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Abstract
While diffusion models excel at generating high-
quality samples, their latent variables typically
lack semantic meaning and are not suitable for rep-
resentation learning. Here, we propose InfoDiffu-
sion, an algorithm that augments diffusion models
with low-dimensional latent variables that capture
high-level factors of variation in the data. InfoD-
iffusion relies on a learning objective regularized
with the mutual information between observed
and hidden variables, which improves latent space
quality and prevents the latents from being ignored
by expressive diffusion-based decoders. Empir-
ically, we find that InfoDiffusion learns disentan-
gled and human-interpretable latent representa-
tions that are competitive with state-of-the-art gen-
erative and contrastive methods, while retaining
the high sample quality of diffusion models. Our
method enables manipulating the attributes of gen-
erated images and has the potential to assist tasks
that require exploring a learned latent space to
generate quality samples, e.g., generative design.

1. Introduction
Diffusion models are a family of generative models charac-
terized by high sample quality (Ho et al., 2020; Dhariwal &
Nichol, 2021; Rombach et al., 2021). These models achieve
state-of-the-art performance across a range of generative
tasks, including image generation (Dhariwal & Nichol, 2021;
Ramesh et al., 2022), audio synthesis (Kong et al., 2020),
and molecule design (Jing et al., 2022; Xu et al., 2022).
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Figure 1. InfoDiffusion produces semantically meaningful
latent space for a diffusion model. (Top) Smooth latent space.
(Bottom) Disentangled, human-interpretable factors of variation.

However, diffusion models rely on latent variables that
typically lack semantic meaning and are not well-suited for
the task of representation learning (Yang et al., 2022)—the
unsupervised discovery of high-level concepts in data (e.g.,
topics across news articles, facial features in human photos,
clusters of related molecules). This paper seeks to endow
diffusion models with a semantically meaningful latent
space while retaining their high sample quality.

Specifically, we propose InfoDiffusion, an algorithm that
augments diffusion models with low-dimensional latent vari-
ables that capture high-level factors of variation in the data.
InfoDiffusion relies on variational inference to optimize the
mutual information between the low-dimensional latents
and the generated samples (Zhao et al., 2017); this prevents
expressive diffusion-based generators from ignoring aux-
iliary latents and promotes their use for storing semantically
meaningful and disentangled information (Chen et al., 2016).

The InfoDiffusion algorithm generalizes several existing
methods for representation learning (Kingma & Welling,
2013; Makhzani et al., 2015; Higgins et al., 2017). Our
method is a principled probabilistic extension of DiffAE
(Preechakul et al., 2022) that supports custom priors and
discrete latents and improves latents via mutual information
regularization. It also extends InfoVAEs (Zhao et al., 2017)
to leverage more flexible diffusion-based decoders. See
Figure 2 for an overview of our method.

1



InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models

Enc 

Prior RegularizationMutual Information
Maximization

Auxiliary-Variable Diffusion

Flexible
priors
 

Figure 2. Flow chart demonstrating auxiliary-variable diffusion
model with mutual information and prior regularization.

We evaluate InfoDiffusion on a suite of benchmark datasets
and find that it learns latent representations that are compet-
itive with state-of-the-art generative and contrastive methods
(Chen et al., 2020a;b; Caron et al., 2021), while retaining
the high sample quality of diffusion models. Unlike many
existing methods, InfoDiffusion finds disentangled represen-
tations that accurately capture distinct human-interpretable
factors of variation; see Figure 1 for examples.

Contributions In summary, we make the following contri-
butions: (1) we propose a principled probabilistic extension
of diffusion models that supports low-dimensional latents;
(2) we introduce associated variational learning objectives
that are regularized with a mutual information term; (3) we
show that these algorithms simultaneously yield high-quality
samples and latent representations, achieving competitive
performance with state-of-the-art methods on both fronts.

2. Background
A diffusion model defines a latent variable distribution
p(x0:T ) over data x0 sampled from the data distribution, as
well as latents x1:T :=x1,x2,...,xT that represent a gradual
transformation of x0 into random Gaussian noise xT . The
distribution p factorizes as a Markov chain

p(x0:T )=p(xT )

T−1∏
t=0

pθ(xt |xt+1). (1)

that maps noise xT into data x0 by “undoing” a noising
(or diffusion) process denoted by q. Here we use a learned
denoising distribution pθ,which we parameterize by a neural
network with parameters θ.

The noising process q starts from a clean x0, drawn from the
data distribution (denoted by q(x0)) and defines a sequence

of T variables x1,...,xT via a Markov chain that factorizes as

q(x1:T |x0)=

T∏
t=1

q(xt |xt−1). (2)

In this factorization, we define q(xt | xt−1) =
N (xt;

√
αtxt−1,

√
1−αtI) as a Gaussian distribution

centered around a progressively corrupted version of xt−1

with a schedule α1,α2,...,αT . As shown in Ho et al. (2020),
the marginal distribution of q can be expressed as

q(xt |x0)=N (xt;
√
ᾱtx0,

√
1−ᾱtI),

where ᾱt =
∏t

s=1 αt is the cumulative product of the
schedule parameters αt.

Normally, p is trained via maximization of an evidence lower
bound (ELBO) objective derived using variational inference:

logp(x0)≥Eq(x1|x0)[logpθ(x0 |x1)]−KL(q(xT |x0)||p(xT ))

−
T∑

t=2

Eq(xt|x0)[KL(q(xt−1 |xt,x0)||pθ(xt−1 |xt))],

where KL denotes the Kullback–Leibler divergence.

Unsupervised Representation Learning A core aim
of generative modeling is representation learning, the
unsupervised extraction of latent concepts from data.
Generative models p(x,z) typically represent latent concepts
using low-dimensional variables z that are inferred via
posterior inference over p(z | x). VAEs exemplify this
framework but do not produce state-of-the-art samples.
Conversely, diffusion models produce high-quality samples
but lack an interpretable low-dimensional latent space,
making them unsuitable for representation learning.

3. Diffusion Models With Auxiliary Latents
This paper seeks to endow diffusion models with a se-
mantically meaningful latent space while retaining their
high sample quality. Our strategy is three-fold: (1) in this
section, we define a diffusion model family that supports
low-dimensional latent variables; (2) in Section 4, we define
learning objectives for this model family; (3) in Section 5,
we define a regularizer based on mutual information that
further encourages the model to learn high-quality latents.

Specifically, we define an auxiliary-variable diffusion model
as a probability distribution p(x0:T ,z) that factorizes as:

p(x0:T ,z)=p(xT )p(z)

T∏
t=1

pθ(xt−1 |xt,z). (3)

This model implements a reverse diffusion process
pθ(xt−1 | xt,z) over x0:T conditioned on auxiliary latents
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z distributed according to a prior p(z). The z is independent
of the forward process because z is meant to be a latent
representation of the input, not a control variable of diffusion.

3.1. Auxiliary Latent Variables and Semantic Prior

The goal of the auxiliary latents z is to encode a high-level
representation of x0. Unlike x1:T , the z are not constrained
to have a particular dimension and can represent a low-
dimensional vector of latent factors of variation. They can
be continuous, as well as discrete.

The prior p(z) ensures that we have a principled probabilistic
model and enables the unconditional sampling of x0. The
prior can also be used to encode domain knowledge about
z—e.g., if we know that the dataset contains K distinct
classes, we may set p(z) to be a mixture ofK components.
Alternatively, we may set p(z) to be a simple distribution
from which we can easily sample (e.g., a Gaussian).

3.2. Auxiliary-Variable Diffusion Decoder

The decoder pθ(xt−1 |xt,z) is conditioned on the auxiliary
latents z. In a trained model, the z are responsible for
high-level concepts (e.g., the age or skin color of a person),
while the sequence of xt progressively adds lower-level
details (e.g., hair texture).

Following previous work (Ho et al., 2020), we define the
decoder

pθ(xt−1 |xt,z)=
1
√
αt

(
xt−

1−αt√
1−ᾱt

ϵθ(xt,t,z)

)
with a noise prediction network ϵθ(xt−1,t,z) parameterized
by a U-Net (Ronneberger et al., 2015). We condition this
network on z using adaptive group normalization layers
(AGN), inspired by Dhariwal & Nichol (2021),

AGN(h,z)=(1+s(z))·GroupNorm(h)+b(z).

Specifically, we implement two successive AGN layers for
the auxiliary variable and time embeddings, respectively, to
fuse them into each residual block.

4. Learning and Inference Algorithms
For Auxiliary-Variable Diffusion Models

Next, we introduce learning algorithms for auxiliary-variable
models based on variational inference. We refer to the
resulting method as variational auxiliary-variable diffusion.

4.1. Variational Inference for Auxiliary-Variable Models

We apply variational inference twice to form a variational
lower bound on the marginal log-likelihood of the data (see

the full derivation in Appendix A):

logp(x0)=log Eqz

[
p(x0,z)

qϕ(z |x0)

]

≥Eqz

[
log Eqx

[
p(x0:T ,z)

qϕ(z |x0)q(x1:T |x0)

]]

≥Eqx

[
Eqz

[
log

p(x0:T ,z)

qϕ(z |x0)q(x1:T |x0)

]]
=Eqx1

[Eqz [logpθ(x0 |x1,z)]]−KL(q(z |x0)||p(z))

−KL(q(xT |x0)||p(xT ))−
T∑

t=2

Eqxt
[Eqz [KL(qt||pt)]]

:=LD(x0) (4)

where LD(x0) denotes the ELBO for a variational
auxiliary-variable diffusion model, qt,pt denote the distri-
butions q(xt−1 | xt,x0) and pθ(xt−1 | xt,z), respectively,
qz := qϕ(z | x0) is an approximate variational posterior,
qx :=q(x1:T |x0), and qxt :=q(xt |x0).

We optimize the above objective end-to-end using gradient
descent by using the reparameterization trick to backprop-
agate through samples from qϕ(z |x0) (Kingma & Welling,
2013). We use a neural network with parameters ϕ to encode
the parameters of the approximate posterior distribution of z.

4.2. Inferring Latent Representations

Once the model is trained, we rely on the approximate
posterior qϕ(z | x0) to infer z. In our experiments, we
parameterize qϕ(z |x0) as a UNet encoder (see Appendix E
for more details).

Additionally, we may encode x0 into a latent-variable xT ,
which contains information not captured by the auxiliary
variable z—usually details such as texture and high-level
frequencies. Our method iteratively runs the diffusion
process using the learned noise model ϵθ(x0,t,z):

xt+1=
√
ᾱt+1x̂0(xt,t,z)+

√
1−ᾱt+1ϵθ(xt,t,z),

where z is a latent code and x̂0(x, t, z) =
1√
ᾱt

(
xt−
√
1−ᾱtϵθ(xt,t,z)

)
is an estimate of x0 from xt.

4.3. Discrete Auxiliary-Variable Diffusion

In many settings, latent representations are inherently
discrete—e.g., the presence of certain objects in a scene, the
choice of topic in a text, etc. Variational auxiliary-variable
diffusion supports such discrete variables via relaxation
methods for deep latent variable models (Jang et al., 2016).

Specifically, at training time, we replace z with a continuous
relaxation zτ sampled from q using the Gumbel-Softmax
technique with a temperature τ . Higher temperatures τ yield
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continuous approximations zτ of z; as τ→0, zτ approaches
a discrete z. We train using a categorical distribution for the
prior p(z), and we estimate gradients using the reparameter-
ization trick. We anneal τ over the course of training to keep
gradient variance in check. At inference time, we set τ=0 to
obtain fully discrete latents. See Appendix G for more details.

4.4. Sampling Methods

At inference time, our model supports multiple sampling
procedures. First, to generate x0 unconditionally, we
can sample from the original prior p(z), as in a VAE (see
Appendix D.1 for details on generating high-quality samples
with z∼p(z)). Alternatively, we can utilize a learned prior
to potentially improve sample quality (see Appendix D.2 for
details on implementing the learned prior used in Section 6).
This learned prior is similar to the approach described in
DiffAE (Preechakul et al., 2022), where a latent diffusion
model is required to enable sampling.

5. InfoDiffusion: Regularizing Semantic
Latents By Maximizing Mutual Information

Diffusion models with auxiliary latents face two risks. First,
an expressive decoder pθ(xt−1 |xt,z) may choose to ignore
low-dimensional latents z and generatext−1 unconditionally
(Chen et al., 2016). Second, the approximate posterior
qϕ(z |x0) may fail to match the prior p(z) because the prior
regularization term is too weak relative to the reconstruction
term (Zhao et al., 2017). This degrades the quality of
ancestral sampling as well as that of latent representations.

5.1. Regularizing Auxiliary-Variable Diffusion

We propose dealing with the issues of ignored latents and
degenerate posteriors by using two regularization terms—a
mutual information term and a prior regularizer. We refer
to the resulting algorithm as InfoDiffusion.

Mutual Information Regularization To prevent the
diffusion model from ignoring the latents z, we augment
the learning objective from Equation (4) with a mutual
information term (Chen et al., 2016; Zhao et al., 2017)
between x0 and z under qϕ(x0,z), the joint distribution over
observed data x0 and latent variables z. Formally, we define
the mutual information regularizer as

MIx0,z=Eqϕ(x0,z)

[
log

qϕ(x0,z)

q(x0)qϕ(z)

]
where qϕ(z) is the marginal approximate posterior
distribution—defined as the marginal of the product
qϕ(z |x0)q(x0). Intuitively, maximizing mutual information
encourages the model to generate x0 from which we can
predict z.

Prior Regularization To prevent the model from learning
a degenerate approximate posterior, we regularize the
encoded samples z to look like the prior p. Formally, we
define the prior regularizer as

R=D(qϕ(z)||p(z)),

where D is any strict divergence.

5.2. A Tractable Objective for InfoDiffusion

We train InfoDiffusion by maximizing a regularized ELBO
objective of the form

Eq(x0)[LD(x0)]+ζ ·MIx0,z−β ·R, (5)

whereLD(x0) is from Equation (4), and ζ,β>0 are scalars
controlling the strength of the regularizers.

However, both the mutual information and the prior regular-
izer are intractable. Following Zhao et al. (2017), we rewrite
the above learning objective into an equivalent tractable
form, as described in Proposition 5.1 (see Appendix A for
the full derivation). Defining λ :=β−1,we have

Proposition 5.1. The regularized InfoDiffusion objective,
Equation (5), can be rewritten as

LI =Eq(x0,x1)[Eqz [logpθ(x0|x1,z)]]

−Eq(x0)[KL(q(xT |x0)||p(xT ))]

−
T∑

t=2

Eq(x0,xt)[Eqz [KL(q(xt−1|xt,x0)||pθ(xt−1|xt,z))]]

−(1−ζ)Eq(x0)[KL(qϕ(z |x0)||p(z))]
−(λ+ζ−1)KL(qϕ(z)||p(z)) (6)

We now state that KL(qϕ(z)||p(z)) from Equation (6) can be
replaced with any strict divergence D(qϕ(z)||p(z)) without
modifying the original objective in Proposition 5.2 (see
Appendix B for the full derivation).

Proposition 5.2. The term KL(qϕ(z)||p(z)) in Propo-
sition 5.1 can be replaced with any strict divergence
term D(qϕ(z)||p(z)) and meanwhile the InfoDiffusion
objective LI is guaranteed to be globally optimized for
any fixed value I0 of MIx0,z when input space X0 and
feature space Z are continuous spaces, ζ ≤ 1, λ ≥ 0, if
pθ(xt−1|xt,z)=q(xt−1|xt,x0) and qϕ(z)=p(z).

Thus, there are a range of divergences that can be compatible
with our framework. In our experiments, we consider the
maximum mean discrepancy (MMD) (Gretton et al., 2012),
defined as:

MMD(qϕ(z)||p(z))=Ez,z′∼qϕ(z)[k(z,z
′)]

+Ez,z′∼p(z)[k(z,z
′)]

−2Ez∼qϕ(z),z′∼p(z)[k(z,z
′)]
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Table 1. Comparison of InfoDiffusion model to other auto-encoder
(top) and diffusion (bottom) frameworks in terms of enabling
semantic latents, discrete latents, custom priors, mutual information
maximization (Max MI), and high-quality sample generation (HQ
samples).

Semantic
latents

Discrete
latents

Custom
prior

Max
MI

HQ
samples

AE ✖ ✖ ✖ ✖ ✖
VAE ✔ ✔ ✔ ✖ ✖
β-VAE ✔ ✔ ✔ ✔ ✖
AAE ✔ ✖ ✔ ✔ ✖
InfoVAE ✔ ✔ ✔ ✔ ✖

DDPM ✖ ✖ ✖ ✖ ✔
DiffAE ✔ ✖ ✖ ✖ ✔
InfoDiff ✔ ✔ ✔ ✔ ✔

where k is a positive definite kernel. In order to optimize
MMD(qϕ(z)||p(z)), we use sample-based optimization
methods for implicit models. Specifically we estimate
expectations over qϕ(z) by taking empirical averages over
samples {x(i)

0 }Ni=1∼q(x0).

5.3. Comparing InfoDiffusion to Existing Models

The InfoDiffusion algorithm generalizes several existing
methods in the literature. When the decoder performs one
step of diffusion (T =1), we recover a model that is equiv-
alent to the InfoVAE model (Zhao et al., 2017), up to choices
of the decoder architecture. When we additionally choose
λ=0, we recover the β-VAE model (Higgins et al., 2017).
When T = 1 and D is the Jensen-Shannon divergence, we
recover adversarial auto-encoders (AAEs) (Makhzani et al.,
2015). Our InfoDiffusion method can be seen as an extension
of β-VAE, InfoVAE, and AAE to diffusion decoders, similar
to how denoising diffusion probabilistic models (DDPM; Ho
et al. (2020)) extend VAEs. Finally, when ζ=λ=0, we re-
cover the DiffAE model (Preechakul et al., 2022). We further
discuss how our method relates to these prior works in Sec-
tion 7. In Table 1, we detail this comparison to special cases.

6. Experiments
In this section, we evaluate our proposed method by
comparing it to several baselines, using metrics that span
generation quality, utility of latent space representations, and
disentanglement. The baselines we compare against are: a
vanilla auto-encoder (AE) (LeCun, 1987), a VAE (Kingma
& Welling, 2013; Higgins et al., 2017), an InfoVAE (Zhao
et al., 2017), and a DiffAE (Preechakul et al., 2022).

We measure performance on the following datasets: Fash-
ionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al.,
2009), FFHQ (Karras et al., 2019), CelebA (Liu et al., 2015),

and 3DShapes (Burgess & Kim, 2018). See Appendix C
for complete hyperparameter and computational resource
details, by dataset.

As discussed in Section 4.4, for InfoDiffusion, we experi-
ment with generating images using either z drawn from the
prior or drawn from a learned latent distribution (denoted as
“w/Learned Latent” in Table 2 and Table 3, see Appendix D.2
for details).

6.1. Exploring Latent Representations

We start by exploring three qualitative desirable features of
learned representations: (1) their ability to capture high level
semantic content, (2) smooth interpolation in latent space
translating to smooth changes in generated output, and (3)
their utility in downstream tasks.

←− Fixed z, varying xT −→

Image 1

Image 2

Image 3

Figure 3. z captures high-level semantic detail. Varying xT ∼
N (0,1) (across the columns in each row) changes lower level detail
in the image. Red box indicates original image.

Auxiliary Variables Capture Semantic Information In
Figure 3, we demonstrate that our model is able to encode
high-level semantic information in the auxiliary variable. For
a fixed z and varyingxT , we find that decoded images change
in their low-level features, e.g., background, hair style.

Latent Space Interpolation We begin with two images
x
(i)
0 ,x

(j)
0 and retrieve their corresponding noise and auxiliary

latent encodings (z(i),x(i)
T ),(z(j),x

(j)
T ). Then, for 10 fixed

steps l∈ [0,1],we generate images from the latent represen-
tations (zl,xl

T ) where zl = cos(lπ/2)z(i) + sin(lπ/2)z(j)

and xl
T = sin((1 − l)ψ)x(i)

T + sin(lψ)x
(j)
T are spherical

interpolations between the auxiliary latent representation
and noise tensors of the two images, with π denoting the
angle between z(i) and z(j) andψ the angle betweenx(i)

T and
x
(j)
T . In Figure 5, we see that our model is able to combine

the smooth interpolation of variational methods with the
high sample quality of diffusion models.

Latent Variables Discover and Predict Class Labels In
addition to the qualitative inspection of our latent space,
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+ ←−−−−−−−−−−−−−−−−−−− Smile −−−−−−−−−−−−−−−−−−−→ –

Figure 4. Finding disentangled dimensions in InfoDiffusion’s auxiliary latent variable z. Images are produced through a linear traversal
along a particular dimension, spanning values from -1.5 to 1.5.

Image A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Image B

(a) VAE

(b) InfoVAE

(c) DiffAE

(d) InfoDiffusion

Figure 5. Latent space interpolation for relevant baselines (a-c) and InfoDiffusion (d). InfoDiffusion has a smooth latent space and maintains
high image generation quality. Reconstructions of the original images two different images are on the left and right ends of each row and
are marked by red boxes.

we run downstream classification tasks on z to measure its
utility, which we report in Table 2 and Table 3 as “Latent
Qual.” Specifically, we train a logistic regression classifier on
the auxiliary latent encodings of images to predict labels and
report the accuracy/AUROC (or average accuracy/AUROC
if multiple annotations are predicted) on a test set. We split
the data into 80% training and 20% test, fit the classifier on
the training data, and evaluate on the test set. We repeat this
5-fold and report mean metrics ± one standard deviation.
We also compute FID based on five random sample sets of
10,000 images to obtain mean and standard deviation.

Across datasets, we consistently see that the compact latent
representations from our models are most informative of
labels. In addition to the utility of the latent space, we
generate high-quality images.

6.2. Disentanglement

6.2.1. FINDING DISENTANGLED DIMENSIONS

We find that maximizing mutual information in the InfoDiffu-
sion objective yields disentangled components of our latent

representations. For example, in Figure 1, we see several
examples of disentangled factors. In Figure 4, we demon-
strate this in more detail, traversing a specific dimension of
z that controls smiling from values of -1.5 to 1.5.

6.2.2. DISENTANGLEMENT METRICS

DCI Score For the 3DShapes dataset, we use the Disen-
tanglement term of the DCI scores proposed in Eastwood &
Williams (2018). This disentanglement metric is calculated
as follows: for each attribute, a model is trained to predict
it using the auxiliary latent vector z. The model must also
provide the importance of each dimension of z in predicting
each attribute. Relative importance weights are converted to
probabilities that dimension i of z is important for predicting
a given label. The disentanglement score for each dimension
of z is calculated as 1 minus the entropy of the relative impor-
tance probabilities. If a dimension is important for predicting
only a single attribute, the score will be 1. If a dimension is
equally important for predicting all attributes, the disentan-
glement score will be 0. The disentanglement scores are then
averaged, with weights determined by the relative importance

6
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Table 2. Latent quality, as measured by classification accuracies for logistic regression classifiers trained on the auxiliary latent vector
z, and FID. We report mean± one standard deviation. Darkly shaded cells indicate the best while lightly shaded cells indicate the second
best. See Table 10 for the performance of varying hyperameters.

FASHIONMNIST CIFAR10 FFHQ

LATENT
QUAL. ↑ FID ↓ LATENT

QUAL. ↑ FID ↓ LATENT
QUAL. ↑ FID ↓

AE 0.819±0.003 62.9±2.1 0.336±0.005 169.4±2.4 0.615±0.002 92.3±2.7
VAE 0.796±0.002 63.4±1.6 0.342±0.004 177.2±3.2 0.622±0.002 95.4±2.4
BETA-VAE 0.779±0.004 66.9±1.8 0.253±0.003 183.3±3.1 0.588±0.002 99.7±3.4
INFOVAE 0.807±0.003 55.0±1.7 0.357±0.005 160.7±2.5 0.613±0.002 86.9±2.2
DIFFAE 0.835±0.002 8.2±0.3 0.395±0.006 32.1±1.1 0.608±0.001 31.6±1.2
INFODIFFUSION (λ=0.1,ζ=1) 0.839±0.003 8.5±0.3 0.412±0.003 31.7±1.2 0.609±0.002 31.2±1.6

W/LEARNED LATENT 7.4±0.2 31.5±1.8 30.9±2.5

of each dimension across z, to get the DCI disentanglement
score. In Table 3, we see that for the 3DShapes dataset, In-
foDiffusion attains the highest DCI disentanglement scores.

TAD For the CelebA dataset, we quantify disentanglement
using TAD (Yeats et al., 2022), which is a disentanglement
metric specifically proposed for this dataset that accounts
for the presence of correlated and imbalanced attributes.
First, we quantify attribute correlation by calculating the
proportion of entropy reduction of each attribute given any
other single attribute. Any attribute with an entropy reduction
greater than 0.2 is removed. For each remaining attribute, we
calculate AUROC score of each dimension of the auxiliary
latent vector z in detecting that attribute. If an attribute can
be detected by at least one dimension of z, i.e., AUROC
≥0.75, it is considered to be “captured.” The TAD score is
the summation of the differences of the AUROC between
the two most predictive latent dimensions for all captured
attributes. In Table 3, we again see that InfoDiffusion has
the best disentanglement performance with more captured
attributes and higher TAD scores. We additionally note that
the InfoDiffusion model balances disentanglement with
high-quality generation and good latent space quality.

For calculating DCI on 3DShapes, we follow previous work
(Locatello et al., 2019) and treat the attributes as discrete vari-
ables, using a gradient boosting classifier implemented by
scikit-learn (Pedregosa et al., 2011) as our predictor.
For disentanglement metric calculation, we split the data into
80% training and 20% test, fit the classifier on the training
data, and calculate AUROC on the test data. We repeat this
for 5-folds and report mean metrics± one standard deviation.

6.3. Discrete Latent Priors

We demonstrate the flexibility of our model by training with a
relaxed discrete prior. We train InfoDiffusion with a Relaxed
Bernoulli prior (Jang et al., 2016) on the CelebA dataset and
find that latent space quality is comparable to other models,

with average AUROC of 0.73 (details in Appendix G).

6.4. Comparison to Contrastive Methods

We compare the quality of our learned representations
to those from established contrastive learning methods,
including SimCLR (Chen et al., 2020a), MOCO-v2 (Chen
et al., 2020b), and DINO (Caron et al., 2021). In Table 4,
we report average AUROC for classifiers trained on z
to predict CelebA annotations and the TAD scores for
disentanglement1. Our findings indicate that our latent
representations are comparable, and in some instances
superior, to these robust baselines. Our approach also has
the added benefit of being a generative model. We also note
that our model uses a much smaller capacity latent variable
compared to these contrastive method baselines.

When comparing to methods with similar latent dimension,
InfoDiffusion is able to significantly outperform baseline
models. In Table 5, we compare to a fine-tuned, pre-trained
encoder of SIMCLR with an additional dense layer that
projects to 32 dimensions. We also introduce an another
baseline, PDAE (Zhang et al., 2022), which builds an auto-
encoder based on pre-trained diffusion models. Our method
outperforms these alternatives on both the disentanglement
and latent quality metrics.

6.5. Exploring InfoDiffusion Modeling Choices

Regularization Coefficients An evaluation of various
ζ and λ parameters for InfoDiffusion is presented in Ap-
pendix H. We find that prioritizing information maximization
improves both generation quality and latent space coherence,
with better performance achieved by maintaining a constant
λ and increasing ζ. However, assigning ζ values greater

1We excluded the “Number of attributes captured” metric for
this comparison, as the pre-trained contrastive method baselines
use larger latent dimension, which artificially inflates the value for
this metric.
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Table 3. Disentanglement and latent quality metrics and FID. For 3DShapes, we check the image quality manually and label the models
which generate high-quality images with check marks (‘Image Qual.’). The visualization of the samples is shown in Figure 9 in Appendix I.
For CelebA, ‘Attrs.’ counts the number of “captured” attributes when calculating the TAD score. ‘Latent Quality’ is measured as AUROC
scores averaged across attributes for logistic regression classifiers trained on the auxiliary latent vector z. We report means± one standard
deviation for quantitative metrics. Darkly shaded cells indicate the best while lightly shaded cells indicate the second best.

3DSHAPES CELEBA

DCI ↑ IMAGE QUAL. TAD↑ ATTRS↑ LATENT QUAL. ↑ FID ↓
AE 0.219±0.001 ✖ 0.042±0.004 1.0±0.0 0.759±0.003 90.4±1.8
VAE 0.276±0.001 ✖ 0.000±0.000 0.0±0.0 0.770±0.002 94.3±2.8
BETA-VAE 0.281±0.001 ✖ 0.088±0.051 1.6±0.8 0.699±0.001 99.8±2.4
INFOVAE 0.134±0.001 ✖ 0.000±0.000 0.0±0.0 0.757±0.003 77.8±1.6
DIFFAE 0.196±0.001 ✔ 0.155±0.010 2.0±0.0 0.799±0.002 22.7±2.1
INFODIFFUSION (λ=0.1,ζ=1) 0.109±0.001 ✔ 0.192±0.004 2.8±0.4 0.848±0.001 23.8±1.6

W/LEARNED LATENT ✔ 21.2±2.4
INFODIFFUSION (λ=0.01,ζ=1) 0.342±0.002 ✔ 0.299±0.006 3.0±0.0 0.836±0.002 23.6±1.3

W/LEARNED LATENT ✔ 22.3±1.2

Table 4. Representation learning comparison to contrastive meth-
ods. ‘Gen.’ indicates whether the model has generative capabilities.
‘Dim.’ denotes the latent dimension. Disentanglement is measured
by TAD. ‘Latent Quality’ is measured as AUROC scores averaged
across CelebA attributes for logistic regression classifiers trained on
latent representations. We report means± one standard deviation
for quantitative metrics. Darkly shaded cells indicate the best while
lightly shaded cells indicate the second best. † denotes that the
weights are taken from the PyTorch repository for the method.

CELEBA GEN. DIM. TAD ↑ LATENT
QUAL. ↑

SIMCLR† ✖ 2048 0.192±0.015 0.812±0.003
MOCO-V2† ✖ 2048 0.279±0.025 0.846±0.001
DINO† ✖ 384 0.000±0.000 0.592±0.003
INFODIFFUSION ✔ 32 0.299±0.006 0.836±0.002

Table 5. Representation learning comparison to SIMCLR and
PDAE with 32-dimensional latents. ‘Gen.’ indicates whether the
model has generative capabilities. ‘Attrs.’ counts the number of
“captured” attributes when calculating the TAD score. ‘Latent
Quality’ is measured as AUROC scores averaged across attributes
for logistic regression classifiers trained on z. We report means±
one standard deviation for quantitative metrics. Darkly shaded cells
indicate the best while lightly shaded cells indicate the second best.
∗ denotes that the weights are taken from the PyTorch repository
and fine-tuned with an added dense layer. ‡ denotes that the model
is re-trained using the codebase provided by this baseline.

CELEBA GEN. TAD ↑ ATTRS ↑ LATENT
QUAL. ↑

SIMCLR∗ ✖ 0.062±0.005 2.6±0.5 0.757±0.002
PDAE‡ ✔ 0.009±0.001 1.0±0.0 0.767±0.003
INFODIFF. ✔ 0.299±0.006 3.0±0.0 0.836±0.002

than 1 results in instability in the KL divergence term; thus,
we cap ζ = 1 for optimal performance. For ζ = 1, we find

that our model is robust to the choice of λ, however for the
natural image datasets, the optimal setting is λ=0.1.

Sampling Method Table 2 and Table 3 provide results
for generation using samples extracted from either the
prior distribution or a learned latent distribution, as denoted
in the ”w/Learned Latent” rows. As opposed to DiffAE,
which necessitates a latent diffusion model for effective
sampling, our model can generate high-quality images using
unconditional draws from a prior.

7. Related Work
7.1. Representation Learning in Generative Modeling

VAEs (Kingma & Welling, 2013; Higgins et al., 2017) extend
the auto-encoder framework through variational inference
algorithms to produce a generative model with semantically
meaningful and smooth latent spaces. InfoVAE (Zhao
et al., 2017) solves a key failure mode of VAEs through
mutual information regularization to improve the quality
of the variational posterior. Another paradigm, known as
Infogan (Chen et al., 2016), extends generative adversarial
networks (GANs; Goodfellow et al. (2020)) by similarly
using information maximization. Our approach has the
advantage of combining the stable training and generation
quality of diffusion models with the representation learning
capabilities of these prior works.

7.2. Diffusion Models for Representation Learning

Our work builds upon advances in diffusion models, which
enable stable, high-resolution training on varied datasets
(Dhariwal & Nichol, 2021; Ho et al., 2020; Saharia et al.,
2022; Rombach et al., 2021). Recent work has combined
auto-encoders with diffusion models—e.g., DiffAE
(Preechakul et al., 2022), a non-probabilistic auto-encoder

8
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Table 6. Analogy between progress in the space of auto-encoders and similar progress for diffusion models.
Method Non-Probabilistic Probabilistic Extension Regularized Extension

Auto-encoders AE (LeCun, 1987) VAE (Kingma & Welling, 2013) InfoVAE (Zhao et al., 2017)

Diffusion models DiffAE (Preechakul et al., 2022) Variational Auxiliary-Variable Diffusion Sec. 4 InfoDiffusion Sec. 5

model that produces semantically meaningful latents.

The relationship between our method and DiffAE is
analogous to the relationship between InfoVAE (Zhao et al.,
2017) and a regular non-probabilistic auto-encoder. Our
method augments DiffAE with: (1) a principled probabilistic
auxiliary-variable model family and (2) new learning objec-
tives based on variational mutual information maximization.
This yields a number of advantages. First, our method allows
users to specify domain knowledge through a prior and
supports the use of discrete variables. Additionally, our
improved objective maximizes mutual information, which
empirically yields more useful and disentangled latents.

Table 6 illustrates how our approach relates to previous work
on both diffusion models and mutual information regular-
ization by showing an analogy between progress in the space
of auto-encoders and similar progress for diffusion models.

8. Conclusion
In this work, we proposed InfoDiffusion, a new learning
algorithm based on a diffusion model that uses an auxiliary
variable to encode semantically meaningful information.
We derive InfoDiffusion from a principled probabilistic
extension of diffusion models that relies on variational
inference to discover low-dimensional latents. Augmenting
this variational auxiliary-variable diffusion framework with
mutual information regularization enables InfoDiffusion to
simultaneously achieve high-quality sample generation and
informative latent representations, which we use to control
generation and improve downstream prediction.

We evaluate InfoDiffusion on several image datasets
and against state-of-the-art generative and representation
learning baselines and show that it consistently produces
semantically rich and more disentangled latent representa-
tions and high-quality images. We expect InfoDiffusion will
be useful in generative design and other applications that
require both exploring a latent space and quality generation.
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A. Proof of Proposition 5.1
We start with the derivation for the ELBO of a Variational Auxiliary-Variable Diffusion Model defined in Equation (4):

logp(x0)=log

∫
p(x0:T ,z)dx1:T dz

=log

∫
p(x0:T ,z)q(x1:T |x0)qϕ(z |x0)

q(x1:T |x0)qϕ(z |x0)
dx1:T dz

=logEq(x1:T |x0)

[
Eqϕ(z|x0)

[
p(x0:T ,z)

q(x1:T |x0))qϕ(z |x0))

]]
≥Eq(x1:T |x0)

[
Eqϕ(z|x0)

[
log

p(x0:T ,z)

q(x1:T |x0))qϕ(z |x0))

]]
=Eq(x1:T |x0)

[
Eqϕ(z|x0)

[
log

p(z)p(xT )
∏T

t=1p(xt−1|xt,z)

qϕ(z |x0)
∏T

t=1q(xt|xt−1)

]]

=Eq(x1:T |x0)

[
Eqϕ(z|x0)

[
log

p(z)p(xT )p(x0|x1,z)
∏T

t=2p(xt−1|xt,z)

qϕ(z |x0)q(x1|x0)
∏T

t=2q(xt|xt−1,x0)

]]

=Eq(x1:T |x0)

[
Eqϕ(z|x0)

[
log

p(z)

qϕ(z |x0)
+log

p(xT )p(x0|x1,z)

q(x1|x0)
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T∑
t=2

log
p(xt−1|xt,z)

q(xt|xt−1,x0)

]]

=Eq(x1:T |x0)

Eqϕ(z|x0)

log p(z)

qϕ(z |x0)
+log

p(xT )p(x0|x1,z)

q(x1|x0)
+

T∑
t=2

log
p(xt−1|xt,z)

q(xt−1|xt,x0)q(xt|x0)
q(xt−1|x0)
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+Eq(xT |x0)

[
log

p(xT )

q(xT |x0)

]
+

T∑
t=2

Eq(xt−1,xt|x0)

[
Eqϕ(z|x0)

[
log

p(xt−1|xt,z)

q(xt−1|xt,x0)

]]
=Eq(x1|x0)

[
Eqϕ(z|x0)[logp(x0 |x1,z)]

]
−KL(q(xT ||x0)||p(xT ))−KL(qϕ(z |x0)||p(z))
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t=2
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[
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]
.

(7)

Averaging Equation (7) over the data distribution q(x0), the prior matching term (the third term in Equation (7)) can be
rewritten as:

−Eq(x0)KL(qϕ(z|x0)||p(z))=Eq(x0)

[
Eqϕ(z|x0)[logp(z)−logqϕ(z |x0)]

]
=Eqϕ(x0,z)

[
log

p(z)
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+logq(x0)

]
=Eqϕ(x0,z)

[
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qϕ(x0|z)qϕ(z)
+logq(x0)

]
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]
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=−KL(qϕ(z)||p(z))−MIx0,z. (8)

If we scale KL(qϕ(z)||p(z)) by λ and add a scaled mutual information term betweenx0 and z, ζMIx0,z, Equation (8) becomes:

−λKL(qϕ(z)||p(z))−MIx0,z+ζMIx0,z (9)

=Eqϕ(x0,z)

[
−λlogqϕ(z)

p(z)
−(ζ−1)log qϕ(z)

qϕ(z |x0)

]
=Eqϕ(x0,z)

[
−logqϕ(z)

λ+ζ−1qϕ(z |x0)
1−ζ

p(z)λ+ζ−1p(z)1−ζ

]
= −(λ+ζ−1)KL(qϕ(z)||p(z))−(1−ζ)Eq(x0)KL(qϕ(z |x0)||p(z)) (10)

Replacing the prior regularization term in Equation (7) with Equation (10) and averaging the remaining terms in Equation (7)
over the data distribution q(x0), we have our InfoDiffusion ELBO objective as follows:

LI =Eq(x0,x1)

[
Eqϕ(z|x0)[logpθ(x0|x1,z)]

]
−Eq(x0)[KL(q(xT |x0)||p(xT ))]

−
T∑

t=2

Eq(x0,xt)

[
Eqϕ(z|x0)[KL(q(xt−1|xt,x0)||pθ(xt−1|xt,z))]

]
−(λ+ζ−1)KL(qϕ(z)||p(z))−(1−ζ)Eq(x0)[KL(qϕ(z |x0)||p(z))] □ (11)

We parameterize pθ and qϕ with neural networks.

B. Proof of Proposition 5.2
Following Zhao et al. (2017), we first rewrite theLI objective from Equation (11) with the following changes: (1) we replace
the KL divergence between qϕ(z) and p(z) with any strict divergence D, and (2) we expand the last term of Equation (11)
into a KL divergence term and a mutual information term (as in Equation (8)):

LI =Eq(x0,x1)

[
Eqϕ(z|x0)[logpθ(x0|x1,z)]

]
−Eq(x0)KL(q(xT |x0)||p(xT ))
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−(λ+ζ−1)D(qϕ(z)||p(z))−(1−ζ)KL(qϕ(z)||p(z))−(1−ζ)MIx0,z. (12)

Note that restricting ζ≤1 and λ≥0, we have 1−ζ≥0 and ζ+λ−1≥0. For convenience, we define

η := 1−ζ ≥ 0

γ := ζ+λ−1 ≥ 0

Then, we consider the rewritten objective Equation (12) in two separate terms:

L1=Eq(x0,x1)

[
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−
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L2=−γD(qϕ(z)||p(z))−ηKL(qϕ(z)||p(z))

We will demonstrate that the two terms are maximized according to the condition in the proposition, for any values of η≥0
and γ≥0. To begin, we examineL1, for some fixed value of MIx0,z=I0.

L1=Eq(x0,x1)

[
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]
−
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=Eq(x0,x1)[logq(x0,x1)]−Eq(x1)[logq(x1)]−Eq(x1)

[
Eq(x0|x1)

[
Eqϕ(z|x0)

[
log

q(x0 |x1)

pθ(x0|x1,z)

]]]
−

T∑
t=2

Eq(x0,xt)

[
Eqϕ(z|x0)[KL(q(xt−1|xt,x0)||pθ(xt−1|xt,z))]

]
−ηI0

=Eq(x0,x1)[logq(x0,x1)]−Eq(x1)[logq(x1)]−Eq(x1)

[
Eqϕ(z|x0)[KL(q(x0 |x1)||pθ(x0|x1,z))]

]
−

T∑
t=2

Eq(x0,xt)

[
Eqϕ(z|x0)[KL(q(xt−1|xt,x0)||pθ(xt−1|xt,z))]

]
−ηI0

For any pθ(xt−1 | xt, z) that optimizes L1 we have that ∀z, pθ(xt−1|xt, z) = q(xt−1|xt, x0) if t ≥ 2, and
q(x0 |x1)=pθ(x0|x1,z), then for a fixed value of MIx0,z, the optimalL1 is

L∗
1=Eq(x0,x1)[logq(x0,x1)]−Eq(x1)[logq(x1)]−ηI0
=−Hq(x0,x1)+Hq(x1)−ηI0

where we use Hq(x0,x1) and Hq(x1) to denote the entropy of q(x0,x1) and q(x1), respectively. So we only have to
independently maximizeL2, subject to fixed some fixed MIx0,z=I0.

Notice thatL2 is maximized when qϕ(z)=p(z), and thus any strict divergence D can be substituted for the KL divergence
between qϕ(z) and p(z), as stated in the proposition. We thus need to show that qϕ(z) = p(z) is possible. When qϕ is
sufficiently flexible we simply have to partition the support setA of p(z) intoN=⌈eI0⌉ subsets {A1,···,AN}, so that each
subset satisfies

∫
Ai
p(z)dz=1/N . Similarly we partition the support set B of q(x0) into N subsets {B1,··· ,BN}, so that

each subset satisfies
∫
Bi
q(x0)dx0=1/N . Then we construct qϕ(z |x0) mapping eachBi toAi as follows

qϕ(z |x0)=

{
Np(z) z∈Ai

0 otherwise

for any x0∈Bi. It is easy to see that this distribution is normalized because∫
z

qϕ(z |x0)dz=

∫
Ai

Np(z)dz=1

Then, the equality p(z)=qϕ(z) can be established through the construction of the conditional distribution qϕ(z |x0). This
construction is carried out in a way that, when summed or integrated over all x0, gives us the unconditional distribution qϕ(z)
that matches the target distribution p(z).

Specifically, to obtain the unconditional distribution qϕ(z), we need to sum up over all x0, mathematically:

qϕ(z)=

∫
x0

qϕ(z |x0)q(x0)dx0

Given the way qϕ(z | x0) is defined, for a particular z∈Ai, this would mean summing up Np(z) exactly N times (as we
have partitioned B into N subsets and each x0 in a particular Bi gives the same Np(z)). This will result in the equality
qϕ(z)=p(z), hence demonstrating that such a match between qϕ(z) and p(z) is indeed feasible. In addition,

MIx0,z=Hq(z)−Hq(z |x0)

13
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=Hq(z)+

∫
B
q(x0)

∫
A
qϕ(z |x0)logqϕ(z |x0)dzdx0

=Hq(z)+
1

N

∑
i

∫
Bi

∫
A
qϕ(z |x0)logqϕ(z |x0)dzdx0

=Hq(z)+
1

N

∑
i

∫
Ai

Nqϕ(z)log(Nqϕ(z))dz

=Hq(z)+
∑
i

∫
Ai

qϕ(z)(I0+logqϕ(z))dz

=Hq(z)+

∫
A
qϕ(z)(I0+logqϕ(z))dz

=Hq(z)+I0−Hq(z)=I0

Then we reached the maximum for both objectives

L∗
1=Eq(x1)Hq(x0|x1)−ηI0
L∗
2=0

so their sum must also be maximized. Under this optimal solution we have that pθ(xt−1|xt,z) = q(xt−1|xt,x0) if t≥ 2,
q(x0 |x1)=pθ(x0|x1,z), and qϕ(z)=p(z). This implies pθ(x0,x1:T ,z)=qϕ(x0,x1:T ,z), which implies pθ(x0)=q(x0). □

C. Additional Experimental Details
In Table 7, we detail the hyperparameters used in training our InfoDiffusion and baseline models, across datasets. We also
note that for all of these experiments we use the ADAM optimizer with learning rate 1e−4 and train for 50 epochs. Baseline
models were trained using the same optimizer, learning rate, and number of epochs. Note that in this table, there are two
dimensionalities of z where the left one is for latent evaluation tasks and the right one is for unconditional generation.

Table 7. Hyperparameters for InfoDiffusion and baseline training. The two dimensionalities of z correspond to latent evaluation tasks
(‘Eval.’) and unconditional generation (‘Gen.’).

INPUT SIZE DIM. OF z NUM. CHANNELS NUM. CHANNEL MULT. BATCH SIZE GPU
EVAL. GEN.

3DSHAPES 3×64×64 10 10 32 1, 2, 4, 8 64 TITANXP
FASHIONMNIST 1×32×32 32 256 32 1, 2, 4, 8 128 RTX2080TI
CIFAR10 3×32×32 32 256 64 1, 2, 4, 8 128 TITANRTX
FFHQ 3×64×64 32 256 64 1, 2, 4, 8, 8 64 RTX4090
CELEBA 3×64×64 32 256 64 1, 2, 4, 8, 8 64 TITANRTX

D. Additional Sampling Details
D.1. Sampling from Prior

To facilitate sampling from the original prior, we construct a two-phased sampling procedure for unconditional generation.
For timesteps T to T/2, we denoise and sample using a pre-trained vanilla denoising diffusion model. In the second phase,
for timesteps ranging from T/2 to 0, we proceed with sampling utilizing the InfoDiffusion method. We found that empirically
this two-phase approach yielded superior samples compared to using InfoDiffusion prior sampling for all timesteps.

D.2. Sampling from Learned Prior

To enable sampling from the learned prior, we train a latent diffusion model, analogous to the DiffAE approach (Preechakul
et al., 2022). We first train our InfoDiffusion model. We then compute the latent representation z for each image in a dataset
using the trained qϕ(z |x) encoder. Finally, a latent diffusion model is trained on these latent embeddings. To generate using
the learned latent, the decoder is conditioned on vectors z sampled from the latent diffusion model.

14
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E. Illustrations of Network Architecture
Here we provide detailed illustrations of network architectures. Figure 6 shows the UNet encoder’s framework, which is used
for encoding original input images into low-dimensional latent embeddings. Figure 7 shows the UNet decoder’s architecture,
which is used as the noise prediction network in InfoDiffusion. Figure 8 shows the details of how we implement our Auxiliary
Residual Block (left) and a 1-dimensional version of UNet for latent noise prediction network (right).

Input

ResBlock + GN

Low-dim
embedding

z

Figure 6. The UNet encoder of InfoDiffusion, for encoding input images into low-dimensional embeddings.

Embed(t) & MLP(z)

OutputInput

AuxResBlock + AGN

Figure 7. The UNet architecture of InfoDiffusion, conditioned on time embedding t and auxiliary variable z.

F. Ablation: Different Approach for Conditioning on z

We perform an ablation in which we condition on z only in the bottleneck layer of the UNet, denoted as ‘Ours w/ bott. only’ in
Table 8 and Table 9, as opposed to conditioning at all layers. Our findings indicate that conditioning on z at all layers (‘Ours’)
offers superior outcomes in terms of FID, latent space quality (measured by the average accuracy/AUROC in predicting
attributes from latents), and disentanglement metrics (including TAD and the number of attributes successfully captured).

Table 8. Comparison between two modeling choices: conditioning on z at just the bottleneck layer of the UNet (denoted as ‘Ours w/ bott.
only’) versus at all layers. ‘Latent quality’ is measured as classification accuracy/AUROC for logistic regression classifiers trained on
the auxiliary latent vector z. We report means± one standard deviation. Darkly shaded cells indicate best results.

FASHIONMNIST CIFAR10 FFHQ CELEBA

LATENT
QUAL. ↑ FID ↓ LATENT

QUAL. ↑ FID ↓ LATENT
QUAL. ↑ FID ↓ LATENT

QUAL. ↑ FID ↓

OURS (WITH
BOTT. ONLY) 0.845±0.003 29.7±0.8 0.310±0.004 40.2±1.3 0.597±0.002 41.2±1.5 0.680±0.004 26.9±1.7
OURS 0.839±0.003 7.4±0.2 0.412±0.003 31.5±1.8 0.609±0.002 30.9±2.5 0.848±0.001 21.2±2.4
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GN
Conv 3x3

GN
Input

SiLU + Dropout

×

+
Embed(t)

Output
Conv 3x3

SiLU + Dropout

×

+
MLP(z)

Input

Feature Map
Scale

LN

Feature Map
Scale

LN

Concatenation

...

Concatenation

Output

Embed(t)

Embed(t)

N-3 layers

Figure 8. The implementation of Auxiliary Residual Block in InfoDiffusion with Adaptive Group Normalization (left); residual connections
are not shown. The 1-dimensional version of UNet for latent noise prediction network (right).

Table 9. Comparison between two modeling choices: conditioning on z at just the bottleneck layer of the UNet (denoted as ‘Ours w/ bott.
only’) versus at all layers. ‘Attrs.’ counts the number of “captured” attributes when calculating the TAD score. We report means± one
standard deviation. Darkly shaded cells indicate best result.

CELEBA TAD ↑ ATTRS ↑
OURS (WITH BOTT. ONLY) 0.062±0.005 3.0±0.0
OURS 0.299±0.006 3.0±0.0

G. Discrete Latents
Often factors of variation can be described by categorical or binary variables. For example, the CelebA dataset contains
binary annotations for each image indicating the presence or absence of certain attributes, e.g., facial hair. For this and similar
datasets, it might be more appropriate to model the auxiliary latent variables as categorical, e.g., a vector of Bernoulli variables,
rather than the typical continuous Gaussian distribution.

In order to perform efficient variational inference with binary variables, we use a Relaxed-Bernoulli distribution, which is
derived from the Gumbel-Softmax trick (Jang et al., 2016) for categorical variables, an extension of the reparameterization
trick (Kingma & Welling, 2013) to categorical distributions. This defines a “soft” or “smooth” version of the Bernoulli
distribution, which enables gradient based optimization.

The Gumbel-Softmax distribution, also known as the Concrete distribution, is a way of drawing samples z from a categorical
distribution with k classes, but with a differentiable function. If πi represents the probability of class i, the Gumbel-Softmax
distribution is defined as:

zi=
exp((log(πi)+gi)/τ)∑k
j=1exp((log(πj)+gj)/τ)

(13)

where gi are i.i.d. samples drawn from the Gumbel(0, 1) distribution and τ is the temperature parameter. The temperature
parameter controls the randomness of samples. As τ→ 0, samples become one-hot encoded (more deterministic), and as
τ→∞, samples approach a uniform distribution. For the Relaxed-Bernoulli, we have k=2, in Equation (13).

At training time, we add noise proportional to a temperature τ , which we anneal towards 0 as training progresses. For our
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experiment, every 1000 steps, we reduce τ by 0.00003 from an initial value of 1 until we reach a minimum value of 0.5. A
test time, τ=0 to allow for discrete sampling.

H. Regularization Coefficients
In Table 10 and Table 11, we copy results from Table 2 and Table 3, respectively, and add results for other choices of the
λ and ζ regularization coefficients. We find that maximizing mutual information with ζ=1 is optimal. For the natural image
datasets, λ=0.1 yields the best results. For 3DShapes, λ=0.01 has better performance. However, we see that our model
is robust to this choice, with good latent and generated image quality for both values of λ at ζ=1.

Table 10. Latent quality, as measured by classification accuracies for logistic regression classifiers trained on the auxiliary latent vector z,
and FID. We report mean± one standard deviation. Darkly shaded cells indicate the best while lightly shaded cells indicate the second best.

FASHIONMNIST CIFAR10 FFHQ

LATENT
QUAL. ↑ FID ↓ LATENT

QUAL. ↑ FID ↓ LATENT
QUAL. ↑ FID ↓

AE 0.819±0.003 62.9±2.1 0.336±0.005 169.4±2.4 0.615±0.002 92.3±2.7
VAE 0.796±0.002 63.4±1.6 0.342±0.004 177.2±3.2 0.622±0.002 95.4±2.4
BETA-VAE 0.779±0.004 66.9±1.8 0.253±0.003 183.3±3.1 0.588±0.002 99.7±3.4
INFOVAE 0.807±0.003 55.0±1.7 0.357±0.005 160.7±2.5 0.613±0.002 86.9±2.2
DIFFAE 0.835±0.002 8.2±0.3 0.395±0.006 32.1±1.1 0.608±0.001 31.6±1.2
INFODIFFUSION (λ=0.1,ζ=0.9) 0.579±0.004 8.9±0.1 0.243±0.003 32.4±1.8 0.540±0.001 33.6±1.5

W/LEARNED LATENT 8.9±0.3 32.3±1.9 33.1±1.3
INFODIFFUSION (λ=0.1,ζ=0.95) 0.652±0.005 9.2±0.3 0.228±0.001 32.9±1.4 0.575±0.002 32.8±1.4

W/LEARNED LATENT 8.6±0.4 32.4±1.7 32.3±1.7
INFODIFFUSION (λ=0.1,ζ=1) 0.839±0.003 8.5±0.3 0.412±0.003 31.7±1.2 0.609±0.002 31.2±1.6

W/LEARNED LATENT 7.4±0.2 31.5±1.8 30.9±2.5
INFODIFFUSION (λ=0.01,ζ=1) 0.825±0.002 9.4±0.5 0.404±0.007 31.9±1.5 0.589±0.001 32.2±1.5

W/LEARNED LATENT 8.7±0.4 31.8±1.6 31.7±1.3

Table 11. Disentanglement and latent quality metrics and FID. For 3DShapes, we check the image quality manually and label the models
which generate high-quality images with check marks (‘Image Qual.’). The visualization of the samples is shown in Figure 9 in the
Appendix I. For CelebA, ‘Attrs.’ counts the number of “captured” attributes when calculating the TAD score. ‘Latent Quality’ is measured
as AUROC scores averaged across attributes for logistic regression classifiers trained on the auxiliary latent vector z. We report means
± one standard deviation for quantitative metrics. Darkly shaded cells indicate the best while lightly shaded cells indicate the second best.

3DSHAPES CELEBA

DCI ↑ IMAGE QUAL. TAD↑ ATTRS↑ LATENT QUAL. ↑ FID ↓
AE 0.219±0.001 ✖ 0.042±0.004 1.0±0.0 0.759±0.003 90.4±1.8
VAE 0.276±0.001 ✖ 0.000±0.000 0.0±0.0 0.770±0.002 94.3±2.8
BETA-VAE 0.281±0.001 ✖ 0.088±0.051 1.6±0.8 0.699±0.001 99.8±2.4
INFOVAE 0.134±0.001 ✖ 0.000±0.000 0.0±0.0 0.757±0.003 77.8±1.6
DIFFAE 0.196±0.001 ✔ 0.155±0.010 2.0±0.0 0.799±0.002 22.7±2.1
INFODIFFUSION (λ=0.1,ζ=0.9) 0.027±0.001 ✔ 0.000±0.000 0.0±0.0 0.569±0.002 25.9±2.4

W/LEARNED LATENT ✔ 24.3±1.5
INFODIFFUSION (λ=0.1,ζ=0.95) 0.015±0.001 ✔ 0.000±0.000 0.0±0.0 0.577±0.008 24.5±2.1

W/LEARNED LATENT ✔ 23.8±1.4
INFODIFFUSION (λ=0.1,ζ=1) 0.109±0.001 ✔ 0.192±0.004 2.8±0.4 0.848±0.001 23.8±1.6

W/LEARNED LATENT ✔ 21.2±2.4
INFODIFFUSION (λ=0.01,ζ=1) 0.342±0.002 ✔ 0.299±0.006 3.0±0.0 0.836±0.002 23.6±1.3

W/LEARNED LATENT ✔ 22.3±1.2
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I. Qualitative Figures on 3DShapes
In Figure 9, we show samples from unconditional generation of the images by different models. The images generated by diffu-
sion models (DiffAE and InfoDiffusion) are of high quality, with clear shapes and boundaries of the objects and backgrounds.
The images generated by VAE-based models suffer from distorted shapes and blended objects. The results show that images
generated by diffusion models are of higher quality than those generated by the VAE-based methods. Of note, our model is able
to maintain high-quality image generation while attaining the best disentanglement metrics compared to the baseline models.

(a) VAE

(b) InfoVAE

(c) DiffAE

(d) InfoDiff

Figure 9. Visualization of image samples from unconditional generation by VAE-based models (a-b) and diffusion models (c-d).
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J. Assets
Below we list the libraries and datasets that we use in our experiments with their corresponding citations and licenses (in
parentheses).

Libraries We use the following open-source libraries: pytorch (Paszke et al., 2019) (license: BSD), and scikit-learn
(Pedregosa et al., 2011) (BSD 3-Clause).

Datasets Our experimental section uses the following datasets: FashionMNIST (Xiao et al., 2017) (MIT), CI-
FAR10 (Krizhevsky et al., 2009) (MIT), FFHQ (Karras et al., 2019) (Creative Commons BY-NC-SA 4.0), CelebA (Liu et al.,
2015), and 3DShapes (Burgess & Kim, 2018) (Apache 2.0).
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