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Abstract
In this paper, we present an effective and effi-
cient structural inference approach by integrat-
ing a Reservoir Computing (RC) network into
a Variational Auto-encoder-based (VAE-based)
structural inference framework. With the help of
Bi-level Optimization, the backbone VAE-based
method follows the Information Bottleneck prin-
ciple and infers a general adjacency matrix in its
latent space; the RC net substitutes the partial role
of the decoder and encourages the whole approach
to perform further steps of gradient descent based
on limited available data. The experimental re-
sults on various datasets including biological net-
works, simulated fMRI data, and physical simula-
tions show the effectiveness and efficiency of our
proposed method for structural inference, either
with much fewer trajectories or with much shorter
trajectories compared with previous works.

1. Introduction
As widely observed in the real world, many dynamical sys-
tems can be modeled as agents interacting with each other
and can be viewed as a graph whose nodes represent the
agents, edges represent the interactions between the agents,
and adjacency matrix represents the underlying structure.
The examples include the underlying interacting graphs of
physical systems (Kwapień & Drożdż, 2012; Ha & Jeong,
2021), multi-agent systems (Brasó & Leal-Taixé, 2020; Li
et al., 2021) and biological systems (Tsubaki et al., 2019;
Pratapa et al., 2020). As there emerges a call of under-
standing dynamical systems, it is fundamental to reveal the
underlying structure. The acknowledgment of underlying
structure evidently benefits the understanding of the intrinsic
mechanisms of dynamical systems, and can further facilitate
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the prediction and control of these systems.

However, in many cases, only the observable features of
agents are available within a given time period, leaving the
underlying structure partially or fully concealed beneath the
intricate dynamics. Therefore, it is imperative to develop an
approach that can unveil the hidden structure of dynamical
systems using the observable features of the agents. We call
the collection of observed features of all agents in a dynami-
cal system in a time period a trajectory. Thus, the trajectory
contains rich information about the evolution of the features
of agents as a result of their previous features and interac-
tions with other agents (Katok & Hasselblatt, 1995). Many
data-driven approaches have been proposed, aiming at in-
ferring the underlying structure of the dynamical systems
based on the obtained trajectories (Kipf et al., 2018; Webb
et al., 2019; Alet et al., 2019; Graber & Schwing, 2020;
Chen et al., 2021; Löwe et al., 2022; Wang & Pang, 2022).
These approaches are VAE-based, infer the adjacency matrix
of the dynamical systems following the Information Bottle-
neck (IB) principle, and require thousands of trajectories
for training. But in many real-world scenarios, the acquisi-
tion of trajectories is either expensive or time-consuming,
which consequently becomes a remarkable challenge for
these VAE-based methods.

In this work, we propose an approach to integrate an RC net-
work into a VAE-based structural inference framework. RC
is well-known for its low parameter and low data demand
while high accuracy in dynamics prediction (Gallicchio &
Micheli, 2011; Gauthier et al., 2021), but since its internal
weights are fixed after initialization, the IB principle fails in
this case. As a result, the direct substitution of the decoder in
the VAE-based structural inference framework with an RC
is impracticable. Therefore, we integrate the RC network as
a branch diverging from the decoder of the backbone frame-
work and take advantage of Bi-level Optimization (BO) to
bridge the nested optimization of both branches. Thanks
to the easy-to-train RC network and the proper integration
with BO, the new framework requires much less training
data compared with previous methods (Kipf et al., 2018;
Webb et al., 2019; Chen et al., 2021; Löwe et al., 2022;
Wang & Pang, 2022) while maintaining high accuracy. The
experimental results show the integration of an RC net-
work promotes the performance of the structural inference
method and outperforms previous methods on datasets with
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much fewer trajectories or with much shorter trajectories.
Extensive experiments in the appendix also show the ro-
bustness and the time efficiency of the proposed approach.
Specifically, our central technical contributions include:

• We propose a novel structural inference approach with an
integrated RC network, which is formed as two branches
and optimized with the help of BO. According to the best
of our knowledge, it is the very first attempt of utilizing
an RC network for structural inference.

• The proposed methodology can infer the underlying struc-
ture of the dynamical system accurately with much fewer
or much shorter trajectories.

• We experimentally show that the integration of RC net-
work will not be a burden to the training process and the
framework is robust to the additive Gaussian noise.

2. Related Work
VAE by Kingma & Welling (2013) gained huge success by
learning the distribution of latent variables, and VAE has
been extensively applied in computer vision (Salimans et al.,
2017) and generative models (Goodfellow et al., 2020; Van
Den Oord et al., 2017). However, it was not until Kipf et al.
(2018) applied VAE on structure inference in their Neural
Relational Inference (NRI) framework. NRI uses a message-
passing design in its encoder and interprets the latent vari-
able as the network structure. Webb et al. (2019) further
proposed factorized Neural Relational Inference (fNRI) to
generalize NRI to a multi-interaction system. Chen et al.
(2021) modified the message-passing algorithm by incor-
porating spatio-temporal information and structural prior.
Alemi et al. (2017) suggested the principle of Variational In-
formation Bottleneck (VIB) to generalize VAE with a solid
theoretical ground based on information theory, and Wang &
Pang (2022) have proposed the iterative Structural Inference
of Directed Graphs (iSIDG) based on VIB and NRI. iSIDG
encouraged a tighter bound of VIB and achieved a 5-10%
boost compared to the aforementioned models. In another
line of work on Granger Causality (GC), Wu et al. (2020)
proposed the Minimum Predictive Information Regulariza-
tion (MPIR) model and used a learnable noise mask on each
node to lower the computational cost. Löwe et al. (2022)
introduced Amortized Causality Discovery (ACD) under the
VAE framework to learn causality strength between nodes.
However, these models either require a vast amount of data
or have relatively poor performance, making them inapplica-
ble in some fields where high fidelity of structure inference
is needed but data collection is expensive.

Echo State Network (ESN) and Liquid State Machine (LSM)
were individually proposed by Jaeger (2001) and Maass et al.
(2002), respectively, later unified under the name of Reser-
voir Computing (RC) (Schrauwen et al., 2007). Both ESN
and LSM have a recurrent structure and only the output layer

is trained, but LSM uses biologically inspired sparsely con-
nected leaky integrate-and-fire neurons, while ESN uses or-
dinary neurons. A mass collection of RC-based frameworks
for time-series prediction have been proposed (Wyffels &
Schrauwen, 2010; Pathak et al., 2018; Dong et al., 2019;
Bianchi et al., 2020). These frameworks are characterized
by a relatively small amount of data required. Interestingly,
among them, there are several attempts trying to combine
an RC with a VAE (Suh et al., 2016; Cabrera et al., 2017;
Canaday et al., 2021). Interested readers may read more
about the recent advancements in the field of RC in litera-
ture (Nakajima & Fischer, 2021; Gauthier et al., 2021). It
is worth mentioning that none of the work explicitly infers
the structure of the underlying interacting graph. The RC
net in this paper follows a modernized version of the hier-
archical ESN, the DeepESN (Gallicchio et al., 2017).We
integrate the RC net into the structural inference method as a
branch for future feature prediction, hoping it can effectively
promote the data efficiency of the whole method.

Bi-level Optimization (BO) is a typical mathematical prob-
lem in which the feasible region of the upper-level opti-
mization problem is constrained by the solution set of the
lower-level optimization problem (Stackelberg et al., 1952;
Dempe, 2020b), and some crucial issues in machine learn-
ing, such as hyperparameter optimization (Franceschi et al.,
2018) and reinforcement learning (Hong et al., 2020), can
be reformulated as BO problems. Conventional methods in
this field include hypergradient descent (Pedregosa, 2016;
Grazzi et al., 2020), stationary-seeking method (Mehra &
Hamm, 2021), and value function approach (Outrata, 1990;
Liu et al., 2021). In this work, we utilize a BO algorithm to
bridge the training of both branches as nested upper-level
and lower-level optimization problems while satisfying the
principle of VIB.

3. Preliminaries
3.1. Notations and Problem Formulation

We view a dynamical system as a directed graph, by repre-
senting the agents of the system as the nodes of the graph,
and the directed interactions between the agents as the di-
rected edges in the graph. The directed graph is denoted
as G = (V, E), where V is the set of features of n nodes,
and E is the set of edges. Based on E , we derive an asym-
metric adjacency matrix A ∈ Rn×n, where aij ∈ {0, 1}
indicates the presence (aij = 1) or the absence (aij = 0)
of the edge from node i to j. The edges are assumed to
be static and do not evolve with time. The nodes’ fea-
tures over a time period are represented as trajectories:
V = {V (0), V (1), . . . , V (T )}, with T + 1 time steps, and
V (t) is the set of features of all n nodes at time step t:
V (t) = {v(t)0 , v

(t)
1 , . . . , v

(t)
n }. Given the node features over

a time period, the structural inference problem in this paper

2



Effective and Efficient Structural Inference with Reservoir Computing

is to reconstruct the asymmetric adjacency matrix A of the
whole graph in an unsupervised way.

We state the problem of structural inference as searching
for a combinatorial distribution to describe the existence
of the edges between any of the node pairs in the graph.
Despite many works, which are based on the principle of
IB, have been proposed to solve the problem of structural
inference (Kipf et al., 2018; Webb et al., 2019; Chen et al.,
2021; Löwe et al., 2022; Wang & Pang, 2022), they demand
a huge amount of data, either sampling thousands of tra-
jectories or require relatively long trajectories. In order to
address this problem, we integrate an RC network into the
structural inference framework and utilize a BO algorithm
to deal with fewer and shorter available trajectories.

3.2. Structural Inference with Information Bottleneck

The principle of IB provides an explanation and understand-
ing of learning with deep neural networks (Tishby et al.,
1999; Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby,
2017). In general, for the input data X and its target label
Y , the IB aims to learn the minimal sufficient representation
Z = argminZ I(Z;X)− u · I(Z;Y ), where I(·, ·) repre-
sents the mutual information between two variables, and
u is the Lagrangian multiplier to balance sufficiency and
minimality.

Moreover, Alemi et al. (2017) presents a variational ap-
proximation to the IB theory (VIB), and proves variational
auto-encoder (VAE) objective is a special case of the varia-
tional approximation. Previous structural inference methods
utilize a VAE as the backbone (Kipf et al., 2018; Webb et al.,
2019; Chen et al., 2021; Löwe et al., 2022; Wang & Pang,
2022), and obtain the adjacency matrix A from the latent
space Z of VAE:

Z = argmin
Z

I(Z;V t)− u · I(Z;V t+1). (1)

Therefore, the VAE learns the minimal sufficient statistics
from the present node features, which are sufficient to derive
the future node features. In the case of inferring the struc-
ture of dynamical systems, the Markovian assumption works
and ensures the formulation: V t+1 ← {V t;A} (Wang &
Pang, 2022), so that in these VAE-based methods, we can
sample the adjacency matrix of the graph from the minimal
sufficient statistics obtained in the latent space. But these
works require an enormous amount of data, such as at least
12000 trajectories, and at least 49 time steps in each trajec-
tory (Kipf et al., 2018; Webb et al., 2019; Wang & Pang,
2022), which definitely becomes a considerable challenge
for real-world applications, especially when obtaining of
such trajectories is either expensive or time-consuming.

3.3. Reservoir Computing

In this section, we provide a brief discussion on the back-
ground knowledge of Reservoir Computing (RC). The exact
implementation of RC may refer to Sections 4.1 and 4.2.
RC is a machine learning paradigm that is especially suit-
able for learning dynamical systems, even when the systems
exhibit chaotic or complex spatio-temporal behaviors (Dong
et al., 2020; Gauthier et al., 2021). An RC is based on a
recurrent artificial neural network with a pool of intercon-
nected neurons - the reservoir, and an input layer feeding
sequential input data to the network, and an output layer
weighting the network’s states (Gauthier et al., 2021). We
denote u(t) ∈ Rd as the input sequential data, h(t) ∈ RN
represents the state of the reservoir, and N represents the
number of neurons in the reservoir. In general, the dynamics
can be formulated as:

h(t+1) =
1√
N
f
(
Wrh

(t) +Wnu
(t)
)
, (2)

where Wr ∈ RN×N and Wn ∈ RN×d are the reservoir
and input weight matrices, respectively. These weights are
fixed after initialization, by sampling the weights accord-
ing to an i.i.d. Gaussian distribution and regularizing the
spectral radius of the weight matrix (Gallicchio & Micheli,
2011). f(·) is an element-wise non-linearity. In most cases,
it is a hyperbolic tangent (Dong et al., 2020). We may also
stack multiple RCs, but in this section, we will keep the
minimal formulation in Equation 2 for simplicity. The RC
is utilized to predict a given output o(t+1) ∈ Rc, and we
obtain it after passing the final layer:

ô(t+1) = Woh
(t+1), (3)

where Wo denotes the weight of the final output layer. RCs
are characterized by fixed internal weights and only the last
linear layer is trained. Therefore, training RCs requires a
relatively small amount of data in comparison with ordi-
nary deep learning frameworks. The expressivity and the
power of RC rather lie in the high-dimensional non-linear
dynamics of the reservoir. As a result, by integrating an RC
into a VAE-based structural inference framework, we try to
fulfill our objective: reducing the amount of data needed for
structural inference. However, since it has not been solidly
and theoretically justified whether the training process of
RC follows IB, we cannot simply replace either the encoder
or decoder of the VAE with an RC. Here, the RC is designed
as nesting with the general pipeline of structural inference,
which demands a BO algorithm.

3.4. Bi-level Optimization

Bi-level Optimization (BO) is a hierarchical mathematical
programming task where the feasible region of one optimiza-
tion task is restricted by the solution set mapping of another
optimization task (Liu et al., 2022b). Thus it contains two
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levels of optimization tasks, where one is nested within the
other. The inner (or nested) and outer optimization tasks
are often respectively referred to as the Lower-Level (LL)
and Upper-Level (UL) subproblems (Dempe, 2020a). A
standard BO problem can be formally expressed as:

min
ψ,θ

F (ψ, θ) s.t. θ ∈ argmin
θ′

g(ψ, θ′), (4)

where the goal is to minimize the upper objective F whose
variables include the solution of another minimization prob-
lem w.r.t. the lower objective g. The θ and ψ are the lower
and upper variables, respectively. A major class of BO
methods is based on direct gradient descent on the up-
per variable ψ while viewing the optimal lower variable
θ∗(ψ) = argminθ g(ψ, θ) as a (uniquely defined) function
of ψ. Yet the calculation of the derivative ▽ψθ∗(ψ) requires
expensive manipulation of the Hessian matrix of g. In this
work, we follow the idea of BOME (Liu et al., 2022a), which
is a simple first-order BO algorithm that depends only on
first-order gradient information and requires no implicit dif-
ferentiation. We show that with the help of BOME, RC
can be integrated into the frameworks for structural infer-
ence, and thus the strength of RC and VAE-based structural
inference methods can be combined and unified.

4. Model Design
4.1. Reservoir Computing for Structural Inference

RC has proven excellent performance in time series pre-
diction and has small demand on the amount of training
data (Cabrera et al., 2017; Gauthier et al., 2021; Srinivasan
et al., 2022). Because the weights in the reservoir are ran-
domly generated and do not change during training, it is
difficult to follow IB, and searching for a layer in the reser-
voir that can be a minimal sufficient representation for the
adjacency matrix of the system is impractical if we want
to train the RC in an end-to-end fashion. Inspired by a se-
ries of Siamese networks (Guo et al., 2017; Zhang & Peng,
2019; Javed et al., 2022), which have network branches
sharing partial weights, we align the RC as a branch from
the decoder of VAE (see the upper part in Figure 1). Re-
call the mechanisms of the decoder in VAE-based structural
inference methods, the decoder receives the inferred adja-
cency matrix and the present node features as input, trying
to predict the future node features:

d̃
(t)
ij = zij · fe(v(t)i , v

(t)
j ), (5)

u
(t)
j = v

(t)
j + fv

∑
i ̸=j

d̃
(t)
ij , (6)

where zij represents the inferred edge from node i to j in the
latent space Z, fe and fv denote the embedding networks,
and are implemented as multi-layer perceptrons. In addition,
there are three linear layers attached after these two steps

for output. We feed the learned representation of every node
u
(t)
j to RC, and perform the following operation:

ô
(t+1)
j = JRC (u

(t)
j ), (7)

where JRC (·) represents the RC, and ô
(t+1)
j is the predicted

future features of node j. The RC in this work consists of
three identical RC cells and a linear output layer:

JRC (u
(t)
j ) = fout(JCell,1 ,JCell,2 ,JCell,3 ) (8)

where JCell,n represents the output from RC cell n, and
fout denotes the final linear output layer. These RC cells
are identical in architecture but are initialized independently.
RC cells receive cascade inputs, but their outputs are col-
lected parallelly. Details about RC cells are in Section 4.2.
The integration of RC into the structural inference frame-
work hence has the following advantages:

1. The structural invariance of graph data (Battaglia et al.,
2018) is taken care by the message-passing-like opera-
tions in the decoder. In this case, the number of possible
neighbors is the most concerning invariance, and RC
cannot deal with it directly.

2. Both node features and inferred structures are contained
in the learned representations u

(t)
j , and RC can conse-

quently acquire both types of information simultane-
ously.

3. Compared with the rest layers in the decoder after the
bifurcation and the stacked linear layers after the decoder,
RC has much fewer parameters. As a consequence, it is
easier to train and leads to a more accurate prediction.

4. The IB principle of VAE-based structural inference
method JSI is not violated, since the divergence starts
from the second layer in the decoder, the latent space in
VAE still infers the adjacency matrix of the graph.

5. RC has proven robustness against noise (Jalalvand et al.,
2018; Vlachas et al., 2020; Chen et al., 2020). The in-
tegration of RC into the structural inference framework
may improve the robustness of the whole approach.

Although the RC branch is assumed not to violate the prin-
ciple of VIB in structural inference methods, it is still neces-
sary to incorporate the optimization of both branches with
the help of BO, and it is discussed in Section 4.3.

4.2. RC Cells

The idea of RC cells comes from Vlachas et al. (2020),
which consists of an Elman-RNN with proper initialization.
Gallicchio et al. (2017) propose a reservoir design with
leaky integrator units, and we follow this design. Given
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Figure 1. (Above) The overview of the whole pipeline. (Below) Details about the RC and RC cell in this work.

input feature of node j at time t: u(t)
j , we have:

h′(t)
j = f(Wr · h(t−1)

j +Wn · u(t)
j ), (9)

h
(t)
j = (1− α)h(t−1)

j + αh′(t)
j , (10)

where h(t) denotes the state of the RC cell at time t, f(·)
is a hyperbolic tangent function, Wr and Wn represent
reservoir state weight matrix and input weight matrix, re-
spectively. Moreover, α ∈ [0, 1] is the leaking rate. Suppose
we have time series {u(0)

j ,u
(1)
j , ...,u

(T−1)
j }, an RC cell will

run on all of these time steps and we obtain the output:

JCell = [h
(0)
j ,h

(1)
j , ...,h

(T−1)
j ]t, (11)

where [·, ·]t denotes concatenation along the dimension of
time. We may also extract the state of the RC cell at time t
for node j: h(t)

j for further calculation. Then three RC cells
are stacked to build a DeepESN (Gallicchio et al., 2017),
and the following RC cell just takes in the computed states
of previous RC cell JCell as input. Then we compute the
output at time t from the global state of all RC cells:

ô
(t+1)
j = fout([h

(t)
j,1,h

(t)
j,2,h

(t)
j,3]), (12)

where [·, ·] denotes concatenation, and h
(t)
j,n denotes the state

of RC cell n at time t for node j, while fout represents a
linear output layer with weight Wo. The utilization of a
DeepESN instead of a “standard shallow RC”, which only
consists of one RC cell, has the following advantages:

1. Compared with a standard shallow RC, the structured
state space organization with multiple time-scale dynam-
ics DeepESN is intrinsic to the nature of compositionality
of recurrent neural models (Gallicchio et al., 2017).

2. As proved by Gallicchio et al. (2017), DeepESN archi-
tecture can be seen as a simplification of the standard
shallow RC, leading to a reduction in the absolute num-

ber of recurrent weights. So the standard shallow RC
can be seen as a special case of DeepESN.

However, similar to standard shallow RC, which should be
initialized to fulfill the echo state property (ESP) (Gallicchio
& Micheli, 2011; Yildiz et al., 2012), DeepESN also requires
special initialization of the weights in the reservoir of RC
cells. We follow the necessary and sufficient conditions
proved by Gallicchio & Micheli (2017), and initialize the
weights in RC cells by first randomly drawing weights Wr

and Wn from a uniform distribution in [−1, 1], and then
rescale them so that their spectral radius is smaller than
one or the Lipschitz constant of the state transition function
in DeepESN is smaller than one. For details about the
initialization, please refer to Section A.1 of this paper.

4.3. Training with Bi-level Optimization

Since we have two branches, they have different loss func-
tions. For the branch of the VAE-based structural inference
method, the loss function LSI can be summarized as:

LSI = Lp + β · LKL + γ · R, (13)

where Lp and LKL are the loss terms for prediction and
Kullback–Leibler (KL) divergence,R represents the regu-
larization terms, and {β, γ} are weight terms (Kipf et al.,
2018; Webb et al., 2019; Chen et al., 2021; Wang & Pang,
2022). For the branch of RC, the loss function LRC is calcu-
lated with Normalized Root Mean Square Error (NRMSE):

LRC =
1

N

∑
j

√∑T−1
t=0 (ô

(t+1)
j − v(t+1)

j )2

T − 1
· 1
ōj
, (14)

where N represents the total number of nodes in the graph,
and ōj =

∑T−1
t=0 ô

(t+1)
j /(T − 1). The loss terms LSI and

LRC are divergent, and so are the branches. Although both
branches output the prediction on future node features, the
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Algorithm 1 Pipeline of BO
Goal: minψ,θ JUL(ψ, θ) s.t. θ ∈ argminθ′ JLL(ψ, θ′).
Input: Initialization (ψ0, θ0); inner step T ′; outer and
inner step size ξ, τ (set τ = ξ by default).
for iteration k do

1. Get θ(T
′)

k by T ′ steps of gradient descent on
JLL(ψk, ·) starting from θk.
2. Set q̂(ψ, θ) = JLL(ψ, θ)− JLL(ψ, θ(T

′)
k ).

3. Update (ψ, θ) : (ψk+1, θk+1) ← (ψk, θk) −
ξ(▽JUL(ψk, θk) + λk▽q̂(ψk, θk))

where λk = max
(
ϕk−⟨▽JUL(ψk,θk), ▽q̂(ψk,θk)⟩

||q̂(ψk,θk)||2 , 0
)

,

and ϕk = η||q̂(ψk, θk)||2 (default),
or ϕk = ηq̂(ψk, θk) with η > 0.

end for

layer setups are divergent and do not have any shared weight.
Therefore, training in our model is not comparable with
the training of a Siamese network, which has many shared
weights and similar layer setups. Here comes the challenge:
how to train both branches so that either of them won’t be
negatively affected by the other?

We utilize BO, which is a class of optimization problems
with nested tasks (Liu et al., 2022b). Recall the general
pipeline described in Section 4.1 and shown in the upper
part in Figure 1, the optimization of the whole model con-
sists of two tasks: (a) the LL task: JLL(ψ, θ′) = LSI ,
which corresponds to the training of VAE-based structural
inference branch; and (b) the UL task: JUL(ψ, θ) = LRC ,
which corresponds to the training of RC branch, and {ψ, θ}
are the parameters to be optimized. As mentioned in Sec-
tion 4.1, the RC branch diverges from the decoder of VAE,
so in practice, we formalize the UL task as JUL(ψ, θ) =
LRC + β · LKL + γ · R, which also takes care of the partial
VAE. So the BO utilized in this work is:

min
ψ,θ
JUL(ψ, θ) s.t. θ ∈ argmin

θ′
JLL(ψ, θ′). (15)

We follow BOME (Liu et al., 2022a) as the BO algorithm
in this work, which uses a modified dynamic barrier gradi-
ent descent on the value function of BO, and only requires
first-order gradients. We describe the pipeline of BO in this
work in Algorithm 1, where ⟨·, ·⟩ represents element-wise
multiplication. Interestingly, Liu et al. (2022a) introduce
the notion of attraction points (see Section A.3 for details)
during gradient descent. The attraction of (ψ, θ) is where
the gradient descent algorithm can not make improvement
and is implemented with an approximation in step 1 of
Algorithm 1. BOME can optimize the UL objective func-
tion from this attraction of LL optimization without being
trapped to the discontinuous attraction points on the bound-
ary of the attraction basin. In our case, after setting the
value of T ′ properly, the attraction is where the optimiza-
tion of JLL stagnates, and the inferred adjacency matrix by

the framework at this step is no less accurate than the one
inferred by vanilla VAE-based method. Then the training
process turns to optimize the upper-level objective func-
tion JUL. With the help of BOME, the optimization of
RC branch can also benefit the other branch, and further
promote the performance of structural inference.

Besides that, as mentioned in previous works, the two ba-
sic elements supporting the VAE-based structural inference
methods are the Markovian assumption and the principle of
IB (Kipf et al., 2018; Wang & Pang, 2022). We denote H as
the layer in the decoder whose outputs are fed to RC. When
JLL stagnates, following the principles of IB, and according
to Lagrangian I(H;V (t))− u · I(H;V (t+1)), the obtained
representation from layer H is the minimal sufficient statis-
tics and simplest mapping of V (t) to V (t+1)). Based on the
Markovian assumption V t+1 ← {V t;A} (Wang & Pang,
2022), H outputs the minimal sufficient representation for
both present node features V t and inferred adjacency matrix
A. As a result, the training of JUL starts from the input of
minimal sufficient representation, and will further update
this representation and encourage the whole framework to
infer the adjacency matrix more precisely. Please refer to the
appendix for more details about BO in this work. We sum-
marize the whole pipeline in Figure 1, and in Algorithm 2
in the appendix. To conclude, the utilization of BOME in
this work has the following advantages:

1. BOME is a first-order BO method with fast optimization.
Since the framework consists of two branches, BOME
can efficiently optimize the nested branches and will not
be a burden to the computational resources.

2. With a proper setting of T ′, BOME ensures the optimiza-
tion of upper-level objective starts from the stagnation of
lower-level objective. In the problem setting of this work,
RC will be optimized based on the minimal sufficient
representation of both present node states and inferred
adjacency matrix from VAE.

3. From a broader perspective, the utilization of a BO al-
gorithm can help with data hyper-cleaning (Liu et al.,
2022a), which increases the robustness of the structural
inference framework against noise.

5. Experiments
We test our method on twelve different datasets, with dif-
ferent numbers of available trajectories and various lengths.
More experimental results can be found in Section C.

5.1. General Settings

Backbone VAE-based Method. We choose iSIDG (Wang
& Pang, 2022) with GIN (Xu et al., 2019) encoder and MLP
decoder as the backbone VAE-based method. iSIDG is the
state-of-the-art structural inference method for both directed
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Figure 2. Plots of AUROC values (in %) of different methods as a function of the percentage of the available trajectories. The results are
the average of ten runs. 100% trajectories equal 12000 trajectories. The percentages of the trajectories in the figure are 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% and 100%, respectively. The subplots share the same x-axis and y-axis.

and undirected graphs. It updates the assumed adjacency
matrix at the input side of the encoder with direction in-
formation from inferred adjacency matrix, and it has been
experimentally evaluated on more than 15 datasets. We
simply replace theMSI in Algorithm 2 (in Appendix) as
iSIDG, and replace the loss function LSI as the one from
iSIDG. For the hyperparameters such as the weights combin-
ing different terms in the loss function, and the weights for
stop condition, we keep the same values as those of iSIDG.
We name the new approach RCSI.

Datasets. Similar to iSIDG, we test our model on the six
directed synthetic biological networks (Pratapa et al., 2020),
namely Linear (LI), Linear Long (LL), Cycle (CY), Bifur-
cating (BF), Trifurcating (TF), and Bifurcating Converging
(BF-CV) networks, which are essential components lead-
ing to a variety of different trajectories that are commonly
observed in differentiating and developing cells (Saelens
et al., 2019). We use BoolODE (Pratapa et al., 2020) to
simulate the process of developing cells with these synthetic
networks and record the raw trajectories with 49 time steps.
But the number of trajectories used in the following ex-
periments varies, which is different from iSIDG (Wang &
Pang, 2022), and we perform subsampling of time steps on
the raw trajectories. We randomly divide the trajectories
into training set, validation set and test set with a ratio of
8 : 2 : 2. The features at every node are one-dimensional
mRNA expression levels.

We also test our model on NetSim datasets (Smith et al.,
2011) of simulated fMRI data. The NetSim datasets consist
of simulated blood-oxygen-level-dependent imaging data
across different regions within the human brain, which are
asymmetric relation networks. Since the datasets are small,
we use the same amount of trajectories as (Löwe et al., 2022;
Wang & Pang, 2022). We sample 49 snapshots on each
trajectory with equal intervals, but afterward, we subsample

trajectories with fewer time steps for further experiments.
The node features at every time step are one-dimensional.

Besides, we also select three physical simulations mentioned
in (Kipf et al., 2018), namely springs, charged particles and
phase-coupled oscillators (Kuramoto model). We keep the
symmetric interactions in the setting of these networks, and
follow the sampling process used by iSIDG, except with a
different number of trajectories for each experiment. We
also subsample the trajectories with different counts of time
steps, and randomly divide them into training set, validation
set and test set with a ratio of 8 : 2 : 2. The features at every
node are four-dimensional.

Baselines and metrics. We compare RCSI with the state-
of-the-art methods for structural inference:

• NRI (Kipf et al., 2018): a VAE-based model for unsuper-
vised relational inference.

• fNRI (Webb et al., 2019): an NRI-based model with addi-
tional latent space for every factorized interaction type.

• MPIR (Wu et al., 2020) a model based on minimum pre-
dictive information regularization.

• MPM (Chen et al., 2021): an NRI-based method with
a relation interaction mechanism and a spatio-temporal
message passing mechanism.

• ACD (Löwe et al., 2022): a variational model that lever-
ages shared dynamics to infer causal relations.

• iSIDG (Wang & Pang, 2022): a VAE-based model which
iteratively updates the adjacency matrix to be fed to en-
coder with direction information.

We describe the implementation details in Section B. We
compare our evaluation results using the following metrics:
the area under the receiver operating characteristic (AU-
ROC) of the inferred adjacency matrix to the ground truth.
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Figure 3. Plots of AUROC values (in %) as a function of the number of time steps. The results are the averaged of ten runs. The numbers
of time steps in the figure are 5, 10, 15, 20, 25, 30, 35, 40, and 49, respectively. The subplots share the same x-axis and y-axis.

5.2. Experiments on Fewer Trajectories

In this section, we study the performance of all of the meth-
ods when the input trajectories are fewer. The term “fewer”
represents that the amount of available trajectories is less
than those in previous works (Kipf et al., 2018; Webb et al.,
2019; Wang & Pang, 2022). The experimental results of the
proposed model and baseline methods on synthetic networks
and physical simulations as a function of the percentage of
trajectories are summarized in Figure 2. The trajectories
have 49 time steps. Since the numbers of trajectories in Net-
Sim datasets are relatively small, we test RCSI and baseline
methods on NetSim datasets with 100% trajectories, and
the results are shown in Table 3 in the appendix. As shown
in Figure 2, with only 60% trajectories, RCSI can outper-
form almost all of the baseline methods running with 100%
trajectories on all of the nine datasets, which experimen-
tally verifies the effectiveness and data-efficiency of RCSI.
Specifically, on the dataset of “TF”, RCSI outperforms all of
the baseline methods with only 10% trajectories. Although
iSIDG performs conspicuously on the datasets of directed
graphs, no matter how many trajectories are available, RCSI
still manages to outperform iSIDG on these datasets. De-
spite the decrease in performance of all of the methods with
fewer trajectories, RCSI succeeds in holding its leading
position. Besides, when the available trajectories become
fewer, the advantage of RCSI over the baseline methods also
becomes greater, which clearly reveals the merit of RCSI in
the application scenario of fewer available data.

5.3. Experiments on Shorter Trajectories

In this section, we study the performance of all of the meth-
ods when the trajectories are shorter. The term “shorter”
represents that the amount of sampled time steps in each
trajectory is less than those in Section 5.2. We first sample

1,200 trajectories for synthetic networks and physical sim-
ulations, then we subsample the trajectories with different
numbers of time steps. For NetSim datasets, we perform
subsampling on time steps from raw trajectories directly.
The results are shown in Figure 3. As expected, all of
the methods perform worse when the trajectories become
shorter, while RCSI maintains a noticeable advantage over
all of the baseline methods. It is worth mentioning that just
with trajectories of 15 time steps, RCSI outperforms all of
the baseline methods with 49 time steps of data on almost
all of the datasets. In some datasets such as CY, BF-CV, and
Springs, the results of RCSI with only 5 time steps are even
more accurate than the results of other baseline methods
with 49 time steps. These results experimentally evaluated
the effectiveness and data efficiency of RSCI when provided
with shorter trajectories. However, similar to the baseline
methods, RCSI also suffers from shorter trajectories, which
suggests that longer time series are embedded with rich in-
formation that cannot be easily modeled by RC. Despite that,
RCSI still manages to outperform all of the baseline meth-
ods. But since RC net in this work follows the Echo State
Property, and the steps to reach echo state vary from system
to system, it would be interesting to study the least sufficient
time steps to infer an essentially accurate adjacency matrix
for a specific type of dynamical system.

5.4. Ablation Study

We conduct an ablation study to investigate the impact of
different designs of the RC network on the performance of
RCSI. The following RC network designs are considered:

• Single RC cell: A single RC cell with varying reservoir
sizes of 20, 40, 60, or 80 neurons.

• Two RC cells: Two RC cells, each with reservoir sizes of
10, 20, 30, or 40 neurons.
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Table 1. Ablation study on the design of the RC network.

RC Setup
Springs Dataset

50% traj. Full traj. Full traj.
w. 49 T.S. w. 49 T.S. w. 25 T.S.

1 RC @ 20 78.6± 0.10 86.1± 0.10 66.4± 0.10

1 RC @ 40 81.8± 0.10 91.0± 0.08 70.0± 0.10

1 RC @ 60 84.2± 0.05 93.0± 0.05 71.5± 0.05

1 RC @ 80 85.6± 0.04 94.1± 0.04 74.6± 0.04

2 RCs @ 10 81.3± 0.05 91.0± 0.05 69.8± 0.05

2 RCs @ 20 83.2± 0.04 92.2± 0.04 71.2± 0.04

2 RCs @ 30 85.2± 0.05 94.1± 0.05 74.8± 0.04

2 RCs @ 40 86.2± 0.04 94.5± 0.04 75.0± 0.05

3 RCs @ 10 83.1± 0.04 92.8± 0.04 73.8± 0.05

3 RCs @ 20 86.5± 0.04 94.6± 0.04 75.2± 0.06

3 RCs @ 30 87.0± 0.03 94.8± 0.04 75.2± 0.05

3 RCs @ 40 87.1± 0.02 94.9± 0.03 75.3± 0.03

• Three RC cells: Three RC cells, each with reservoir sizes
of 10, 20, 30, or 40 neurons.

To evaluate the performance of each RCSI variation, we
examined three different sets of trajectories from springs
dataset: 50% of trajectories with 49 timesteps (50% traj.
w. 49 T.S.), the full set of trajectories with 49 timesteps
(Full traj. w. 49 T.S.), and the full set of trajectories with
25 timesteps (Full traj. w. 25 T.S.). The results, including
the averaged AUROC values and standard deviations over
ten runs, are presented in Table 1. In the table, the notation
”1 RC @ 20” refers to an RC network comprising a single
RC cell with a reservoir size of 20 neurons, while ”2 RCs
@ 20” denotes an RC network consisting of two RC cells,
each with a reservoir size of 20 neurons.

Based on the findings presented in the table, it is evident
that incorporating multiple RC cells enhances the structural
inference accuracy of RCSI when the total count of neurons
in the RC remains constant. For instance, the configuration
”3 RCs @ 20” consistently outperforms both ”1 RC @ 60”
and ”2 RCs @ 30” across all three experiments, despite
having an equivalent total number of parameters. However,
our observations also reveal that increasing the reservoir
size of each individual cell within the stacked RC setup has
a marginal impact on RCSI’s inference accuracy beyond
a certain threshold. In the provided table, we identify the
critical number of neurons per reservoir as 20. When the
reservoir size exceeds this value (e.g., 30 or 40 neurons,
as indicated in the table), the performance improvement
becomes negligible. Moreover, such setups exhibit a larger
number of training parameters in the overall RC network,
ranging from 1.5 to 2 times more than that of ”3 RCs @ 20”,
resulting in reduced computational efficiency. Considering
the trade-off between inference accuracy and efficiency, we
have chosen the configuration of ”3 RCs @ 20” as our
preferred RC network setup for RCSI. This choice strikes a
balance between achieving high accuracy while maintaining

computational efficiency. More experimental results, such
as the detailed performance results of the methods, results on
noisy data and training time, can be found in Appendix C.

6. Limitations
RCSI, like other structural inference methods, possesses
certain limitations that are worth noting. Firstly, RCSI is
applicable only to dynamical systems with a static under-
lying interacting structure. When the underlying structure
varies over time, the simple setup of RC cells struggles to
capture the changing structure effectively. Furthermore, the
backbone VAE-based method has not been tested on dy-
namic graphs. However, we believe it is feasible to extend
RCSI to dynamic graphs by incorporating additional hidden
variables to capture the temporal changes in the structure.
Secondly, the scalability of RCSI remains uncertain. As
the backbone VAE-based method operates on a full-graph
setting, the memory requirements for training scale at least
quadratically with the total number of nodes (O(n2)), where
‘n’ denotes the node count. To address this issue, it is neces-
sary to either develop a memory-efficient backbone method
or integrate the RC into the VAE framework. Neverthe-
less, these limitations present intriguing avenues for future
research aimed at enhancing RCSI. By overcoming these
challenges, we can broaden the application scenarios of
RCSI, thereby benefiting researchers across various fields.

7. Conclusion and Future Work
This paper has introduced a novel structural inference ap-
proach with an integrated RC net. The integration is enabled
by a Bi-level Optimization algorithm - BOME, which man-
ages to optimize the backbone of the structural inference
method and the RC net in a nested and efficient way. The ex-
perimental results verify the advantage of the RC-integrated
structural inference method on datasets with fewer trajecto-
ries and datasets with shorter trajectories.

Currently, we only generally study structural inference with
integrated RC for dynamical systems. Future research in-
cludes research on specific cases when the dynamical sys-
tem is either Lyapunov stable, bifurcated, or damping, as
these factors may affect the exact choice of the variables of
Echo State Property. Furthermore, we will also study how
to improve the robustness of the RC-integrated structural
inference method against noises in node features.

Acknowledgment
Authors Tsz Pan Tong and Jun Pang acknowledge finan-
cial support from the Institute for Advanced Studies of
the University of Luxembourg through an Audacity Grant
(AUDACITY-2021).

9



Effective and Efficient Structural Inference with Reservoir Computing

References
Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep

variational information bottleneck. In Proceedings of the
5th International Conference on Learning Representa-
tions (ICLR), 2017.

Alet, F., Weng, E., Lozano-Pérez, T., and Kaelbling,
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A. More Details about RCSI
The whole pipeline of RCSI may refer to Algorithm 2.

Algorithm 2 Pipeline of RCSI

Goal: Infer adjacency matrix A from observational node features V = {V (0), V (1), ..., V (T )}.
Input: Node features V = {V (0), V (1), ..., V (T )}; inner step T ′; outer and inner step size ξ, τ (set τ = ξ by default);
weights in loss β, γ; inner rounds T ′ = 10; weight for BOME η = 0.5.
Models: VAE-based structural inference modelMSI ; RC netMRC .
Loss: Loss for VAE-based structural inference model JLL; Loss for RC net JUL.
Model Parameters: VAE-based structural inference model θ; RC net ψ.
Split V into V T = {V (0), V (1), ..., V (T−1)} and V T+1 = {V (1), V (2), ..., V (T )}
Initialize ψ according to Sections 4.2 and A.1
while Epoch < MaxEpoch do

while Inner Iteration k < T ′ do
Now the model parameters are {ψk, θk}
A← Encoder(V T )
V̂ T+1 ← Decoder(V T ,A)

Backpropagate JLL to obtain updated parameters θ(T
′)

k

end while
Calculate q̂(ψk, θk) = JLL(ψ, θ)− JLL(ψ, θ(T

′)
k )

Update (ψ, θ) : (ψk+1, θk+1)← (ψk, θk)− ξ(▽JUL(ψk, θk) + λk▽q̂(ψk, θk))

where λk = max
(
ϕk−⟨▽JUL(ψk,θk), ▽q̂(ψk,θk)⟩

||q̂(ψk,θk)||2 , 0
)

, and ϕk = η||q̂(ψk, θk)||2

end while
Return: A

A.1. Initialization of RC

As mentioned in Section 4.1 and in various literature (Jalalvand et al., 2016; Dong et al., 2020; Vlachas et al., 2020; Gauthier
et al., 2021), the initialization of any RC net is of great importance. Before the description on the initialization in this work,
we would like to recall some basic properties and functions from literature that play an important role in the initialization of
RC net. First are the two theorems from (Gallicchio et al., 2017):
Theorem A.1. (Necessary Condition for the Echo State Property of DeepESN) Consider the case given input x, the
dynamics of a DeepESN with hidden state h are ruled by:

h(t+1) =F (h(t),x(t))

=
(
F1(h

(t)
1 ,x(t)), ..., FN (h

(t)
1 ,h

(t)
N x(t))

)
,

(16)

where F = (F1, ..., FN ) is a composition of layer-wise applied state transition function, h(t) = (h
(t)
1 , ...,h

(t)
N ) is the

global state of the whole RC net and is a composition of reservoir states of all the levels of hierarchy. And the DeepESN is
implemented in terms of leaky integrator reservoir units, and assumes that the null sequence is an admissible input for the
system. Then a necessary condition for the ESP to hold is provided by the following equation:

max
i=1,...,N

ρi = max
i=1,...,N

ρ((1− αi)I+ αiWr,i) < 1, (17)

where ρ(·) is the spectral radius operator (i.e. the maximum absolute eigenvalue of its matrix argument), I is the identity
matrix, and αi ∈ [0, 1] is the leaking rate of level i.
Theorem A.2. (Sufficient Condition for the Echo State Property of DeepESN) Consider a DeepESN whose dynamics are
ruled by Equation 16, implemented in terms of leaky integrator reservoir units, and with tanh non-linearity as the activation
function. If the DeepESN is featured by globally contractive dynamics then it satisfies the ESP. Accordingly, a sufficient
condition for the ESP to hold is given by the following equation:

max
i=1,...,N

Ci < 1, (18)
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where Ci denotes the Lipschitz constant of the state transition function Fi of the ith reservoir level, and it is computed as:

Ci =

{
(1− α1) + α1||Wr,1|| if i = 1

(1− αi) + αi(Ci−1||Wn,i||+ ||Wr,1||) if i > 1,
(19)

where || · || is the matrix norm induced by the L2-norm defined on the corresponding state spaces.

A simple approach to initialize the reservoir weights in DeepESN is then to randomly draw the elements in Wn,i and in
Wr,i, e.g., from a uniform distribution in [−1, 1], and then rescale them in order to meet one of the conditions expressed by
Theorems A.1 and A.2. The initialization of the weights in the RC cells in this work follows this simple approach with a
check on the spectral radius, which is faster to compute.

A.2. Bi-level Optimization

The BO in this work follows BOME (Liu et al., 2022a), and this section provides more details about the implemented
BOME in this work. We follow the same notions used in Section 3.4. We consider a value function, which yields natural
first-order algorithms for non-convex lower-level objective and requires no computation of Hessian matrices (Liu et al.,
2022a). And thus Equation 15 is equivalent to the following constrained optimization

min
ψ,θ
JUL(ψ, θ) s.t. q(ψ, θ) := JLL(ψ, θ)− J ∗

LL(ψ) ≤ 0, (20)

where J ∗
LL(ψ) = minθ JLL(ψ, θ) = JLL(ψ, θ∗(ψ)) is known as the value function, and θ∗(ψ) = argminθ JLL(ψ, θ) is

the optimum. Compared with hypergradient approach, this formulation does not require the calculation of the implicit
derivative ▽ψθ∗(ψ) (Liu et al., 2022a). Although JLL(ψ) depends on θ∗(ψ), its derivative ▽ψJ ∗

LL(ψ) does not depend on
▽ψθ∗(ψ) by Danskin’s theorem:

▽ψJ ∗
LL(ψ) = ▽1JLL(ψ, θ∗(ψ)) + ▽ψθ

∗(ψ)▽2JLL(ψ, θ∗(ψ)) = ▽1JLL(ψ, θ∗(ψ)), (21)

while the second term vanishes because the definition of the optimum θ∗(ψ): ▽2JLL(ψ, θ∗(ψ)) = 0. Therefore, provided
that we can evaluate θ∗(ψ) at each iteration, solving Equation 20 yields an algorithm for BO that requires no Hessian
computation. BOME uses the dynamic barrier gradient descent (Gong et al., 2021), which is an elementary first-order
algorithm for solving constrained optimization, but it applies only to a special case of the bi-level problem. Therefore, the
authors of BOME extend it to handle the general case. The original idea of dynamic barrier gradient descent is to iteratively
update the parameter (ψ, θ) to reduce JUL while controlling the decrease of the constraint q, ensuring that q decreases
whenever q > 0. Specifically, denote ξ as the step size, the update at each step is:

(ψk+1, θk+1)← (ψk, θk)− ξδk, (22)

where δk = argmin
δ
||▽JUL(ψk, θk)||2 s.t. ⟨▽q(ψk, θk), δ⟩ ≥ ϕk. (23)

Here ▽JUL = ▽(ψk,θk)JUL(ψk, θk), ▽q = ▽(ψk,θk)q(ψk, θk), ⟨·, ·⟩ is the inner-production, and ϕk ≥ 0 is a non-negative
control barrier.

Two choices of ϕk that satisfy the condition above are ϕk = ηq(ψk, θk) and ϕk = η||▽q(ψk, θk)||2 with η > 0. In this
work, we follow the second choice and use ϕk = η||▽q(ψk, θk)||2 as default. So that the optimization of Equation 23 yields
a closed form solution:

δk = ▽JUL(ψk, θk) + λk▽q(ψk, θk), with λk = max
(ϕk − ⟨▽JUL(ψk, θk), ▽q(ψk, θk)⟩

||q(ψk, θk)||2
, 0
)
, (24)

and λk = 0 in case of ||▽q(ψk, θk)|| = 0.

Yet the method above requires the calculation of q(ψk, θk) and ▽q(ψk, θk) which require evaluation of θ∗(ψk). We also
follow the approximation in BOME which approximates θ∗(ψk) by θ(T

′)
k , where θ(T

′)
k is obtained by running T ′ steps of

gradient steps of JLL(ψk, ·) w.r.t. θ starting from θk. That is, we set θ(0) = θk and let

θ
(t+1)
k = θ

(t)
k − e▽θJLL(ψk, θ

(t
k ), t = 0, ..., T ′ − 1, (25)

for some step size parameter e > 0. We therefore obtain an estimate of q(ψ, θ) at iteration k by replacing θ∗(ψk) with
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θ
(T ′)
k : q̂(ψ, θ) = JLL(ψ, θ)− JLL(ψ, θ∗(ψk)). We substitute q̂(ψ, θ) into Equation 23 to obtain the update direction δk,

and the full algorithm is summarized in Algorithm 1.

A.3. Attraction Points

The notion of attraction points is introduced and proved in the work of BOME (Liu et al., 2022a):

Definition A.3. (Attraction Points ) Given any (ψ, θ), we say that θ♢(ψ, θ) is the attraction point of (ψ, θ) with step size
e > 0 if the sequence {θ(t)}∞t=0 generated by gradient descent θ(t) = θ(t−1) − e▽θJLL(ψ, θ(t−1)) starting from θ(0) = θ
converges to θ♢(ψ, θ).

Intuitively, the attraction of (ψ, θ) is where the gradient descent algorithm cannot make any improvement. The set of
(ψ, θ) that has the same attraction point forms an attraction basin. But there is a key challenge that θ♢(ψ, θ) and hence
q♢(ψ, θ) = JLL(ψ, θ)− JLL(ψ, θ♢(ψ, θ)) can be discontinuous w.r.t. θ when it is on the boundary of different attraction
basins. However, these boundary points are not stable stationary points and it is possible to use arguments based on the
stable manifold theorem to show that an algorithm with random initialization will almost surely not visit them (Liu et al.,
2022a). This statement ensures the stability of BOME with the approximation terms.

B. Further Implementation Details
B.1. Basic Settings

We implement RCSI in Pytorch (Paszke et al., 2019) with the help of Scikit-Learn (Pedregosa et al., 2011) to calculate
metrics. The experiments are run on one NVIDIA Tesla V100 SXM2 32G graphic card, with two Xeon Gold 6132 @
2.6GHz CPUs. We set the maximum epoch as 1000, and set batch size as 128 for datasets that have no more than 10 nodes,
and 64 for datasets having more than 10 nodes. We use Adam optimizer (Kingma & Ba, 2015) for the training of both
branches with the learning rate of 5e− 4, and we reduce the learning rate to 50% if there is no loss drop in the past 100
epochs.

B.2. Further details of datasets

Synthetic networks. The six directed Boolean networks (LI, LL, CY, BF, TF, BF-CV) are the most often observed
fragments in many gene regulatory networks, each has 7, 18, 6, 7, 8 and 10 nodes, respectively. Thus by carrying out
experiments on these networks, we can get acknowledge on the performance of the chosen methods on the structural
inference of real-world biological networks. We collect the six ground-truth directed Boolean networks from (Pratapa
et al., 2020) and simulate the single-cell evolving trajectories with BoolODE (Pratapa et al., 2020) https://github.
com/Murali-group/BoolODE with default settings mentioned in that paper for every network. We first sample a total
number of 12000 raw trajectories. We then sample different numbers of trajectories from raw trajectories and randomly
group them into three datasets: for training, for validation, and for testing, with a ratio of 8 : 2 : 2. After that we sample
different numbers of snapshots according to the requirements of experiments in Sections 5.2 and 5.3 with equal time intervals
in every trajectory and save them as “.npy” files for data loading.

NetSim datasets. The NetSim datasets simulate blood-oxygen-level-dependent imaging data across different regions
within the human brain and is described in (Smith et al., 2011) and https://www.fmrib.ox.ac.uk/datasets/
netsim/. We target inferring the existence of directed connections between different brain areas. Among the total 28
datasets in NetSim, we choose the first three datasets (NetSim1, NetSim2 and NetSim3) which have 5, 10, and 15 nodes,
respectively. We sample different numbers of snapshots according to the requirements of experiments in Sections 5.2 and 5.3
on each trajectory with equal intervals and randomly group them into three sets for training, validation and testing with the
ratio of 8: 2: 2, respectively.

Physical simulations. To generate these physical simulations (springs, charged particles and phase-coupled oscillators),
we follow the description of the data in (Kipf et al., 2018) but with fixed interactions. To be specific, at the beginning of
the data generation for each physical simulation, we randomly generate a ground truth graph and then simulate 12000 raw
trajectories on the same ground truth graph, but with different initial conditions. We then sample different numbers of
trajectories from raw trajectories and randomly group them into three datasets: for training, for validation, and for testing,
with a ratio of 8 : 2 : 2. After that we sample different numbers of snapshots according to the requirements of experiments
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in Sections 5.2 and 5.3 with equal time intervals in every trajectory. The rest settings for the simulations are the same as
those mentioned in (Kipf et al., 2018). It is worth mentioning that the connections in the physical simulations are indirected,
which are different from those in the synthetic networks and NetSim datasets. We collect the trajectories and randomly
group them into three sets for training, validation and testing with the ratio of 8: 2: 2, respectively.

Datasets with Noise. We generate a dataset with different levels of noise based on springs dataset of physical simulations.
We first sample trajectories the way same as those for physical simulations. After that, we add Gaussian noise with different
levels ∆ on the obtained node features v(t)i :

v̂
(t)
i = v

(t)
i + κ · 0.02 ·∆, where κ ∼ N (0, 1). (26)

B.3. Implementation details of RCSI

For details about the implementation please refer to the link attached in the supplementary material. The choice of
hyperparameters in this work follows the choices in BOME and iSIDG. For example, we set T ′ = 10 and η = 0.5 for
BOME in this work, and set the weights in the loss functions identical as iSIDG (Wang & Pang, 2022). We briefly describe
the implementation of the main blocks in RCSI in the following paragraphs.

Backbone VAE-based Structural Inference Method. The backbone VAE-based structural inference method utilized in
this work is iSIDG (Wang & Pang, 2022). We follow the setup and implementation described in the work of iSIDG. We also
would like to thank the authors of iSIDG for the code. The hyperparameters and the implementation of loss functions of the
VAE-based structural inference method in RCSI are identical to those in iSIDG.

RC Net. The RC net in this work consists of three identical RC cells and a final linear output layer. The setup
of RC cells in this work follows the “ ReservoirCell” class from https://github.com/Pervasive-AI-Lab/
ContinualLearning-EchoStateNetworks. The initialization of the RC cells are identical to the default used in
the class, which regularizes the spectral radius of weight matrices, and is implemented according to Theorem A.1. The
dimensionality of the RC cells is set to match the output from the diverging layer in the decoder of iSIDG. For example,
“input size” is set as 256, while the rest are set the same as default in the class. The final linear output layer has the size to
match the concatenated output from three RC cells, and outputs the node features to match the settings of the datasets (4 for
physical simulations, and 1 for the rest). It is worth mentioning that in the training process of RC nets for feature prediction,
warm-up sessions are necessary, to ensure that the reservoir state does not depend on the RC initial conditions (Gauthier
et al., 2021). However, as the task of RCSI is to infer the underlying structure of a dynamical system, the initial dependence
plays minor role here. As a result, RCSI does not necessarily need a warm-up period.

BOME. We would like to thank the authors of BOME (Liu et al., 2022a) for the implementation details of the algorithm.
The implementation of BOME in this work follows the general implementation pipeline of BOME, and simply replaces the
learning objectives f(·) and g(·) with the iSIDG objective JUL and the RC net objective JLL.

B.4. Implementation details of baselines

NRI. We use the official implementation code by the author from https://github.com/ethanfetaya/NRI with
a customized data loader for our chosen datasets. We add our metric evaluation in the “test” function, after the calculation of
accuracy in the original code.

fNRI. We use the official implementation code by the author from https://github.com/ekwebb/fNRI with a
customized data loader for our chosen datasets. We add our metric evaluation in the “test” function, after the calculation of
accuracy and the selection of the correct order for the representations in latent spaces in the original code.

MPIR. We follow the official implementation from https://github.com/tailintalent/causal as the model
for MPIR. We run the model with a customized data loader for the chosen datasets. After the obtain of the results, we run
another script to calculate the metrics.

MPM. We use the official implementation code by the author from https://github.com/hilbert9221/NRI-MPM
with a customized data loader for our chosen datasets. We add our metric evaluation for AUROC in the “evaluate()” function
of class “XNRIDECIns” in the original code.
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ACD. We follow the official implementation code by the author as the framework for ACD (https://github.com/
loeweX/AmortizedCausalDiscovery). We run the code with a customized data loader for the datasets in this work.
We implement the metric-calculation pipeline in the “forward pass and eval()” function.

iSIDG. We ask the authors of iSIDG for the code and follow the instructions on the settings of hyper-parameters in their
work. We disable the metric evaluations for AUPRC and Jaccard index in the original implementation of iSIDG for faster
computation.

C. Further Experimental Results
Because of the page limitation, more experimental results are reported in this section.

C.1. Exact results on datasets of only 10% trajectories

The experimental results of the proposed model and the baseline methods on synthetic networks, three NetSim datasets and
physical simulations are summarized in Tables 2 and 3, which consists of mean and standard deviation of AUROC values
from 10 experiments on each. The numbers of trajectories in this section are various. For synthetic networks and physical
simulations, the numbers of trajectories are 1200 in total, respectively, but for NetSim datasets, we keep the number of
trajectories as identical to the default, as the trajectories are already few.

As shown in Tables 2 and 3, RCSI outperforms all baseline methods on all 12 datasets. It is worth mentioning that the
amount of available data in the experiments on synthetic networks and physical simulations is only 10% to that investigated
in previous works (Kipf et al., 2018; Webb et al., 2019; Wang & Pang, 2022). So in comparison with the results reported in
previous works (Kipf et al., 2018; Wang & Pang, 2022), baseline methods perform much worse. In sharp contrast, RCSI
manages to infer the adjacency matrix of the graph with the highest AUROC value among all of the investigated methods,
with a margin of up to 14.3%, which supports that the integration of RC into the framework of structural inference can help
the method to overcome the curse of the amount of data.

As the feature dimension of the nodes varies from one to four in the datasets, the AUROC values of RCSI suggest that the
feature dimension has minor influence on the performance. Recall that iSIDG (Wang & Pang, 2022) is slightly inferior to
other methods when node features are rich, the integration of RC succeeds in helping iSIDG to overcome this challenge.

Table 2. AUROC values (%) on synthetic networks and physical simulations with a total of 1200 trajectories and 49 time steps.

Methods Datasets

LI LL CY BF TF BF-CV Springs Particles Kuramoto

NRI 56.4± 0.12 62.9± 0.12 53.7± 0.10 51.6± 0.16 51.0± 0.10 49.8± 0.14 55.1± 0.06 52.6± 0.05 53.0± 0.04

fNRI 60.3± 0.05 68.2± 0.05 57.1± 0.06 54.3± 0.05 54.1± 0.06 52.6± 0.08 64.2± 0.04 55.1± 0.04 53.2± 0.04

MPIR 42.0± 0.06 45.2± 0.04 30.4± 0.09 44.1± 0.06 40.0± 0.06 47.3± 0.05 50.1± 0.04 51.7± 0.04 50.1± 0.03

MPM 60.8± 0.03 71.0± 0.04 58.7± 0.05 57.3± 0.05 57.0± 0.06 54.3± 0.05 70.0± 0.05 58.7± 0.05 56.4± 0.04

ACD 61.2± 0.03 63.0± 0.04 58.3± 0.07 56.8± 0.07 55.8± 0.05 54.1± 0.07 69.9± 0.04 59.0± 0.05 58.3± 0.04

iSIDG 65.1± 0.04 75.9± 0.05 60.9± 0.05 60.7± 0.06 57.8± 0.05 60.2± 0.05 71.0± 0.04 59.0± 0.04 58.0± 0.04

RCSI 73.9± 0.06 80.2± 0.04 71.0± 0.05 63.4± 0.04 62.7± 0.05 66.1± 0.06 77.6± 0.04 68.1± 0.05 65.7± 0.04

C.2. Results on datasets of 25 time steps

In this section, we would like to study the performance of all of the methods when the trajectories consist of 25 time steps,
which are shorter than those in Section 5.2. The number of trajectories in this experiment is 1200 in total for physical
simulations and synthetic networks, and identical for NetSim datasets. From the sampled trajectories that are used in
Section 5.2, we subsample the first 25 time steps in each trajectory to create the datasets used in this study, and we show
AUROC results in Tables 4 and 5. The results in these tables consist of averaged AUROC values and standard deviations
from 10 runs. As expected, all of the methods perform worse than experiments on datasets of 49 time steps, while RCSI still
unsurprisingly outperforms all of the baselines. Since the available data is cut to almost half, data-driven structural inference
methods are facing bigger challenges. The experimental results in this section support the performance of RCSI for the task
of structural inference on fewer and shorter trajectories.
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Table 3. AUROC values (%) on NetSim datasets. The trajectories in these datasets consist of 49 time steps.

Methods Datasets

NetSim1 NetSim2 NetSim3

NRI 72.1 ± 0.03 72.0 ± 0.04 68.3 ± 0.03

fNRI 72.4 ± 0.05 71.2 ± 0.05 69.6 ± 0.04

MPIR 47.2 ± 0.03 46.0 ± 0.04 44.3 ± 0.02

MPM 73.2 ± 0.03 72.0 ± 0.03 70.4 ± 0.03

ACD 66.7 ± 0.04 64.0 ± 0.03 62.9 ± 0.03

iSIDG 75.6 ± 0.05 72.2 ± 0.05 71.5 ± 0.04

RCSI 77.0 ± 0.05 75.6 ± 0.05 74.4 ± 0.04

Table 4. AUROC values (%) on synthetic networks and physical simulations with 25 time steps.

Methods Datasets

LI LL CY BF TF BF-CV Springs Particles Kuramoto

NRI 52.7± 0.10 59.5± 0.10 53.2± 0.10 49.3± 0.08 50.1± 0.05 49.2± 0.09 49.0± 0.05 50.2± 0.04 49.5± 0.04

fNRI 55.5± 0.05 61.7± 0.04 56.4± 0.05 52.0± 0.05 51.7± 0.05 51.0± 0.07 55.7± 0.05 52.2± 0.04 50.2± 0.04

MPIR 40.7± 0.06 42.8± 0.04 30.1± 0.09 42.7± 0.06 39.4± 0.06 45.7± 0.05 43.0± 0.06 48.8± 0.05 48.1± 0.03

MPM 56.7± 0.04 62.3± 0.04 56.6± 0.05 54.5± 0.05 52.8± 0.05 52.6± 0.04 61.4± 0.05 55.4± 0.05 52.1± 0.04

ACD 56.3± 0.03 62.0± 0.04 57.1± 0.04 54.9± 0.05 53.0± 0.05 52.5± 0.05 60.9± 0.05 55.8± 0.05 53.6± 0.04

iSIDG 59.3± 0.04 66.5± 0.04 59.1± 0.04 57.6± 0.05 55.0± 0.05 56.3± 0.05 62.0± 0.05 56.1± 0.04 53.9± 0.04

RCSI 69.1± 0.05 75.4± 0.05 68.5± 0.04 60.2± 0.04 60.4± 0.04 63.9± 0.05 75.2± 0.06 64.9± 0.04 63.2± 0.05

Table 5. AUROC values (%) on NetSim datasets. The trajectories in these datasets consist of 25 time steps.

Methods Datasets

NetSim1 NetSim2 NetSim3

NRI 63.4 ± 0.05 61.2 ± 0.05 60.0 ± 0.04

fNRI 64.0 ± 0.04 62.3 ± 0.04 61.5 ± 0.04

MPIR 45.6 ± 0.03 44.4 ± 0.04 43.7 ± 0.03

MPM 64.5 ± 0.04 63.1 ± 0.04 61.8 ± 0.03

ACD 65.0 ± 0.04 63.3 ± 0.04 62.1 ± 0.03

iSIDG 68.9 ± 0.05 66.4 ± 0.05 64.8 ± 0.03

RCSI 74.4 ± 0.04 73.0 ± 0.05 71.9 ± 0.05

C.3. Results on Noisy Datasets

Since RC is claimed to be robust against noise (Gauthier et al., 2021), and BO can also deal with noisy data (Liu et al.,
2022a), we would like to study the robustness of the proposed RC structural inference method. We generate a series of
datasets with noises based on the springs dataset, with different levels of Gaussian noise. The Gaussian noise is added to
the node features and the level ∆ amplifies the noise as: ṽ(t)i = v

(t)
i + κ · 0.02 ·∆, where κ ∼ N (0, 1). We sample the

trajectories with the same amount and same time steps as in Section C.2, and we report the results in Table 6. As shown in
the table, RCSI still outperforms all baseline methods on the experiments of noisy data. However, averaged AUROC values
of all methods experience a decrease, and the decrease is approximately linearly correlated with the levels of the Gaussian
noise ∆. Besides that, the margins between the AUROC results of RCSI and other methods decrease as the level of noise
increases. As a result, we can reach the conclusion that the robustness of RC integrated structural inference method is higher
than vanilla structural inference methods, but the degree of robustness decreases as the level of noise increases. We think
this phenomenon may come from the naive design of the RC net in this work. The RC net is designed as the combination
of several RC cells to reduce the number of parameters and the number of neurons in the whole RC net, in order to fit the
case of fewer data, and also reduce the difficulty of initialization. But compared to the RC used in (Vlachas et al., 2020)
and (Srinivasan et al., 2022), the RC setup in this work is much easier and much simpler. Despite the simple setup, the
integration of RC can still improve the performance of structural inference methods and infer the adjacency matrices more
accurately. We leave the work on the study of increasing the robustness with an optimal design of the RC net for future work.
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Table 6. AUROC results (%) on springs dataset with noise.

Methods Noise Levels

∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5

NRI 49.0 50.2 49.5 50.2 49.5
fNRI 55.7 52.2 50.2 52.2 50.2
MPIR 43.0 48.8 48.1 48.8 48.1
MPM 61.4 55.4 52.1 55.4 52.1
ACD 60.9 55.8 53.6 55.8 53.6
iSIDG 62.0 56.1 53.9 56.1 53.9

RCSI 75.2 64.9 63.2 64.9 63.2

C.4. Results on Time Efficiency

Table 7. Training time (in hour) of RCSI and baseline methods on datasets with 100% trajectories and with 49 time steps.

Methods Datasets

LI LL CY BF TF BF-CV Springs Particles Kuramoto NetSim1 NetSim2 NetSim3

iSIDG 48.1 50.6 40.9 44.6 40.3 44.0 42.2 36.0 39.2 20.7 36.9 50.8

RCSI 48.4 51.0 41.5 44.8 41.0 44.7 42.9 36.5 39.8 21.2 37.3 51.3

We summarize the training time of RCSI and iSIDG on all of the datasets with 100% trajectories and with 49 time steps
in Table 7. The results are the averaged values of 10 runs. Testing the running time on full trajectories and with full time
steps is the most extreme case which has the most amount of data and therefore requires the longest training time among
all of the experiments. There are some differences between the reported training time of iSIDG in Table 7 and those in its
original work (Wang & Pang, 2022), but the differences are minor. As shown in the table, RCSI is only slightly slower than
its vanilla backbone method iSIDG, and the margins are negligible. And the margins are not affected by whether the graph
is directed or not. The choice of RC net with very few parameters and the BOME with efficient first-order gradient descent
ensures that the addition of RC branch won’t be a burden to the training of the whole framework.

C.5. Results on Fewer and Shorter Trajectories

Table 8. Performance comparison between RCSI and iSIDG. RCSI works on LI dataset but with different percentages of trajectories and
different lengths of trajectories, while iSIDG is tested on LI dataset with 49 time steps and 100% trajectories. Mark “+” represents RCSI
on current dataset is better than iSIDG on full dataset, while “-” is on the contrary.

Number of Time Steps Percentage of the Available Trajectories

10 20 30 40 50 60 70 80 90 100

5 - - - - - - - - - -
10 - - - - - - - - - +
15 - - - - - - - - + +
20 - - - - - - - - + +
25 - - - - - - - + + +
30 - - - - - - - + + +
35 - - - - - - + + + +
40 - - - - - - + + + +
49 - - - - - - + + + +

Since RCSI performs the best among all of the investigated methods with fewer trajectories and shorter trajectories, we
would like to figure out how much data RCSI requires to match the performance of vanilla iSIDG on 100% trajectories and
49 time steps. We summarize the performance comparison in terms of average AUROC values of ten runs of both methods
on the LI dataset, and show the results in Table 8. The average AUROC result of iSIDG on LI dataset with full trajectories is
86.2% (Wang & Pang, 2022). As shown by the “+” marks in the table, RCSI outperforms iSIDG with fewer trajectories and
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shorter trajectories. For example, RCSI can infer the structure more accurately than iSIDG with 70% trajectories and 30
time steps, as well as with 90% trajectories and 15 time steps. It is also shown in the table that the number of trajectories
and the lengths of trajectories have almost the same affect on the performance of RCSI, as the frontier boundary is almost
linear. The results shown in Table 8 strongly support the outstanding performance of RCSI on fewer and shorter trajectories.

C.6. Discussion on Further Ablation Study

In addition to the ablation study in Section 5.4, we discuss other ablation studies in this section. As mentioned in Section B.3,
the choice of hyperparameters in this work simply follows the work of BOME (Liu et al., 2022a) and iSIDG (Wang &
Pang, 2022), and RCSI manages to outperform the baseline methods with such hyperparameter settings. Besides that, there
is no additional hyperparameter, which further suggests that RCSI is an easy-to-use structural inference method. As for
the ablation studies on the important components of RCSI, we aim to either run RCSI without BOME, or simply just run
a vanilla RC net for structural inference. The BOME is of great importance for combining the training processes of the
backbone VAE-based method and the RC net. We ran several training processes of RCSI without BOME, and the results
are terrible. At every epoch, the training of the backbone VAE-based method worked properly, but then the training of
RC net pulled the progress backward, which was quite similar to the catastrophic forgetting in continual learning (Shao &
Feng, 2022). This phenomenon supported the necessity of a BO to combine the training of both branches. We also tested a
variation of RCSI which only consisted of a vanilla RC net. Although we tried our best to find a certain layer or reservoir
that can be utilized as the generating space for the adjacency matrix, but we failed. Because the training of RC does not
strictly follow the principle of IB, thus it was ambitious to find a certain layer that has the minimal statistic and can be
viewed as the adjacency matrix. But we think that it would be interesting if we can dig deeper into the mechanism of RC net
or hierarchical ESN, and find a stable way to use it as a generative model. We leave this for future work.

D. Broader Impact
Similar to NRI, fNRI, iSIDG, and other structural inference methods, RCSI allows for numerous researchers in the field
of physics, chemistry, sociology, and biology to study the underlying interacting structure of the dynamical systems. We
have shown that RCSI is effective and efficient in the case of fewer and shorter available trajectories, and is insensitive to
the dimensionality of the node features, which proves its broad application. While the emergence of structural inference
technology may be extremely helpful for many, potentially it can be misused. For example, it can be likely to be used to
detect the intimate relationship between users on a social network, which could erode privacy.
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