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Abstract
Model-based reinforcement learning (RL) often
achieves higher sample efficiency in practice than
model-free RL by learning a dynamics model to
generate samples for policy learning. Previous
works learn a dynamics model that fits under the
empirical state-action visitation distribution for all
historical policies, i.e., the sample replay buffer.
However, in this paper, we observe that fitting the
dynamics model under the distribution for all his-
torical policies does not necessarily benefit model
prediction for the current policy since the policy
in use is constantly evolving over time. The evolv-
ing policy during training will cause state-action
visitation distribution shifts. We theoretically an-
alyze how this distribution shift over historical
policies affects the model learning and model roll-
outs. We then propose a novel dynamics model
learning method, named Policy-adapted Dynam-
ics Model Learning (PDML). PDML dynamically
adjusts the historical policy mixture distribution
to ensure the learned model can continually adapt
to the state-action visitation distribution of the
evolving policy. Experiments on a range of contin-
uous control environments in MuJoCo show that
PDML achieves significant improvement in sam-
ple efficiency and higher asymptotic performance
combined with the state-of-the-art model-based
RL methods.

1. Introduction
Recent years have witnessed great successes of Reinforce-
ment Learning (RL) in many complex decision-making
tasks, such as robotics (Polydoros & Nalpantidis, 2017;
Yang et al., 2022) and chess games (Silver et al., 2016;
Schrittwieser et al., 2020). Among RL methods, a wide
range of works in model-free RL (Schulman et al., 2015;
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Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto et al.,
2018; Hu et al., 2021) have shown promising performance.
However, model-free methods can be impractical for real-
world scenarios (Dulac-Arnold et al., 2021) since massive
samples from the real environment are required for policy
training, resulting in low sample efficiency.

Model-based RL is considered one of the solutions to im-
prove sample efficiency. Most of the model-based RL al-
gorithms first use supervised learning techniques to learn
a dynamics model based on the samples obtained from the
real environment, and then use this learned dynamics model
to generate massive samples to derive a policy (Luo et al.,
2018; Janner et al., 2019). Therefore, it is crucial to learn
a dynamics model which can accurately simulate the un-
derlying transition dynamics of the real environment since
the policy is trained based on the model-generated sam-
ples. If the learned dynamics has a high prediction error,
the model-generated samples will be biased, and the policy
induced by these samples will be sub-optimal. To reduce
the model prediction error and learn an accurate dynamics
model, some advanced architectures such as model ensem-
ble (Kurutach et al., 2018; Chua et al., 2018) and multi-step
model (Asadi et al., 2019) have been proposed to improve
the multi-step prediction accuracy of the learned dynamics
model. Besides, the idea of a generative adversarial net-
work (GAN) (Goodfellow et al., 2014) is used to design the
training process of a dynamics model (Shen et al., 2020;
Eysenbach et al., 2021) to reduce the distribution mismatch
between model-generated samples and real samples. Those
previous works mentioned above aim to learn a dynamics
model that can fit all historical policies. To be precise, when
training the dynamics model, they randomly select the train-
ing data from the real samples obtained by all historical
policies in the replay buffer. This learned dynamics model
needs to adapt to the state-action visitation distribution of all
historical policies to obtain a dynamics model that predicts
transitions accurately under different policies.

However, since we only use the current newest policy to in-
teract with the learned model to generate samples for policy
learning during model rollouts, learning such a dynamics
model that fits under (highly likely sub-optimal) histori-
cal policies may be unnecessary. Due to the state-action
visitation distribution shift during policy updating, the state-
action pairs visited by historical policies may not appear
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in the state-action visitation distribution of the current pol-
icy, and vice versa. Thus, learning these samples may not
benefit model rollouts. Besides, in many complex tasks,
it is hard to predict all samples from all historical policies
due to limited model capacity (Abbas et al., 2020), and as
shown later in our paper, trying to learn every sample from
historical policies can even hurt the accuracy when predict-
ing the transitions induced by the current policy. Therefore,
there is an objective mismatch between model learning and
model rollouts — model learning tries to fit samples from
state-action visitation distribution for all historical policies,
whereas model rollouts require accurate prediction of the
transitions induced by the current policy.

In this paper, we investigate how to learn an accurate dy-
namics model for model rollouts based on existing samples.
(a) To begin with, we confirm through experiments that al-
though the dynamics model learned by the previous methods
has a low overall prediction error on all transitions obtained
by historical policies, its prediction error for the current
newest policy can still be very high. This leads to inaccu-
rate model-generated samples which can hurt the sample
efficiency and asymptotic performance of the policy. (b)
We then derive an upper bound of the expected performance
gap between the model rollouts and real environment roll-
outs. According to this upper bound, we analyze how the
distribution of historical policies affects model learning and
model rollouts. The theoretical result suggests that the his-
torical policy distribution used for model learning should be
more inclined towards policies that are closer to the current
policy rather than a uniform distribution over all historical
policies to ensure the model prediction accuracy for model
rollouts. (c) Motivated by this insight, we propose a novel
dynamics model learning method named Policy-adapted
Dynamics Model Learning (PDML). Instead of learning a
dynamics model that fits under a uniform mixture of all
historical policies, PDML adjusts the historical policy dis-
tribution by reducing the total variation distance between
the historical policy mixture and the current policy, then
learns a policy-adapted dynamics model according to this
adjusted historical policy distribution. (d) We conduct sys-
tematic and extensive experiments on a range of continuous
control benchmark MuJoCo environments (Todorov et al.,
2012). Experimental results show that PDML significantly
improves the sample efficiency and asymptotic performance
of the state-of-the-art model-based RL methods.

Summary of contributions: (1) Through detailed experi-
mental results, we establish that learning a dynamics model
that fits a uniform mixture of all historical policies may not
be accurate enough for model rollouts. (2) We propose an
upper bound of an expected performance gap between the
model rollouts and the real environment rollouts, and theo-
retically analyze how the distribution over historical policies
affects model learning and model rollouts. (3) We propose

Policy-adapted Dynamics Model Learning (PDML), which
dynamically adjusts the distribution over the historical pol-
icy sequence and allows the learned model to continuously
adapt to the evolving policy. (4) Experimental results on
a range of MuJoCo environments demonstrate that PDML
can achieve significant improvement in sample efficiency
and higher asymptotic performance combined with the state-
of-the-art model-based RL methods.

2. Background
2.1. Preliminaries

Reinforcement learning. Consider a Markov Decision
Process (MDP) defined by the tuple (S,A, T, r, γ), where S
is the state space,A is the action space, and T (s′|s, a) is the
transition dynamics in the real world. The reward function
is denoted as r(s, a) and γ is the discount factor. Reinforce-
ment learning aims to find an optimal policy π which can
maximize the expected sum of discounted rewards

π = argmax
π

E st∼T (·|st−1,at−1)

at∼π(a|st)

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In model-based RL, the transition dynamics T in the
real world is unknown, and we aim to construct a model
T̂ (s′|s, a) of transition dynamics and use it to improve the
policy. In this paper, we concentrate on the Dyna-style
(Sutton, 1990) model-based RL, which uses the learned
dynamics model to generate samples and train the policy.

Policy mixture. During policy learning, we consider the
historical policies at iteration step k as a historical policy se-
quence Πk = {π1, π2, ..., πk}. For each policy in the policy
sequence, we denote its state-action visitation distribution as
ρπi(s, a), and the policy mixture distribution over the policy
sequence as wk = [wk

1 . . . , w
k
k ]. Then the state-action visi-

tation distribution of the policy mixture πmix,k = (Πk,wk)

is ρπmix,k(s, a) =
∑k

i=1 w
k
i ρ

πi(s, a) (Hazan et al., 2019;
Zhang et al., 2021).

2.2. Dynamics Model Learning in Model-based RL

Learning a dynamics model is the most crucial part of model-
based RL since the ground-truth transition dynamics is un-
known and the policy must be updated based on the samples
generated by the learned dynamics model. Previous works
learn the dynamics model by randomly selecting training
data from the samples obtained by the historical policy se-
quence Πk, which means the distribution of policy mixture
is a random distribution: wk

i = 1
k . The learned dynamics

model is trained based on the following state-action visita-
tion distribution

ρπmix,k(s, a) =

k∑
i=1

1

k
ρπi(s, a). (2)
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Figure 1: (a) and (b): visualization of the state-action vis-
itation distribution of different historical policies and the
current policy using t-SNE. Env step 130k and env step
100k are the current policy. More details are shown in Ap-
pendix F.3. (c) and (d): the overall error curves and current
error curves of MBPO on HalfCheetah and Hopper, respec-
tively.

This model tries to fit all the samples obtained by sampling
the state-action visitation distribution corresponding to all
policies in the historical policy sequence, so the learned
dynamics model is (hopefully) able to predict the transition
for any state-action input.

However, as shown in Figure 1(a) and 1(b), since the policy
is constantly evolving, the state-action visitation distribution
of historical policies may have a huge shift from the cur-
rent policy. There is little overlap between the state-action
visitation distribution of policies at different environment
steps. The state-action pairs visited by historical policies
may not appear in the state-action visitation distribution of
the current policy. During model rollouts, we only use the
current policy to interact with the learned dynamics model
to generate samples. Thus, learning these samples may not
benefit model rollouts. When the model capacity is not large
enough, learning these samples may even be detrimental to
the learning of the samples collected by the current policy.

We conduct an experiment using a state-of-the-art model-
based RL method called MBPO (Janner et al., 2019) on four
MuJoCo (Todorov et al., 2012) environments HalfCheetah,
Hopper, Walker2d, and Ant. MBPO first trains a model
based on the real samples and then uses the model to roll
out multiple samples for policy learning. The architecture
of the dynamics model is a 4-layer neural network with a
hidden size of 200, which is a very common architecture
used in many recent model-based methods (Yao et al., 2021;
Froehlich et al., 2022; Li et al., 2022). We present the
overall error curves and the current error curves during

learning steps on HalfCheetah and Hopper in Figure 1(c)
and 1(d). Here the overall error means the model prediction
error for all historical policies during training. It is evaluated
on an evaluation dataset which contains 1000 ×N samples
from the real environment. N is the number of historical
policies in the historical policy sequence. The current error
is the model prediction error for the current policy, which
is evaluated using L2 error on the 1000 samples obtained
by the current policy from the real environment. The error
curves for more environments can be found in Appendix F.1.

From Figure 1(c) and 1(d), we observe that there is a gap
between the overall error and the current error. This means
although the agent can learn a dynamics model which is
good enough for all samples obtained by historical poli-
cies, this is at the expense of the prediction accuracy for
the samples induced by current policy. Since we only use
the current policy during model rollouts, this will lead to
inaccurate model-generated samples and misleading policy
learning. To demonstrate that this error gap is not caused
by the model not having converged on the recent data, we
also conduct another experiment. We checkpoint the replay
buffer and model at multiple points during training, then
train the dynamics model for a long time until convergence
at these checkpointed locations, and test the prediction error
on newly generated data. We find that even when the dy-
namics model has converged on all data, the prediction error
on newly generated data does not reduce obviously. Experi-
ment results and more details can be found in Appendix F.2.

Therefore, learning a dynamics model that adapts the state-
action visitation distribution for all historical policies, in
other words, a random historical policy mixture distribution
used for model learning, is not the most efficient way for
model-based RL (especially for task-specific problems). In
the next section, we will analyze how the policy mixture
distribution affects the performance of model-based RL.

3. Performance Gap Influenced by Policy
Mixture Distribution

In this section, we provide a theoretical analysis of how the
policy mixture distribution affects the performance of model-
based RL. First, we derive a theorem that upper bounds the
performance gap between the real environment rollouts and
the model rollouts under any current policy π.

Theorem 3.1. Given the historical policy mixture
πmix,k = (Πk,wk) at iteration step k, we denote ξρi

=
DTV (ρ

π
T (s, a)||ρ

πi

T (s, a)) as the state-action visitation dis-
tribution shift and ξπi = Es∼v

πmix
T̂

[DTV (π(a|s)||πi(a|s))]
as the policy distribution shift between the historical pol-
icy πi and current policy π respectively, where vπmix

T̂
is the

state visitation distribution of the policy mixture under the
learned dynamics model T̂ . rmax is the maximum reward
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the policy can get from the real environment, γ is the dis-
count factor, and Vol(S) is the volume of state space. Then
the performance gap between the real environment rollout
J(π, T ) and the model rollout J(π, T̂ ) can be bounded as:

J(π, T )− J(π, T̂ ) ≤2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))]

+ rmax

k∑
i=1

wk
i (γVol(S)ξρi

+ 2ξπi
)

+ 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a))

(3)

Proof. See Appendix D.

Remarks.
(1) The first term is about model prediction error. This
term suggests that the model needs to adapt to the state-
action visitation distribution of the current policy to reduce
the model prediction error, since this term is the expectation
of prediction error of the learned dynamics model T̂ under
the current policy state-action visitation distribution ρπT .
(2) The second term shows the effect of the policy mixture
distribution on model rollout. This item contains two distri-
bution shifts: (2a) state-action visitation distribution shift
ξρi

and (2b) policy distribution shift ξπi
between the histor-

ical policy and current policy. It should be noted that ξρi
is

induced by ξπi
, so it is reasonable to believe that a historical

policy with a larger ξπi will have a larger ξρi . Both ξρi and
ξπi are fixed since historical policies and the current policy
are immutable during model learning and model rollout.
Therefore, to reduce this term, we can only adjust the policy
mixture distribution wk. Since the distribution shift varies
across historical policies and the current policy, it is obvious
that the random distribution wk

i = 1
k is not the best choice.

(3) The last term is related to the model sample buffer,
which is used for policy learning. To maximize sample
utilization, the model-generated samples obtained by the
historical policies will be maintained in the model sample
buffer until they are replaced by the new samples generated
by the current policy. Therefore, the distribution of simu-
lated samples in the model buffer is not exactly the same
as the simulated sample distribution of the current policy,
but is often mixed with the simulated sample distribution
of the historical policies. This makes it necessary to ad-
just the sample distribution in the model sample buffer to
make it close to the simulated sample distribution of the
current policy during the policy learning process. This has
been studied in many model-based and model-free methods
(Schaul et al., 2016; Liu et al., 2021; Huang et al., 2021;
Mu et al., 2021) and is out of the scope of this paper, and
we focus on reducing the first two terms related to model
learning.

The first two items on the right-hand side of Equation (3)
provide useful insights on model learning. This first term
points out the goal of model learning: to make accurate

predictions for the current policy. The second item further
demonstrates that to achieve this goal, we should adjust
the policy mixture distribution to reduce the distribution
shift between the historical policy mixture and the current
policy. According to the second term, we have the following
proposition.
Proposition 3.2. The performance gap can be reduced if
the weight wk

i of each policy πi in the historical policy
sequence Πk is negatively related to state action visitation
distribution shift ξρi and the policy distribution shift ξπi

between the historical policy πi and current policy π instead
of an average weight wk

i = 1
k .

The proof is in Appendix E. Proposition 3.2 illustrates how
we should adjust the policy distribution to help the learned
dynamics model adapt to the current policy. This naturally
motivates our method, which is described in the next section.

4. Policy-adapted Dynamics Model Learning
In this section, we introduce our model learning method
called Policy-adapted Dynamics Model Learning (PDML).
PDML is designed to reduce the model prediction error
during model rollouts, and it contains two parts. The first
part is adjusting the policy mixture distribution into a non-
uniform distribution, and the second part is learning the
dynamics model based on this non-uniform distribution.
The pseudo-code is in Algorithm 1.

Algorithm 1 Policy-adapted Dynamics Model Learning
(PDML)

Require: current policy proportion hyperparameter α, in-
teraction epochs I

1: Initialize historical policy sequence k ← 0,Πk ← ∅
2: for I epochs do
3: Interact with the environment using current policy

πc, add samples into real sample buffer De

4: Add current policy πc into historical policy sequence:
πk ← πc, Πk ← {Πk−1, πk}

5: Adjust the historical policy mixture distribution
wk = [wk

1 , . . . , w
k
k ] via Equation (4) and (5)

6: Normalize wk ← wk/∥wk∥
7: Sample a training data batch of (sn, an, r, sn+1)

from De according to wk

8: Train dynamics model T̂θ via Equation (7), use cur-
rent policy πc to perform model rollouts

9: k ← k + 1
10: end for

4.1. Policy Mixture Distribution Adjustment

In this section, we introduce a mechanism to adjust the
policy mixture distribution. According to our Theorem 3.1,
to minimize the performance gap, one may set the weight
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of the policy with the smallest ξρi
and ξπi

to be 1 and the
weights of other policies in the historical policy sequence
to be 0. However, this is not the best approach in practice
since each policy can only interact with the environment for
very few steps in model-based RL. This means each policy
can provide very limited samples for model learning. If we
only use a small number of samples from just one policy,
it is difficult to learn accurate transition dynamics for the
current policy.

Weights design for historical policies. In order to max-
imize the use of limited samples to estimate the transi-
tion dynamics, inspired by Proposition 3.2, we design the
weight of each policy in the historical policy sequence
Πk = {π1, π2, ..., πk} except for the current policy πc (i.e.,
πk ∈ Πk) as follows:

wk
i =

ξπi

−1∑k
n=1 ξπn

−1
,

ξπi = Es∼v
πmix
T̂

[DTV (πc(·|s)||πi(·|s))] , ∀i ∈ [k − 1],

(4)

where ξπi
is the policy distribution shift between historical

policy πk
i and the current policy πc; it is also one of the

distribution shifts in the second term of Equation (3). We
use [k − 1] := {1, . . . , k − 1} to denote the integers from 1
to k − 1. We only use the policy distribution shift ξπi (and
not the state-action visitation distribution shift ξρi

) because
estimating the state-action visitation distribution shift using
limited real samples is difficult, and thus the estimation
may be inaccurate. Besides, as mentioned in the remarks of
Theorem 3.1, state-action visitation distribution is induced
by the policy, so it is reasonable to believe that a historical
policy with a larger ξπi

will have a larger ξρi
.

Weight design for the current policy. In model-based
RL, the current policy becomes a historical policy after
interacting with the environment and is added to the histori-
cal policy sequence (see Algorithm 1). The total variation
distance between the current policy and itself is 0, so Equa-
tion (4) cannot be used to calculate the weight of the current
policy. For the weight of the current policy wk

k , we use the
following equation:

wk
k =


α
∑k−1

i=1 wk
i , if α

∑k−1
i=1 wk

i > max
i∈[k−1]

{wk
i }

max
i∈[k−1]

{wk
i }, if α

∑k−1
i=1 wk

i ≤ max
i∈[k−1]

{wk
i }

(5)
where α is a hyperparameter to control the proportion of
the weight of the current policy to the total weight over
the historical policy sequence. Equation (5) ensures that
the weight of the current policy wk

k is always the largest in
the historical policy sequence. Before each model learning
iteration, we adjust the policy mixture distribution according

to Equation (4) and Equation (5) and normalize the weights
wk = [wk

1 , ..., w
k
k ] to make sure they sum to 1. The details

are illustrated in Algorithm 1.

Estimation of the policy distribution shift ξπi ∀i ∈ [k−1].
Given a state sn, we define the output of policy πi as a mul-
tivariate Gaussian distribution N (µπn

i
,Σπn

i
). In order to

make the empirical estimation more accurate, we use each
historical policy to traverse all N samples in the real sample
buffer and output the action distribution corresponding to
each state. Then we use the inequality between KL diver-
gence and total variation distance to estimate ξπi

:

ξπi
=

1

N

N∑
n=1

DTV (πc(·|sn)||πi(·|sn))

≤ 1

2N

N∑
n=1

√
tr(Σ−1

πn
c
Σπn

i
− I) + (µπn

c
− µπn

i
)TΣ−1

πn
i
(µπn

c
− µπn

i
)− log det(Σ−1

πn
c
Σπn

i
)

(6)

Novelty of PDML compared to prioritized experience
replay proposed in model-free RL. In model-free RL,
prioritized experience replay methods only need to consider
how to improve the policy based on existing samples. There-
fore, it is only necessary to select the sample that can bring
the greatest improvement to the policy, and a weighting is
designed for each sample. In model-based RL, the policy
is learned based on model-generated samples, and the ac-
curacy of these model-generated samples determines the
sub-optimality of the policy. Thus, in the model-learning
part, we focus on the model prediction accuracy. Our theo-
retical analysis shows that we should consider whether the
state-action visitation distribution that generates the sam-
ples is close to the current policy when reweighting samples.
Although a sample can bring a great improvement to the cur-
rent policy (the TD value is high), if this sample is not in the
state-action visitation distribution of the current policy, this
sample will not be encountered during model rollouts. Then
learning this sample will not bring any benefit to model
learning and policy learning. Therefore, we reweight the
state-action visitation distribution that generates a batch of
samples according to ξπi

, rather than a single sample as in
model-free RL.

4.2. Dynamics Model Learning

After adjusting the policy mixture distribution, we learn the
dynamics model based on this adjusted distribution. Al-
though our method can be applied to learn any type of
dynamic model, here we choose to use the current state-
of-the-art structure probabilistic dynamics model ensemble
Chua et al. (2018): {T̂ 1

θ , ..., T̂
B
θ }. θ is the parameters of

each dynamics model in the ensemble, and B is the en-
semble size. Given a (sn, an) pair as an input, the output
T̂ b
θ of each network b in the ensemble is the Multivariate

Gaussian Distribution of the next state: T̂ b
θ (sn+1|sn, an) =

N (µb
θ(sn, an),Σ

b
θ(sn, an)) Before each model learning it-
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eration, we sample the training data batch from the real
sample buffer according to the adjusted policy mixture dis-
tribution wk, and train the dynamics model using maximum
likelihood:

L(θ) =
∑N

n=1[µ
b
θ(sn, an)− sn+1]

⊤Σb
θ

−1
(sn, an)[µ

b
θ(sn, an)− sn+1] + log detΣb

θ(sn, an)

(7)

During model rollouts, we use the current policy πc as
the rollout policy and sample the initial states from the
real sample buffer according to the adjusted policy mixture
distribution wk.

5. Experiment
In this section, we will first compare our method with the
previous state-of-the-art (including both model-free and
model-based) baselines. We demonstrate that after com-
bining with SOTA model-based method, PDML improves
SOTA sample efficiency and SOTA asymptotic performance
for model-based RL. Then we compare our method with
three SOTA prioritized experience replay methods to indi-
cate the advantage of our distribution adjustment method for
model learning. Lastly, we conduct a systematic ablation
study to analyze the model errors of PDML.

5.1. Comparison with State-of-the-arts
In this section, we compare our method with several
previous state-of-the-art (SOTA) baselines. For model-
based methods, we choose MBPO (Janner et al., 2019),
AMPO (Shen et al., 2020), and VaGraM (Voelcker et al.,
2022). MBPO is the SOTA model-based method, and our
method is combined with MBPO for the model learning
part. We name our method PDML-MBPO and we provide
the pseudo code in Appendix A. AMPO is another SOTA
model-based method that uses unsupervised model adapta-
tion during model learning to reduce the prediction error.
VaGraM is a SOTA value equivalence model-based method.
Instead of accurately learning each dimension in the dynam-
ics, it aims to learn the dimensions which impact policy
learning most. In other words, this method also learns a
locally accurate model. Both AMPO and VaGraM are im-
plemented based on MBPO. PDML-MBPO, AMPO, and
VaGraM share the same model architecture and policy part;
only the model learning part is different. For model-free
methods, we compare with two methods. The first one is
SAC (Haarnoja et al., 2018), which is the policy part of all
model-based and model-free baselines we used and is one
of the SOTA model-free methods. The second one is REDQ
(Chen et al., 2020), which improves the Update-To-Data
(UTD) ratio of the model-free method and achieves higher
sample efficiency than SAC. The implementation details of
our method are in Appendix G.1. We conduct experiment
on six complex MoJoCo-v2 (Todorov et al., 2012) environ-
ments, the performance curves are shown in Figure 2.
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Figure 2: Performance curves for our method (PDML-
MBPO) and other baseline methods on six MuJoCo en-
vironments. Our method, AMPO, MBPO and VaGram are
model-based methods, while SAC and REDQ are model-
free methods. The dashed line indicates the asymptotic
performance of SAC. The solid lines indicate the mean over
8 seeds and shaded regions correspond to the 95% confi-
dence interval among seeds. We evaluate the performance
every 1k interaction steps.

Results: (1) Improving SOTA sample efficiency. PDML-
MBPO outperforms all existing state-of-the-art methods,
including model-based and model-free, in sample efficiency
in first five environments, and achieves competitive sample
efficiency in Ant. In Hopper, Walker2d, and Humanoid,
PDML-MBPO achieves very impressive sample efficiency
improvements, up to a 2× improvement in Hopper and Hu-
manoid compared to the SOTA model-based methods. For
example, our method using only 30k steps to achieve 3000
while other model-based methods need almost 60k steps.
Besides, its sample efficiency is also higher than REDQ
which is modified for sample-efficient model-free RL. (2)
Improving SOTA asymptotic performance for Model-
based RL. In addition, PDML-MBPO obtains significantly
better asymptotic performance compared to other state-of-
the-art model-based methods. It is worth noting that the
asymptotic performance of PDML-MBPO is very close to
SAC in four environments (Hopper, Walker2d, Humanoid,
and Pusher) and is even better than SAC occasionally. Fur-
thermore, our method achieves impressive improvement in
the most complex environment Humanoid. These indicate
the effectiveness of our proposed model learning method.

Discussion of computational cost. PDML requires saving
all historical policies as well as computing their distances to
the current policy for adjusting their weights (as shown in
Equation 6). This creates an additional memory overhead of
storing historical policy networks (k×policy network size)
and an additional computational overhead of computing
the distances, for each iteration k. In PDML-MBPO, we
observe storing historical policy networks costs a memory
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overhead of no more than k×1 MB, compared with the high
memory occupied by the model sample buffer, this cost
is very small. Besides, compared to MBPO, the training
time of PDML-MBPO does not increase significantly. We
present the training time of PDML-MBPO and MBPO in
six different environments. As shown in Table 1, after using
PDML, the training time doesn’t increase significantly. In
the most complex environment Humanoid, the training time
for 300k steps increases by only one hour. In other envi-
ronments, the training time of PDML-MBPO is almost the
same as that of MBPO.

Table 1: Training time of PDML-MBPO and MBPO in
different environments. The results are averaged over 8
random seeds.

MBPO PDML-MBPO

Walker2d 58.6 h 59.2 h
Hopper 35.5 h 35.7 h

Humanoid 70.8 h 72.0 h
HalfCheetah 60.2h 60.9 h

Pusher 4.2 h 4.3 h
Ant 55.6 h 55.9 h

5.2. Comparison with Model-free Experience Replay
Methods

We compare with the other three prioritized experience re-
play methods in model-free RL to indicate the advantage of
our PDML. The first one is Prioritized Experience Replay
(PER) (Schaul et al., 2016), which weighs the samples ac-
cording to their TD-error. The second method is RECALL
(Goyal et al., 2018), which chooses the top k highest value
sample. They use this to recall the samples that induce the
high-value trajectories and train the policy. We implement
this by choosing the top 25% highest Q value samples to
train the model and as model rollout initial states. The third
method is Model-augmented Prioritized Experience Replay
(MaPER) (Oh et al., 2022), which is an extension of PER
using both TD-error and model prediction error to weight
the samples for model learning.
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Figure 3: The comparison of model-free experience replay
methods on Hopper and Walker2d. The experiments are run
for 8 random seeds.

The experiment results are shown in Figure 3(a) and 3(b).
Our PDML significantly outperforms all three methods on
both sample efficiency and asymptotic performance. We
believe these methods adjust the weights for each sample in
the training data rather than each policy. This will cause the
samples belonging to the same state-action visitation distri-
bution to have different weights, and the samples with higher
weights may not necessarily appear in the state-action visi-
tation distribution of current policy. Therefore, the learned
model cannot be adapted to current policy’s state-action
visitation distribution, and the model prediction error during
model rollouts cannot be reduced. In the model learning pro-
cess, it is crucial to adapt to current policy’s state-action vis-
itation distribution according to our theory. This experiment
result indicates our theory’s correctness and our method’s
effectiveness. We also compare with an exponentially decay
method to demonstrate the effectiveness of our method. In
this exponentially decay method, the sample’s weight is ex-
ponentially decay based on a decay rate as its age increases.
The results and details are shown in Appendix 5.4.

5.3. Model Error Analysis

To further verify the impact of PDML, we compare the
one-step prediction error and the compounding error of the
policy-adapted model learned by PDML-MBPO and the
original dynamics model learned by MBPO.

One-step prediction error. As shown in Figure 4(a), 4(b)
and 4(c), we evaluate the model prediction error for the
current policy on Hopper, HalfCheetah, and Walker2d. We
evaluate the learned model every 1000 environment steps
using L2 error on the 1000 samples obtained by the current
policy from the real environment. The error curves show
that the one-step prediction error for the current policy of
the policy-adapted model is much smaller than that of the
original dynamics model, which means the model-generated
samples of PDML-MBPO are more accurate than MBPO,
so the policy induced by PDML-MBPO can perform better.

Compounding error. We also compare the multi-step
model rollouts compounding error of the policy-adapted
model and the original dynamics model. This directly de-
termines the accuracy of the model-generated samples in
each model rollout trajectory. Figure 4(d) shows the com-
pounding error curves of the policy-adapted model and the
original dynamics model on Hopper. We calculate the h-
step compounding error as the difference between the state
at each rollout step h in the model rollout trajectory and
the real environment rollout trajectory using L2 error. The
results demonstrate that the policy-adapted model has much
a smaller compounding error than the original dynamics
model, which means the policy-adapted model has a more
robust multi-step planning capability than the original dy-
namics model learned by MBPO.
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Figure 4: (a), (b) and (c) display one-step (model-
prediction) error for PDML-MBPO and MBPO. (d) demon-
strates the compounding error (i.e., the difference between
the h-step state in the model rollout trajectory and the
real environment rollout trajectory) of PDML-MBPO and
MBPO over 20 model rollout trajectories.

5.4. Comparison with Simple Exponentially Decay
Prioritization

To further demonstrate the effectiveness of our method, we
compare with an exponentially decay method. The weight
of the historical policy exponentially decays as it lifetime
increases. To ensure a fair comparison, the weight of current
policy is also compute using Eq. 5. The hyperparameter
α of the current policy in exponentially decay method is
the same as PDML which is given in Appendix G.1. The
exponentially decay rate of exponentially decay method
in Figure 5 is 0.98. We conduct the experiment on three
MoJoCo environments: Hopper, Walker2d, and Humanoid.
The performance curves are given in Figure 5. Moreover, to
demonstrate the effective of our method, we provide more
results of well-tuned exponentially decay rates in Table 2.
We can see that after using exponentially decay method,
the performance in three environments is slightly improved,
but it is much lower than PDML. Besides, the model er-
ror of exponentially decay method is higher than PDML.
Combined with the analysis of distribution visualization in
Appendix F.4, this further demonstrates that our method is
non-trivial and effective.

6. Related Work
Model adaptation. Several adaptive control approaches
(Sastry & Isidori, 1989; Pastor et al., 2011; Meier et al.,
2016) aim to train a dynamics model that can adapt on-
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Figure 5: Comparison with exponentially decay prioritiza-
tion.

line. However, scaling such methods to complex tasks is
exponentially difficult. Adaptive learning in the dynamics
model has also been studied in inverse dynamics learning
tasks. A drifting Gaussian process (GP) keeps a history
of a constant number of recently observed data points and
updates its hyper-parameters at each time step (Meier &
Schaal, 2016). The drifting Gaussian process (GP) predicts
the local dynamics errors to control the learning rate (Meier
et al., 2016), resulting in more online hyperparameter learn-
ing and adaptive function approximator robustness. Our
method is different from these works that we learn a for-
ward model which can always adapt to the evolving policy.
Some studies focus on an adaptive model predictive con-
trol for constrained linear systems (Tanaskovic et al., 2013)
and guaranteeing safety, robustness, and convergence in a
quadrotor helicopter testbed (Aswani et al., 2012). Our work
closely relates to a model adaptation in forward models from
(Fu et al., 2016; Nagabandi et al., 2018a;b; Lee et al., 2020;
Guo et al., 2022). These methods use meta-learning to train
a dynamics model as a prior and then combine it with recent
data to rapidly adapt to the new task. However, these works
are mainly about model transfer under different dynamics.
Different from their works, we study learning an accurate
dynamics model for policy learning under a fixed transition
dynamics, and we also provide theoretical analysis to mo-
tivate our method. More related works about model-based
RL are provided in Appendix B.

Prioritized experience replay. Another related line of
work is prioritized experience replay in reinforcement learn-
ing. This solves a classic issue in model-free RL. Previous
work (Katharopoulos & Fleuret, 2018) claimed that em-
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Table 2: Asymptotic performance of different exponentially decay rate.

decay rate 0.98 decay rate 0.995 decay rate 0.997 decay rate 0.999 MBPO PDML

Hopper 3320.04 3291.93 3382.63 3374.52 3125.56 3641.07
Walker2d 4609.29 4571.64 4643.15 4595.31 4366.37 5304.42
Humanoid 5070.58 5198.34 5092.56 5149.71 4148.15 5885.14

phasizing essential samples in the replay buffer can benefit
off-policy RL algorithms. Prioritized Experience Replay
(PER) (Schaul et al., 2016) measured the importance of sam-
ple by temporal-difference (TD) error. Based on this work,
many methods are proposed to perform prioritized sampling.
Some methods (Brittain et al., 2019; Lee et al., 2019; Fuji-
moto et al., 2020; Jiang et al., 2021; Liu et al., 2021; Lahire
et al., 2021; Oh et al., 2022) extend or explain PER from
different perspectives, and others (Novati & Koumoutsakos,
2019; Fedus et al., 2020) propose to prioritize samples ac-
cording to their age. Our work is different from experience
replay works in model-free RL in the following points: (1)
In model learning, we re-weight the state-action visitation
distribution that generates a batch of samples, rather than a
single sample as in model-free RL. (2) During weighting,
we use the distance between the policy distribution that each
sample generated from and the policy distribution of the cur-
rent policy as a metric, rather than how much improvement
each sample can bring to the policy. (3) We provide very
detailed theoretical result to analyze how to reweight the
samples for model learning.

7. Conclusion and Discussion
In this paper, we introduce a novel dynamics model learning
method for model-based RL called PDML, which learns
a policy-adapted dynamics model based on a dynamically
adjusted historical policy mixture distribution. This policy-
adapted dynamics model can continually adapt to the state-
action visitation distribution of the evolving policy. This
makes it more accurate than the previous dynamics model
when making predictions during model rollouts. We also
provide theoretical analysis and experimental results to mo-
tivate our method. After combining with the state-of-the-
art model-based method MBPO, PDML achieves better
asymptotic performance and higher sample efficiency than
previous state-of-the-art model-based methods in MuJoCo.
We believe our work takes an important step toward more
sample-efficient RL. One limitation of our work is that the
generalization ability of the policy-adapted dynamics model
may not be strong enough because we focus on fitting the
samples induced by the evolving policy to improve the con-
vergence speed of the policy. Therefore, our method is
efficient for task-specific problems but may not perform
well for some exploration-oriented tasks. We leave this
direction to future work.
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Appendix

A. Pseudo Code of PDML-MBPO
In Algorithm 2, we demonstrate the pseudo code of PDML-MBPO.

Algorithm 2 PDML-MBPO

Require: current policy proportion hyperparameter α, interaction epochs I , rollout horizon h
1: Initialize historical policy sequence k ← 0,Πk ← ∅
2: for I epochs do
3: Interact with the environment using current policy πc, add samples into real sample buffer De

4: Add current policy πc into historical policy sequence: πk ← πc, Πk ← {Πk−1, πk}
5: Adjust the historical policy mixture distribution wk = [wk

1 , . . . , w
k
k ] via Equation (4) and (5)

6: Normalize wk ← wk/∥wk∥
7: Sample a training data batch of (sn, an, r, sn+1) from De according to wk

8: Train dynamics model T̂θ via Equation (7)
9: for M model rollouts do

10: Sample initial rollout states from real sample buffer De according to wk

11: Use current policy πc to perform h-step model rollouts, add model-generated samples into model sample buffer
Dm

12: end for
13: for G gradient updates do
14: Update current policy πc using model-generated samples from model sample buffer Dm

15: end for
16: k ← k + 1
17: end for

B. Additional Related Work
Model-based reinforcement learning. Model-based RL is proposed as a solution to reduce the sample complexity of
model-free RL by learning a dynamics model. Current model-based RL mainly focuses on better model learning and better
model usage. To learn a model with more accuracy, many model architectures have been proposed, such as linear models
(Parr et al., 2008; Sutton et al., 2008; Kumar et al., 2016) and nonparametric Gaussian processes (Rasmussen & Kuss, 2004;
Deisenroth & Rasmussen, 2011). With the rapid development of deep learning, neural networks have become a popular
choice of model architecture in recent years (Kurutach et al., 2018; Chua et al., 2018). Moreover, to reduce the model
error, a multi-step model (Asadi et al., 2019) was designed to directly predict the transition of an action sequence input,
and Shen et al. (2020) used unsupervised model adaptation to reduce the potential data distribution mismatch. For better
model usage, Janner et al. (2019) proved that short model rollouts could avoid the model error and improve the quality of
model samples. Based on this, Lai et al. (2020) proposed a bidirectional model rollout scheme to avoid the model error
further. Furthermore, model disagreement was used to decide when to trust the model (Pan et al., 2020) and regularize
the model samples (Yu et al., 2020). Besides, Luo et al. (2018) provided a theoretical guarantee of monotone expected
reward improvement of model-based RL. Rajeswaran et al. (2020) cast model-based RL as a game-theoretic framework
by formulating the optimization of model and policy as a two-player game. To save time tuning hyperparameters, Lai
et al. (2021) designed an automatic scheduling framework. Abbas et al. (2020) systematically studied how the model
capacity affects the model-based methods. Sun et al. (2022) investigated how to use dynamics models to improve the sample
efficiency of policy learning when observation space changes.

Value-equivalence dynamics model. Value-equivalence dynamics model has been noted by several authors in recent years.
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Since learning an accurate dynamics model of the world remains challenging and often requires computationally costly and
data-hungry models (Lovatto et al., 2020), Farahmand et al. (2017) proposed value-aware model learning which aims to
learn a value-equivalence model that induces the same Bellman operator as the real environment, rather than accurately
predicting transitions. However, they replaced the value function with the supremum over a function space, and it is difficult
to find a supremum for a function space parameterized by complex function approximators like neural networks. Based on
this work, Farahmand (2018) proposed Iterative Value-Aware Model Learning (IterVAML) which replaced the supremum
over a value function space with the value function at current iteration. Besides, Grimm et al. (2020) introduced value
equivalence principle and analysed how the space of possible solutions on model learning is impacted by the choice of
policies and functions, and Zheng et al. (2023) provides a deep insight on why model ensemble performs well based on
value equivalence principle. However, despite very detailed theoretical guarantees, there is still a performance gap between
the value-equivalence dynamics model in the practical implementation and the model trained by the maximum likelihood
estimate (Lovatto et al., 2020). Eysenbach et al. (2021) introduced a novel objective to jointly train the model and the policy.
Voelcker et al. (2022) proposed Value-Gradient weighted Model loss (VaGraM) which approximated the value-aware model
loss function with a Taylor expansion of value function and achieved SOTA performance across all value-aware model
learning methods. Like our method, VaGraM also tries to learn a locally accurate dynamics model. The difference is that our
method aims to learn the samples that the current policy may encounter as accurately as possible, while VaGraM is to learn
the dimensions in the state that can bring the greatest improvement to policy learning. Experimental results demonstrate that
our method outperforms VaGraM in practice.

C. Useful lemma
Lemma C.1. (Shen et al., 2020) Assume the initial state distributions of the real dynamics T and the learned dynamics
model T̂ are the same. For any state s′, assume Fs′ is a class of real-valued bounded measurable functions on state-action
space, such that T̂ (s′|·, ·) : S ×A → R is in Fs′ . Then the gap between two different state visitation distributions vπ1

T (s′)
and vπ2

T̂
(s′) can be bounded as follows:

|vπ1

T (s′)− vπ2

T̂
(s′)| ≤ γE(s,a)∼ρ

π1
T
|T (s′|s, a)− T̂ (s′|s, a)|+ γdFs′ (ρ

π1

T , ρπ2

T̂
) (8)

Proof. For any state visitation distribution vπT , we have:

vπT (s
′) = (1− γ)v0(s

′) + γ

∫
(s,a)

ρπT (s, a)T (s
′|s, a)dsda, (9)

where v0 is the probability of the initial state being the state s′. Then the gap between two different state visitation
distributions is:

|vπ1

T (s′)− vπ2

T̂
(s′)|

=γ

∣∣∣∣∣
∫
(s,a)

ρπ1

T (s, a)T (s′|s, a)− ρπ2

T̂ (s,a)
T̂ (s′|s, a)dsda

∣∣∣∣∣
=γ

∣∣∣E(s,a)∼ρ
π1
T
[T (s′|s, a)]− E(s,a)∼ρ

π2
T̂

[T̂ (s′|s, a)]
∣∣∣

≤γ
∣∣∣E(s,a)∼ρ

π1
T
[T (s′|s, a)− T̂ (s′|s, a)]

∣∣∣+ γ
∣∣∣E(s,a)∼ρ

π1
T
[T̂ (s′|s, a)]− E(s,a)∼ρ

π2
T̂

[T̂ (s′|s, a)]
∣∣∣

≤γE(s,a)∼ρ
π1
T
|T (s′|s, a)− T̂ (s′|s, a)|+ γdFs′ (ρ

π1

T , ρπ2

T̂
)

(10)

D. Proof of main theorem
Theorem D.1. Given the historical policy mixture πmix,k = (Πk,wk) at iteration step k, we denote ξρi =
DTV (ρ

π
T (s, a)||ρ

πi

T (s, a)) and ξπi
= Es∼v

πmix
T̂

[DTV (π(a|s)||πi(a|s))] as the state-action visitation distribution shift and
the policy distribution shift between the historical policy πi and current policy π respectively, where vπmix

T̂
is the state
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visitation distribution of policy mixture under the learned dynamics model. rmax is the maximum reward the policy can get
from the real environment, γ is the discount factor, and Vol(S) is the volume of state space. Then the performance gap
between the real environment rollout J(π, T ) and the model rollout J(π, T̂ ) can be bounded as follows:

J(π, T )− J(π, T̂ ) ≤ 2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))]

+ rmax

k∑
i=0

wk
i (γVol(S)ξρi + 2ξπi)

+ 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a))

(11)

Proof. ∣∣∣J(π, T )− J(π, T̂ )
∣∣∣

=
∣∣∣J(π, T )− J(πmix, T̂ ) + J(πmix, T̂ )− J(π, T̂ )

∣∣∣
≤

∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣︸ ︷︷ ︸
term1

+

∣∣∣∣∣
∫
(s,a)

(ρπmix

T̂
(s, a)− ρπ

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣︸ ︷︷ ︸
term2

(12)

For term 1: ∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣
=

∣∣∣∣∣
∫
(s,a)

(vπT (s)π(a|s)− vπmix

T̂
(s)πmix(a|s))r(s, a)dsda

∣∣∣∣∣
=

∣∣∣∣∣
∫
(s,a)

(vπT (s)π(a|s)− vπmix

T̂
(s)π(a|s) + vπmix

T̂
(s)π(a|s)− vπmix

T̂
(s)πmix(a|s))r(s, a)dsda

∣∣∣∣∣
≤

∣∣∣∣∣
∫
(s,a)

(vπT (s)− vπmix

T̂
(s))π(a|s)r(s, a)dsda

∣∣∣∣∣+
∣∣∣∣∣
∫
(s,a)

(vπmix

T̂
(s)(π(a|s)− πmix(a|s))r(s, a)dsda

∣∣∣∣∣
≤rmax

∫
s

∣∣∣vπT (s)− vπmix

T̂
(s)

∣∣∣ds+ 2rmaxEs∼v
πmix
T̂

[DTV (π(a|s)||πmix(a|s))]

(13)

For the first term of last inequality in Eq. 13, according to Lemma. C.1 we have:

rmax

∫
s

∣∣∣vπT (s)− vπmix

T̂
(s)

∣∣∣ds
≤rmaxγE(s,a)∼ρπ

T

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + rmaxγ

∫
s′
dFs′ (ρ

π
T , ρ

π∗

T̂
)ds′

(14)

We use total variance distance as the Fs′ to measure the distance between ρπT and ρπmix

T̂
. Suppose we can learn a dynamics

model that can perfectly adapt the state-action visitation distribution of πmix, which means the difference between the model
prediction and the environment next state s′ is very small, and the state-action visitation density induced by the learned
dynamics model ρπmix

T̂
is approximately equal to ρπmix

T . This assumption is required by many model-based RL methods
(Voelcker et al., 2022). Then Eq. 14 can be expressed as:

rmax

∫
s

∣∣∣vπT (s)− vπmix

T̂
(s)

∣∣∣ds
≤rmaxγE(s,a)∼ρπ

T

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + rmaxγ

∫
s′
DTV (ρ

π
T ||ρ

πmix
T )ds′

≤2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρ
π
T ||ρ

πmix
T )

(15)
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Combined Eq. 13 with Eq. 15, we can get:

∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣
≤2γrmaxE(s,a)∼ρπ

T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρ
π
T (s, a)||ρ

πmix
T (s, a))

+ 2rmaxEs∼v
πmix
T̂

[DTV (π(a|s)||πmix(a|s))]

=2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρ
π
T (s, a)||

k∑
i=0

wiρ
πi

T (s, a))

+ 2rmaxEs∼v
πmix
T̂

[
DTV (π(a|s)||

k∑
i=0

wiπi(a|s))

]

=2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmax

k∑
i=0

wiDTV (ρ
π
T (s, a)||ρ

πi

T (s, a))

+ 2rmax

k∑
i=0

wiEs∼v
πmix
T̂

[DTV (π(a|s)||πi(a|s))]

(16)

Finally, based on Eq. 16, we get:

∣∣∣J(π, T )− J(π, T̂ )
∣∣∣

≤2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmax

k∑
i=0

wk
i DTV (ρ

π
T (s, a)||ρ

πi

T (s, a))

+ 2rmax

k∑
i=0

wk
i Es∼v

πmix
T̂

[DTV (π(a|s)||πi(a|s))] + 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a))

≤2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + rmax

k∑
i=0

wk
i (γVol(S)ξρi

+ 2ξπi
)

+ 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a)),

(17)

and the proof is completed.

E. Proof of Proposition 3.2
Proposition E.1. The performance gap can be reduced if the weight wk

i of each policy πi in the historical policy sequence
Πk is negatively related to state action visitation distribution shift ξρi and the policy distribution shift ξπi between the
historical policy πi and current policy π instead of an average weight wk

i = 1
k :

k∑
i=1

wk
i (γVol(S)ξρi

+ 2ξπi
) ≤

k∑
i=1

1

k
(γVol(S)ξρi

+ 2ξπi
) (18)

Proof. Each policy πi in the historical policy sequence Πk corresponds to a distribution shift pair (ξρi
, ξπi

), and these
pairs form a distribution shift sequence {(ξρ1

, ξπ1
), (ξρ2

, ξπ2
), ......, (ξρk

, ξπk
)}, assuming that this sequence decreases as i

increases (this is a reasonable assumption, because we can always arrange the historical policy sequence into a distribution
shift decreasing sequence according to the magnitude of the shift). As the weight of each policy is negatively related to state
action visitation distribution shift ξρi and the policy distribution shift ξπi , w

k
i increases with k.
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Since
k∑

i=1

wk
i =

k∑
i=1

1
k = 1, there exists a k0 that for all i > k0, w

k
i > 1

k .

Then we have:

0 ⩽
k∑

i=k0

(wk
i −

1

k
)(γVol(S)ξρi + 2ξπi)

⩽
k∑

i=k0

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
),

(19)

where k1 ∈ [k0, k]

0 ⩾
k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk2

+ 2ξπk2
)

⩾
k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi

+ 2ξπi
),

(20)

where k2 ∈ [0, k0)

Based on these two equations:

k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi

+ 2ξπi
)

=

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi

+ 2ξπi
) +

k∑
i=k0

(wk
i −

1

k
)(γVol(S)ξρi

+ 2ξπi
)

⩽
k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk2

+ 2ξπk2
) +

k∑
i=k0

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

=

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk2

+ 2ξπk2
)−

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

+

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
) +

k∑
i=k0

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

=

k0−1∑
i=1

(wk
i −

1

k
)[(γVol(S)ξρk2

+ 2ξπk2
)− (γVol(S)ξρk1

+ 2ξπk1
)] +

k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

(21)

Since distribution shift sequence {(ξρ1
, ξπ1

), (ξρ2
, ξπ2

), ......, (ξρk
, ξπk

)} decreases as i increases, and k2 < k1, the first

term will be less than 0. Meanwhile, the second term will be equal to 0 because
k∑

i=1

wk
i =

k∑
i=1

1
k = 1. Therefore, we can get:

k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi + 2ξπi)

⩽
k0−1∑
i=1

(wk
i −

1

k
)[(γVol(S)ξρk2

+ 2ξπk2
)− (γVol(S)ξρk1

+ 2ξπk1
)] +

k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

⩽ 0

(22)
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The proof is finished.

Proposition 3.2 illustrate that after adjusting the policy mixture distribution according to the distribution shifts, the
performance bound will be tighter than learning a global dynamics model (wk

i = 1
k ). This provides a guidance for our

proposed method, that the weight wk
i of each policy πi in the historical policy sequence Πk should be negatively related to

its state action visitation distribution shift ξρi
and the policy distribution shift ξπi

.

F. More experiments
F.1. More Error Curves for Dynamics Model Learned by MBPO

In this section, we provide the local error curves for global dynamics model in four MoJoCo environments: Hopper,
HalfCheetah, Walker2d, and Humanoid. The curves are shown in Figure 6.
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Figure 6: The global error curve and the local error curve of MBPO in four MuJoCo environments.

F.2. Experiment about the Convergence of the Dynamics Model on Recent Data

To prove that the error gap in Figure 1 is not caused by the dynamics model not having converged on the recent data,
we checkpoint the real sample buffer and dynamics model at multiple points during training, then train the dynamics
model for a long time until convergence at these checkpointed locations. We conduct the experiment on Walker2d-v2 and
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HalfCheetah-v2, and checkpoint the data and model at environment step 20k, 40k, 60k, 80k, and 100k. The one-step model
prediction error on newly generated samples during rollout of this converged model, MBPO and our method (PDML) are
shown in Table 3 and Table 4. Each method runs 8 random seeds.

Table 3: Prediction error of the converged model, MBPO and PDML in Walker2d.

Env step 20k Env step 40k Env step 60k Env step 80k Env step 100k

Converged Model 0.946 ±0.201 0.578 ± 0.029 0.328 ± 0.037 0.317 ± 0.013 0.272 ± 0.024
MBPO 1.022 ± 0.496 0.819 ± 0.076 0.471 ± 0.167 0.563 ± 0.204 0.302 ± 0.043
PDML 0.673 ± 0.117 0.422 ± 0.169 0.207 ± 0.072 0.128 ± 0.019 0.134 ± 0.034

Table 4: Prediction error of the converged model, MBPO and PDML in HalfCheetah.

Env step 20k Env step 40k Env step 60k Env step 80k Env step 100k

Converged Model 0.478 ± 0.027 0.345 ± 0.088 0.268 ± 0.053 0.245 ± 0.051 0.219 ± 0.087
MBPO 0.561 ± 0.026 0.391 ± 0.083 0.324 ± 0.066 0.269 ± 0.053 0.241 ± 0.055
PDML 0.363 ± 0.066 0.232 ± 0.053 0.206 ± 0.163 0.149 ± 0.038 0.127 ± 0.014

From these results, we can find that training a dynamics model to convergence on the current real samples can actually
reduce the model prediction error during rollouts, but the effect is not obvious. Especially when the number of samples in
the real sample buffer becomes very large (Env step 60k 100k), the model prediction error obtained by training a converged
model is almost the same as MBPO. This experimental result further proves our claim that the main reason for the model
prediction error during model rollouts is not that the model does not converge on new samples. The main reason is the
mismatch of model learning and model rollouts.

F.3. Visualization of State-Action Visitation Distribution of Different Historical Policies

Due to the limited space of main paper, we provide detailed visualization of the state-action visitation distribution of policies
under different environment steps in this section. We conduct the experiment on HalfCheetah and Hopper, the results are
shown in Figure 7 and Figure 8. (a) in each figure is the comparison of different policies in the same figure, from (b) to (f)
are the figures presenting the state-action visitation distribution of each policy individually. We can see that the state-action
visitation distribution of policies under different environment steps is very different.

F.4. Visualization of Adjusted Policy Mixture Distribution

To provide a further understanding of out method, we visualize the adjusted policy mixture distribution at different training
steps on Humanoid in Figure 9. We take Figure 9(a) as an example to explain the origin and meaning of the policy ID on the
horizontal axis. Each of policies interacts with the environment for 250 steps, so a 50k environment step has 200 historical
policies. The policy ID of 0 indicates the oldest policy. The larger the ID, the newer the policy. We can see that the policy
mixture distribution is totally different at different training steps. The weight of policy is not a simple exponentially decay
or linearly decay, which indicates our proposed method is non-trivial.

F.5. Ablation Study of PDML

As we described in Section 4, we use the adjusted policy mixture distribution for both model learning and sampling initial
states for model rollouts. In this section, we provide the ablation study to show the impact of the adjusted policy mixture
distribution in these two parts respectively. We conducted our experiments in Hopper and Walker2d, and the performance
curves are shown in Figures 10(a) and 10(b).

We find that using the adjusted policy mixture distribution only for model learning or model rollouts initial states sampling
both improves the performance in Hopper and Walker2d compared to MBPO. However, the improvement of only using the
adjusted policy mixture distribution for model rollouts initial states sampling in Walker2d is not very significant. Besides,
the improvement of using the adjusted policy mixture distribution for model learning is better than using that for model
rollouts initial states sampling, but both of them are worse than PDML. This indicates two things. First, model learning is
more important than model rollouts initial states sampling, because even the initial state distribution obeys the state-action
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(a) (b) Environment step 10k (c) Environment step 30k

(d) Environment step 50k (e) Environment step 80k (f) Environment step 130k

Figure 7: Visualization of state-action visitation distribution of policies at different environment steps in HalfCheetah.

(a) (b) Environment step 10k (c) Environment step 30k

(d) Environment step 50k (e) Environment step 70k (f) Environment step 100k

Figure 8: Visualization of state-action visitation distribution of policies at different environment steps in Hopper.
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Figure 9: Visualization of adjusted policy mixture distribution at different training steps on Humanoid.
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(a) Hopper
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(b) Walker2d
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Figure 10: (a) and (b): Ablation study of adjusted policy mixture distribution on model learning and sampling initial states
for model rollouts. (c): Ablation study of current policy proportion rate.
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visitation distribution of current policy, the model-generated samples will still be inaccurate if the learned dynamics model is
not accurate enough for the current policy. Second, to achieve the best performance, sample distribution for model learning
and sample distribution for model rollouts initial states should be synergistic; that is, the training data for training the
dynamics model and the initial states of model rollouts should obey the same distribution, so that the model prediction error
can be minimized.

F.6. Ablation Study of Current Policy Proportion Rate

We conducted experiments to explore the impact of current policy proportion rate on the performance of our method. The α
in Eq. 5 equals to current policy proportion rate divided by 1 minus current policy proportion rate. As shown in Figure 10(c),
when the current policy proportion rate is small (0.02 and 0.1), the policy mixture distribution will not be too inclined to the
current policy, so the model can learn a good transition dynamics. When the current policy proportion rate is too large (0.3,
0.5, and 0.7), the learned dynamics capture information about the underlying transition too locally, resulting in performance
decrease. Therefore, we recommend that the selection of the current policy proportion rate should not be greater than 0.1.

F.7. One-step Error in Four Environments

As an extension of Figure 4, we provide the one-step model prediction error curve in this section. The results are shown in
Figure 11.
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Figure 11: One-step error curves in Hopper, Walker2d, HalfCheetah, and Humanoid.

G. Implementation
G.1. Implementation Details

We implement PDML-MBPO based on the PyTorch-version MBPO (Liu et al., 2020). We also set the ensemble size of
PDML-MBPO to be the same as MBPO, which is 7. The warm-up samples are collected through interaction with the real
environment for 5000 steps using a randomly chosen policy. After the warm-up, we train the dynamics model and update
the lifetime weight every 250 interaction steps. We set the current policy proportion to be 0.02 and α equals 0.02/0.98.
One thing that needs to be noticed is the rollout horizon setting. As introduced in MBPO (Janner et al., 2019), the rollout
horizon should start at a short horizon and increase linearly with the interaction epoch. [a, b, x, y] denotes a thresholded
linear function, i.e. at epoch e, rollout horizon is h = min(max(x + e−a

b−a (y − x), x), y). We set the rollout horizon to
be the same as used in the MBPO paper, as shown in Table 5. Other hyper-parameter settings are shown in Table 6. For
MBPO1, AMPO2, VaGraM3 SAC4, and REDQ5, we use their open source implementations. We evaluate PDML-MBPO
and other baselines on four MuJoCo-v2 continuous control environments (Todorov et al., 2012) with a maximum horizon of
1000, including HalfCheetah, Hopper, Walker2d, and Humanoid. For Humanoid, we use the modified version introduced by
MBPO (Janner et al., 2019). All experiments are conducted using a single NVIDIA TITAN X Pascal GPU.

1https://github.com/Xingyu-Lin/mbpo_pytorch
2https://github.com/RockySJ/ampo
3https://github.com/pairlab/vagram
4https://github.com/pranz24/pytorch-soft-actor-critic
5https://github.com/watchernyu/REDQ

23

https://github.com/Xingyu-Lin/mbpo_pytorch
https://github.com/RockySJ/ampo
https://github.com/pairlab/vagram
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/watchernyu/REDQ


Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy

Table 5: Rollout horizon settings for PDML

Walker2d Hopper Humanoid HalfCheetah Pusher Ant

1 [1, 15, 20, 100] [1, 25, 20, 300] 1 1 [1, 25, 20, 100]

Table 6: Hyper-parameter settings for PDML

Parameter Value

Dynamics model ensemble size 7
Dynamics model layers 4
Actor and critic layers 3

Dynamics model hidden units 200
Actor and critic hidden units 256

Learning rate 3 · 10−4

Batch size 256
Optimizer Adam

Activation function ReLU
Real sample buffer size 106

Model sample buffer size 106

Real sample ratio 0.05
Policy updates per environment step 20

Environment steps between model training 250

For the experiment of MaPER in Sec 5.2, we use their open-source code in the supplementary material on openreview 6.

6https://openreview.net/forum?id=WuEiafqdy9H
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