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Abstract
Encoding constraints into neural networks is at-
tractive. This paper studies how to introduce the
popular positive linear satisfiability to neural net-
works. We propose the first differentiable satisfi-
ability layer based on an extension of the classic
Sinkhorn algorithm for jointly encoding multiple
sets of marginal distributions. We further theo-
retically characterize the convergence property of
the Sinkhorn algorithm for multiple marginals,
and the underlying formulation is also derived. In
contrast to the sequential decision e.g. reinforce-
ment learning-based solvers, we showcase our
technique in solving constrained (specifically sat-
isfiability) problems by one-shot neural networks,
including i) a neural routing solver learned with-
out supervision of optimal solutions; ii) a partial
graph matching network handling graphs with un-
matchable outliers on both sides; iii) a predictive
network for financial portfolios with continuous
constraints. To our knowledge, there exists no
one-shot neural solver for these scenarios when
they are formulated as satisfiability problems.
Source code is available at https://github.
com/Thinklab-SJTU/LinSATNet.

1. Introduction
It remains open for how to effectively encode the constraints
into neural networks for decision-making beyond uncon-
strained regression and classification. Roughly speaking,
we distinguish two categories of such constrained problems:
optimization and decision. Optimization problems consider
explicit objective functions that are directly related to down-
stream tasks, whereby their optimization forms are usually
more complicated. Decision problems do not consider the
objective of the downstream task, or the downstream task
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Table 1. Comparison of constraint-encoding for neural networks
in finding a solution, with/without an explicit objective function.
Note the other works on enforcing a certain kind of satisfiability e.g.
permute, rank, match, (but not boolean-SAT) can be incorporated
by the positive linear constraints as fulfilled by our LinSAT.

Paper Formulation Constraint type Exact gradient?

Amos & Kolter (2017) optim. linear Yes
Pogančić et al. (2019) optim. combinatorial No

Berthet et al. (2020) optim. combinatorial No
Wang et al. (2019a) optim. combinatorial Yes

Selsam et al. (2019) sat. boolean-SAT Yes
Cruz et al. (2017) sat. permutation Yes

Adams & Zemel (2011) sat. ranking Yes
Wang et al. (2019b) sat. matching Yes

LinSAT (ours) sat. positive linear Yes

may not have any explicit objectives. It is possible that deci-
sion problems also have underlying forms, however, their
objectives are usually interpreted as “finding a feasible solu-
tion nearest to the input”. In particular, the decision problem
can be divided into two cases: i) only judge if there exists a
feasible solution or not; ii) output a feasible solution close
to an unconstrained input. This paper focuses on the latter
case for decision problem, and we term it as satisfiability
problem if not otherwise specified.

Notably, machine learning has been well adopted in solv-
ing both optimization and decision problems, especially
for combinatorial optimization (CO) (Bengio et al., 2021)
and SAT problem (Guo et al., 2023; Li et al., 2023). It is
relatively easy to introduce learning into problem-solving
as a building block under the traditional solving frame-
work (Wang et al., 2021b;a), yet it is more attractive to de-
velop a learning-based framework in a more systematic man-
ner. In this regard, reinforcement learning (RL) (Liu et al.,
2023) or alternative sequence-to-sequence models (Vinyals
et al., 2015) that solve the problem in an auto-regressive
way is of prominence adoption, while they are often less ef-
ficient for their sequential decision nature. Thus efforts have
also been put into one-shot problem solving, and a popular
alternative is designing certain penalties in the loss (Kar-
alias & Loukas, 2020) to respect the constraints. Being
more thought-provoking, a more aggressive ambition is to
develop end-to-end differentiable neural networks whereby
the constraints are seamlessly encoded in their architecture,
such that the efficiency of neural networks for one-shot
solving can be fulfilled.
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Figure 1. The use case of LinSATNet. If the last layer of the neural network is a linear layer whose output is unconstrained, LinSAT
enforces the satisfiability of positive linear constraints to the final output.

As shown in Table 1, a number of special constraints have
been successfully encoded in neural networks by designing
a certain layer for end-to-end training and solving, and as
will be shown later, our proposed LinSATNet (i.e. Positive
Linear Satisfiability Network) can incorporate the other stud-
ied constraints for satisfiability problem and our method is
end-to-end differentiable with exact gradient computing. As
a side note of Table 1, there exist methods for general com-
binatorial optimization, e.g. Pogančić et al. (2019); Paulus
et al. (2021) over inner-product objectives, while it is often
at the cost of being inaccessible to the exact gradient in
model training which can potentially hurt the performance.

Our work is technically inspired by the recent success of
enforcing the satisfiability of certain constraints to neural
networks by deliberately handcrafted layers and in particular
the classic Sinkhorn algorithm (Sinkhorn & Knopp, 1967).
The Sinkhorn algorithm has been a popular technique in
recent constrained neural networks: 1) the permutation con-
straint to solve jigsaw puzzles by Cruz et al. (2017); 2) the
ranking constraint by Adams & Zemel (2011); Cuturi et al.
(2019) and the cardinality (top-k) constraint by Xie et al.
(2020); Wang et al. (2023); 3) the one-to-one correspon-
dence constraint for graph matching (with outliers at most
in one graph) by Wang et al. (2020); Yu et al. (2020); Wang
et al. (2022). In this paper, we extend the scope of Sinkhorn
algorithm to enforce the satisfiability of the more general
positive linear constraints (Luby & Nisan, 1993). Denote
x ∈ [0, 1]l as the l-dim output, our proposed LinSAT layer
jointly enforces the following constraints:

Ax ≤ b,Cx ≥ d,Ex = f ,x ∈ [0, 1]l (1)

where all elements in A,b,C,d,E, f are non-negative. In
fact, this family of constraints incorporates a large scope
of real-world scenarios such as the “packing” constraints
(Ax ≤ b) and the “covering” constraints (Cx ≥ d),
whereby the aforementioned constraints 1)-3) could be
viewed as subsets of Eq. (1). The use case of such a positive
linear constrained network is illustrated in Figure 1.

In this paper, we first generalize Sinkhorn algorithm to han-
dle multiple sets of marginal distributions. Our multi-set
version follows the classic single-set algorithm that is non-

parametric (i.e. without trainable parameters for a neural
network) and involves only matrix-vector arithmetic oper-
ations for exact gradient computing and back-propagation.
We theoretically characterize the convergence guarantee
and its rate of the proposed algorithm concerning the KL
divergence and the L1 distance to the target marginal distri-
butions. We further show that any positive linear constraints
could be equivalently written as multiple sets of marginal
distributions, such that the satisfiability of positive linear
constraints could be enforced to a differentiable network.
The contributions of the paper are:

1) We generalize the Sinkhorn algorithm to handle multiple
sets of marginal distributions, with the theoretical guarantee
that the proposed multi-set algorithm preserves the conver-
gence of the single-set version. Our multi-set algorithm
offers theoretical and technical groundings for handling the
general positive linear constraints. It may also be of inde-
pendent interest to the area of matrix normalization.

2) We design LinSAT, a differentiable yet parameter-free
light-weighted layer to encode the positive linear constraints,
based on our devised multi-set Sinkhorn algorithm. The
satisfiability layer only involves matrix-vector arithmetic
operations and can be strictly enforced, decoupling the con-
straint satisfaction from the learning objective. To our best
knowledge, this is the first differentiable satisfiability layer
addressing the general positive linear constraints.

3) To demonstrate its wide applicability, we deploy our
LinSAT to three scenarios regarding constrained routing,
outlier-aware matching, and predictive portfolio allocation.
In these cases, an explicit objective function is difficult to
define and a satisfiable solution is the purpose.

2. Related Work
Sinkhorn Algorithm (Sinkhorn & Knopp, 1967) projects
a positive matrix to a doubly-stochastic matrix by alterna-
tively normalizing its rows and columns, and Cuturi (2013)
identifies the connection of Sinkhorn and optimal transport.
Its effectiveness also motivates recent theoretical studies
concerning its convergence rate (Altschuler et al., 2017;
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Knight, 2008), whereby Chakrabarty & Khanna (2021) of-
fers a comprehensive theory. Due to its differentiability,
Sinkhorn is widely applied in vision (Cruz et al., 2017;
Wang et al., 2019b) and learning (Adams & Zemel, 2011;
Xie et al., 2020) by enforcing specific constraints. However,
as summarized in Table 1, the types of constraints studied
in the previous works are less general than the positive lin-
ear constraints studied in this paper. Our paper also differs
from the existing study of multi-marginal optimal transport
(Pass, 2015) since their “multi-marginal” means moving one
source distribution to multiple targets, while we are mov-
ing multiple sources to multiple targets. To distinguish, we
name our algorithm as “Sinkhorn for multi-set marginals”.

Approximate Solvers for Positive Linear Programming
is also an active topic in theoretical computer science. De-
spite their solid theoretical groundings, this line of works
may not be readily integrated into neural networks. For
example, Awerbuch & Khandekar (2008); Allen-Zhu &
Orecchia (2014) are non-differentiable because their algo-
rithms involve max operations and thresholding functions,
respectively. Young (2001); Luby & Nisan (1993) are nei-
ther differentiable due to their incremental steps. Another
drawback of these methods is that most of them cannot han-
dle a mix of packing (Ax ≤ b) and covering (Cx ≥ d)
constraints except for Young (2001). In this paper, we em-
phasize differentiability to make it compatible with neural
networks, and our method could handle any combinations
of packing, covering, and equality constraints.

Differentiable Solvers for Constrained Optimization ad-
dress the problem with objective functions and constraints
whereby deep graph matching (Yan et al., 2020; Yu et al.,
2020) has been a prominent topic with a quadratic objective.
Amos & Kolter (2017) shows the differentiability at opti-
mal solutions via KKT conditions and presents a case study
for quadratic programming. Wang et al. (2019a) approxi-
mately solves MAXSAT by a differentiable semi-definitive
solver. Another line of works develops approximate gra-
dient wrappers for combinatorial solvers: Pogančić et al.
(2019) estimates the gradient by the difference of two for-
ward passes; Berthet et al. (2020) estimates the gradient via
a batch of random perturbations.

Our approach is devoted to the satisfiability setting whereby
no explicit objective function is given for the downstream
task (Selsam et al., 2019). Note that this is more than just a
mathematical assumption: in reality, many problems cannot
be defined with an explicit objective function, either due to
e.g. the missing of some key variables in noisy or dynamic
environments, especially when the objective concerns with
a future outcome as will be shown in case studies on partial
graph matching (Sec. 5) and predictive portfolio allocation
(Sec. 6). However, existing neural networks for optimization
(e.g. Butler & Kwon (2021) for asset allocation) do not adapt

Algorithm 1 Sinkhorn for Single-Set Marginals (Classic)

1: Input: score matrix S ∈ Rm×n≥0 , single set of marginal
distributions v ∈ Rm≥0,u ∈ Rn≥0.

2: Initialize Γi,j =
si,j∑m
i=1 si,j

;
3: repeat
4: Γ′i,j =

Γi,jvi∑n
j=1 Γi,juj

; . normalize w.r.t. v

5: Γi,j =
Γ′i,juj∑m
i=1 Γ′i,juj

; . normalize w.r.t. u

6: until convergence

smoothly to these realistic scenarios.

Finally, note that the boolean satisfiability problem (Cook,
1971) also receives attention from machine learning com-
munity (Guo et al., 2023), whereby end-to-end neural nets
have also been actively developed e.g. NeuroSAT (Selsam
et al., 2019) and QuerySAT (Ozolins et al., 2021). As we
mentioned in Table 1, the boolean-SAT cannot be covered
by our constraint and is orthogonal to this work.

3. Methodology
Sec. 3.1 formulates the classic Sinkhorn algorithm handling
a single set of marginal distributions. Sec. 3.2 proposes the
generalized multi-set Sinkhorn with a convergence study. In
Sec. 3.3 we devise LinSAT layer to enforce the positive lin-
ear constraints, by connecting to the marginal distributions.

3.1. Preliminaries: The Classic Sinkhorn Algorithm for
Single Set of Marginal Distributions

We first revisit the classic Sinkhorn algorithm in Algo-
rithm 1, which is a differentiable method developed by
Sinkhorn & Knopp (1967) to enforce a single set of marginal
distributions to a matrix. Given non-negative score matrix
S ∈ Rm×n≥0 and a set of marginal distributions on rows
v ∈ Rm≥0 and columns u ∈ Rn≥0 (where

∑m
i=1 vi =∑n

j=1 uj = h), the Sinkhorn algorithm outputs a nor-
malized matrix Γ ∈ [0, 1]m×n so that

∑m
i=1 Γi,juj =

uj ,
∑n
j=1 Γi,juj = vi. Conceptually, Γi,j means the pro-

portion of uj moved to vi. Note that Γi,j usually has no
same meaning in the “reversed move” from vi to uj if
vi 6= uj

1. We initialize Γ(0) by

Γ
(0)
i,j =

si,j∑m
i=1 si,j

. (2)

At iteration t, Γ′(t) is obtained by normalizing w.r.t. the
row-distributions v, and Γ(t+1) is obtained by normalizing
w.r.t the column-distributions u. Γ(t),Γ′(t) ∈ [0, 1]m×n are

1This formulation is modified from the conventional formula-
tion where Γi,juj is equivalent to the elements in the “transport”
matrix in Cuturi (2013). We prefer this formulation as it seamlessly
generalizes to multi-set marginals. See Appendix A for details.
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scaled by u before and after normalization. Specifically,

Γ
′(t)
i,j =

Γ
(t)
i,jvi∑n

j=1 Γ
(t)
i,juj

, Γ
(t+1)
i,j =

Γ
′(t)
i,j uj∑m

i=1 Γ
′(t)
i,j uj

. (3)

The above algorithm is easy to implement and GPU-friendly.
Besides, it only involves matrix-vector arithmetic operations,
meaning that it is naturally differentiable and the backward
pass is easy to implement by the autograd feature of modern
deep learning frameworks (Paszke et al., 2017).

Some recent theoretical studies (Altschuler et al., 2017;
Chakrabarty & Khanna, 2021) further characterize the rate
of convergence of Sinkhorn algorithm. Define the L1 error
as the violation of the marginal distributions,

L1(Γ(t)) = ‖v(t) − v‖1, v(t)
i =

n∑
j=1

Γ
(t)
i,juj , (4a)

L1(Γ′(t)) = ‖u(t) − u‖1, u(t)
j =

m∑
i=1

Γ
′(t)
i,j uj . (4b)

Theorem 3.1 (See Chakrabarty & Khanna (2021) for
the proof). For any ε > 0, the Sinkhorn algorithm for
single-set marginals returns a matrix Γ(t) or Γ′(t) with
L1 error ≤ ε in time t = O

(
h2 log(∆/α)

ε2

)
, where α =

mini,j:si,j>0 si,j/maxi,j si,j , ∆ = maxj |{i : si,j > 0}| is
the max number of non-zeros in any column of S, and recall
that

∑m
i=1 vi =

∑n
j=1 uj = h.

3.2. Generalizing Sinkhorn Algorithm for Multiple
Sets of Marginal Distributions

Existing literature about the Sinkhorn algorithm mainly
focuses on a single set of marginal distributions. In the fol-
lowing, we present our approach that extends the Sinkhorn
algorithm into multiple sets of marginal distributions.

Following Cuturi (2013), we view the Sinkhorn algorithm
as “moving masses” between marginal distributions: Γi,j ∈
[0, 1] means the proportion of ui moved to vj . Interestingly,
it yields the same formulation if we simply replace u,v by
another set of marginal distributions, suggesting the poten-
tial of extending the Sinkhorn algorithm to multiple sets of
marginal distributions. To this end, we devise Algorithm 2,
an extended version of the Sinkhorn algorithm, whereby k
sets of marginal distributions are jointly enforced to fit more
complicated real-world scenarios. The sets of marginal
distributions are uη ∈ Rn≥0,vη ∈ Rm≥0, and we have:

∀η ∈ {1, · · · , k} :

m∑
i=1

vη,i =

n∑
j=1

uη,j = hη. (5)

Algorithm 2 Sinkhorn for Multi-Set Marginals (Proposed)

1: Input: score matrix S ∈ Rm×n≥0 , k sets of marginal
distributions V ∈ Rk×m≥0 ,U ∈ Rk×n≥0 .

2: Initialize Γi,j =
si,j∑m
i=1 si,j

;
3: repeat
4: for η = 1 to k do
5: Γ′i,j =

Γi,jvη,i∑n
j=1 Γi,juη,j

; . normalize w.r.t. vη

6: Γi,j =
Γ′i,juη,j∑m
i=1 Γ′i,juη,j

; . normalize w.r.t. uη

7: end for
8: until convergence

It assumes the existence of a normalized Z ∈ [0, 1]m×n s.t.

∀η ∈ {1, · · · , k} :

m∑
i=1

zi,juη,j = uη,j ,

n∑
j=1

zi,juη,j = vη,i,

(6)
i.e., the multiple sets of marginal distributions have a non-
empty feasible region (see Appendix D for details). Multiple
sets of marginal distributions could be jointly enforced by
traversing the Sinkhorn iterations over k sets of marginal
distributions. We extend Eq. (3) for multiple marginals,

Γ
′(t)
i,j =

Γ
(t)
i,jvη,i∑n

j=1 Γ
(t)
i,juη,j

, Γ
(t+1)
i,j =

Γ
′(t)
i,j uη,j∑m

i=1 Γ
′(t)
i,j uη,j

, (7)

where η = (t mod k) + 1 is the index of marginal sets.
Similarly to Algorithm 1, this generalized Sinkhorn algo-
rithm finds a normalized matrix that is close to S.

Theoretical Characterization of the Convergence of
Multi-set Sinkhorn. In the following, we show that our
proposed Algorithm 2 shares a similar convergence pattern
with Algorithm 1 and Theorem 3.1. We generalize the theo-
retical steps in Chakrabarty & Khanna (2021) as follows.

We first study the convergence property of Algorithm 2 in
terms of Kullback-Leibler (KL) divergence. In the follow-
ing, we have η = (t mod k)+1 unless otherwise specified.
We define the probability over marginals πvη,i = vη,i/hη,
and similarly for πuη,j . v

(t)
η ,u

(t)
η are the η-th marginal

distributions achieved by Γ(t) and Γ′(t), respectively,

v
(t)
η,i =

n∑
j=1

Γ
(t)
i,juη,j , u

(t)
η,j =

m∑
i=1

Γ
′(t)
i,j uη,j . (8)

DKL(πvη ||πv
(t)
η

) =
∑m
i=1

vη,i
hη
· log

vη,i/hη

v
(t)
η,i/hη

denotes the KL

divergence between the current marginal achieved by Γ(t)

and the target marginal distribution. Similarly, we define
DKL(πuη ||πu

(t)
η

) =
∑n
j=1

uη,j
hη
· log

uη,j/hη

u
(t)
η,j/hη

for Γ′(t).

Theorem 3.2 (Converge Rate for KL divergence). For
any δ > 0, the Sinkhorn algorithm for multi-set
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marginals returns a matrix Γ(t) or Γ′(t) with KL diver-
gence ≤ δ in time t = O

(
k log(∆/α)

δ

)
, where α =

mini,j:si,j>0 si,j/maxi,j si,j , ∆ = maxj |{i : si,j > 0}| is
the max number of non-zeros in any column of S, and recall
that k is the number of marginal sets.

Proof. (Sketch only and see Appendix B for details) To
prove the upper bound of the convergence rate, we define
the KL divergence for matrices Z,Γ at η,

D(Z,Γ, η) =
1

hη

m∑
i=1

n∑
j=1

zi,juη,j log
zi,j
Γi,j

, (9)

We then prove the convergence rate w.r.t. KL divergence
based on the following two Lemmas.

Lemma 3.3. For any η, D(Z,Γ(0), η) ≤ log(1 + 2∆/α).

Lemma 3.4. For η = (t mod k) + 1, η′ = (t + 1
mod k) + 1, we have

D(Z,Γ(t), η)−D(Z,Γ′(t), η) = DKL(πvη ||πv
(t)
η

)

D(Z,Γ′(t), η)−D(Z,Γ(t+1), η′) = DKL(πuη ||πu
(t)
η

)

The proof of these two Lemmas is referred to the ap-
pendix. Denote T = k log(1+2∆/α)

δ + ζ, where ζ ∈ [0, k)
is a residual term ensuring (T + 1) mod k = 0. If all
DKL(πvη ||πv

(t)
η

) > δ and DKL(πuη ||πu
(t)
η

) > δ for all η,
by substituting Lemma 3.4 and summing, we have

D(Z,Γ(0), 1)−D(Z,Γ(T+1), 1) >
Tδ

k
≥ log(1+2∆/α).

As KL divergence is non-negative, the above formula contra-
dicts to Lemma 3.3. It ends the proof of Theorem 3.2.

For the L1 error defined as

L1(Γ(t)) = ‖v(t)
η − vη‖1, L1(Γ′(t)) = ‖u(t)

η − uη‖1,

we have the following corollary for Algorithm 2,

Corollary 3.5 (Converge Rate for L1-error). For any ε > 0,
the Sinkhorn algorithm for multi-set marginals returns
a matrix Γ(t) or Γ′(t) with L1 error ≤ ε in time t =

O
(
ĥ2k log(∆/α)

ε2

)
where ĥ = maxη

∑m
i=1 vη,i.

Proof. Without loss of generality, we apply Pinsker’s in-
equality DKL(p||q) ≥ 1

2‖p − q‖21 to the row marginal
distributions, and we have:

DKL(πvη ||πv
(t)
η

) ≥ 1

2h2
η

‖v(t)
η − vη‖21 (10a)

≥ 1

2ĥ2
‖v(t)

η − vη‖21. (10b)

By setting δ = ε2

2ĥ2
in Theorem 3.2, in t =

O
(
ĥ2k log(∆/α)

ε2

)
we have δ ≥ DKL(πvη ||πv

(t)
η

), corre-

sponding to ‖v(t)
η − vη‖1 ≤ ε. Same conclusion holds

for ‖u(t)
η − uη‖1 ≤ ε.

Understanding the Underlying Formulation of Multi-
set Sinkhorn. We further characterize the underlying for-
mulation tackled by Algorithm 2 to better understand its
behavior. Conceptually, Algorithm 2 finds a matrix Γ which
is close to the non-negative score matrix S. More formally,
by introducing W ∈ Rm×n and W = τ log S, Sinkhorn
for multi-set marginals tackles the following entropic regu-
larized linear problem:

min
Γ
−tr(W>Γ) + τ

∑
i,j

Γi,j log Γi,j , (11a)

s.t. Γ ∈ [0, 1]m×n, ∀η ∈ {1, · · · , k} : (11b)
m∑
i=1

Γi,juη,j = uη,j ,

n∑
j=1

Γi,juη,j = vη,i. (11c)

where τ is the temperature hyperparameter for entropic
regularization. Eq. (11) is tackled by first applying S =
exp (W/τ), and then calling Algorithm 2. When τ →
0+, Eq. (11) degenerates to a linear programming problem.
Since all constraints are positive linear and the objective is
also linear, the solution to Eq. (11) usually lies at the vertices
of the feasible space when τ → 0+ i.e. most elements in
Γ will be close to 0/1 given a small τ . Such a property
is also in line with the “classic” single-set Sinkhorn (with
entropic regularization): τ controls the “discreteness” of Γ.
A smaller τ makes the values in Γ closer to 0/1, and a larger
τ leads to smoother Γ. Please refer to Appendix C for more
details about the entropic regularizer.

3.3. LinSAT: Enforcing Positive Linear Satisfiability

Denote y as an l-length vector that can be the out-
put of any neural network. Our LinSAT develops an
satisfiability layer that projects y into x ∈ [0, 1]l,
LinSAT(y,A,b,C,d,E, f) → x, where Ax ≤ b,Cx ≥
d,Ex = f . x is dependent on y (following Eq. (11)) and,
in the meantime, lies in the feasible space. We firstly show
how to encode y and x by our proposed Algorithm 2.

Encoding Neural Network’s Output. For an l-length vec-
tor denoted as y, the following matrix is built

W =

[
y1 y2 ... yl β
β β ... β β

]
, (12)

where W is of size 2× (l+1), and β is the dummy variable
e.g. β = 0. y is put at the upper-left region of W. The
entropic regularizer is then enforced to control discreteness
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and handle potential negative inputs:

S = exp

(
W

τ

)
. (13)

The score matrix S is taken as the input of Algorithm 2.
LinSAT then enforces positive linear constraints to the
corresponding region of y by regarding the constraints as
marginal distributions.

From Linear Constraints to Marginal Distributions. We
discuss the connections between positive linear constraints
and marginal distributions for Ax ≤ b,Cx ≥ d,Ex =
f , respectively. For notation’s simplicity, here we discuss
with only one constraint. Multiple constraints are jointly
enforced by multiple sets of marginals.

Packing constraint Ax ≤ b. Assuming that there is only
one constraint, we rewrite the constraint as

∑l
i=1 aixi ≤ b.

The marginal distributions are defined as

up = [a1 a2 ... al b]︸ ︷︷ ︸
l dims+1 dummy dim

, vp =

[
b∑l
i=1 ai

]
. (14)

Following the “transportation” view of Sinkhorn (Cuturi,
2013), the output x moves at most b unit of mass from
a1, a2, · · · , al, and the dummy dimension allows the in-
equality by moving mass from the dummy dimension. It is
also ensured that the sum of up equals the sum of vp.

Covering constraint Cx ≥ d. Assuming that there is only
one constraint, we rewrite the constraint as

∑l
i=1 cixi ≥ d.

The marginal distributions are defined as

uc = [c1 c2 ... cl γd]︸ ︷︷ ︸
l dims+1 dummy dim

, vc =

[
(γ + 1)d∑l
i=1 ci − d

]
,

(15)
where the multiplier γ =

⌊∑l
i=1 ci/d

⌋
is necessary be-

cause we always have
∑l
i=1 ci ≥ d (else the constraint

is infeasible), and we cannot reach the feasible solution
where all elements in x are 1s without this multiplier. This
formulation ensures that at least d unit of mass is moved
from c1, c2, · · · , cl by x, thus representing the covering con-
straint of “greater than”. It is also ensured that the sum of
uc equals the sum of vc.

Equality constraint Ex = f . Representing the equality con-
straint is more straightforward. Assuming that there is only
one constraint, we rewrite the constraint as

∑l
i=1 eixi = f .

The marginal distributions are defined as

ue = [e1 e2 ... el 0]︸ ︷︷ ︸
l dims+dummy dim=0

, ve =

[
f∑l

i=1 ei − f

]
,

(16)

where the output x moves e1, e2, · · · , el to f , and we need
no dummy element in ue because it is an equality constraint.
It is also ensured that the sum of ue equals the sum of ve.

Enforcing Multiple Constraints by Sinkhorn. The con-
straints are firstly modulated as multiple sets of marginals
and then stacked into U ∈ Rk×(l+1)

≥0 ,V ∈ Rk×2
≥0 , where k

is the number of constraints. By building W from y, getting
S = exp(W/τ) and calling Algorithm 2 based on S,U,V,
the satisfiability of positive linear constraints is enforced to
the output of neural networks.

Implementation Details. We set separate dummy variables
for different constraints to handle potential conflicts among
different sets of marginals (see explanations in Appendix D).

4. Case Study I: Neural Solver for Traveling
Salesman Problem with Extra Constraints

4.1. Problem Background

The Traveling Salesman Problem (TSP) is a classic NP-hard
problem. The standard TSP aims at finding a cycle visiting
all cities with minimal length, and developing neural solvers
for TSP receives increasing interest (Vinyals et al., 2015;
Kool et al., 2019; Kwon et al., 2021). Beyond standard
TSP, here we develop a neural solver for TSP with extra
constraints using LinSAT layer.

4.2. Constraint Formulation for LinSAT

We consider 1) TSP with starting and ending cities constraint
(TSP-SE); 2) TSP with priority constraint (TSP-PRI).

1) TSP-SE. We little abuse notations that appeared in Sec. 3.
Given n cities and two of them are the starting and ending
cities s, e ∈ {1, . . . , n}. The distance matrix D ∈ Rn×n≥0

records the distances between city pairs. TSP-SE finds the
shortest tour starting from city s, visiting other cities exactly
once, and ending in city e. TSP-SE can be formulated with
the following objective function and constraints:

min
X

n∑
i=1

n∑
j=1

Di,j

n−1∑
k=1

Xi,kXj,k+1, (17)

s.t.
n∑
i=1

Xi,k = 1,∀k ∈ {1, . . . , n}, (17a)

n∑
k=1

Xi,k = 1,∀i ∈ {1, . . . , n}, (17b)

Xs,1 = 1, Xe,n = 1, (17c)
Xi,k ∈ {0, 1}, ∀i, j ∈ {1, . . . , n}, (17d)

where X ∈ {0, 1}n×n is a binary matrix and Xi,k = 1
indicates city i is the k-th visited city in the tour. Con-
straints (17a) and (17b) ensure X to be a valid tour and

6



LinSATNet: The Positive Linear Satisfiability Neural Networks

Table 2. Comparison of average tour length and total inference time for 10,000 testing instances on TSP variants with extra constraints.
“Standard Solver” means state-of-the-art solvers for standard TSP. Our method is marked as gray.

TSP-SE TSP-PRI
Method Tour Length Time Tour Length Time

MIP Gurobi (Sec.4.2, 2s) 4.608 5h34m 4.720 5h34m
Gurobi (Sec.4.2, 10s) 4.010 27h44m 4.148 27h45m

Heuristic

Nearest Neighbor 4.367 0s 4.674 0s
Nearest Insertion 4.070 9s 4.349 9s
Farthest Insertion 3.772 11s 4.403 10s
Random Insertion 3.853 5s 4.469 4s

Standard
Solver

Gurobi (MTZ) 3.648 1h2m - -
Concorde 3.648 9m28s - -

LKH3 3.648 2m44s - -

Neural
Attention Model 3.677 4m39s 4.008 4m43s

LinSAT (ours) 3.811 19s 3.943 18s

constraint (17c) defines the starting and ending cities. If
Xi,kXj,k+1 = 1 for some k, then the k-th step of the tour
is from i to j, and Di,j will be counted into the objective.

2) TSP-PRI. In practice, some cities may have higher prior-
ity and need to be visited earlier. In TSP-PRI we consider:
in the given n cities, the priority city p 6= s, e has to be
visited within the first m steps. We add a new constraint to
TSP-SE to formulate TSP-PRI:

m+1∑
k=1

Xp,k = 1. (18)

To fit with the continuous nature of neural networks, we
relax the binary constraint (17d) to continuous ones X̃i,k ∈
[0, 1] which is automatically satisfied by LinSAT. A neural
network takes the instance as input and outputs the pre-
projected matrix Y ∈ Rn×n. Y is flattened into a n2-
dimensional vector and projected via LinSAT to enforce all
the aforementioned constraints. Note that the neural network
itself is a solver to an optimization problem, enforcing the
constraint satisfiability by LinSAT is a reasonable choice
instead of optimizing some other auxiliary objectives.

4.3. Network Design Details

Following the Attention Model for standard TSP (Kool
et al., 2019), we use a Transformer (Vaswani et al., 2017)
without positional encoding to encode each of the n nodes
into a hidden vector hi. Learnable embeddings to mark
starting, ending and priority cities are added to the cor-
responding embeddings before input to the Transformer.
After encoding, hi is projected into Yi ∈ Rn using an
MLP. All Yi, i ∈ {1, . . . , n} form the pre-projected matrix
Y ∈ Rn×n. In training, the objective Eq. (17) with continu-
ous X̃ as the decision variable is used as the unsupervised
loss. For inference, we first output X̃. As X̃ satisfies con-
straints (17a) and (17b), it can be viewed as the marginal

distributions of the binary X (Adams & Zemel, 2011). We
perform beam search on X̃ to get X in post-processing.

4.4. Experiments

Following Kool et al. (2019), for both TSP variants, we gen-
erate 10,000 2-D Euclidean TSP instances as the testing set.
Each instance consists of n = 20 nodes uniformly sampled
in the unit square [0, 1]2. The starting, ending, and priority
cities are randomly selected. As our model is unsupervised,
the training set is generated on the fly using the same process.
For TSP-PRI, the number of priority steps is set to m = 5.
The following baselines are considered with results shown
in Table 2: 1) Mixed integer programming (MIP) solvers
by directly applying the commercial solver Gurobi (Gurobi
Optimization, 2020) to formulations in Sec. 4.2 and the time
limit per instance is set as 2s/10s; 2) Heuristics e.g. nearest
neighbor and insertion heuristics (Johnson, 1990) that are
usually fast and approximate algorithms; 3) State-of-the-art
solvers for standard TSP like Concorde2 and LKH3 (Hels-
gaun, 2017), and Gurobi (MTZ) means applying Gurobi
to the TSP formulation named after Miller-Tucker-Zemlin
(MTZ) (Miller et al., 1960); 4) RL-based neural routing
solver Attention Model (Kool et al., 2019).

Because the objective in Eq. (17) is quadratic w.r.t. X, it is
hard for a MIP solver to get a satisfactory solution quickly.
Heuristic methods run much faster and perform well on
TSP-SE, but their performances drop greatly on TSP-PRI.
TSP-SE can be converted to the standard TSP, making it
possible for standard solvers to find the optimal tour within a
reasonable time. However, these highly specialized methods
cannot be easily transferred to TSP-PRI. The RL-based At-
tention Model performs worse than our LinSAT on TSP-PRI
as its performance highly depends on specialized decoding
strategies for different tasks. Finally, our LinSAT can get

2https://www.math.uwaterloo.ca/tsp/concorde/index.html
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near-optimal solutions in a short time on both TSP vari-
ants, and it is easy to transfer from TSP-SE to TSP-PRI by
adding one single constraint. Details of TSP experiments
are discussed in Appendix E.

5. Case Study II: Partial Graph Matching
with Outliers on Both Sides

5.1. Problem Background

Standard graph matching (GM) assumes an outlier-free set-
ting namely bijective mapping. One-shot GM neural net-
works (Wang et al., 2022) effectively enforce the satisfiabil-
ity of one-to-one matching constraint by single-set Sinkhorn
(Algorithm 1). Partial GM refers to the realistic case with
outliers on both sides so that only a partial set of nodes
are matched. There lacks a principled approach to enforce
matching constraints for partial GM. The main challenge for
existing GM networks is that they cannot discard outliers
because the single-set Sinkhorn is outlier-agnostic and tends
to match as many nodes as possible. The only exception
is BBGM (Rolı́nek et al., 2020) which incorporates a tradi-
tional solver that can reject outliers, yet its performance still
has room for improvement.

5.2. Constraint Formulation for LinSAT

Denote a graph pair by G1 = (V1, E1), G2 = (V2, E2),
where |V1| = n1, |V2| = n2. In mainstream GM networks,
a matching score matrix M ∈ Rn1×n2 is expected to de-
scribe the correspondences of nodes between G1 and G2,
where Mi,j refers to the matching score between node i in
G1 and node j in G2. In previous bijective GM networks,
the one-to-one node matching constraint that a node corre-
sponds to at most one node is enforced by the off-the-shelf
Sinkhorn algorithm in Algorithm 1. It cannot take the out-
liers into consideration, as it forcibly matches all nodes. The
partial GM problem can be formulated by adding a partial
matching constraint: assume that the number of inliers is φ,
so the number of matched nodes should not exceed φ.

With a little abuse of notations, denote X ∈ [0, 1]n1×n2

as the output of our partial GM network, the partial GM
problem has the following constraints,

n1∑
i=1

Xi,j ≤ 1,∀j ∈ {1, . . . , n2}, (19a)

n2∑
j=1

Xi,j ≤ 1,∀i ∈ {1, . . . , n1}, (19b)

n1∑
i=1

n2∑
j=1

Xi,j ≤ φ. (19c)

The constraint (19a) and (19b) denotes the node-matching
on rows and columns, respectively, and they ensure (at most)

Table 3. F1 (%) on Pascal VOC Keypoint (unfiltered setting).
“Sinkhorn” denotes the classic single-set version in Algorithm 1.

GM Net Constraint Technique Matching Type Mean F1

PCA-GM Sinkhorn bijective 48.6
BBGM (Pogančić et al., 2019) bijective 51.9

NGMv2 Sinkhorn bijective 58.8

BBGM (Pogančić et al., 2019) partial 59.0
NGMv2 Sinkhorn+post-processing partial 60.7
NGMv2 LinSAT (ours) partial 61.2

one-to-one node correspondence. Constraint (19c) is the
partial matching constraint ensuring that the total number of
matched node pairs should not exceed φ. All constraints are
positive linear and can be enforced by LinSAT layer. We
implement our partial GM neural network by flattening M
into a n1n2-dimensional vector to feed into LinSAT.

5.3. Network Design Details

We follow the SOTA GM network NGMv2 (Wang et al.,
2022) and replace the original Sinkhorn layer with LinSAT
to tackle the partial GM problem on natural images. Specifi-
cally, a VGG16 (Simonyan & Zisserman, 2014) network is
adopted to extract initial node features and global features
from different CNN layers. The node features are then re-
fined by SplineConv (Fey et al., 2018). The edge features
are produced by the node features and the connectivity of
graphs. The matching scores are predicted by the neural
graph matching network proposed by Wang et al. (2022),
finally generating the matching scores M. We replace the
original single-set Sinkhorn layer by LinSAT to enforce the
constraints in Eq. (19). The output of LinSAT is reshaped
into matrix M̂, which is used for end-to-end training with
permutation loss (Wang et al., 2019b). During inference,
the Hungarian algorithm (Kuhn, 1955) is performed on M̂
and we retain the φ-highest matching scores from M̂, and
the remaining matches are discarded.

5.4. Experiments

We do experiments on Pascal VOC Keypoint dataset (Ev-
eringham et al., 2010) with Berkeley annotations (Bourdev
& Malik, 2009) under the “unfiltered” setting following
Rolı́nek et al. (2020) and report the matching F1 scores be-
tween graph pairs. We assume that the number of inliers φ is
given (e.g. estimated by another regression model) and focus
on the GM networks. As there are no one-shot partial GM
networks available, we compare with bijective matching net-
works: PCA-GM (Wang et al., 2019b) and BBGM (Rolı́nek
et al., 2020). We also build a partial GM baseline by post-
processing retaining only the top-φ matches. Table 3 shows
that our method performs the best. Note that BBGM (match-
ing type=bijective) is an example of applying black-box
solvers to an ill-posed optimization problem because the
objective function does not consider the outliers, leading to
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Table 4. Sharpe ratio of portfolio allocation methods. The con-
straint technique “Gurobi Opt” means solving a constrained opti-
mization problem by the commercial solver Gurobi whereby the
optimization parameters are based on the predicted asset prices.

Predictor Constraint Technique Expert Pref.? Mean Sharpe

LSTM Softmax No 2.15
LSTM Gurobi Opt Yes 2.08
LSTM LinSAT (ours) Yes 2.27

StemGNN Softmax No 2.11
StemGNN Gurobi Opt Yes 2.00
StemGNN LinSAT (ours) Yes 2.42

inferior performance.

6. Case Study III: Portfolio Allocation
6.1. Problem Background

Predictive portfolio allocation is the process of selecting the
best asset allocation based on predictions of future financial
markets. The goal is to design an allocation plan to best
trade-off between the return and the potential risk (i.e. the
volatility). In an allocation plan, each asset is assigned a
non-negative weight and all weights should sum to 1. Exist-
ing learning-based methods (Zhang et al., 2020; Butler &
Kwon, 2021) only consider the sum-to-one constraint with-
out introducing personal preference or expert knowledge. In
contrast, we achieve such flexibility for the target portfolio
via positive linear constraints: a mix of covering and equal-
ity constraints, which is widely considered (Sharpe, 1971;
Mansini et al., 2014) for its real-world demand.

6.2. Constraint Formulation for LinSAT

Given historical data of assets, we aim to build a portfolio
whose future Sharpe ratio (Sharpe, 1998) is maximized.
Sharpe ratio = return−rf

risk , where rf denotes the risk-free return
and is assumed to be 3% (annually). Besides the sum-to-one
constraint, we consider the extra constraint based on expert
preference: among all assets, the proportion of assets in set
C should exceed p. This is reasonable as some assets (e.g.
tech giants) have higher Sharpe ratios than others in certain
time periods. Formally, the constraints are formulated as:

n∑
i=1

xi = 1,
∑
i∈C

xi ≥ p, (20)

where x ∈ [0, 1]n is the predicted portfolio. The first con-
straint is the traditional sum-to-one constraint and the sec-
ond one is the extra preference constraint.

6.3. Network Design Details

We adopt LSTM (Hochreiter & Schmidhuber, 1997) and
StemGNN (Cao et al., 2020) as two variants of portfolio al-
location networks for their superiority in learning with time

series. Our network has two output branches, one predicts
future asset prices and the other predicts the portfolio. Lin-
SAT is applied to the portfolio prediction branch to enforce
constraints in Eq. (20). The network receives supervision
signals by a weighted sum of maximizing the Sharpe ratio
and minimizing the prediction error on future asset prices
(based on the historical data in the training set).

6.4. Experiments

We consider the portfolio allocation problem where the
network is given the historical data in the previous 120
trading days, and the goal is to build a portfolio with max-
imized Sharpe ratio for the next 120 trading days. The
training set is built on the real prices of 494 assets from
the S&P 500 index from 2018-01-01 to 2020-12-30, and
the models are tested on real-world data from 2021-03-
01 to 2021-12-30. Without loss of generality, we im-
pose the expert preference that in the period of interest,
the following tech giants’ stocks could be more profitable:
C = {AAPL, MSFT, AMZN, TSLA, GOOGL, GOOG}, and
the preference ratio is set to p = 50%.

We build two baselines: 1) A neural network portfolio al-
locator without preference, and the sum-to-one constraint
is enforced by softmax following Zhang et al. (2020); 2) A
two-stage allocator that first predicts future prices and then
uses Gurobi (Gurobi Optimization, 2020) to solve a con-
strained optimization problem whose objective function
is based on the predicted prices. See results in Table 4.
Compared with an allocator without preference, the expert
preference information improves the performance; Com-
pared with the two-stage allocator, our allocator reduces
the issue of error accumulation and builds better portfolios.
Note that the objective function in the two-stage allocator
is ill-posed because the first-stage prediction unavoidably
contains errors.

7. Conclusion and Outlook
We have presented LinSAT, a principled approach to enforce
the satisfiability of positive linear constraints for the solution
as predicted in one-shot by neural network. The satisfia-
bility layer is built upon an extended Sinkhorn algorithm
for multi-set marginals, whose convergence is theoretically
characterized. We showcase three applications of LinSAT.
Future work may be improving the efficiency of both for-
ward and backward of LinSAT.

Acknowledgments
The work was supported in part by National Key Research
and Development Program of China (2020AAA0107600),
NSFC (62222607, U19B2035), and Science and Technology
Commission of Shanghai Municipality (22511105100).

9



LinSATNet: The Positive Linear Satisfiability Neural Networks

References
Adams, R. and Zemel, R. Ranking via sinkhorn propagation.

arXiv:1106.1925, 2011.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,
and Kolter, J. Z. Differentiable convex optimization lay-
ers. Advances in neural information processing systems,
32, 2019.

Allen-Zhu, Z. and Orecchia, L. Using optimization to
break the epsilon barrier: A faster and simpler width-
independent algorithm for solving positive linear pro-
grams in parallel. In Symp. on Disc. Algo., pp. 1439–1456,
2014.

Altschuler, J., Niles-Weed, J., and Rigollet, P. Near-linear
time approximation algorithms for optimal transport via
sinkhorn iteration. Neural Info. Process. Systems, 30,
2017.

Amos, B. and Kolter, J. Z. Optnet: Differentiable optimiza-
tion as a layer in neural networks. In Int. Conf. Mach.
Learn., pp. 136–145, 2017.

Awerbuch, B. and Khandekar, R. Stateless distributed gradi-
ent descent for positive linear programs. In Symp. Theory
of Comp., pp. 691–700, 2008.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. Eur. J. Operational Research, 290(2):405–
421, 2021.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-
P., and Bach, F. Learning with differentiable pertubed
optimizers. Neural Info. Process. Systems, 33:9508–9519,
2020.

Bourdev, L. and Malik, J. Poselets: Body part detectors
trained using 3d human pose annotations. In Int. Conf.
Comput. Vis., pp. 1365–1372, 2009.

Butler, A. and Kwon, R. Integrating prediction in mean-
variance portfolio optimization. Available at SSRN
3788875, 2021.

Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang,
C., Tong, Y., Xu, B., Bai, J., Tong, J., et al. Spectral tem-
poral graph neural network for multivariate time-series
forecasting. Advances in neural information processing
systems, 33:17766–17778, 2020.

Chakrabarty, D. and Khanna, S. Better and simpler error
analysis of the sinkhorn–knopp algorithm for matrix scal-
ing. Mathematical Programming, 188(1):395–407, 2021.

Cook, S. A. The complexity of theorem proving procedures.
In Symp. Theory of Comp., pp. 151—-158, 1971.

Cruz, S. R., Fernando, B., Cherian, A., and Gould, S. Deep-
permnet: Visual permutation learning. Comput. Vis. Pat-
tern Recog., 2017.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Neural Info. Process. Systems, pp.
2292–2300, 2013.

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable rank-
ing and sorting using optimal transport. In Neural Info.
Process. Systems, volume 32, pp. 6858–6868, 2019.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. The pascal visual object classes (voc)
challenge. Int. J. Comput. Vis., 2010.

Fey, M., Eric Lenssen, J., Weichert, F., and Müller, H.
SplineCNN: Fast geometric deep learning with continu-
ous b-spline kernels. In Comput. Vis. Pattern Recog., pp.
869–877, 2018.

Guo, W., Zhen, H.-L., Li, X., Yuan, M., Jin, Y., and Yan,
J. Machine learning methods in solving the boolean
satisfiability problem. Machine Intelligence Research,
2023.

Gurobi Optimization. Gurobi optimizer reference manual.
http://www.gurobi.com, 2020.

Helsgaun, K. An extension of the lin-kernighan-helsgaun
tsp solver for constrained traveling salesman and vehicle
routing problems. Roskilde: Roskilde University, 2017.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Johnson, D. S. Local optimization and the traveling sales-
man problem. In International colloquium on automata,
languages, and programming, pp. 446–461, 1990.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Karalias, N. and Loukas, A. Erdos goes neural: an unsuper-
vised learning framework for combinatorial optimization
on graphs. In Neural Info. Process. Systems, 2020.

Knight, P. A. The sinkhorn–knopp algorithm: convergence
and applications. SIAM Journal on Matrix Analysis and
Applications, 30(1):261–275, 2008.

Kool, W., van Hoof, H., and Welling, M. Attention, learn
to solve routing problems! In Int. Conf. Learn. Rep., pp.
1–25, 2019.

Kuhn, H. W. The hungarian method for the assignment
problem. In Export. Naval Research Logistics Quarterly,
pp. 83–97, 1955.

10

http://www.gurobi.com


LinSATNet: The Positive Linear Satisfiability Neural Networks

Kwon, Y.-D., Choo, J., Yoon, I., Park, M., Park, D., and
Gwon, Y. Matrix encoding networks for neural combi-
natorial optimization. In Neural Info. Process. Systems,
volume 34, pp. 5138–5149, 2021.

Li, Y., Chen, X., Guo, W., Li, X., Luo, W., Huang, J., Zhen,
H.-L., Yuan, M., and Yan, J. Hardsatgen: Understanding
the difficulty of hard sat formula generation and a strong
structure-hardness-aware baseline. In SIGKDD Conf. on
Know. Disc. and Data Mining, 2023.

Liu, C., Wang, R., Jiang, Z., Huang, L., Lu, P., and Yan,
J. Revocable deep reinforcement learning with affinity
regularization for outlier-robust graph matching. In Int.
Conf. Learn. Rep., 2023.

Luby, M. and Nisan, N. A parallel approximation algorithm
for positive linear programming. In Symp. Theory of
Comp., pp. 448–457, 1993.

Mansini, R., Ogryczak, W., and Speranza, M. G. Twenty
years of linear programming based portfolio optimization.
Eur. J. Operational Research, 234(2):518–535, 2014.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. Integer pro-
gramming formulation of traveling salesman problems.
Journal of the ACM, 1960.

Ozolins, E., Freivalds, K., Draguns, A., Gaile, E., Zakovskis,
R., and Kozlovics, S. Goal-aware neural sat solver. arXiv
preprint arXiv:2106.07162, 2021.

Pass, B. Multi-marginal optimal transport: theory and ap-
plications. ESAIM: Mathematical Modelling and Nu-
merical Analysis-Modélisation Mathématique et Analyse
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A. Comparison with the Notations from Cuturi (2013)
The formulation used in this paper (regarding Γ) is an equivalent adaptation from the notations used in existing single-set
Sinkhorn papers e.g. Cuturi (2013). As we explained in the footnote in page 3, this new formulation is preferred as we are
generalizing the scope of Sinkhorn to multi-set marginal, and the existing formulation cannot seamlessly handle marginals
with different values.

Specifically, we make a side-by-side comparison with the notations used in this paper and the notations used in Cuturi
(2013) on single-set Sinkhorn algorithm:

• This paper’s notations:

The transportation matrix is Γ ∈ [0, 1]m×n, and the constraints are

m∑
i=1

Γi,juj = uj ,

n∑
j=1

Γi,juj = vi. (21)

Γi,j means the proportion of uj moved from uj to vi.

The algorithm steps are:

repeat:

Γ′i,j =
Γi,jvi∑n
j=1 Γi,juj

; . normalize w.r.t. v

Γi,j =
Γ′i,juj∑m
i=1 Γ′i,juj

; . normalize w.r.t. u

until convergence.

• Cuturi (2013)’s notations:

The transportation matrix is P ∈ Rm×n≥0 , and the constraints are

m∑
i=1

Pi,j = uj ,

n∑
j=1

Pi,j = vi. (22)

Pi,j means the exact mass moved from uj to vi.

The algorithm steps are:

repeat:

P ′i,j =
Pi,jvi∑n
j=1 Pi,j

; . normalize w.r.t. v

Pi,j =
P ′i,juj∑m
i=1 P

′
i,j

; . normalize w.r.t. u

until convergence.

The equivalence between the above formulations becomes clear if we substitute Pi,j by Γi,juj and P ′i,j by Γ′i,juj in all
the above definitions and algorithm steps. We would like to highlight that such different notations are necessary because
making Γi,j as the proportion of all u1,j , u2,j , · · · , uk,j could deal with multiple marginals with different values, making it
generalizable to the multi-marginal case.

B. Proof of Theorem 3.2.
To prove the upper bound of convergence rate, we define the Kullback-Leibler (KL) divergence for matrices Z and Γ,
whereby the KL divergence is originally defined for probability vectors,

D(Z,Γ, η) =
1

hη

m∑
i=1

n∑
j=1

zi,juη,j log
zi,j
Γi,j

. (23)
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Also recall that Z ∈ [0, 1]m×n is a normalized matrix satisfying all marginal distributions,

∀η ∈ {1, · · · , k} :

m∑
i=1

zi,juη,j = uη,j ,

n∑
j=1

zi,juη,j = vη,i, (24)

We then prove the convergence rate w.r.t. the KL divergence based on the following two Lemmas.

Lemma 3.3. For any η = 1, · · · , k, D(Z,Γ(0), η) ≤ log(1 + 2∆/α).

Proof. By definition,

D(Z,Γ(0), η) =
1

hη

n∑
j=1

uη,j

m∑
i=1

zi,j log
zi,j
Γi,j

, (25)

where {zi,j}i=1,2,··· ,m and {Γi,j}i=1,2,··· ,m sum to 1 thus they are probability distributions. The second summand is a
standard KL divergence term.

Based on the following fact in terms of Eq. (27) from Sason & Verdú (2015), for probability distributions p,q,

DKL(p||q) ≤ log

(
1 +
‖p− q‖22
qmin

)
(26)

≤ log

(
1 +

2

qmin

)
, (27)

where Eq. (26) to Eq. (27) is because ‖p− q‖2 ≤
√

2, and qmin denotes the smallest non-zero element in q. We have the
following conclusion for Z and Γ(0),

D(Z,Γ(0), η) ≤ 1

hη

n∑
j=1

uη,j log

(
1 +

2

Γ
(0)
min

)

= log

(
1 +

2

Γ
(0)
min

)
,

(28)

where 1
hη

∑n
j=1 uη,j = 1 by definition.

Recall that α = mini,j:si,j>0 si,j/maxi,j si,j , ∆ = maxj |{i : si,j > 0}| is the max number of non-zeros in any column of
S, and in our algorithm Γ

(0)
i,j =

si,j∑m
i=1 si,j

, we have

Γ
(0)
min ≥

α

∆
(29)

⇒ D(Z,Γ(0), η) ≤ log

(
1 +

2∆

α

)
. (30)

This ends the proof of Lemma 3.3.

Lemma 3.4. For η = (t mod k) + 1, η′ = (t+ 1 mod k) + 1, we have

D(Z,Γ(t), η)−D(Z,Γ′(t), η) = DKL(πvη ||πv
(t)
η

) (31)

D(Z,Γ′(t), η)−D(Z,Γ(t+1), η′) = DKL(πuη ||πu
(t)
η

) (32)
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Proof. By definition, the left-hand side of the first inequality is

D(Z,Γ(t), η)−D(Z,Γ′(t), η) =
1

hη

m∑
i=1

n∑
j=1

zi,juη,j log
zi,j

Γ
(t)
i,j

− 1

hη

m∑
i=1

n∑
j=1

zi,juη,j log
zi,j

Γ
′(t)
i,j

=
1

hη

m∑
i=1

n∑
j=1

zi,juη,j log
Γ
′(t)
i,j

Γ
(t)
i,j

=
1

hη

m∑
i=1

n∑
j=1

zi,juη,j log
vη,i∑n

j=1 Γ
(t)
i,juη,j

=
1

hη

m∑
i=1

n∑
j=1

zi,juη,j log
vη,i

v
(t)
η,i

=
1

hη

m∑
i=1

log
vη,i

v
(t)
η,i

n∑
j=1

zi,juη,j

=

m∑
i=1

vη,i
hη

log
vη,i/hη

v
(t)
η,i/hη

(33)

which is exactly DKL(πvη ||πv
(t)
η

). The other equation could be derived analogously. This ends the proof of Lemma 3.4.

Denote T = k log(1+2∆/α)
δ +ζ , where ζ ∈ [0, k) is a residual term ensuring (T+1) mod k = 0. If allDKL(πvη ||πv

(t)
η

) > δ

and DKL(πuη ||πu
(t)
η

) > δ for all η, by substituting Lemma 3.4 and summing, we have

D(Z,Γ(0), 1)−D(Z,Γ(T+1), 1) >
Tδ

k
≥ log(1 + 2∆/α). (34)

The multiplier k exists because we need to sum over k sets of marginals to cancel all intermediate terms. Since KL
divergence must be non-negative, the above formula contradicts with Lemma 3.3. This ends the proof of Theorem 3.2.

C. Further Discussions with the Entropic Regularizer
In the main paper, we start the formulation after the regularization term for simplicity. On one hand, the entropic regularizer
may be omitted if the score matrix is non-negative (e.g. activated by ReLU). On the other hand, our theoretical insights
could naturally generalize with the regularizer. We provide the detailed discussions as follows.

C.1. The Underlying Formulation of Algorithm 2

Recall that given real-valued matrix W ∈ Rm×n, regularizer τ , and a set of target marginals uη ∈ Rn≥0, vη ∈ Rm≥0,
our multi-set marginal Sinkhorn algorithm maps W to Γ ∈ [0, 1]m×n such that ∀η ∈ {1, · · · , k} :

∑m
i=1 Γi,juη,j =

uη,j ,
∑n
j=1 Γi,juη,j = vη,i.

Formally, the following entropic regularized problem is considered:

min
Γ
−tr(W>Γ) + τ

∑
i,j

Γi,j log Γi,j , (35a)

s.t. Γ ∈ [0, 1]m×n, (35b)

∀η ∈ {1, · · · , k} :

m∑
i=1

Γi,juη,j = uη,j ,

n∑
j=1

Γi,juη,j = vη,i. (35c)

With dual variables θη,u ∈ Rn, θη,v ∈ Rm, the Lagrangian of the above problem is

L(Γ, θ∗) =
∑
i,j

τΓi,j log Γi,j − wi,jΓi,j +

k∑
η=1

θ>η,v(Γuη − vη) + θ>η,u(Γ>1m − 1n), (36)
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and for any (i, j),

∂L
∂Γi,j

= 0 (37a)

⇒ τ log Γi,j + τ − wi,j +

k∑
η=1

θη,v,iuη,j + θη,u,j = 0 (37b)

⇒ Γi,j = exp(−1

2
− 1

τ

k∑
η=1

θη,v,iuη,j) exp(
wi,j
τ

) exp(−1

2
− 1

τ

k∑
η=1

θη,u,j) (37c)

Theorem 3.2 and Corollary 3.5 derives the convergence speed of transforming S = exp(W/τ) into Γ by alternative row-
wise and column-wise normalization. In other words, Sinkhorn’s theorem (Sinkhorn & Knopp, 1967) could be generalized
to the multi-set case, and the convergence speed is already derived in Theorem 3.2 and Corollary 3.5. Γ is necessarily a
matrix of the form diag(a)Sdiag(b) that belongs to all marginals.

C.2. The Algorithm with Entropic Regularizer

Algorithm 3 Sinkhorn for Multi-Set Marginals with Entropic Regularizer

1: Input: Score matrix W ∈ Rm×n, entropic regularizer τ , k sets of marginals V ∈ Rk×m≥0 ,U ∈ Rk×n≥0 .
2: Apply entropic regularizer S = exp(W/τ);
3: Initialize Γi,j =

si,j∑m
i=1 si,j

;
4: repeat
5: for η = 1 to k do
6: Γ′i,j =

Γi,jvη,i∑n
j=1 Γi,juη,j

; . normalize w.r.t. vη

7: Γi,j =
Γ′i,juη,j∑m
i=1 Γ′i,juη,j

; . normalize w.r.t. uη

8: end for
9: until convergence

C.3. Theoretical Results with Entropic Regularizer

If the entropic regularizer is involved, the converging rate of multi-set Sinkhorn w.r.t. L1 error becomes:

t = O

(
ĥ2k(α′/τ + log ∆)

ε2

)
, (38)

where
α′ = max

i,j
wi,j − min

i,j:wi,j>−∞
wi,j .

The other notations have the same definition as in the main paper. It shows that the number of iterations scales almost linearly
with 1/τ . The derivation is straightforward since α is the only affected term after considering the entropic regularizer.

C.4. Empirical Further Study of the Entropic Regularizer

Our LinSAT can naturally handle continuous constraints. For continuous optimization problems (e.g. portfolio allocation)
the output can be directly used as the feasible solution. When it comes to problems requiring discrete decision variables, we
show in the following study that our LinSAT still owns the ability to encode the constraints by adjusting τ .

For discrete optimization problems (such as TSP and GM), during training, we relax the discrete binary region {0, 1} into
continuous [0, 1] to make neural networks trainable with gradient-based methods. In Sections 4 and 5, the discrete solutions
from continuous outputs are recovered via post-processing during inference. Post-processing is quite common in neural
solvers for discrete optimization due to the continuous nature of neural networks. Let’s take TSP as an example: RL-based
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Table 5. Feasible ratio and tour length comparison among different TSP solver configurations.

TSP-SE TSP-PRI
Config Feasible Ratio Tour Length Feasible Ratio Tour Length

τ = 0.1, Rounding 1.19% 3.897 1.52% 3.997
τ = 0.05, Rounding 20.95% 3.904 23.26% 4.063
τ = 0.01, Rounding 86.69% 3.964 85.32% 4.102
τ = 0.005, Rounding 89.35% 3.969 83.63% 4.108
τ = 0.1, Beam Search 100.00% 3.811 100.00% 3.943

Table 6. Feasible ratio and average F1 among different partial-GM solver configurations.

Config Feasible Ratio Mean F1

τ = 0.1, Rounding 56.78% 0.4756
τ = 0.05, Rounding 83,99% 0.5547
τ = 0.02, Rounding 95.21% 0.5748
τ = 0.01, Rounding 96.20% 0.5673

τ = 0.05, Hungarian-Top-φ 100.00% 0.6118

methods (Kool et al., 2019; Kwon et al., 2021) need to manually design the decoding strategy to ensure every node is visited
but only once; supervised learning methods (Joshi et al., 2019) output a continuous heatmap over which search is performed.

As for our LinSAT, once the network is well-trained, we can set smaller τ to get outputs that are closer to a discrete feasible
solution during inference. Here we conduct experiments on TSP and GM to evaluate the LinSAT’s capability to maintain
discrete feasible solutions. Using the same trained network, we adjust τ to get different continuous outputs X̃ . Then we
directly round X̃ to get discrete solution X: Xi,j = 1 if X̃i,j ≥ 0.5; Xi,j = 0 if X̃i,j < 0.5. In Tables 5 and 6, we report
the ratio that directly rounded solutions are feasible and the corresponding evaluation metrics for feasible solutions.

Results show that our LinSAT can recover most feasible solutions with a simple rounding strategy under a small temperature.
However, smaller τ requires more iterations to converge, which makes inference slower: in TSP-SE, τ = 0.005 requires
1,000 iterations to converge and the total inference time for τ = 0.005, Rounding is 37s, which is longer than 19s of τ = 0.1,
Beam Search. And the quality of solutions is also not competitive with larger τ with post-processing.

In summary, the aforementioned further study shows that: 1) Given smaller τ , our LinSAT owns the ability to recover discrete
feasible solutions directly. 2) Using a larger τ with post-processing steps (as done in our main paper) is a cost-efficient
choice considering both efficiency and efficacy.

D. The Feasibility Assumption Explained
For multi-set Sinkhorn, an assumption is made in Eq. (6) that the marginal distributions must have a non-empty feasible
region. We explain this assumption with an example derived from positive linear constraints.

As shown in Section 3.3, every set of positive linear constraints could be equivalently viewed as a set of Sinkhorn marginals.
If we transform the positive linear constraints to Sinkhorn’s marginals:

• If the positive linear constraints have a non-empty feasible region, e.g.

x1 + x2 ≤ 1, x3 + x4 ≤ 1, x1 + x3 ≤ 1, x2 + x4 ≤ 1, (39)
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the corresponding marginals are

u1 = [1, 1, 0, 0, 1],v>1 = [1, 2] . for x1 + x2 ≤ 1 (40a)

u2 = [0, 0, 1, 1, 1],v>2 = [1, 2] . for x3 + x4 ≤ 1 (40b)

u3 = [1, 0, 1, 0, 1],v>3 = [1, 2] . for x1 + x3 ≤ 1 (40c)

u4 = [0, 1, 0, 1, 1],v>4 = [1, 2] . for x2 + x4 ≤ 1 (40d)
(40e)

A feasible solution x1 = 1, x2 = 0, x3 = 0, x4 = 1 corresponds to a valid transportation plan,

Γ =

[
1 0 0 1 0
0 1 1 0 1

]
. (41)

Thus Eq. (6) is feasible in such cases.

• If the positive linear constraints have no feasible region, e.g.

x1 + x2 ≥ 2, x3 + x4 ≥ 2, x1 + x3 ≤ 1, x2 + x4 ≤ 1, (42)

Eq. (6) is infeasible. Such infeasible marginals are not expected, and LinSAT will not converge.

As a side note, the last column and the second row of Γ are set as separate dummy columns/rows for different marginals in
our LinSAT, and their converged values may be different for different marginals. Empirically, LinSAT’s converging property
is not affected after adding the dummy columns/rows.

E. Details of Case Study I: Neural Solver for Traveling Salesman Problem with Extra
Constraints

E.1. Hyper-parameters and Implementation

In both TSP-SE and TSP-PRI, we use a 3-layer Transformer to encode the 2-D coordinates into hidden vectors. Then the
hidden vectors are projected into the pre-projected matrix using a 3-layer MLP with ReLU activation. Dimensions of hidden
states for both the Transformer and the MLP are set to 256, and the head number of multi-head attention in the Transformer
is set to 8.

We train the model for 100 epochs for both TSP-SE and TSP-PRI. In each epoch, we randomly generate 256,000 instances
as the training set of this epoch. The batch size is set to 1,024. Adam optimizer is used for training and the learning rate is
set to 1e-4.

During inference, we use beam search to post-process the continuous matrix X̃ output by the network to get the binary
matrix X. The width of the beam for beam search is set to 2,048.

Our model runs on a single NVIDIA GeForce RTX 2080Ti GPU with 11GB memory.

E.2. Baseline Methods

MIP MIP methods directly use Gurobi to solve the formulation in Sec.4.2, e.g. an integer programming problem with
linear constraints and quadratic objective. The time limit per instance is set to 2s/20s.

Nearest Neighbor Nearest Neighbor is a greedy heuristic for TSP. For TSP-SE, in each iteration, the nearest node (except
the ending node) to the starting node is selected as the next node to visit. Then the selected node becomes the new starting
node in the next iteration. After all nodes except the ending node are visited, the tour directly connects to the ending node.

For TSP-PRI, in the m-th iteration, if the priority node has not been visited, the priority node will be selected as the next
node to satisfy the priority constraint.
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Table 7. Ablation study on normalizing randomly generated matrices on TSP.

Method TSP-SE TSP-PRI

Random Pre-Projected Matrix 7.414 (19s) 7.426 (18s)
Trainable Pre-Projected Matrix 5.546 (26m51s) 5.646 (27m37s)

Transformer Feature Matrix 3.811 (19s) 3.943 (18s)

Insertion Heuristic Insertion Heuristic first uses the starting and ending nodes to construct a partial tour. In each iteration,
a new node is selected and inserted to the partial tour to extend it. For a selected node, it is inserted in the position where the
tour length increase is minimized. Formally, we use T = {π1, π2, . . . , πm} to denote a partial tour with m(m < n) nodes.
Assuming the selected new node is u∗, then it is inserted behind the i∗-th node in the partial tour:

i∗ = argmin
1≤i≤m−1

Dπi,u∗ +Du∗,πi+1 −Dπi,πi+1 (43)

According to the different new node selection processes, there are different variants of insertion heuristic:

Nearest Insertion selects the nearest node to the partial tour:

u∗ = argmin
u 6∈T

min
v∈T

Du,v (44)

Farthest Insertion selects the farthest node from any node in the partial tour:

u∗ = argmax
u 6∈T

min
v∈T

Du,v (45)

Random Insertion randomly selects the new node to insert.

To satisfy the priority constraint of TSP-PRI, if the priority node is already the (m+ 1)-th node in the partial tour, we can
not insert new nodes in front of it.

Standard Solver TSP-SE can be converted to standard TSP by adding a dummy node. The distance from the dummy
node to starting and ending nodes is 0 and the distance to other nodes is infinity. Then we can use start-of-the-art methods
for standard TSP, i.e. Gurobi(MTZ)/Concrode/LKH3, to solve TSP-SE.

However, converting TSP-PRI to standard TSP is non-trivial, making it hard to use standard solvers to solve TSP-PRI.

Attention Model Attention Model (Kool et al., 2019) is an RL-based autoregressive model for standard TSP. We modify its
decoding process so that it can solve TSP-SE and TSP-PRI. Because TSP-SE ends in the ending node instead of constructing
a circle, we use the ending node embedding to replace the first node embedding in the original paper during decoding. For
TSP-PRI, if the priority node has not been visited within the first m− 1 steps, it will be visited in the m-th step. The training
process and hyper-parameters are the same as our model in Sec. E.1.

MIP, Insertion Heuristic, Standard Solver run on a Intel(R) Core(TM) i7-7820X CPU; Nearest Neighbor, Attention Model
run on a NVIDIA GeForce RTX 2080Ti GPU with 11GB memory.

E.3. Further Ablation Study

In the following study, we show that LinSAT can normalize matrices outside a neural network. The study involves two
variants of our TSP solver presented in Section 4: 1) Random Pre-Projected Matrix: Apply our LinSAT to a randomly
generated matrix and do beam search over it; 2) Trainable Pre-Projected Matrix: Randomly initialize the pre-projected
matrix, view the matrix as trainable parameters and use the same training process as in the main paper to optimize it.
Transformer Feature Matrix is our TSP solver in Section 4.

The average tour length and total inference time are shown in Table 7. The Random Pre-Projected Matrix cannot provide
useful guidance to beam search, thus its performance is poor. Trainable Pre-Projected Matrix performs better, but it is easy
to stick at local optima without global features extracted by the neural network. Moreover, updating the pre-projected matrix
requires multiple forward and backward passes of LinSAT, making this method much more time-consuming.
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Figure 2. Route plan cases of TSP-SE. Each row represents one instance and each column represents one method. Black points stand for
starting cities and orange points stand for ending cities. The optimal tours are solved by Gruobi (MTZ).

Table 8. Traveling salesman problem with extra constraints’ time cost. Similar to other neural solvers for standard TSP (Kool et al., 2019;
Kwon et al., 2021) the post-processing step (e.g. beam search, Monte Carlo tree search) is the most time-consuming, yet it is necessary to
achieve better results.

Task Neural Network LinSAT Beam Search

TSP-SE 0.3% 12.4% 87.3%
TSP-PRI 0.3% 12.6% 87.1%

Table 9. Partial graph matching’s time cost. Hungarian Top-φ is our discretization step discussed at the end of Section 5.3.

Module Neural Network LinSAT Hungarian Top-φ

Proportion of Time 17.1% 81.4% 1.5%

This ablation study proves the feasibility of LinSAT working outside a neural network, while it also shows the necessity of
neural networks to get high-quality solutions in an efficient time.

E.4. Visualizations

Fig. 2 and Fig. 3 show some route plan cases of TSP-SE and TSP-PRI using different methods. Our LinSAT is able to get
near-optimal solutions in a short time, especially for TSP-PRI where getting an optimal solution is very time-consuming.

F. Experiment Testbed
All our experiments are run on our workstation with Intel(R) Core(TM) i7-7820X CPU, NVIDIA GeForce RTX 2080Ti
GPU, and 11GB memory.
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Figure 3. Route plan cases of TSP-PRI. Each row represents one instance and each column represents one method. Black points stand for
starting cities, orange points stand for ending cities and red points stand for priority cities that need to be visited within the first 5 steps.
The optimal tours are solved by Gurobi (Sec.4.2) without a time limit, and the running time to get the corresponding optimal solutions are
listed in the titles.

Table 10. Portfolio allocation’s time cost. Note that since the decision variables of portfolio allocation are continuous, it does not need any
post-processing/discretization steps.

Module Neural Network LinSAT

Proportion of Time 20.1% 79.9%

Table 11. Timing statistics of projecting a random matrix in to doubly-stochastic (on CPU, in seconds).

Method Forward Backward Total

LinSAT 0.0382 0.0250 0.0632
CVXPY 0.1344 0.0042 0.1386

G. Study of Time Costs
In our case studies, LinSAT has higher time costs than neural networks, which is in our expectation because the cost of one
Sinkhorn iteration could be roughly viewed as one layer of neural network from the unfolding perspective. The complexity
of neural networks in our case studies is relatively low, since too many layers may cause the over-smoothing issue, and
designing new networks is beyond the scope of this paper. We summarize the proportion of inference time in all 3 case
studies in Tables 8 to 10.

Besides, we compare the timing statistics of LinSAT with another regularized projection method – the differentiable CVXPY
layers (Agrawal et al., 2019). Specifically, we conduct a case study of transforming a random matrix into a doubly-stochastic
matrix. Both methods achieve doubly-stochastic matrices, and the timing statistics are in Table 11. LinSAT is more efficient
in this case study. Extra speed-up may be achieved when the input scales up and switching LinSAT to GPU (CVXPY is
CPU-only).
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