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Abstract
In Reinforcement Learning (RL), Laplacian Rep-
resentation (LapRep) is a task-agnostic state rep-
resentation that encodes the geometry of the envi-
ronment. A desirable property of LapRep stated
in prior works is that the Euclidean distance in
the LapRep space roughly reflects the reachabil-
ity between states, which motivates the usage of
this distance for reward shaping. However, we
find that LapRep does not necessarily have this
property in general: two states having a small
distance under LapRep can actually be far away
in the environment. Such a mismatch would im-
pede the learning process in reward shaping. To
fix this issue, we introduce a Reachability-Aware
Laplacian Representation (RA-LapRep), by prop-
erly scaling each dimension of LapRep. Despite
the simplicity, we demonstrate that RA-LapRep
can better capture the inter-state reachability as
compared to LapRep, through both theoretical ex-
planations and experimental results. Additionally,
we show that this improvement yields a signif-
icant boost in reward shaping performance and
benefits bottleneck state discovery.

1. Introduction
Reinforcement Learning (RL) seeks to learn a decision strat-
egy that advises the agent on how to take actions accord-
ing to the perceived states (Sutton & Barto, 2018). The
state representation plays an important role in the agent’s
learning process — a proper choice of the state represen-
tation can help improve generalization (Zhang et al., 2018;
Stooke et al., 2020; Agarwal et al., 2021), encourage ex-
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Figure 1. Euclidean distances between each state and the goal state
G, under LapRep (a) and RA-LapRep (b).

ploration (Pathak et al., 2017; Machado et al., 2017; 2020)
and enhance learning efficiency (Dubey et al., 2018; Wu
et al., 2019; Wang et al., 2021). In studying the state rep-
resentation, one direction of particular interest is to learn
a task-agnostic representation that encodes transition dy-
namics of the environment (Mahadevan & Maggioni, 2007;
Machado et al., 2021).

Along this line, the Laplacian Representation (LapRep) has
received increasing attention (Mahadevan, 2005; Machado
et al., 2017; Wu et al., 2019; Wang et al., 2021; Erraqabi
et al., 2022). Specifically, the LapRep is formed by the d
smallest eigenvectors of the Laplacian matrix of the graph
induced from the transition dynamic (see Section 2.2 for
definition). It is assumed in prior works (Wu et al., 2019;
Wang et al., 2021) that LapRep has a desirable property:
the Euclidean distance in the LapRep space roughly reflects
the reachability among states (Wu et al., 2019; Wang et al.,
2021), i.e., smaller distance implies that it is easier to reach
one state from another. This motivates the usage of the
Euclidean distance under LapRep for reward shaping (Wu
et al., 2019; Wang et al., 2021).

However, there is a lack of formal justification in previous
works (Wu et al., 2019; Wang et al., 2021) for this property.
In fact, it turns out that the Euclidean distance under LapRep
does not correctly capture the inter-state reachability in
general. Figure 1 (a) shows an example. Under LapRep, a
state that has a larger distance (e.g., A) might actually be
closer to the goal than another state (e.g., B). Consequently,
when the agent moves towards the goal, the pseudo-reward
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provided by LapRep would give a wrong learning signal.
Such a mismatch would hinder the learning process with
reward shaping and result in inferior performance.

In this work, we introduce a Reachability-Aware Lapla-
cian Representation (RA-LapRep) that reliably captures the
inter-state distances in the environment geometry (see Fig-
ure 1 (b)). Specifically, RA-LapRep is obtained by scaling
each dimension of the LapRep by the inverse square root
of the corresponding eigenvalue. Despite its simplicity, RA-
LapRep has theoretically justified advantages over LapRep
in the following two aspects. First, the Euclidean distance
under RA-LapRep can be interpreted as the average com-
mute time, which measures the expected number of steps
required in a random walk to navigate between two states.
Thus, such distance provides a good measure of reachability.
In contrast, to our best knowledge, there lacks a connec-
tion between the Euclidean distance under LapRep and the
reachability. Second, RA-LapRep is equivalent to the em-
bedding computed by the classic multidimensional scaling
(MDS) (Borg & Groenen, 2005), which preserves pairwise
distances globally (Tenenbaum et al., 2000). LapRep, on the
other hand, preserves only local information (i.e., mapping
neighboring states close), since it is essentially Laplacian
eigenmap (Belkin & Niyogi, 2003). Thus, LapRep is inher-
ently incompetent for measuring the inter-state reachability.

To further validate the advantages of RA-LapRep over
LapRep, we conduct experiments to compare them on two
discrete gridworld and two continuous control environments.
The results show that RA-LapRep indeed performs much
better in capturing the inter-state reachability as compared
to LapRep. Furthermore, when used for reward shaping in
the goal-reaching tasks, RA-LapRep significantly outper-
forms LapRep. In addition, we show that RA-LapRep can
be used to discover the bottleneck states based on graph
centrality measure, and more accurately find the key states
than LapRep.

2. Background
Notations. We use boldface letters (e.g., u) for vectors, and
calligraphic letters (e.g., U) for sets. For a vector u, ∥u∥
denotes its L2 norm, diag(u) denotes a diagonal matrix
whose main diagonal is u. We use 1 to denote an all-ones
vector, whose dimension can be inferred from the context.

2.1. Reinforcement Learning

In the Reinforcement Learning (RL) framework (Sutton
& Barto, 2018), an agent aims to learn a strategy that
advises how to take actions in each state, with the goal
of maximizing the expected cumulative reward. We con-
sider the standard Markov Decision Process (MDP) set-
ting (Puterman, 1990), and describe an MDP with a sex-

tuple (S,A, r, P, γ, µ). S is the state space and A is the
action space. The initial state s0 is generated according to
the distribution µ ∈ ∆S , where ∆S denotes the space of
probability distributions over S. At timestep t, the agent
observes from the environment a state st ∈ S and takes an
action at ∈ A. Then the environment provides the agent
with a reward signal r(st, at) ∈ R. The state observation
in the next timestep st+1 ∈ S is sampled from the distri-
bution P (st, at) ∈ ∆S . We refer to P ∈ (∆S)

S×A as the
transition functions and r : RS×A as the reward function. A
stationary stochastic policy π ∈ (∆A)

S specifies a decision
making strategy, where π(s, a) is the probability of taking
action a in state s. The agent’s goal is to learn an optimal
policy π∗ that maximizes the expected cumulative reward:

π∗ = argmax
π∈Π

Eπ,P

∞∑
t=0

γtrt, (1)

where Π denotes the policy space and γ ∈ [0, 1) is the
discount factor.

2.2. Laplacian representation in RL

The Laplacian Representation (LapRep) (Wu et al., 2019)
is a task-agnostic state representation in RL, originally pro-
posed in (Mahadevan, 2005) (known as the proto-value
function). Formally, the Laplacian representations for all
states are the eigenfunctions of Laplace-Beltrami diffusion
operator on the state space manifold. For simplicity, here we
restrict the introduction of LapRep to the discrete state case
and refer readers to (Wu et al., 2019) for the formulation in
the continuous case.

The states and transitions in an MDP can be viewed as nodes
and edges in a graph. The LapRep is formed by d smallest
eigenvectors of the graph Laplacian (usually d ≪ |S|). Each
eigenvector (of length |S|) corresponds to a dimension of
the LapRep. Formally, we denote the graph as G = (S, E)
where S is the node set consisting of all states and E is
the edge set consisting of transitions between states. The
Laplacian matrix of graph G is defined as L := D − A,
where A is the adjacency matrix of G and D := diag(A1)
is the degree matrix (Chung & Graham, 1997). We sort the
eigenvalues of L by their magnitudes and denote the i-th
smallest one as λi. The unit eigenvector corresponding to λi

is denoted as vi ∈ R|S|. Then, the d-dimensional LapRep
of a state s can be defined as

ρd(s) := (v1[s],v2[s], · · · ,vd[s]), (2)

where vi[s] denotes the entry in vector vi corresponding
to state s. In particular, v1 is a normalized all-ones vector
and hence it provides no information about the environment
geometry. Therefore we omit v1 and only consider other
dimensions.
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Figure 2. Visualizations of the Euclidean distances under LapRep between all states and the state G.

For environments with a large or even continuous state
space, it is infeasible to obtain the LapRep by directly com-
puting the eigendecomposition. To approximate LapRep
with neural networks, previous works (Wu et al., 2019;
Wang et al., 2021) propose sample-based methods based
on the spectral graph drawing (Koren, 2005). In particular,
Wang et al. (2021) introduce a generalized graph drawing
objective that ensures dimension-wise faithful approxima-
tion to the ground truth ρd(s).

3. Method
3.1. Reachability-aware Laplacian representation

In prior works (Wu et al., 2019; Wang et al., 2021),
LapRep is believed to have a desirable property that the
Euclidean distance between two states under LapRep (i.e.,
distρ(s, s

′) := ∥ρd(s)−ρd(s
′)∥) roughly reflects the reach-

ability between s and s′. That is, a smaller distance between
two states implies that it is easier for the agent to reach
one state from the other. Figure 2 (a) shows an illustrative
example similar to the one in (Wu et al., 2019). In this exam-
ple, distρ(A,G) is smaller than distρ(B,G), which aligns
with the intuition that moving to G from A takes fewer steps
than from B. Motivated by this, LapRep is used for reward
shaping in goal-reaching tasks (Wu et al., 2019; Wang et al.,
2021).

However, little justification is provided in previous
works (Wu et al., 2019; Wang et al., 2021) for this argu-
ment (i.e., the Euclidean distance under LapRep captures
the inter-state reachability). In fact, we find that it does not
hold in general. As shown in Figure 2 (b-e), distρ(A,G) is
larger than distρ(B,G), but A is clearly closer to G than B.
As a result, when the agent moves towards the goal, distρ
might give a wrong reward signal. Such a mismatch hinders
the policy learning process when we use this distance for
reward shaping.

In this paper, we introduce the following Reachability-
Aware Laplacian Representation (RA-LapRep):

ϕd(s) :=

(
v2[s]√
λ2

,
v3[s]√
λ3

, · · · , vd[s]√
λd

)
, (3)

which can fix the issue of LapRep and better capture the
reachability between states. We provide both theoretical
explanation (Section 3.2) and empirical results (Section 4)
to demonstrate the advantage of RA-LapRep over LapRep.

3.2. Why RA-LapRep is more desirable than LapRep?

In this subsection, we provide theoretical groundings for
RA-LapRep from two aspects, which explains why it better
captures the inter-state reachability than LapRep.

First, we find that the Euclidean distance under RA-LapRep
is related to a quantity that measures the expected random
walk steps between states. Specifically, let distϕ(s, s′) :=
∥ϕd(s) − ϕd(s

′)∥ denote the Euclidean distance between
states s and s′ under RA-LapRep. When d = |S|,
distϕ(s, s

′) has a nice interpretation (Fouss et al., 2007): it
is proportional to the square root of the average commute
time between states s and s′, i.e.,

distϕ(s, s
′) ∝

√
n(s, s′). (4)

Here the average commute time n(s, s′) measures the ex-
pected number of steps required in a random walk to navi-
gate from s to s′ and back (see Appendix A for the formal
definition). Thus, distϕ(s, s′) provides a good quantifi-
cation of the concept of reachability. Additionally, with
the proportionality in Eqn. (4), RA-LapRep can be used
to discover bottleneck states (see Section 4.3 for a de-
tailed discussion and experiments). In contrast, to the best
of our knowledge, the Euclidean distance under LapRep
(i.e.,distρ(s, s′)) does not have a similar interpretation that
matches the concept of reachability.

Second, we show that RA-LapRep preserves global infor-
mation while LapRep only focuses on preserving local in-
formation. Specifically, we note that RA-LapRep is equiva-
lent (up to a constant factor) to the embedding obtained by
classic Multi-Dimensional Scaling (MDS) (Borg & Groe-
nen, 2005) with the squared distance matrix in MDS being
D

(2)
ij = n(i, j) (Fouss et al., 2007) (see Appendix A.2 for

a detailed derivation). Since classic MDS is known to pre-
serve pairwise distances globally (Tenenbaum et al., 2000),
the Euclidean distance under RA-LapRep is then a good
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fit for measuring the inter-state reachability. In compari-
son, the LapRep is only able to preserve local information.
This is because, when viewing the MDP transition dynamic
as a graph, the LapRep is essentially the Laplacian eigen-
map (Belkin & Niyogi, 2003). As discussed in (Belkin &
Niyogi, 2003), the Laplacian eigenmap only aims to pre-
serve local graph structure for every single neighborhood
in the graph (i.e., mapping neighboring states close), while
making no attempt in preserving global information about
the whole graph (e.g., pairwise geodesic distances between
nodes (Tenenbaum et al., 2000)). Therefore, the Euclidean
distance under LapRep is inherently not intended for mea-
suring the reachability between states, especially for distant
states.

3.3. Approximating RA-LapRep

We note that the theoretical reasonings in the above subsec-
tion are based on d = |S|. In practice, however, for envi-
ronments with a large or even continuous state space, it is
infeasible to have d = |S| and hence we need to take a small
d. One may argue that, using a small d would lead to ap-
proximation error: when d < |S|, the distance distϕ(s, s

′)

is not exactly proportional to
√
n(s, s′). Fortunately, the

gap between the approximated ñ(s, s′) and the true n(s, s′)

turns out to be upper bounded by C
∑|S|

i=d+1
1
λi

, where C
is a constant and the summation is over the |S| − d largest
eigenvalues. Thus, this bound will not be very large. We
will empirically show in Section 4.2 that a small d is suf-
ficient for good reward shaping performance and further
increasing d does not yield any noticeable improvement.

Furthermore, even with a small d, it is still impractical to
obtain RA-LapRep via directly computing eigendecomposi-
tion. To tackle this, we follow (Wang et al., 2021) to approxi-
mate RA-LapRep with neural networks using sample-based
methods. Specifically, we first learn a parameterized ap-
proximation fi(· ; θ) for each eigenvector vi by optimizing
a generalized graph drawing objective (Wang et al., 2021),
i.e., fi(s ; θ)≈vi[s], where θ denotes the learnable param-
eters of the neural networks. Next, we approximate each
eigenvalue λi simply by

λi = v⊤
i Lvi ≈ E(s,s′)∈T

(
fi(s ; θ̂)− fi(s

′ ; θ̂)
)2

, (5)

where θ̂ denotes the learned parameters, and T is the same
transition data used to train f . Let λ̃i denote the approxi-
mated eigenvalue. RA-LapRep can be approximated by

ϕd(s) ≈ ϕ̃d(s) =

(
f2(s ; θ̂)√

λ̃2

,
f3(s ; θ̂)√

λ̃3

, · · · , fd(s ; θ̂)√
λ̃d

)
.

(6)
In experiments, we find this approximation works quite well
and is on par with using the true ϕd(s).

Figure 3. Environments used in our experiments (agents shown in
red, and walls in grey).

4. Experiments
In this section, we conduct experiments to validate the ben-
efits of RA-LapRep compared to LapRep. Following (Wu
et al., 2019; Wang et al., 2021), we consider both discrete
gridworld and continuous control environments in our ex-
periments. Figure 3 shows the layouts of environments
used. We briefly introduce them here and refer readers to
Appendix B for more details. In discrete gridworld environ-
ments, the agent takes one of the four actions (up, down, left,
right) to move from one cell to another. If hitting the wall,
the agent remains in the current cell. In continuous con-
trol environments, the agent picks a continuous action from
[−π, π) that specifies the direction along which the agent
moves a fixed small step forward. For all environments, the
observation is the agent’s (x, y)-position. We use d = 10
as default for our experiments and include an analysis on
varying d in Section 4.2.

4.1. Capturing reachability between states

In this subsection, we evaluate the learned RA-LapRep and
LapRep in capturing the reachability among states. We
also include the ground-truth RA-LapRep for comparison.
Specifically, for each state s, we compute the Euclidean dis-
tance between s and an arbitrarily chosen goal state sgoal, un-
der learned LapRep ρ̃, learned RA-LapRep ϕ̃, and ground-
truth RA-LapRep ϕ (i.e., distϕ̃(s, sgoal), distρ̃(s, sgoal) and
distϕ(s, sgoal)). Then, we use heatmaps to visualize the
three distances. For continuous environments, the heatmaps
are obtained by first sampling a set of states roughly cover-
ing the state space, and then performing interpolation among
sampled states.

We train neural networks to learn RA-LapRep and LapRep.
Specifically, we implement the two-step approximation pro-
cedure introduced in Section 3.3 to learn RA-LapRep, and
adopt the method in (Wang et al., 2021) to learn LapRep.
Details of training and network architectures are in Ap-
pendix C. The ground truth RA-LapRep ϕ is calculated
using Eqn. (3). For discrete environments, the eigenvectors
and eigenvalues are computed by eigendecomposition; For
continuous environments, the eigenfunctions and eigenval-
ues are approximated by the finite difference method with
5-point stencil (Peter & Lutz, 2003).

4



Reachability-Aware Laplacian Representation in Reinforcement Learning

Figure 4. Left 3 columns: Visualizations of the Euclidean distances between all states and the goals in the four environments, under
learned LapRep, learned RA-LapRep, and ground-truth RA-LapRep. Example trajectories are shown in red. Right: Line charts of the
distance values for states in the trajectories (normalized to [0, 1]), where the states are sorted by temporal order.

The visualization results are shown in Figure 4. For clearer
comparison, we highlight in each environment an example
trajectory, and plot the distance values along each trajectory
in the line charts on the right. As we can see, for both dis-
crete and continuous environments, as the agent is moving
towards the goal, the distances under the learned LapRep
are increasing in some segments of the trajectories. This is
contradictory to the belief that the Euclidean distances under
LapRep reflect the inter-state reachability. In contrast, the
distances under RA-LapRep decrease monotonically, which
accurately reflects the reachability between current states

and the goals. Apart from the highlighted trajectories, sim-
ilar observations can be obtained for other trajectories or
goal positions (see Appendix D.1). Besides, the distances
under the learned RA-LapRep are very close to those un-
der the ground-truth one, indicating the effectiveness of our
approximation approach. To see how much error truncat-
ing the dimension (i.e., using d = 10 instead of the full
dimension) incurs, we plot the distances calculated using
all dimensions of the ground-truth RA-LapRep for the two
discrete environments. As shown in Figure 12, the error
caused by the truncation is small, indicating that the upper
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Figure 5. Reward shaping results in goal-reaching tasks, with different choices of the shaped reward.

Figure 6. Comparison in the reward shaping results among the
learned representations and the ground-truth ones.

bound of the gap is pretty tight.

4.2. Reward shaping

The above experiments show that the RA-LapRep better
captures the reachability between states than the LapRep.
Next, we study if this advantage leads to higher performance
for reward shaping in goal-reaching tasks.

Following (Wu et al., 2019; Wang et al., 2021), we define
the shaped reward as

rt = 0.5 · renv
t + 0.5 · rdist

t . (7)

Here renv
t is the reward obtained from the environment,

which is set to 0 when the agent reaches the goal state
and −1 otherwise. For discrete environments, renv

t is simply
formalized as renv

t = −1[st+1 ̸= sgoal]. For continuous en-
vironments, we consider the agent to have reached the goal
when its distance to the goal is within a small preset radius ϵ,
i.e., renv

t = −1[∥st+1−sgoal∥ > ϵ]. The pseudo-reward rdist
t

is the negative distance under the learned representations:

rdist
t = −distρ̃(st+1, sgoal) for LapRep,

rdist
t = −distϕ̃(st+1, sgoal) for RA-LapRep.

(8)

Figure 7. Comparison in the reward shaping results among using
different d for the learned RA-LapRep.

As in (Wu et al., 2019; Wang et al., 2021), we also include
two baselines: L2 shaping, i.e., rdist

t = −∥st+1 − sgoal∥,
and no reward shaping, i.e., rt = renv

t . Following (Wang
et al., 2021), we consider multiple goal positions for each
environment (see Appendix C), in order to minimize the bias
brought by goal positions. The final results are averaged
across different goals and 10 runs per goal.

As shown in Figure 5, on both discrete and continuous en-
vironments, RA-LapRep outperforms LapRep and the other
two baselines by a large margin. Compared to LapRep, us-
ing RA-LapRep for reward shaping is more sample efficient,
reaching the same level of performance in fewer than half
of the steps. We attribute this performance improvement to
the fact that the Euclidean distance under RA-LapRep more
accurately captures the inter-state reachability.

Comparing to the ground-truth To find out if the neu-
ral network approximation limits the performance, we also
use the ground-truth RA-LapRep and LapRep for reward
shaping, and compare the results with the learned represen-
tations. From Figure 6, we can see that the performance
of the learned RA-LapRep is as good as the ground-truth
one, indicating the effectiveness of neural network approxi-
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Figure 8. Bottleneck discovery results of the learned RA-LapRep and LapRep. Discovered bottleneck states are those marked as dots (for
discrete environments) or those within the contour lines (for continuous environments).

mation. Besides, the learned LapRep performs comparably
to the ground-truth one, suggesting that the inferior perfor-
mance of LapRep is not due to poor approximation.

Varying the dimension d As mentioned in Section 3.3, the
theoretical approximation error of using a smaller d is not
very large. Here we conduct experiments to see if this error
causes significant performance degradation. Specifically,
we vary the dimension d from 2 to 10, and compare the
resulting reward shaping performance. As Figure 7 shows,
the performance first improves as we increase d, and then
plateaus. Thus, a small d (e.g., d = 10, compared to |S| >
300) is sufficient to give a pretty good performance.

4.3. Discovering bottleneck states

The bottleneck states are analogous to the key nodes in a
graph, which allows us to discover them based on the graph
centrality measure. Here we consider a simple definition of
the centrality (Bavelas, 1950):

cent(s) =

(∑
s′∈S

dist(s, s′)

)−1

, (9)

where dist is a generic distance measure. The states with
high centrality are those where many paths pass, hence they
can be considered bottlenecks. Since the Euclidean distance

under RA-LapRep more accurately reflects the inter-state
reachability, we aim to see if it benefits bottleneck discovery.

Specifically, we calculate cent(s) for all states with dist
being the Euclidean distance under the learned RA-LapRep
or the learned LapRep, and take top 20% states with low-
est cent(s) as the discovered bottlenecks. For continuous
environments, the summation in Eqn. (9) is calculated over
a set of sampled states. Figure 8 visualizes the computed
cent(s) and highlights the discovered bottleneck states. In
this top row of Figure 8, we can see that the bottlenecks dis-
covered by the learned RA-LapRep are essentially the states
that many paths pass through. In comparison, the results
of using LapRep are not as satisfactory. For one thing, as
highlighted (with dashed red box) in Figure 8 (e) and (g),
some of the discovered states are actually not in the cen-
ter of the environment (i.e., where most trajectories pass),
which does not match the concept of bottleneck states. For
another, as highlighted in Figure 8 (f) and (h), some regions
that should have been identified are however missing. We
note that the vertical asymmetry in Figure 8 (g) is not due to
truncating the dimension. We create the same visualization
using the ground-truth eigenfunctions instead of the learned
ones As shown in Figure 16 in the appendix, the heatmap is
vertically symmetric. Thus, the asymmetry in Figure 8 (g)
can be attributed to imperfect approximation.
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5. Limitation
5.1. Environments with directed underlying graph

One implicit assumption in our and previous works (Wu
et al., 2019; Wang et al., 2021) is that the underlying graph
is undirected, which implies that the actions are reversible.
In practical settings such as robot control, this is often not
the case. To tackle this limitation, one way is generalizing
the notion of RA-LapRep to directed graphs, for example,
by taking inspiration from effective resistance on directed
graphs (Young et al., 2016; Boley et al., 2011; Fitch, 2019).

However, it is a highly non-trivial challenge. First, it is not
straightforward to give a proper definition for RA-LapRep
in directed cases. Moreover, due to the complex-valued
eigenvalues of directed graph Laplacian matrices, designing
an optimization objective to approximate the eigenvectors
(as done in (Wu et al., 2019; Wang et al., 2021)) would be
difficult. Despite the challenges, generalization to directed
graphs would be an interesting research topic and worth an
in-depth study beyond this work.

5.2. High-dimensional environments

In this work, we use 2D mazes because such environments
allow us to easily examine whether the inter-state reacha-
bility is well captured. For applying our method to more
complex environments such as Atari (Bellemare et al., 2013),
we foresee some non-trivial challenges. For example, most
games contain irreversible transitions. So when dealing
with these environments, we may need to first generalize
our method to directed graphs. Nevertheless, as a first step
towards applying RA-LapRep to high-dimensional environ-
ments, we conduct experiments by replacing the 2D (x, y)
position input with the high-dimensional top-view images
input. The experiment results (see Appendix F) show that,
with high-dimensional input, the learned RA-LapRep is still
able to accurately reflect the reachability among states and
significantly boost the reward shaping performance. This
suggests that learning RA-LapRep with high-dimensional
input on more complex environments is possible, and we
will continue to explore along this direction in future works.

5.3. Assumption on uniform state coverage

As in (Wu et al., 2019; Wang et al., 2021), in our work,
it is assumed that a set of transition data that roughly uni-
formly cover the state space can be pre-collected. This may
be infeasible in practical cases. One may wonder how the
learned RA-LapRep would be affected when the uniformly
full state coverage assumption breaks. To investigate this,
we conduct ablative experiments (learning RA-LapRep and
reward shaping) by manipulating the distribution of col-
lected data. The results show that, the learned RA-LapRep
is robust to moderate changes in the data distribution, w.r.t.

both its capacity in capturing the reachability and its reward
shaping performance. Only when the distribution is too
non-uniform, the resulting graph will be disconnected and
the performance will degrade. Please refer to Appendix E
for details about the experiments setup and results.

6. Related Works
Our work is built upon prior works on learning Laplacian
representation with neural networks (Wu et al., 2019; Wang
et al., 2021). We introduce RA-LapRep that can more accu-
rately reflect the inter-state reachability. Apart from Lapla-
cian representations, another line of works also aims to
learn a representation that captures the inter-state reachabil-
ity (Hartikainen et al., 2020; Savinov et al., 2019; Zhang
et al., 2020). However, their learned reachability is not satis-
fying. Both our work and the reachability network (Savinov
et al., 2019) view the adjacent states as positive pairs and
the distant states as negative pairs, for shaping the repre-
sentation. The reachability network is trained to classify
whether two states are adjacent (within a preset radius) or far
away. While being flexible, this method is largely based on
intuition. In comparison, our approach is more theoretically
grounded and ensures that the distance between two states
reflects the reachability between them. As the Figure 11 in
(Zhang et al., 2020) shows, even for a very simple two-room
environment, the adjacency learned by the reachability net-
work (Savinov et al., 2019) is not good (note the adjacency
score between s1 and s2).

While the adjacency network (Zhang et al., 2020) shows
some improvements over the reachability network (Savinov
et al., 2019), the results are still not satisfying. For example
in their Figure 11, the adjacency score between s1 and s2
is lower than the one between s1 and the door connecting
two rooms (it is supposed to be higher, since s1 is farther
from s2 than from the door). In comparison, our results are
verified in more complicated mazes and do not have such
issues. More importantly, the adjacency network (Zhang
et al., 2020) needs to maintain an adjacency matrix, which
limits its applicability to environments with large or even
continuous state spaces.

The dynamic distance method (Hartikainen et al., 2020)
also focuses on approximating the commute time between
two states. They directly learn a parameterized function to
predict the temporal difference between two states sampled
from the same trajectory. However, the learned distance is
only visualized for a simple S-shaped maze. It is hard to
tell whether this method can still learn good representations
in environments with more complex geometry. In compari-
son, our method is able to accurately reflect the inter-state
reachability in complex environments (such as Discrete-A
and Discrete-B in our paper).

8
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Apart from reward shaping, Laplacian representations have
also found applications in option discovery (Machado et al.,
2017; 2018; Jinnai et al., 2019; Wang et al., 2021). Note that
our RA-LapRep can still be used for option discovery and
would yield same good results as LapRep (Machado et al.,
2017; Wang et al., 2021), since the dimension-wise scaling
(in Eqn. 3) does not change the eigen-options. Regarding
bottleneck state discovery, there are prior works (Şimşek
& Barto, 2008; Moradi et al., 2010) that adopt other cen-
trality measures in graph theory (e.g., betweenness) to find
bottleneck states for skill characterization.

7. Conclusion
Laplacian Representation (LapRep) is a task-agnostic state
representation that encodes the geometry structure of the
environment. In this work, we point out a misconception in
prior works that the Euclidean distance in the LapRep space
can reflect the reachability among states. We show that this
property does not actually hold in general, i.e., two distant
states in the environment may have small distance under
LapRep. Such issue would limit the performance of using
this distance for reward shaping (Wu et al., 2019; Wang
et al., 2021).

To fix this issue, we introduce a Reachability-Aware Lapla-
cian Representation (RA-LapRep). Compared to LapRep,
we show that the Euclidean distance RA-LapRep provides
a better quantification of the inter-state reachability. Fur-
thermore, this advantage of RA-LapRep leads to significant
performance improvements in reward shaping experiments.
In addition, we also provide theoretical explanation for the
advantages of RA-LapRep.
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Communication and Networking, pp. 51–62, Berlin, Hei-
delberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-
642-17604-3.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning,
pp. 2778–2787. PMLR, 2017.

Peter, K. and Lutz, A. For the Beginning: The Fi-
nite Difference Method for the Poisson Equation, pp.
19–45. Springer New York, New York, NY, 2003.
ISBN 978-0-387-21762-8. doi: 10.1007/0-387-21762-
2_2. URL https://doi.org/10.1007/0-387-
21762-2_2.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 2:331–434,
1990.

Savinov, N., Raichuk, A., Vincent, D., Marinier, R., Polle-
feys, M., Lillicrap, T., and Gelly, S. Episodic cu-
riosity through reachability. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=SkeK3s0qKQ.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decou-
pling representation learning from reinforcement learning.
arXiv preprint arXiv:2009.08319, 2020.

10

https://www.sciencedirect.com/science/article/pii/0304414974900015
https://www.sciencedirect.com/science/article/pii/0304414974900015
https://openreview.net/forum?id=H1lmhaVtvr
https://openreview.net/forum?id=H1lmhaVtvr
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=Bk8ZcAxR-
https://openreview.net/forum?id=Bk8ZcAxR-
https://ojs.aaai.org/index.php/AAAI/article/view/5955
https://ojs.aaai.org/index.php/AAAI/article/view/5955
http://jmlr.org/papers/v8/mahadevan07a.html
http://jmlr.org/papers/v8/mahadevan07a.html
https://doi.org/10.1007/0-387-21762-2_2
https://doi.org/10.1007/0-387-21762-2_2
https://openreview.net/forum?id=SkeK3s0qKQ
https://openreview.net/forum?id=SkeK3s0qKQ


Reachability-Aware Laplacian Representation in Reinforcement Learning

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tenenbaum, J. B., de Silva, V., and Langford, J. C.
A global geometric framework for nonlinear di-
mensionality reduction. Science, 290(5500):2319–
2323, 2000. doi: 10.1126/science.290.5500.2319.
URL https://www.science.org/doi/abs/
10.1126/science.290.5500.2319.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Wang, K., Zhou, K., Zhang, Q., Shao, J., Hooi, B., and
Feng, J. Towards better laplacian representation in re-
inforcement learning with generalized graph drawing.
In International Conference on Machine Learning, pp.
11003–11012. PMLR, 2021.

Wu, Y., Tucker, G., and Nachum, O. The laplacian in
RL: Learning representations with efficient approxima-
tions. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/
forum?id=HJlNpoA5YQ.

Young, G. F., Scardovi, L., and Leonard, N. E. A
new notion of effective resistance for directed graphs
- part I: definition and properties. IEEE Trans. Au-
tom. Control., 61(7):1727–1736, 2016. doi: 10.1109/
TAC.2015.2481978. URL https://doi.org/
10.1109/TAC.2015.2481978.

Zhang, A., Satija, H., and Pineau, J. Decoupling dynam-
ics and reward for transfer learning. arXiv preprint
arXiv:1804.10689, 2018.

Zhang, T., Guo, S., Tan, T., Hu, X., and Chen, F. Generating
adjacency-constrained subgoals in hierarchical reinforce-
ment learning. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.
URL https://proceedings.neurips.cc/
paper/2020/hash/
f5f3b8d720f34ebebceb7765e447268b-
Abstract.html.

11

https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://openreview.net/forum?id=HJlNpoA5YQ
https://openreview.net/forum?id=HJlNpoA5YQ
https://doi.org/10.1109/TAC.2015.2481978
https://doi.org/10.1109/TAC.2015.2481978
https://proceedings.neurips.cc/paper/2020/hash/f5f3b8d720f34ebebceb7765e447268b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5f3b8d720f34ebebceb7765e447268b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5f3b8d720f34ebebceb7765e447268b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5f3b8d720f34ebebceb7765e447268b-Abstract.html


Reachability-Aware Laplacian Representation in Reinforcement Learning

A. Definitions and Derivations
Definition A.1 (Average First-Passage Time (Fouss et al., 2007; Kemeny & Snell, 1983)). Given a finite and connected
graph G, the average first-passage time m(j|i) is defined as the average number of steps required in a random walk that
starts from node i, to reach node j for the first time.

Definition A.2 (Average Commute Time (Fouss et al., 2007; Göbel & Jagers, 1974)). Given a finite and connected graph G,
the average commute time n(i, j) is defined as the average number of steps required in a random walk that starts from node
i, to reach node j for the first time and then go back to node i. That is, n(i, j) = m(j|i) +m(i|j).

A.1. Connection between RA-LapRep and the average commute time

Let us first set up some notations. We denote the pseudo-inverse of the graph Laplacian matrix L as L+. We denote the i-th
smallest eigenvalue (sorted by magnitude) of L+ as λ+

i , and the corresponding unit eigenvector as ui. Recall that we denote
the i-th smallest eigenvalue (sorted by magnitude) of L as λi, and the corresponding unit eigenvector as vi. Assuming the
graph is connected, we have the following correspondence between the eigenvectors/eigenvalues of L+ and those of L:

u1 = v1,

(u2,u3, · · · ,u|S|), = (v|S|,v|S|−1, · · · ,v2)

λ+
1 = λ1,

(λ+
2 , λ

+
3 , · · · , λ

+
|S|−1) = (

1

λ|S|
,

1

λ|S|−1
, · · · , 1

λ2
).

(10)

In particular, u1 = v1 is a normalized all-ones vector and λ+
1 = λ1 = 0.

Let U = (u1,u2, · · · ,u|S|) and Λ = diag(λ+
1 , λ

+
2 , · · · , λ

+
|S|). We use es ∈ RS to denote a standard unit vector with i-th

entry being 1. Fouss et al. (2007) show the connection between the average commute time and the eigenvectors of the
pseudo-inverse of Laplacian matrix L+,

n(s, s′) = VG∥Λ
1
2U⊤es − Λ

1
2U⊤es′∥2. (11)

where VG is the volume of graph G (i.e., sum of the node degrees). Since λ+
1 = 0, we can obtain

n(s, s′) = VG

∥∥∥∥∥
(√

λ+
2 u2, · · · ,

√
λ+
|S|u|S|

)⊤

es −
(√

λ+
2 u2, · · · ,

√
λ+
|S|u|S|

)⊤

es′

∥∥∥∥∥
2

. (12)

Based on Eqn (10), we can get

n(s, s′) = VG

∥∥∥∥∥∥
(

v|S|√
λ|S|

, · · · , v2√
λ2

)⊤

es −

(
v|S|√
λ|S|

, · · · , v2√
λ2

)⊤

es′

∥∥∥∥∥∥
2

. (13)

Therefore, when d = |S|, we have

n(s, s′) = VG∥ϕd(s)− ϕd(s
′)∥2 = VG (distϕ(s, s

′))2, (14)

and that is distϕ(s, s′) ∝
√
n(s, s′).

A.2. Equivalence between RA-LapRep and MDS

Given an input matrix of pairwise dissimilarities between n items, classic MDS (Borg & Groenen, 2005) outputs an
embedding for each item, such that the pairwise Euclidean distances between embeddings preserve the pairwise dissimilarities
as well as possible.

Specifically, given the squared dissimilarity matrix D(2) ∈ Rn×n, MDS first applies doubly centering on D(2):

B = −1

2
JD(2)J, (15)
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where J = I − 1
n11

⊤ is a centering matrix. Next, MDS calculates the eigendecomposition of B. Let Λ+ denote the
diagonal matrix containing the eigenvalues greater than 0, and Q+ denote the matrix made of corresponding eigenvectors.

Then the embedding matrix is given by X = Q+Λ
1
2
+.

Let N denote the matrix containing pairwise average commute time, i.e., [N ]ij = n(i, j). Then we have

−1

2
[JNJ ]ij = −1

2

n(i, j)− 1

|S|

|S|∑
k=1

n(i, k)− 1

|S|

|S|∑
h=1

n(h, j) +
1

|S|2

|S|∑
h=1

|S|∑
k=1

n(h, k)

 . (16)

Fouss et al. (2007) show that
n(i, j) = VG(l

+
ii + l+jj − 2l+ij) (17)

where l+ij = [L+]ij . Thus, we can get

−1

2
[JNJ ]ij = −1

2
VG

−2l+ij +
1

|S|

|S|∑
k=1

2l+ik +
1

|S|

|S|∑
h=1

2l+hj −
1

|S|2

|S|∑
h=1

|S|∑
k=1

2l+hk


= VG

l+ij − 1

|S|

|S|∑
k=1

l+ik − 1

|S|

|S|∑
h=1

l+hj +
1

|S|2

|S|∑
h=1

|S|∑
k=1

l+hk

 .

(18)

Since L+ is doubly centered, i.e., the sum of each row or each column is 0 (see Appendix A.1.2 in (Fouss et al., 2007)), we
can obtain

−1

2
[JNJ ]ij = VG l

+
ij , (19)

that is, B = VGL
+ with D(2) = N . Therefore, the embeddings from MDS is equivalent to the embeddings UΛ

1
2 in

Eqn. (11) (up to a constant
√
VG). Based on the derivations in previous subsection, we can see the equivalence between

RA-LapRep and the embeddings from MDS.
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B. Environment descriptions
The two discrete environments used in our experiments are built with MiniGrid (Chevalier-Boisvert et al., 2018). Specifically,
the Discrete-A environment is a 29 × 29 grid with 391 states, and the Discrete-B environment is a 31 × 31 grid
with 611 states. The agent has 4 four actions: moving left, moving right, moving up and moving down. We consider two
kinds of raw state representations : (x, y) position and top-view image of the grid. To pre-process the input for network
training, we scale (x, y) positions to the range [−0.5, 0.5], and the top-view image to the range [0, 1].

The two continuous environments used in our experiments are built with MuJoCo (Todorov et al., 2012). Specifically,
both Continuous-A and Continuous-B are of size 15× 15. A ball with diameter 1 is controlled to navigate in the
environment. At each step, the agent takes a continuous action (within range [−π, π)) that specifies a direction, and then
move a small step forward along this direction (step size set to 0.1). We consider the (x, y) positions as the raw state
representations, and also scale them to the range [−0.5, 0.5] in pre-processing.

C. Experiment details
C.1. Learning the representations (LapRep and RA-LapRep)

To learn LapRep, we follow the training setup in (Wang et al., 2021) (see their Appendix E.1). Briefly speaking, we
first collect a dataset of transitions using a uniformly random policy with random starts, and then learn LapRep on this
dataset with mini-batch gradient decent. We use the same network architectures as in (Wang et al., 2021) and the Adam
optimizer (Kingma & Ba, 2015). Other configurations are summarized in Table 1. After learning LapRep, we approximate
RA-LapRep with the approach introduced in Section 3.3.

Table 1. Configurations for learning LapRep.

Discrete environments Continuous environments

Dataset size (in terms of steps) 100,000 1,000,000
Episode length 50 500

Training iterations 200,000 400,000
Learning rate 1e-3 1e-3

Batch size 1024 8192
LapRep dimension d 10 10
Discount sampling 0.9 0.95

C.2. Reward shaping

Following (Wu et al., 2019; Wang et al., 2021), we train the agent in goal-achieving tasks using Deep Q-Network
(DQN) (Mnih et al., 2013) for discrete environments, and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016) for continuous environments. We use the (x, y) position observation in both discrete and continuous cases. For DQN,
we use the same fully-connected network as in (Wang et al., 2021). For DDPG, we use a two-layer fully connected neural
network with units (400, 300) for both the actor and the critic. The detailed configurations are summarized in Table 2. As
mentioned in Section 4.2, we consider multiple goals to minimize the bias brought by the goal positions. The locations of
these goals are shown in Figure 9.

C.3. Resource types and computation cost

Our experiments are run on Linux servers with Intel® CoreTM i7-5820K CPU and NVIDIA Titan X GPU. For discrete
environments with (x, y) positions as observations, each run of representation learning requires about 600MB GPU memory
and takes about 50 minutes. Each run of reward shaping requires about 600MB GPU memory and takes about 20 minutes (for
Discrete-A) or 40 minutes (for Discrete-B). For discrete environments with top-view images as observations, each
run of representation learning requires about 900MB GPU memory and takes about 1 hour. For continuous environments,
each run of representation learning requires about 4GB GPU memory and takes about 11 hours. Each run of reward shaping
requires about 900MB GPU memory and takes about 1.5 hours.
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Figure 9. Goal positions for reward shaping experiments. Each red star represents a goal.

Table 2. Configurations for reward shaping.

DQN

Timesteps 200,000 (Discrete-A)
400,000 (Discrete-B)

Episode length 150
Optimizer Adam

Learning rate 1e-3
Learning starts 5,000

Training frequency 1
Target update frequency 50

Target update rate 0.05
Replay size 100,000
Batch size 128

Discount factor γ 0.99

DDPG

Timesteps 500,000
Episode length 1,000

Optimizer Adam
Learning rate 1e-3

Learning starts 100,000
Target update rate 0.001

Replay size 200,000
Batch size 2,048

Discount factor γ 0.99
Action noise type Gaussian noise
Gaussian noise σ 0.5
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D. Additional results
D.1. Capturing reachability between states

Figure 10. Left 3 columns: Visualization of the Euclidean distance between all states and the goals in discrete environments. For each
environment, two additional trajectories (different from the one in the main paper) are shown in red. Right: Normalized distance values
for states in the trajectories.
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Figure 11. Left 3 columns: Visualization of the Euclidean distance between all states and the goals in continuous environments. For each
environment, two additional trajectories (different from the one in the main paper) are shown in red. Right: Normalized distance values
for states in the trajectories.
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D.2. Distances calculated with different tractories

Figure 12. The Euclidean distances between all states and the goals for trajectories in Figure 4 (normalized to [0, 1]), where the states are
sorted by temporal order.
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D.3. Reward shaping results with error bars plotted

Figure 13. Reward shaping results of different methods, with standard deviation plotted as shaded area.

Figure 14. Reward shaping results of using different number of dimensions, with standard deviation plotted as shaded area.
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Figure 15. Reward shaping results of using learned or ground truth representations, with standard deviation plotted as shaded area.

D.4. Bottleneck discovery using the ground-truth LapRep and RA-LapRep

Figure 16. Bottleneck discovery results of the ground-truth LapRep and RA-LapRep.
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E. Ablation study on uniform state coverage
We conduct ablative experiments to study the learned RA-LapRep would be affected when the uniformly full state coverage
assumption breaks, by manipulating the distribution of the collected data. For easy comparison, we use Discrete-A
environment since it has a visually clear structure. Specifically, we sample the agent’s starting position in each episode
from a distribution that can be controlled with a temperature parameter τ ∈ [0,+∞). When τ = 0, it reduces to a uniform
distribution. As τ increases, more probability mass will be put on the dead end rooms (see Fig. 17, which visualizes the
distribution of the collected data under different τ ).

For each τ ∈ {0, 0.1, 0.3, 0.6, 0.9, 1.5, 3.0, 10.0}, we learn RA-LapRep with the corresponding collected data. Note that
τ = 0 is the setting we used in the main text to learn RA-LapRep. Hyper-parameters for training are the same as those used
in Sec. 4.1. Similar to Fig. 4, we visualize in Fig. 19 the Euclidean distances under RA-LapRep learned using different
τ . We can see that, for 0 ⩽ τ ⩽ 3.0, the distance is robust to the changes in the data distribution, demonstrating that the
RA-LapRep can still capture the inter-state reachability. When τ becomes too large (e.g., τ = 10), the method will fail. This
is because the unvisited area is too large, which results in a disconnected graph and hence violates the assumption behind
the methods in (Wu et al., 2019; Wang et al., 2021). Furthermore, we conduct reward shaping experiments using the learned
RA-LapRep under different τ . As Fig. 18 shows, the performance only drops a little when τ increases from 0 to 3.0. This
again shows that our approach is robust to moderate changes in the distribution of the collected data.

Figure 17. Visualization of the visitation counts of the collected data under different τ .

Figure 18. Comparison of the reward shaping results using the learned RA-LapRep under different τ .
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Figure 19. (a): Visualizations of the Euclidean distances between all states and the goals under learned learned RA-LapRep for different
τ . Example trajectories are shown in red. b: Line charts of the distance values for states in the trajectories (normalized to [0, 1]), where
the states are sorted by temporal order.
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F. Evaluation with top-view image observation
We train LapRep and RA-LapRep with top-view image observations on two discrete environments. The distances under
learned representations are visualized in Figure 20 and Figure 21. The reward shaping results are shown in Figure 22.

Figure 20. Left 3 columns: Visualization of the Euclidean distance between all states and the goals in Discrete-A environment, when
the representations are learned from top-view image observations. Right: Normalized distance values for states in the trajectories.
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Figure 21. Left 3 columns: Visualization of the Euclidean distance between all states and the goals Discrete-B environment, when
the representations are learned from top-view image observations. For each environment, two additional trajectories (different from the
one in the main paper) are shown in red. Right: Normalized distance values for states in the trajectories.

Figure 22. Reward shaping results in goal-reaching tasks using high-dimensional image input.
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