Srinivas et al., 2022;
Peng & Zhang, 2023) studies the streaming expert problem,
where the arriving elements are the predictions from the
experts. Both their model and ours have applications on
online learning, yet we emphasize on different aspects.

1.2 Preliminaries

We introduce the model, the parameters, and the problem
we studied in this paper in this section.

Streaming multi-armed bandits model. To begin with,
we define the streaming MABs model as follows. We con-
sider a collection of K arms with unknown sub-Gaussian
reward distributions, and they arrive one after another in a
stream. The algorithm can pull an arriving arm arbitrarily
many times and decide whether to store it. Furthermore, the
algorithm can pull a stored past arm at any point and discard
some arms to free up memory when necessary. However, in
the single-pass setting, an arm that is not stored or discarded
is lost forever. For each arm armi, we let µi be the mean
of its reward distribution. We say µ∗ = maxi∈[K] µi is the
optimal reward and the arm whose reward is µ∗ is the best
arm, denoted as arm∗.

Regret minimization. The regret minimization problem
in stochastic multi-armed bandits goes as follows: For the
regret minimization problem, we are given a fixed number
of trials T (known as the horizon) and we want to spend
as many trials as possible on the best arm. In particular,
suppose algorithm A pulls armA(t) in the t-th exploration,
we define the regret of this trial as

rt := µ∗ − µA(t).

And we define the total expected regret as

E [RT ] := E

[
T∑

t=1

µ∗ − µA(t)

]
,

where the expectation is taken over the randomness of the
arm pulls and (possibly) the algorithm. Our objective is
to minimize the total expected regret. We can analogously

define the minimization of probabilistic regret RT over the
randomness of the arm pulls and (possibly) the algorithm.

ε-best arm. We do not study ε-best arm algorithms in this
paper, but rather use them as blackbox subroutines for the
regret minimization purpose. In particular, an ε-best arm
algorithm (also known as a PAC(ε, δ) algorithm) aims to
return an arm whose reward is close to µ∗. More formally,
the guarantee of an ε-best arm algorithm is to output with
probability at least 1− δ an arm with reward µε, such that
µ∗ − µε ≤ ε.

Assumption of T ≥ K. We assume w.log. in this paper
that T ≥ K, and repeatedly use this property in the proofs.
Note that if T < K, we can easily get an upper bound of
O(T ) by pulling an arbitrary arm for T times, and the bound
is tight since with Ω(1) probability the best arm is never
pulled. As such, the tight regret bound becomes Θ(T ) and
it is not interesting in neither theory nor practice.

Due to space limit, we defer the technical preliminaries to
Appendix A.

2 The Tight Regret Lower Bound

We now formally state our lower bound result as follows.

Theorem 1. There exists a family of streaming stochas-
tic multi-armed bandit instances, such that for any given
parameter T and K such that T ≥ K, any single-pass
streaming algorithm with a memory of K

20 arms has to suffer

E [RT ] ≥ C ·K 1
3 · T 2

3

total expected regret for some constant C. Furthermore, the
lower bound holds even the order of arrival for the arms is
uniformly at random.

To prove Theorem 1, we will use a recent result in (Assadi
& Wang, 2022) which captures a sample-space trade-off to
‘trap’ the best arm with limited memory.

Proposition 2.1 ((Assadi & Wang, 2022)). Consider the
following distribution of K ′ arms.

DIST(K ′, β): A hard distribution with K ′ arms for
trapping the best arm

1. An index i⋆ sampled uniform at random from [K ′].

2. For i ̸= i⋆, let the arms be with reward µi =
1
2 .

3. For i = i⋆, let the arm be with reward µi⋆ = 1
2 + β.

Then, any algorithm that outputs (the indices of) K′

8 arms
which contains the best arm on DIST with probability at
least 2

3 has to use at least 1
1200 ·

K′

β2 arm pulls.
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One can refer to (Assadi & Wang, 2022) for the proof of
Proposition 2.1. We note that a similar sample-space trade-
off result was proved and used by (Agarwal et al., 2022) in
the multi-pass setting. However, their result does not factor
in the dependency on K, which creates the gap between the
upper and the lower regret bounds.

Proof of Theorem 1 By Yao’s minimax principle, to prove
lower bounds for randomized algorithm, it suffices to con-
sider deterministic algorithms over a certain distribution of
inputs. As such, in what follows, we only consider lower
bounds for deterministic algorithms over input family of
instances. Our hard distribution of instances is constructed
as follows.

A hard distribution for single-pass streaming MABs
regret minimization

1. For the first K
2 arms, sample a set of arms from

DIST(K/2,∆), where ∆ = 1
8 · (

K
T )1/3.

2. For the last K
2 arms, set all arms except the last (K-th)

with reward 1
2 .

3. The last arm follows the distribution

(a) With probability 1
2 , set µK = 1

2 ;
(b) With probability 1

2 , set µK = 3
4 .

For any algorithm A with memory at most K
20 , we analyze

the two cases based on whether the algorithm uses at least
1

2400 ·
K
∆2 arm pulls on the first half of the stream. Note that

this is the necessary number of arm pulls for A to store the
best arm among the first half with probability at least 2

3 , i.e.
if the algorithm uses less than the above quantity, it cannot
keep the arm with reward 1

2 +∆ after the first half of the
arms with probability at least 1

3 .

Case A). A uses at least 1
2400 ·

K
∆2 arm pulls on the first

K
2 arms. In this case, with probability 1

2 , the last arm is
with reward 3

4 . As such, each arm pull spent on the first
K
2 arms incurs a regret of at least ( 14 − ∆). As such, the

expected regret is at least

E [RT ] ≥ Pr(µK =
3

4
) · E

[
RT | µK =

3

4

]
≥ 1

2
· 1

2400
· K
∆2
· (1

4
−∆)

≥ 1

2
· 1

2400
· K
∆2
· 1
8

(K ≤ T implies ∆ ≤ 1
8 )

= Ω(1) ·K1/3T 2/3.

Case B). A uses less than 1
2400 ·

K
∆2 arm pulls on the first

K
2 arms. In this case, with probability 1

2 armK is with

reward µK = 1
2 ; and since the memory of A is K/20 <

K/2
8 , by Proposition 2.1, with probability at least 1

3 , A does
not keep the arm with reward 1

2 +∆ in the memory upon
reading the (K2 + 1)-th arm. As such, we define the event

E : µK = 1
2 and A does not keep the arm with reward

1
2 +∆ after reading the first K/2 arms

and we have Pr(E) ≥ 1
6 . Conditioning on E , every arm pull

after reading the (K2 + 1)-th arm incurs a regret of ∆, and
there are at least (T − 1

2400 ·
K
∆2 ) trials left. As such, the

expected regret is at least

E [RT ] ≥ Pr(E) · E [RT | E ]

≥ 1

6
· (T − 1

2400
· K
∆2

) ·∆

=
1

6
· (1

8
·K1/3T 2/3 − 8

2400
·K2/3T 1/3)

(by the choice of ∆)

≥ 1

60
·K1/3T 2/3. (K1/3T 2/3 ≥ K2/3T 1/3)

Wrapping up the proof. Any deterministic algorithm A
with a memory at most K

20 has to either fall in case A) or B).
As such, the total expected regret is at least C ·K1/3T 2/3

for a fixed constant C for the adversarial arrival case.

Finally, for the random order of arrival, note that by ap-
plying a random permutation to the hard distribution, with
probability 1

4 , the arm with 1
2 + ∆ is among the first K

2

arms and the arm with reward µK is among the latter K
2

arms. As such, by conditioning on such an event, the total
expected regret becomes asymptotically the same (smaller
by a 1

4 factor).

3 The Tight Probabilistic Regret Upper
Bound

We now turn to the upper bound results. As a first step. we
show the easier result for probabilistic regret minimization:
to attain the O(K1/3T 2/3) regret, we only need to find an
ε-best arm with ε = (KT )1/3. As such, the problem can be
solved in a single pass with a single-arm memory.

Theorem 2. There exists a single-pass streaming algorithm
that given a stream of stochastic multi-armed bandits and
the parameters T and K, pulls the arms T times using a
single-arm memory, and achieves regret

RT ≤ (2 log(1/δ) + 1) ·K 1
3 · T 2

3

with probability at least 1− δ over the randomness of arm
pulls.

Our algorithm for Theorem 2 crucially relies on the ε-best
arm algorithm in (Assadi & Wang, 2020; Jin et al., 2021).
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Limited by space, we defer the detailed description and the
poof of Theorem 2 to Appendix B.

Remark 1. Note that the upper bound is tight for the proba-
bilistic regret minimization problem – the lower result in the
separate note shows that for any instance in the adversarial
family, the regret is at least Ω(K1/3T 2/3) with probability
Ω(1). As such, we should not expect any algorithm that is
asymptotically better than the guarantee of Theorem 2.

4 The Tight Expected Regret Upper Bound

The algorithm in Theorem 2 gives the optimal upper bound
for regret minimization in the probabilistic manner. How-
ever, one can easily spot that the regret is not optimal in
expectation. In fact, since the algorithms in (Assadi &
Wang, 2020; Jin et al., 2021) does not provide any guar-
antee if the algorithm fails, if the failure probability is
a constant (δ = Ω(1)), the expected regret becomes at
least Ω(T ). One can balance the parameters between the
success and failure case to achieve an expected regret of
O(K1/3T 2/3 log( T

K ))3 – although already an improvement,
the bound is still far from being tight especially when
T >> K. As such, we need a separate investigation of
the optimal algorithm for expected regret.

We observe that the only drawback of the exploration-and-
committing strategy in Section 3 is the failure case since no
guarantees is provided by existing algorithms. However, if
the algorithm always keep the arm with the best empirical
reward, it should not be the case that whenever the algorithm
fails, it returns an absolute garbage. As such, the hope here
is to obtain smooth probabilistic guarantees from existing
ε-best arm algorithms to attain the optimal regret bound.

In what follows, we proceed our main upper bound result
by first showing that if the smooth probabilistic guarantee
holds, we can indeed obtain algorithms with low regret
(Lemma 4.1). Subsequently, we present two algorithm with
expected regret O(K1/3T 2/3 log(K)) and O(K1/3T 2/3),
respectively. Both bounds utilize ε-best arm algorithms as
subroutines – the first bound employs a variate of the sim-
ple naive uniform elimination algorithm, while the second
bound uses a more involved algorithm by (Assadi & Wang,
2020) and (Maiti et al., 2021).

4.1 A Smooth-Failure Bounded-Regret Lemma

We first present a technical lemma that gives a regret up-
per bound provided an ε-best arm algorithms that display
a ‘smooth trade-off’ between the arm reward and the fail-
ure probability. The formal statement of the lemma is as

3Concretely, by setting δ = (K
T
)1/3, the expected regret

is O
(
(1− (K

T
)1/3) · log

(
(K
T
)1/3

)
K1/3T 2/3 + T · (K

T
)1/3

)
,

which is upper-bounded by O(K1/3T 2/3 log( T
K
)).

follows.
Lemma 4.1 (Smooth-Failure Bounded-Regret Lemma). Let
INST be a streaming multi-armed bandit instance with fixed
parameters T , K such that T > K, and let ALG be a
streaming algorithm that given parameter ε, uses S space
and M

ε2 arm pulls to returns an armALG(INST) such that

Pr
(
µALG(INST) < µ∗ − c · ε

)
≤ (

1

2
)c · 1

10
.

for any integer c ≥ 1. Then, there exists an S-space stream-
ing algorithm that achieves O( M

K2/3T
2/3 +K1/3T 2/3) re-

gret in expectation, i.e.

E [RT ] ≤ O(M · T
2/3

K2/3
+K1/3T 2/3).

Proof. The algorithm is to simply run the streaming algo-
rithm for the ε-best arm with ε = (KT )1/3 (the exploration
phase), and commit to the returned arm armALG(INST) for
the rest of the trials if there is any remaining trials (the com-
mitting phase). As such, the space bound trivially follows
since we do not use any extra space.

We now analyze the expected regret. To proceed, we let
Re

T be the regret induced by the exploration phase, and
Rc

T be the regret induced by the committing phase. By
the choice of the parameter ε, we (deterministically) have
Re

T ≤ M
ε2 = M · T 2/3

K2/3 , which implies

E [Re
T ] ≤M · T

2/3

K2/3
.

Hence, we only need to control E [Rc
T ] by the linearity of

expectation. To continue, we define the events

Ec,ε = The algorithm finds an arm with reward at least µ∗ − c · ε

for every integer c ≥ 1. Observe that an event Ec,ε contain
all events with Ec′,ε for c′ < c. As such, using E1:c−1,ε as
a short-hand notation of the collection of events from E1,ε
to Ec−1,ε, we note that ¬Ec−1,ε means none of the event
from E1,ε to Ec−1,ε happens. As such, we can re-write the
expected regret as follows.

E [Rc
T ]

= E [Rc
T | E1,ε]Pr (E1,ε)

+ E [Rc
T | ¬E1,ε]Pr (¬E1,ε)

= E [Rc
T | E1,ε]Pr (E1,ε)

+ Pr (¬E1,ε) · E [Rc
T | E2,ε,¬E1,ε]Pr (E2,ε | ¬E1,ε)

+ Pr (¬E1,ε) · E [Rc
T | ¬E2,ε]Pr (¬E2,ε | ¬E1,ε)

= · · ·
= E [Rc

T | E1,ε]Pr (E1,ε)

+

∞∑
c=2

E [Rc
T | Ec,ε,¬Ec−1,ε]Pr (Ec,ε,¬Ec−1,ε) .

5
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Since ε = (KT )1/3, conditioning on event Ec,ε happens, the
regret induced by the committing part is at most

Rc
T | Ec,ε,¬Ec−1,ε = c · (K

T
)1/3 · T

≤ c ·K1/3T 2/3.

On the other hand, recall that the probability for each
¬Ec,ε is at most 1

2c ·
1
10 . As such, the probability for

Pr (Ec,ε,¬Ec−1,ε) can be bounded as

Pr (Ec,ε,¬Ec−1,ε) = Pr (Ec,ε | ¬Ec−1,ε) · Pr (¬Ec−1,ε)

≤ Pr (¬Ec−1,ε)
(Pr (Ec,ε | ¬Ec−1,ε) ≤ 1)

≤ (
1

2
)c−1 · 1

10
.

As such, the expected regret of the committing phase can be
bounded as a convergent summation of terms:

E [Rc
T ] ≤

1

10
·K1/3T 2/3 ·

∞∑
c=1

c

2c−1

=
2

5
·K1/3T 2/3. (

∑∞
c=1

c
2c−1 = 4)

Therefore, we have the expected regret to be

E [RT ] = E [Re
T +Rc

T ] (linearity of expectation)

≤M · T
2/3

K2/3
+

2

5
·K1/3T 2/3

= O

(
M · T

2/3

K2/3
+K1/3T 2/3

)
,

as desired.

Lemma 4.1 provides a neat approach to bound the expected
regret by bounding the number of arm pulls and ‘smooth
failure probability’ for ε-best arm algorithms. As we will
see shortly, algorithms based on Chernoff bound generally
satisfy the smooth failure probability. Note that, however,
streaming algorithms based on amortized variance analysis
(e.g. the single-arm algorithm in (Assadi & Wang, 2020))
do not generally satisfy this property.

4.2 A log∗(K)-arm memory algorithm with
O(K1/3T 2/3) expected regret

If we run the naive elimination of ε-best arm, we can get an
algorithm with O(K1/3T 2/3 log(K)) regret with the mem-
ory of a single arm. Limited by space, we defer the descrip-
tion of this algorithm to Appendix C. For now, we proceed to
our streaming algorithm with the optimal expected regret for
any streaming algorithm with O(log∗(K)) memory. Our op-
timal algorithm follows the same ‘exploration-and-commit’
paradigm, albeit using a non-trivial streaming ε-best arm

algorithm recently developed by (Assadi & Wang, 2020;
Maiti et al., 2021).

We first give the streaming ε-best arm algorithm with
log∗(K) memory as follows.

Parameter Set 1:

{ε}ℓ≥1 : εℓ =
ε

10 · 2ℓ−1
(ε parameter at each level)

{rℓ}ℓ≥1 : r1 := 4, rℓ+1 = 2rℓ ;

{βℓ}ℓ≥1 : βℓ =
1

ε2ℓ
;

(intermediate variables to define sℓ and cℓ)

{sℓ}ℓ≥1 : sℓ = 8βℓ(ln(
1

δ
) + 3rℓ)

(number of samples per arm at each level)

{cℓ}ℓ≥1 c1 = 2r1 , cℓ =
2rℓ

2ℓ−1
(ℓ ≥ 2)

(the bound on number of arms to ‘defeat’ at each level)

Aggressive Selective Promotion – an ε-best arm algo-
rithm using log∗(K)-arm memory
Counters: C1, C2, ..., Ct t = ⌈log∗(K)⌉+ 1;
Reward records: µ∗

1, µ∗
2, ..., µ∗

t , initialize with 0;
Stored arms: arm∗

1,arm∗
2, ...,arm∗

t the most reward arm
of ℓ-th level.

• For each arriving armi in the stream do:

(1) Read armi to memory.
(2) Starting from level ℓ = 1:

(a) Sample armi for sℓ times and get µ̂armi
.

i. If µ̂armi
< µ∗

ℓ , drop armi;
ii. Otherwise, replace arm∗

ℓ with armi

and set µ∗
ℓ = µ̂armi .

(b) Increase Cℓ by 1.
(c) If Cℓ = cℓ, do

i. Reset the counter to Cℓ = 0.
ii. Send arm∗

ℓ to the next level by calling
Line 2((3))i with (ℓ = ℓ+ 1).

(3) At the end of the stream
(a) For all i ∈ [t], sample arm∗

i for 32· log
∗(K)
ε2

times and get µ̂∗
i .

(b) Return the arm with the highest µ̂∗
i .

Unlike the Naive Uniform Elimination algorithm, it is not
immediately clear how many arm pulls are used in the Ag-
gressive Selective Promotion algorithm. We can neverthe-
less use the upper bound on arm pulls in (Assadi & Wang,
2020; Maiti et al., 2021) as a blackbox.

6
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Lemma 4.2 ((Assadi & Wang, 2020; Maiti et al., 2021)).
The number of arm pulls used by the Aggressive Selective
Promotion algorithm is O(Kε2 log(

1
δ )).

Note that Lemma 4.2 holds deterministically without any
randomness – this is simply because of the number of arms
reaching higher levels decreases in a towering number speed.
On the other hand, it is not immediately clear which arm
the Aggressive Selective Promotion algorithm will return if
it fails. To this end, we again prove a ‘smooth version’ of
success probability for the Aggressive Selective Promotion
algorithm.

Lemma 4.3. For fixed parameters δ ∈ (0, 1), ε ∈ (0, 1),
and integer c ≥ 1, the Aggressive Selective Promotion
algorithm returns an arm∗

t with reward

µarm∗
t
≥ µ∗ − c · ε

with probability at least 1− ( 12 )
c2 · δ.

Proof. Fix a level ℓ, we define the surviving arms of level
ℓ as the set of arms that can ever reach ℓ, and let the corre-
sponding mean reward be µℓ (pending the randomness of
the arms). Our strategy is to argue that with probability at
least

(
1− ( 12 )

c2+2ℓ · δ
)

, the best arm among the surviving
arms of level ℓ can only be replaced by an arm with mean
reward at least µℓ − c · εℓ. Since arm∗ is trivially the best
arm among the surviving arms of level 1, this allows us to
guarantee the cumulative gap as a summation of cε̇ℓ across
levels – a series that converges c · ε.

We now formalize the above strategy. We first show at any
level ℓ, the value of the ‘benchmark’ µ∗

ℓ does not go below

µℓ− c
2 · εℓ with probability at least

(
1− ( 12 )

c2+3rℓ · δ
)

. To
see this, note that by an application of Lemma A.2, for any
arm with mean reward µ, there is

Pr (µ̂ ≤ µ− c · εℓ/2) ≤ exp

(
−2c2 · (log(1

δ
) + 3rℓ)

)
(arm is pulled sℓ = 8βℓ(ln(

1
δ ) + 3rℓ) times)

≤ (
1

2
)c

2+3rℓ · δ.

As such, let µℓ be the mean reward of the best surviving arm
of level ℓ, the empirical reward for µℓ is at least µℓ − c

2 · εℓ.
Suppose the value of µ∗

ℓ (the benchmark reward) is less than
µℓ − c

2 · εℓ; then, when µℓ joins level ℓ, the benchmark is
updated to the value with probability at least 1−( 12 )

c2+3rℓ ·δ.

We then show that at any level ℓ, any arm with reward less
than µℓ− εℓ can have a empirical reward of at most µℓ− εℓ

2

with probability 1− ( 12 )
c2+2rℓ · δ, again by an application

of Lemma A.2. For an arm with reward µ, there is

Pr (µ̂ ≥ µ+ c · εℓ/2) ≤ exp

(
−2c2 · (log(1

δ
) + 3rℓ)

)
(arm is pulled sℓ = 8βℓ(ln(

1
δ ) + 3rℓ) times)

≤ (
1

2
)c

2+3rℓ · δ.

As such, we can apply a union bound over the bad events,
and obtain that

Pr (µ̂ ≥ µ+ c · εℓ/2 for any arm on level ℓ)

≤ cℓ · (
1

2
)c

2+3rℓ · δ ≤ (
1

2
)c

2+2rℓ · δ.

For any integer c, we now have the following statement: by
a union bound, with probability at least

1−
(
(
1

2
)c

2+2rℓ + (
1

2
)c

2+3rℓ)

)
· δ ≥ 1− (

1

2
)c

2+2ℓ · δ,

the benchmark reward on level ℓ is at least µℓ − c · εℓ2 , and
an arm with such an empirical reward has to have a mean
reward of at least µℓ − c · εℓ. Therefore, we conclude that
at a fixed level ℓ and for any integer c, the best arm∗

ℓ has to
have a mean reward at least µℓ − c · εℓ with probability at
least 1− ( 12 )

c2+2ℓ · δ. We define this high-probability event
at level ℓ as Aℓ.

Finally, we handle the accumulation of error and failure
probability across levels. Note that the failure probability
across different levels can be bounded by

Pr (¬Aℓ at any level ℓ) ≤
t∑

ℓ=1

(
1

2
)c

2+2ℓ · δ

≤ (
1

2
)c

2

δ

∞∑
ℓ=1

(
1

2
)2ℓ

≤ (
1

2
)c

2

· δ.

Conditioning on the high probability event over all levels
of ℓ, the cumulative gap between the best surviving arm on
level 1 (which is arm∗) and on level t is at most

t∑
ℓ=1

c · εℓ = c ·
∞∑
ℓ=1

εℓ

≤ c · ε

30

∞∑
ℓ=1

1

2ℓ−1

≤ c · ε,

as desired by the lemma statement.

We can now arrive at our main log∗(K)-memory regret
minimization algorithm by combining Lemmas 4.1 to 4.3.
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Theorem 3. There exists a single-pass streaming algo-
rithm that given a multi-armed bandit instance arriving
in a stream with fixed parameters T , K such that T >
K, carries out arm pulls with expected regret E [RT ] ≤
O(K1/3T 2/3) and uses a memory of ⌈log∗(K)⌉+ 1 arms.

Proof. By Lemma 4.3, for any given parameter ε, there is

Pr
(
µarm∗

t
< µ∗ − c · ε

)
≤ (

1

2
)c

2

· 1
10
≤ (

1

2
)c · 1

10
.

by setting δ = 1
10 . As such, we can match the parameters in

Lemma 4.1 by S = ⌈log∗(K)⌉ + 1 and M = O(K) as in
Lemma 4.2. This gives us the desired bound of

E [RT ] ≤ O

(
M · T

2/3

K2/3
+K1/3T 2/3

)
= O(K1/3T 2/3),

which is asymptotically optimal for any streaming algorithm
with o(K)-arm memory.

Remark 2. In (Assadi & Wang, 2020), there are additional
algorithms with log(K)- and log log(K)-arm memory that
find ε-best arms with O(Kε2 ) arm pulls. Since they follow
the same paradigm to apply concentration bounds as in
Aggressive Selective Promotion, it can be shown that they
can also be converted to regret minimization algorithms with
the optimal expected regret. We provide their algorithmic
description in Appendix E.2 without proofs since they are
very similar to Lemma 4.3. We remark that although the
memory bounds are worse, for practical implementation,
their regret could be smaller than the Aggressive Selective
Promotion, and the memory difference is not significant up
to 1010 arms. We will see more on this in Section 5.

A discussion about the single-arm algorithm. One may
naturally wonder whether we can achieve a single-arm mem-
ory by the smooth-failure bounded regret lemma – after all,
we are using known algorithms, and the main innovation lies
in the analysis. Alas, it appears that at least the single-arm
algorithm in (Assadi & Wang, 2020) does not follow the
property. At a high level, the single-arm algorithm (and a
variate that stored 2 arms, both known as GAME-OF-ARMS)
in (Assadi & Wang, 2020) uses the ideas of (i). a multi-level
challenge with a geometrically increasing number of arm
pulls, and (ii) a “budget” the number of arm pulls that is
used for a stored arm. They proved that if the stored arm
is sufficiently good, say it is the best arm, then with prob-
ability at least 99/100 (or some arbitrary 1 − δ by paying
log(1/δ)), the number of arm pulls we used will never ex-
ceed a (varying) budget. As such, we can discard an arm
whose arriving “challengers” uses a large number of arm
pulls if we only want to find the best arm with high constant
probability.

However, for the expected regret minimization task, with
probability∼ 1/100, the best arm can actually be discarded,

and the algorithm may return an arbitrary arm. One can
think of an adversarial instance that uses a considerable
number of arms with suboptimal yet ”high enough” rewards
that “almost exhaust” the sample bound of the stored best
arm; then a very bad arm (say with reward 0.0001) comes
but still manages to break the sample budget with a small
constant probability. Now, the algorithm may commit to
this arm, and the expected regret becomes at least T >>
K. Therefore, it is not immediately clear whether we can
achieve O(1)-arm for the expected regret minimization in a
single pass, and it is an interesting direction to pursue.

5 Implementation and Simulation Results

In this section, we show the empirical evaluation of our
algorithms under simulations on Bernoulli arms. In partic-
ular, we implemented and tested the uniform exploration
algorithm, the naive uniform elimination algorithm, the al-
gorithms from ε-best arm with O(log(K)), O(log log(K))
and O(log∗(K)) memory, and the 2-arm GAME-OF-ARMS
algorithm as in (Assadi & Wang, 2020). The uniform explo-
ration algorithm is used as the benchmark as it is the known
best regret minimization algorithm with provable guarantees
in a single pass.

Our simulation results find that the proposed algorithm in
this paper outperforms the baseline by a significant margin.
Under all of our setting (each with 50 runs), there is at least
one ε-best arm-based algorithm that achieves 80% of the
benchmark regret on average and 70% on median, and the
margin can be as significant as 70% of the benchmark when
T is large (i.e. 30% regret of the benchmark). Across
different settings, the best algorithm (the O(log log(K))-
space algorithm) outperforms the uniform exploration algo-
rithm by around 30% of the mean regret (i.e. 70% of the
benchmark mean regret) and > 50% of the median regret
(i.e. < 50% of the benchmark mean regret), while all the
ε-best arm-based algorithm outperforms the uniform explo-
ration and the naive elimination in most cases. Interestingly,
the 2-arm GAME-OF-ARMS algorithm offers competitive
performances, despite being theoretically sub-optimal in
(worst-case instance) expected regret.

Limited by space, we only show the experimental results
for one of the settings in Table 1 and Figure 1, where the
number of arms is set to K = 50000, and the number of
arm pulls are tested with 1000K, 1000K2 and 1000K3 4.
The means of the reward distributions in each instance are
sampled uniformly from [0, 1], and we include 50 runs in
each setting. The regrets in the table is of the relative scale:
we treat the regret of the uniform exploration algorithm
as 1.0 for benchmark. From the table and the figure, we

4In the figures, we use log(n), log log(n), and log∗(n) (using
notation of n instead of K) as type of algorithms to keep consistent
with the original algorithms in the pure exploration context.
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Figure 1. The regret error bars for K = 50000 uniform reward setting of the stream.

Table 1. The comparison of the relative regret for different algorithms under setting K = 50000 uniform stream setting.
Uniform

Exploration
Naive

Elimination
log(K)
ε-best

log log(K)
ε-best

log∗(K)
ε-best

Game-of-
Arms

Mean Regret
T = 1000K 1.0 3.7355 0.4274 0.4000 0.6012 1.0290
T = 1000K2 1.0 3.0423 0.5989 0.4374 0.5733 1.2976
T = 1000K3 1.0 2.8652 0.5686 0.5117 0.5982 1.0960
Median Regret
T = 1000K 1.0 3.7555 0.4264 0.3994 0.6036 1.0008
T = 1000K2 1.0 3.1974 0.5525 0.3776 0.5713 1.1953
T = 1000K3 1.0 3.0008 0.4393 0.3789 0.5142 0.9996

can observe the competitive performances offered by the
log(K)-, log log(K)-, and log∗(K)-memory algorithms.

We defer the full details of the experiments and the discus-
sions to Appendix D.

6 Conclusion

In this paper, we studied the tight lower and upper
bounds for regret minimization for single-pass stream-
ing multi-armed bandits. In particular, we first improved
the regret lower bound for streaming algorithms with
o(K) memory from max{Ω(T 2/3),Ω(K1/3T 2/3/m7/3)}
to Ω(K1/3T 2/3), which is tight in both T and K. We then
proved that the Θ(K1/3T 2/3) regret, with high (constant)
probability, can be achieved by adopting an ε-best arm al-
gorithm with O(K/ε2) arm pulls, setting the parameter
ε = (K/T )1/3, and committing to the returned arm. Finally,
we showed that the simple exploration-and-commit strategy
can achieve the expected optimal regret of Ω(K1/3T 2/3)
with a large family of streaming ε-best arm algorithms, and
the memory can be as small as O(log∗(K)). We empirically
tested the performances of the ε-best arm-based algorithms
on simulations of MABs streams, and we found that the
proposed algorithms can significantly outperform the bench-
mark uniform exploration algorithm.

Our work completes the picture for regret minimization
in single-pass streaming MABs with sublinear arm mem-

ory. On the other hand, it also opens several directions of
open problems for future exploration. The first question
is whether the memory of arms can be further reduced to
O(1) or a single arm, as did in the pure exploration algo-
rithms of (Assadi & Wang, 2020) and (Jin et al., 2021). Note
that the single-arm memory algorithm in (Assadi & Wang,
2020) may actually return a very bad arm, and it is unclear
whether the algorithm in (Jin et al., 2021) has the smooth-
failure property. Another open question is the multi-pass
setting, where (Agarwal et al., 2022) proved tight bounds
for regrets minimization with sublinear arm memory as a
function of T , but the tight dependent on K is still unclear.
Finally, it will be interesting to see the application of our
algorithms in real-world scenarios.
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Kaufmann, E., Cappé, O., and Garivier, A. On the com-
plexity of best-arm identification in multi-armed bandit
models. J. Mach. Learn. Res., 17:1:1–1:42, 2016. 1

Komiyama, J., Honda, J., and Nakagawa, H. Optimal regret
analysis of thompson sampling in stochastic multi-armed
bandit problem with multiple plays. In International Con-
ference on Machine Learning, pp. 1152–1161. PMLR,
2015. 1

Kremer, I., Mansour, Y., and Perry, M. Implementing the
”wisdom of the crowd”. In Kearns, M. J., McAfee, R. P.,
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Tight Regret Bounds for Single-pass Streaming Multi-armed Bandits

A Technical Preliminaries

We use the following standard variant of Chernoff-Hoeffding bound.

Proposition A.1 (Chernoff-Hoeffding bound). Let X1, . . . , Xm be m independent random variables with support in [0, 1].
Define X :=

∑m
i=1 Xi. Then, for every t > 0,

Pr (|X − E [X]| > t) ≤ 2 · exp
(
−2t2

m

)
.

A direct corollary of this bound that we use in our proofs is the following.

Lemma A.2. Let arm1 and arm2 be two different arms with rewards µ1 and µ2. Suppose we sample each arm 4 · S
θ2 times

for some S ≥ 2 to obtain empirical rewards µ̂1 and µ̂2. Then, if µ1 − µ2 ≥ c · θ for some integer c ≥ 1, we have

Pr (µ̂1 ≤ µ̂2) ≤ (
1

2
)c

2−1 · exp (−S) .

Proof. The proof is a standard application of the Chernoff bound Proposition A.1. For the empirical reward of µ̂2 to be
greater than µ̂1, both of the low-probability following events are neceesary to happen:

Pr (µ̂1 ≤ µ1 − c · θ/2) ≤ exp
(
−2 · (c · θ/2)2 · (4S/θ2)

)
≤ exp

(
−c2 · S

)
;

Pr (µ̂2 ≥ µ2 + c · θ/2) ≤ exp
(
−2 · (c · θ/2)2 · (4S/θ2)

)
= exp

(
−c2 · S

)
.

For c = 1, a union bound on the events above gives us the desired bound. For c ≥ 2, we have

exp
(
−c2 · S

)
≤ exp

(
−c2

)
· exp (−S) (sc2 ≥ s+ c2 for S ≥ 1 and c ≥ 2)

≤ (
1

2
)c

2

· exp (−S) ,

and applying a union bound over the two cases gives us the desired statement.

B Missing Details of Section 3

We start with introducing the guarantee of the ε-best arm algorithms in (Assadi & Wang, 2020; Jin et al., 2021).

Proposition B.1 ((Assadi & Wang, 2020; Jin et al., 2021)). There exists a single-pass streaming algorithm that given
a stream of stochastic multi-armed bandits, an error parameter ε ∈ (0, 1), and a confidence parameter δ ∈ (0, 1), with
probability at least 1− δ return an arm with reward µε such that µε ≥ µ∗ − ε with O(Kε2 log(

1
δ )) arm pulls and a memory

of a single arm.

For completeness, we include the algorithm of (Jin et al., 2021) that achieves the property described in Proposition B.1 – for
our purpose, the algorithm of (Jin et al., 2021) is strictly better than that of (Assadi & Wang, 2020) since the latter needs a
memory of 2 arms, and the sample complexity as an additive term proportional to 1/ε3. The algorithm of (Jin et al., 2021)
can be described as follows.

Parameter Set 2:

{sℓ}ℓ≥0 : r0 := 0, s1 :=
16

ε2
· log(1

δ
) sℓ := (2ℓ − 2ℓ−1) · s1 (number of samples used in each level)

{τj}j≥1 : τj :=
32

ε2
· log(j

2

δ
) (the “total budget” threshold for comparing with the j-th arriving arm)

pj =
1

log(j) + 1
(probability for setting the values of the gap parameter)

13
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The Single-pass ε-best Arm Algorithm of (Jin et al., 2021)

1. Maintain a stored arm armo and empirical reward µ̂∗ of the stored arm.

2. After each update of armo, start an epoch as follows:

(1) Let armj be the j-th arm after an epoch.
(2) Sample α = ε

4 with probability pj and α = ε
2 with probability 1− pj .

(3) Starting from level ℓ = 1:
i. Sample armj for sℓ times and get µ̂armj .
ii. If µ̂armj

< µ∗
ℓ + α, drop armj ;

iii. Otherwise, if 2ℓ · s1 > τj , replace armo with armj and set µ∗
ℓ = µ̂armj , and start a new epoch from Line 2.

iv. Otherwise, send armj to the next level by calling Line 2((3))i with (ℓ = ℓ+ 1).
(4) Output armo by the end of the stream.

It is easy to observe that the algorithm only uses a memory of a single arm (in addition to the one in the buffer). (Jin
et al., 2021) proved that with high probability, the algorithm uses at most O(Kε2 log(

1
δ )) arm pulls and returns an ε-best arm.

We now show that by picking the appropriate ε, it is straightforward to attain the O(K1/3T 2/3) regret for any constant
probability.

Proof of Theorem 2. The algorithm is simply as follows.

1. Run the algorithm in Proposition B.1 with parameter ε = 1
2 · (

K
T )1/3, obtain armε.

2. Commit to armε for all the remaining trials.

It is easy to see the algorithm only requires a single-arm memory. As such, we only need to analyze the regret. Note that the
regret to find the ε-best arm is at most

2K

(KT )2/3
· log(1

δ
) = 2 log(1/δ) ·K1/3T 2/3.

On the other hand, conditioning on the algorithm succeeds, which happens with probability 1− δ, the reward gap between
the best arm and the arm we commit to is at most (KT )1/3. As such, the total regret is at most

T · (K
T
)1/3 = K1/3T 2/3.

Summing up the two regret terms gives us the desired statement.

C Warm-up: A single-arm memory algorithm with O(K1/3T 2/3 log(K)) expected regret

To begin with, we first give an algorithm with O(K1/3T 2/3 log(K)) regret by analyzing the naive uniform elimination
algorithm (folklore, see also (Even-Dar et al., 2002)) for ε-best arm. The algorithm is given as follows.

Naive Uniform Elimination – input parameters ε ∈ (0, 1), δ ∈ (0, 1)

1. Maintain space of a single extra arm and a best mean reward µ̂∗ with initial value 0.

2. For each arriving armi pull 16
ε2 log(Kδ ) times, record the empirical reward µ̂i.

3. If µ̂i > µ̂∗, discard the stored arm and let the armi be the stored arm; update µ̂∗ = µ̂i.

14
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4. Otherwise, discard µ̂i and keep the stored arm unchanged.

5. Return the stored arm by the end of the stream.

It is straightforward to see that the naive uniform elimination algorithm only requires a memory of a single-arm. Furthermore,
the total number of arm pulls of the algorithm is clearly 16K

ε2 log(Kδ ). Note that the algorithm description is slightly different
from the vanilla Uniform Elimination algorithm as described in (Even-Dar et al., 2002) – the importance of the subtle
difference will be clear in the analysis, which we show as the follows.

Lemma C.1. For fixed parameters δ ∈ (0, 1), ε ∈ (0, 1), and integer c ≥ 1, the Naive Uniform Elimination algorithm
returns an arm with reward

µarm ≥ µ∗ − c · ε

with probability at least 1− ( 12 )
c2 · δ.

Proof. The lemma is obtained by straightforward applications of the Chernoff bound and Lemma A.2. Concretely, the
arm-pulling line in the Native Uniform Elimination algorithm is equivalent to setting S = 4 log(Kδ ) for each arm comparison
in Lemma A.2. As such, for a fixed integer c ≥ 1, when arm∗ arrives, it has empirical reward

Pr
(
µ̂arm∗ < µ∗ − c · ε

2

)
≤ (

1

2
)c

2−1 · exp(−4 log(K
δ
))

≤ (
1

2
)c

2+1 · δ
K

.

As such, with probability at least 1− ( 12 )
c2+1 · δ

K , the estimation of µ̂∗ eventually becomes at least µ∗ − c · ε2 . On the other
hand, if an armi has a reward less than µ∗ − c · ε we have

Pr
(
µ̂i > µi + c · ε

2

)
≤ (

1

2
)c

2−1 · exp(−4 log(K
δ
))

≤ (
1

2
)c

2+1 · δ
K

.

And a union bound over at most K arms gives us that no arm with a mean reward less than µ∗− c · ε can be stored in the end
with probability at least ( 12 )

c2+1 · δ. Finally, we take a union bound over the failure probability of the aforementioned events,
and conclude that with probability at least 1− ( 12 )

c2 · δ, the final returned arm is with a mean reward at least µ∗ − c · ε.

With Lemma C.1 establishing the ‘smooth failure probability’, we can now apply Lemma 4.1 to obtain the regret guarantee
for streaming algorithms with uniform elimination.

Proposition C.2. There exists a single-pass streaming algorithm that given a multi-armed bandit instance arriving
in a stream with fixed parameters T , K such that T > K, carries out arm pulls with expected regret E [RT ] ≤
O(K1/3T 2/3 log(K)) and uses a memory of a single extra arm.

Proof. By Lemma C.1, we know that for any given parameter ε, there is

Pr (µarm < µ∗ − c · ε) ≤ (
1

2
)c

2

· 1
10
≤ (

1

2
)c · 1

10
.

by setting δ = 1
10 . As such, we can match the parameters in Lemma 4.1 by S = 1 and M = 16K log(10K). This gives us

the desired bound of

E [RT ] ≤ O

(
M · T

2/3

K2/3
+K1/3T 2/3

)
= O(K1/3T 2/3 log(K)).
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D Missing Details of Section 5

We present the full simulation results and discussions in this section.

D.1 Simulation and Experiment Settings

We start with introducing the details for the experiment setup. We test the algorithms for arms with Bernoulli reward
distributions. If the mean of the reward is µ, to simulate a pull of a Bernoulli arm, it suffices to draw a uniform at random
sample from [0, 1] and see if it is below µ 5. We construct the stream of arms as a buffer, and the buffer can feed arms to the
algorithm whenever needed. In particular, we test two types of streams:

1. The uniform reward setting: all the rewards of the arms are generated uniformly at random from (0, 1).

2. The standout setting: there is one arm with mean reward µ = 0.82, and all other arms are with mean reward µ drawn
from a truncated Gaussian distribution with mean 0.5 and upper tail cutting-off at 0.8.

The stream is then ordered randomly by the buffer before it is fed into the algorithms.

We consider the number of arms with K = 500, K = 5000, and K = 50000. In each case, we further consider different
number of arm pulls: T = 1000K, T = 1000K2, and T = 1000K3. In the implementation of different algorithms, we
keep the leading constant to be 1 (i.e. we treat O(·) operation as with multiplicative factor of 1) except for multiplicative
factor in the multi-level increment of samples (which we use 1.2 instead since it has to be > 1). We also keep the same ε
across levels (as opposed to using ε

2ℓ
) since the number of levels is small in our experiments. The simulations are all carried

on a personal device with Apple M1 chip and 8GB memory, and each setting contains 50 runs with fixed random seeds from
0 to 49 for reproducibility.

D.2 Simulation Results

We report the simulation results for each number of arms and type of stream settings separately, and merge the other factors
into separate tables and plots, respectively. The regrets in the tables are in the relative scale, i.e., we treat the regret of the
uniform exploration algorithm as the benchmark (1.0), and compute the relative regrets of other algorithms.

Tables tables 2 to 1 summarize the mean and median regrets of the uniform reward setting; and Tables 5 to 7 give the mean
and median regrets of the standout streaming setting, where there is an arm whose reward is much better than others.

Table 2. The comparison of the relative regret for different algorithms under setting K = 500 uniform stream setting.
Uniform

Exploration
Naive

Elimination
log(K)
ε-best

log log(K)
ε-best

log∗(K)
ε-best

Game-of-
Arms

Mean Regret
T = 1000K 1.0 2.5732 0.5068 0.43331 0.6790 1.1131
T = 1000K2 1.0 2.3139 0.4242 0.3670 0.6828 0.9793
T = 1000K3 1.0 1.9321 0.8298 0.6504 0.6411 0.9693
Median Regret
T = 1000K 1.0 2.5816 0.5000 0.4359 0.6757 1.1111
T = 1000K2 1.0 2.3153 0.4023 0.3604 0.6095 0.9768
T = 1000K3 1.0 2.106 0.3941 0.3403 0.5225 0.8701

5Due to limited computational power, when the number of arm pulls is large, e.g. > 105, we approximate the arm pull result by
directly adding a Gaussian noise to µ.
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Table 3. The comparison of the relative regret for different algorithms under setting K = 5000 uniform stream setting.
Uniform

Exploration
Naive

Elimination
log(K)
ε-best

log log(K)
ε-best

log∗(K)
ε-best

Game-of-
Arms

Mean Regret
T = 1000K 1.0 3.3398 0.4650 0.4291 0.6328 1.0713
T = 1000K2 1.0 3.1102 0.3840 0.4773 0.6728 0.9241
T = 1000K3 1.0 2.1362 0.5515 0.4880 0.5639 1.0329
Median Regret
T = 1000K 1.0 3.3684 0.4653 0.4293 0.6379 1.0718
T = 1000K2 1.0 3.0815 0.3838 0.4285 0.6276 0.9236
T = 1000K3 1.0 2.3269 0.4429 0.3438 0.4334 0.9293

Table 4. (Repeat from Section 5) The comparison of the relative regret for different algorithms under setting K = 50000 uniform stream
setting.

Uniform
Exploration

Naive
Elimination

log(K)
ε-best

log log(K)
ε-best

log∗(K)
ε-best

Game-of-
Arms

Mean Regret
T = 1000K 1.0 3.7355 0.4274 0.4000 0.6012 1.0290
T = 1000K2 1.0 3.0423 0.5989 0.4374 0.5733 1.2976
T = 1000K3 1.0 2.8652 0.5686 0.5117 0.5982 1.0960
Median Regret
T = 1000K 1.0 3.7555 0.4264 0.3994 0.6036 1.0008
T = 1000K2 1.0 3.1974 0.5525 0.3776 0.5713 1.1953
T = 1000K3 1.0 3.0008 0.4393 0.3789 0.5142 0.9996

Table 5. The comparison of the relative regret for different algorithms under setting K = 500 standout stream setting.
Uniform

Exploration
Naive

Elimination
log(K)
ε-best

log log(K)
ε-best

log∗(K)
ε-best

Game-of-
Arms

Mean Regret
T = 1000K 1.0 2.4357 0.6090 0.5606 0.7883 1.2690
T = 1000K2 1.0 2.3154 1.0294 0.5368 0.7982 0.9398
T = 1000K3 1.0 2.1100 1.9985 0.3553 1.7054 0.8556
Median Regret
T = 1000K 1.0 2.6234 0.4762 0.4493 0.7530 1.1208
T = 1000K2 1.0 2.3154 0.4195 0.3915 0.6476 0.9425
T = 1000K3 1.0 2.1100 0.3778 0.3545 0.5900 0.8595

Table 6. The comparison of the relative regret for different algorithms under setting K = 5000 standout stream setting.
Uniform

Exploration
Naive

Elimination
log(K)
ε-best

log log(K)
ε-best

log∗(K)
ε-best

Game-of-
Arms

Mean Regret
T = 1000K 1.0 2.9354 0.7552 0.6405 0.7705 1.2104
T = 1000K2 1.0 2.9551 0.8746 0.4686 0.6112 0.8653
T = 1000K3 1.0 2.6700 9.1241 4.3835 1.7245 0.7826
Median Regret
T = 1000K 1.0 3.1183 0.8236 0.6978 0.8849 1.2310
T = 1000K2 1.0 2.9551 0.3994 0.3728 0.6122 0.8656
T = 1000K3 1.0 2.6700 0.3622 0.3392 0.5508 0.7835
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Table 7. The comparison of the relative regret for different algorithms under setting K = 50000 standout stream setting.
Uniform

Exploration
Naive

Elimination
log(K)
ε-best

log log(K)
ε-best

log∗(K)
ε-best

Game-of-
Arms

Mean Regret
T = 1000K 1.0 3.0179 0.6323 0.5341 0.7001 1.0888
T = 1000K2 1.0 3.5402 0.8447 0.5144 0.5750 1.5099
T = 1000K3 1.0 3.1806 20.4462 0.3182 0.5162 0.7344
Median Regret
T = 1000K 1.0 3.0429 0.6213 0.5421 0.7270 1.0658
T = 1000K2 1.0 3.5402 0.3780 0.3542 0.5752 0.8194
T = 1000K3 1.0 3.1806 0.3398 0.3185 0.5156 0.7337
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From the tables, it can be observed that the ε-best arm-based algorithms consistent outperform the benchmark uniform
exploration. The naive elimination algorithm, on the other hand, offers generally poor performances – since we only test the
number of trials for as large as 1000K3 due to limited computational resource, the term (log(T ))1/3 is still much smaller
than log(K). Testing trials with even larger scale will probably help the naive elimination algorithm to catch up in the
performance.

Among the ε-best arm algorithms, it appears that the log log(K)-space algorithm consistently achieve the best mean and
median regrets. The log(K)-space algorithm is somehow unstable and offers much worse mean regret in the K = 5000 and
K = 50000 standalone stream settings. It nonetheless consistently achieves much better median regrets. We suspect this is
due to the success probability not sufficiently high, and the algorithm sometimes fails to capture an ε-best arm and commit
all remaining trials to a ‘wrong’ arm6. This also explains why the performance of the log(K)-space algorithm does not
become worse in the uniform mean-reward setting. Interestingly, the GAME-OF-ARMS algorithm in (Assadi & Wang, 2020)
offers better performance than the naive elimination algorithm, although theoretically, there is a log(K)

ε3 term on the sample
complexity, which translates into (T/K) · log(K) regret – a worse regret bound when T is very large.

We further provides figures of the regrets with the error bars, showing the fluctuations of regrets in each setting in more
details. Since there are some huge gaps between the regrets with different algorithms, we use log10(·) scale for the regret.

From the figures, it can be observed that the log(K)-space algorithm gives the most unstable performances and the most
extreme outliers, while other ε-best algorithms are generally stable. In the uniform reward setting, the first and third quartiles
of the rewards do not change drastically w.r.t. T , and there are generally less extreme outliers when T is larger. This is
because in the uniform reward setting, the differences between the ε-best arms starts to matter, yet the cost of committing to
a mediocre arm becomes lower. On the other hand, in the standout reward setting, when T is smaller, the first and third
quartiles of the reward distributions have larger ranges, but there are generally less extreme outliers. This matches our
understanding of the behaviors of the algorithms: when T is smaller, there a good chance that the algorithm terminates
before finding an ε-best arm; on the other hand, when T becomes larger, committing to a ‘wrong’ arm is much more
expensive.

Figure 1. The regret error bars for K = 500 uniform reward setting of the stream.

6It is likely that this problem can be fixed by a heuristic search for the constant on the log(K)-space algorithm. However, we do not
pursue this direction in this paper.
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Figure 2. The regret error bars for K = 5000 uniform reward setting of the stream.

Figure 1. (Repeat from Section 5) The regret error bars for K = 50000 uniform reward setting of the stream.

Figure 3. The regret error bars for K = 500 standout reward setting of the stream.

Figure 4. The regret error bars for K = 5000 standout reward setting of the stream.
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Figure 5. The regret error bars for K = 50000 standout reward setting of the stream.
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E Details for Additional Algorithms

We provide the descriptions for the streaming implementation of the uniform exploration algorithm and the additional
algorithms we mentioned in Remark 2.

E.1 Uniform Sampling Algorithm under the Streaming Setting

We first give the streaming implementation of simple uniform exploration algorithm. The algorithm is to simply pull each
arm N times, pick the arm with the highest empirical reward, and commit to the returned arm for the rest of the trials (if
any). As such, the streaming adaptation is extremely straightforward:

Streaming Uniform Exploration – parameters N : number of arm pulls for each arm

1. Maintain space of a single extra arm and a best mean reward µ̂∗ with initial value 0.

2. For each arriving armi pull N times, record the empirical reward µ̂i.

3. If µ̂i > µ̂∗, discard the stored arm and let the armi be the stored arm; update µ̂∗ = µ̂i.

4. Otherwise, discard µ̂i and keep the stored arm unchanged.

5. Return the stored arm by the end of the stream.

It is easy to see that we only need to main a single arm (in addition to the arriving buffer) during the stream. Furthermore, it
is folklore that if we set N = O(( T

K )2/3 log1/3(T )), the expected regret is attained at O(K1/3T 2/3 log1/3(T )).

E.2 The log(K)- and log log(K)-memory streaming algorithms

We now introduce the algorithms used with log(K)- and log log(K)-memory, which are implemented in Section 5 and
at times offer more competitive performances than the log∗(K)-memory algorithm. We opt to include their descriptions
since the ε-best algorithms were not described in (Assadi & Wang, 2020). We however omit the proofs for the algorithms
to achieve the optimal regret since it is very similar to Lemma 4.3, and leave it as an exercise for keen readers. For the
O(1)-memory GAME-OF-ARMS algorithm and the single-arm memory algorithm, we refer the reader to the respective
work (Assadi & Wang, 2020; Jin et al., 2021).

The algorithm with O(log(K)) can be described as follows.

An algorithm with O(logK)-arm space and O(K1/3T 2/3) expected regret:
Input parameter: K number of arms; T number of trials
Parameters:

ε = (
K

T
)1/3

εℓ =
1

10
· ε

2ℓ−1

{sℓ}ℓ≥1 : sℓ =
4

ε2ℓ
·
(
ln (1/δ) + 3ℓ

)
.

Maintain:

• Buckets: B1, B2, ..., Bt, each of size 4 for t := ⌈log4 (K)⌉.

Algorithmic procedure:

• For each arriving armi in the stream do:
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(1) Add armi to bucket B1.
(2) If any bucket Bℓ is full:

(a) We sample each arm in Bℓ for sℓ times;
(b) Send the arm∗

ℓ with the highest empirical reward to Bℓ+1, an clear the bucket Bℓ;

• At the end of the stream, pick the best arm of each bucket with sℓ times, repeat line (2) regardless of whether the
bucket is full.

• Pick arm∗
t of bucket Bt as the selected arm, and commit the rest of the trials to this arm.

This algorithm is very similar to the O(log(K))-arm algorithm for best-arm identification in (Assadi & Wang, 2020); in
fact, the only technical difference between this algorithm and the original is the usage of exponentially decreasing ε across
levels. We shall note that this is in contrast with the O(log log(K))-arm and O(log∗(K))-arm algorithms, in which the
modification to challenge a fixed reward threshold plays an important role. The algorithm with O(log log(K))-arm space
can be shown as follows.

An algorithm with O(log logK)-arm space and O(K1/3T 2/3) expected regret:
Input parameter: K number of arms; T number of trials
Parameters:

ε = (
K

T
)1/3

εℓ =
1

10
· ε

2ℓ−1

{sℓ}ℓ≥1 : sℓ =
4

ε2ℓ
·
(
ln (1/δ) + 3ℓ

)
; sT :=

4

ε2
· (ln (1/δ) + ln (K)) .

Maintain:

• Buckets: B1, B2, ..., Bt−1, each of size 4 for t := ⌈log4 ln (K)⌉; Bt is of size 1.

• Best-reward on level t: µ∗
t initialized to 0.

Algorithmic procedure:

• For each arriving armi in the stream do:

(1) Add armi to bucket B1.
(2) For any level ℓ < t: Bℓ is full:

(a) We sample each arm in Bℓ for sℓ times;
(b) Send the arm∗

ℓ with the highest empirical reward to Bℓ+1, an clear the bucket Bℓ;
(3) For level t:

(a) Sample the most recent arm that reaches level t st times, reward the empirical reward µ̃;
(b) If µ̃ > µ∗

t , let the most recent arm be stored, discard the stored arm at level t, and update µ∗
t ← µ̃;

• At the end of the stream, pick the best arm of each bucket with sℓ times, and send the best to higher levels even
regardless of whether the bucket is full.

• Pick the single arm∗
t of bucket Bt as the selected arm, and commit the rest of the trials to this arm.

Note that compared to the O(log log(K))-arm memory algorithm for best-identification in (Assadi & Wang, 2020), the
small yet subtle difference here is that allow more ‘slack’ for the stored arm at level t by not repetitively pulling it and using
the fixed reward threshold instead.
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