
Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Ziming Wang 1 Runhao Jiang 1 Shuang Lian 1 Rui Yan 2 Huajin Tang 1 3

Abstract
Spiking neural networks (SNNs) with biologically
inspired spatio-temporal dynamics demonstrate
superior energy efficiency on neuromorphic archi-
tectures. Error backpropagation in SNNs is pro-
hibited by the all-or-none nature of spikes. The
existing solution circumvents this problem by a
relaxation on the gradient calculation using a con-
tinuous function with a constant relaxation de-
gree, so-called surrogate gradient learning. Nev-
ertheless, such a solution introduces additional
smoothing error on spike firing which leads to
the gradients being estimated inaccurately. Thus,
how to adaptively adjust the relaxation degree and
eliminate smoothing error progressively is crucial.
Here, we propose a methodology such that train-
ing a prototype neural network will evolve into
training an SNN gradually by fusing the learnable
relaxation degree into the network with random
spike noise. In this way, the network learns adap-
tively the accurate gradients of loss landscape
in SNNs. The theoretical analysis further shows
optimization on such a noisy network could be
evolved into optimization on the embedded SNN
with shared weights progressively. Moreover,
The experiments on static images, dynamic event
streams, speech, and instrumental sounds show
the proposed method achieves state-of-the-art per-
formance across all the datasets with remarkable
robustness on different relaxation degrees.

1. Introduction
Spiking Neural Networks (SNNs), composed of biologically
plausible spiking neurons, present high potential for fast in-
ference and low power consumption on neuromorphic archi-
tectures (Akopyan et al., 2015; Davies et al., 2018; Pei et al.,

1College of Computer Science, Zhejiang University 2College of
Computer Science, Zhejiang University of Technology 3Research
Center for Intelligent Computing Hardware, Zhejiang Lab. Corre-
spondence to: Huajin Tang <htang@zju.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2019). Instead of the expensive multiply-accumulation
(MAC) operations presented in ANNs, SNNs operate with
binary spikes asynchronously and offer sparse accumulation
(AC) operations with lower energy costs. Additionally, ex-
isting research has revealed that SNNs promise to realize
machine intelligence, especially on sparse spatio-temporal
patterns (Roy et al., 2019). Nevertheless, such bio-mimicry
with the all-or-none firing characteristics of spikes brings
inevitably difficulties to supervised learning in SNNs.

Error backpropagation is the most promising methodology
to develop deep neural networks. However, the existence
of nondifferentiable spike firing poses a hindrance to the di-
rect application of backpropagation in SNNs. To tackle this
challenge, two families of gradient-based training methods
are developed: (1) surrogate gradient learning (Shrestha &
Orchard, 2018; Wu et al., 2018; Neftci et al., 2019) and (2)
Time-based learning (Mostafa, 2017; Zhang & Li, 2020).
For surrogate gradient learning, it adopts a smooth curve
to estimate the ill-defined derivative of the Heaviside func-
tion in SNNs. The backpropagation, in this way, could be
tractable at both spatial and temporal domains in an itera-
tive manner. Additionally, surrogate gradient learning could
substantially benefit from the complete ecology of deep
learning. It has been widely used to solve complex pattern
recognization tasks (Zenke & Vogels, 2021; Neftci et al.,
2019). However, the adoption of a smooth curve causes
the gradient of a single spike to be distributed into a group
of analog items in temporal neighbors (Zhang & Li, 2020),
resulting in a discrepancy with the inherent dynamics of
spiking neurons. This discrepancy is referred to as gradient
mismatching in this paper. As a result, most parameters
are updated in a biased manner within surrogate gradient
learning, thus impeding the performance of SNNs. Besides,
the level of smoothness exhibited by surrogate functions can
significantly impact the network performance (Hagenaars
et al., 2021; Li et al., 2021b; Leng et al., 2022).

The time-based method is the other appealing approach. By
estimating the gradients based on the exact spike times, the
time-based method naturally circumvents the issues of gra-
dient mismatching encountered in surrogate gradient learn-
ing. However, to obtain the exact expression of spike time,
most works (Mostafa, 2017; Zhang & Li, 2020) assume
that the firing count of each neuron remains unchanged
during training (Yang et al., 2021), which is challenging

1

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

to establish in practice. Besides, it is difficult to adapt the
customized backward flows of the time-based method with
auto-differential frameworks such as PyTorch, MXNet, and
TensorFlow. Moreover, certain special tricks are necessary
to avoid the phenomenon of dead neurons (Bohte et al.,
2002). Consequently, obtaining deep SNNs using the time-
based method lacks flexibility.

To address the aforementioned issues, this work proposes
adaptive smoothing gradient learning (ASGL) to train SNNs
directly. In general, we inject spikes as noise in ANN train-
ing and force the error surfaces of prototype ANNs into that
of SNNs. With the design of dual-mode forwarding, the
smoothness factor could be incorporated into training with-
out the need for a specific design of hyperparameter search,
which could be computationally expensive. Therefore most
parameters can be updated against mismatched gradients
adaptively. In addition, compared to the time-based method,
ASGL backpropagates errors in both spatial and temporal
domains, devoid of special constraints and restart mecha-
nisms. Notably, the method is evaluated based on 1-bit spike
event packets without real-valued activations. Consequently,
after training, an entirely spike-based network is yielded
without sacrificing asynchronous event-based calculation on
neuromorphic hardware implementations.

We analyze the evolution of the noisy network with dual-
mode from the perspective of iterative optimization. As a
result, the optimization of the noisy network could be con-
verted into minimizing the loss of the embedded SNN with
the penalty on smooth factors. Experiments demonstrate
the proposed method achieves state-of-the-art performance
on static images, dynamic visual streams, speech, and in-
strumental sounds. It is worth noting that the method shows
extraordinary robustness for different hyperparameter selec-
tions of smooth factors. Finally, we investigate the evolution
of such a hybrid network by visualizing activation similari-
ties, network perturbation, and learned smooth factors.

2. Related Works
Direct Training. To circumvent the difficulties from non-
differential spikes, surrogate gradient learning approximates
spike activities with a pre-defined curve (Wu et al., 2019;
Shrestha & Orchard, 2018; Gu et al., 2019; Zenke & Vo-
gels, 2021; Fang et al., 2021b; Yin et al., 2020). Wu et al.
(2018) proposed to backpropagate errors in both spatial
and temporal domains to train SNNs directly with surro-
gate gradient. Similarly, Shrestha & Orchard (2018) solved
the temporal credit assignment problem in SNNs with the
smoothness of a custom probability density function. To sup-
press gradient vanishing or explosion in deep SNNs, Zheng
et al. (2021) further proposed threshold-dependent batch
normalization (tdBN) and elaborated shortcut connection in
standard ResNet architectures.

Gradient Mismatching. The mismatching problem in sur-
rogate gradient learning has attracted considerable attention.
Li et al. (2021b) optimized the shape of the surrogate gradi-
ent function with the finite difference method to compensate
for this problem. However, their approach necessitates em-
pirical initialization of the finite difference update step and
is impeded by the computational complexity associated with
the method. As a result, only information from the proceed-
ing layers is utilized in the update of surrogate functions.
Other approaches have been proposed to circumvent this
difficulty without employing surrogate gradients. Zhang
& Li (2020) handled error backpropagation across inter-
neuron and intra-neuron dependencies based on the typical
time-based scheme. Additionally, the unifying of surrogate
gradient and time-based method was suggested by (Kim
et al., 2020) to fuse the gradients obtained from both spike
generation and spike time shift. Generally, these methods
are constrained by specified assumptions or coupling tech-
niques during training. Wunderlich & Pehle (2021) first
proposed to compute the exact gradients in an event-driven
manner, thereby avoiding smoothing operations by solv-
ing ODEs about adjoint state variables. Nevertheless, the
approach has only been validated on simple datasets with
shallow networks. Yang et al. (2021) developed a novel
method that propagates errors with neighborhood aggrega-
tion and updates weights in the desired direction. However,
the method based on the finite difference incurs high com-
putational costs. Severa et al. (2019) proposed progressively
sharpening the bounded ReLU activation in ANN into the
Heaviside function in SNN. Although yielding a similar ef-
fect with ASGL, it utterly depends on hand-craft sharpening
schedulers and faces challenges in adaptive updates consid-
ering the evolution of the entire network. Different from the
previous works, ASGL directly incorporates learnable width
factors into the end-to-end training of a noisy network.

3. Preliminary
Notation. We follow the conventions representing vectors
and matrix with bold italic letters and bold capital letters
respectively, such as s and W . For matrix derivatives, we
use a consistent numerator layout across the paper. For a
function f(x) : Rd1 → Rd2 , we use Dkf [x] instead of
∂f(k)(x)

∂x to represent the k-th derivative of f with respect to
the variable x in the absence of ambiguity. Let < U ,V >
represent the Frobenius inner production between two matri-
ces U and V . For two vectors u1 and u2, we use u1⊙u2 to
represent the entrywise production. Similarly, the notation
of u⊙2 refers to u⊙ u for simplification. We use f ◦ g to
denote the composition of f with g.

Leaky Integrate-and-Fire (LIF) Model. To capture the
explicit relation between input current c and output spikes
s, we adopt the iterative form of the LIF neuron model (Wu

2

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

et al., 2018; Yin et al., 2020) in most experiments. At each
time step t, the spiking neurons at l-th layer will integrate the
postsynaptic current cl[t] and update its membrane potential
ul[t]:

ul[t] = γul[t− 1]⊙
(
1− sl[t− 1]

)
+ cl[t] (1)

where γ = 1 − 1/τm is the leaky factor that acts as a
constant forget gate through time. τm is the corresponding
membrane time constant. The term (1− sl[t− 1]) indicates
the membrane potential will be reset to zero when a spike
is emitted at the last time step. As done in (Wu et al., 2018;
Fang et al., 2021b), we use simply the dot product between
weights W l and spikes from the preceding layer sl−1[t]
with a shift bl to model the synaptic function:

cl[t] = W lsl−1[t] + bl (2)

The neurons will emit spikes sl[t] whenever ul[t] surpasses
the threshold ϑ with enough integration of postsynaptic
currents:

sl[t] = Θ
(
ûl[t]

)
= Θ

(
ul[t]− ϑ

)
(3)

where Θ(x) is the Heaviside function:

Θ(x) =

{
1, if x ≥ 0
0, otherwise (4)

A C-LIF variant is also applied in our experiments to make
a fair comparison. And we provide its iterative equations in
Appendix A.3.

Readout and Loss. To perform specific tasks, it is neces-
sary to define a readout method that matches the supervised
signal y. As done in the recent work (Li et al., 2021a; Rathi
et al., 2020), we calculate the average postsynaptic current
in the last layer cL = 1

N

∑
t c

L[t], where N = T/∆t is
the number of discrete time steps. The SNN prediction is
then defined as the one with the maximum average postsy-
naptic current naturally. Furthermore, we could define the
cross-entropy loss by removing the temporal randomness:

L(cL,y) = −yT log(softmax(cL)) (5)

For simplification, we denote ŷ = softmax(cL) in the rest
part of the paper.

4. Method
4.1. Spike-based Backpropagation

The nature of all-or-none firing characteristics of spikes
blocks the direct utilization of backpropagation which poses
a significant challenge in the development of spike-based
backpropagation. Formally, we usually need to backpropa-
gate the credit for the state at a specified time step t, denoted

0 5 0 0 5−𝛼𝛼/2 0 𝛼𝛼/2

Backward DerivativeForward Function

−𝛼𝛼/2 0 𝛼𝛼/2

Heaviside Operator Θ(𝑥𝑥) Clipping Operator 𝐻𝐻α(𝑥𝑥) Operator Divergence

Figure 1. The forward and backward propagation of the Heaviside
function (depicted by the green solid line) and the surrogate clip-
ping function (illustrated by the purple dashed line). The red
region signifies the mismatching between the Heaviside function
and surrogate function, taking into account single spike emission.

as δL[t] = ∂cL[t]
∂W , across both spatial domain and temporal

domain (refer to Appendix A.1 for detailed derivatives):

δl[t] = δl[t+ 1]
∂ul[t+ 1]

∂ul[t]
+ δl+1[t]

∂ul+1[t]

∂ul[t]

∂ul[t+ 1]

∂ul[t]
= γ diag

(
1− sl[t]− ul[t]⊙Θ′

(
ûl[t]

))
∂ul+1[t]

∂ul[t]
= W l+1 diag

(
Θ′

(
ûl[t]

))
(6)

In the aforementioned equations, the partial derivative of the
Heaviside function Θ(x) takes the form of the Dirac-Deta
function, which assumes a value of zero for almost all x.
Moreover, the Dirac-Delta function tends toward infinity
when x equals zero, as depicted by the green line in Figure 1.
Such characteristics directly impede the gradient backprop-
agation in SNNs. Consequently, many researchers resort
to approximating the gradient of the Heaviside function us-
ing a predefined differentiable curve (Neftci et al., 2019;
Shrestha & Orchard, 2018; Fang et al., 2021a; Zenke &
Vogels, 2021). In this paper, we use the rectangular function
(Wu et al., 2018), one of the most popular approximation
functions with low computational complexity, as an exam-
ple to illustrate the proposed method. It is worth noting
that the presented idea can be adapted to other alternative
approximation functions. Formally, the rectangular function
is defined as:

Θ
′
(u) ≈ hα(u) =

1

α
sign

(
|u− ϑ| < α

2

)
(7)

Here, the smooth degree of hα(x) is governed by the width
α while the relative steepness is determined by the tempera-
ture κ = 1/α.

4.2. Design of ASGL

In surrogate gradient learning, the estimation of Θ
′
(x), de-

noted by a smooth function like hα(x), serves to predict the
rate of loss change within a relatively larger neighborhood
(Li et al., 2021b). However, utilizing a constant-width esti-

3

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Synapse
Weights...

Spike Afferents Post-Synaptic Currents

...

𝒄𝒄[0] 𝒄𝒄[𝑁𝑁]…

𝒄𝒄[𝑡𝑡]

𝒄𝒄[𝑡𝑡]

Surrogate Gradient

−𝜃𝜃

Θ(𝑥𝑥)

𝑡𝑡 = 𝑡𝑡 + 1γ𝒖𝒖[𝑡𝑡 − 1]

Adaptive Smoothing Gradient

γ𝒖𝒖[𝑡𝑡 − 1]

−𝜃𝜃

𝐻𝐻α(𝑥𝑥)

Θ 𝑥𝑥 − 𝐻𝐻α(𝑥𝑥)

𝒎𝒎

𝑡𝑡 = 𝑡𝑡 + 1

𝒔𝒔[𝑡𝑡]

𝒔𝒔[𝑡𝑡]

Noise Injection

Figure 2. Comparison of the computation flow between ASGL and surrogate gradient learning. The dashed line in the purple area
represents those operations that are detached with the error backpropagation while the solid line represents the matching forward and
backward flow incorporated with learnable width α.

mation leads to progressive deviation from the correct direc-
tion during network training. This not only poses challenges
to the network convergence but also impacts the generaliza-
tion ability due to disturbed underlying neuron dynamics.
Specifically, when the smoothing error decreases with re-
duced α , the phenomenon of dead neurons is more likely
to occur throughout the network (refer to Appendix B.7 for
further analysis). Essentially, this issue arises from the mis-
match of ||Θ′

(x)− hα(x)||, as illustrated in the red part of
Figure 1. Therefore, how to adjust the width α and eliminate
such mismatching adaptively is an important problem for
surrogate gradient learning. For ASGL1, we try to address
this problem without explicitly defining the surrogate gra-
dient. The method is straightforward yet highly effective.
Initially, we derive the antiderivative function of surrogate
function hα(x):

Hα(x) =

∫ x

−∞
hα(u) du = clip(

1

α
x+

1

2
, 0, 1) (8)

Whetstone (Severa et al., 2019) utilizes Hα(x) for forward
calculations and hα(x) for backward propagation. In this
way, although there is no mismatching problem, it becomes
challenging to guarantee the network dynamics evolve into
that of SNNs eventually. In contrast, surrogate gradient
learning employs Θ(x) and hα(x) for forward calculations
and backward propagation, respectively. While this ap-
proach ensures full spike communication, it introduces the
problem of gradient mismatching. Consequently, it be-
comes logical to seek an approach that combines the
advantages of both perspectives, enabling the training
of deep SNNs with matching gradients.

1Code is available at https://github.com/Windere/ASGL-SNN

To implement this, the fundamental concept of ASGL en-
tails the coupling of analog activation Hα(x) and binary
activation Θ(x) employing a random mask, denoted as m,
during the forward calculation:

Ĥα(x) = (1−m)⊙Hα(x) +m⊙ Φ(Θ(x)) (9)

where m ∼ Bernoulli (p) represents independent random
masking. The p controlling the proportion of analogs and
spikes is referred to as the noise probability. To circum-
vent the gradient mismatching stemming from the surrogate
function, we use function Φ to detach the gradients from
spikes. Mathematically, Φ corresponds to an identical map-
ping that possesses a derivative ∂Φ(x)

∂x = 0. In this way, the
Heaviside function Θ(x) is taken as the spike noise without
error backpropagation. To guarantee the continuous flow of
gradients even when p = 1, we recouple both modes and
only inject the difference Θ(x)−Hα(x) as noise:

Ĥα(x) = Hα(x) +m⊙ Φ (Θ(x)−Hα(x)) (10)

The operator pipeline is depicted in Figure 2. Surpris-
ingly, the core idea of ASGL is remarkably simple: replace
Θ(ul[t] − ϑ) with Ĥα(u

l[t] − ϑ) in Equation (3) during
training and retain Θ(ul[t]− ϑ) for validation. In practice,
minor alterations, as shown in Algorithm 1, are required
in comparison to the surrogate gradient learning. Notably,
the hard reset described in Equation (1) transforms into a
soft variant with a certain probability when the analog ac-
tivations Hα(x) are propagated, despite the fact that the
equations describing neuron dynamics remain unchanged.
Assuming Hα(x) models the function mapping from the ex-
pected membrane potential to spike probability (rate) within
a short timeframe (corresponding to one time step). The neu-
rons have a (1−Hα(u[t])) chance of not emitting a spike

4

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Algorithm 1 Core function in ASGL
1: Require: The difference between membrane voltage

and threshold ûl[t] = ul[t]− ϑ;
The sign T indicates training or validation

2: Ensure: α is the learnable width parameter
3: if T is true then
4: generate mask m with noise probability p

5: sl[t] = Hα(û
l[t])+m⊙Φ

(
Θ(ûl[t])−Hα(û

l[t])
)

{The only line needed to update compared to the
surrogate learning}

6: else
7: sl[t] = Θ(ûl[t])
8: end if
9: return sl[t]

and maintaining the previous state of membrane potential.
In terms of expectation, the soft reset should be performed
as u[t] = (1−Hα(u[t]))⊙u[t] rather than resetting into a
fixed value. Consequently, the information of membrane po-
tential that exceeds the firing threshold is retained according
to a certain probability. The temporal interpolating behavior
in soft reset could be smoothed further by designing the
time-invariant masks and adaptively adjusting α.

The only remaining challenge is to guarantee the noisy net-
work trained with Ĥα(x) could be evolved into an SNN
with Θ(x) as activation finally. Fortunately, with the per-
spective of mixture feedforward, it can be accomplished
by simply setting the width α as a learnable parameter and
incorporating it into the spatial-temporal gradient backprop-
agation. Detailed analysis can be found in Section 4.3. The
gradient calculation concerning width α could be expressed
as follows:

∇αl =
∂L(cL,y)

∂cL
∂cL

∂αl
= − (yT − ŷT)

N

N∑
t∗=1

∂cL[t∗]

∂αl

∂cL[t∗]

∂αl
=

t∗∑
t=1

δl+1[t]W l+1 ∂s
l[t]

∂αl[t]

−
t∗∑
t=1

γδl[t+ 1]diag(ul[t])
∂sl[t]

∂αl[t]

∂sl[t]

∂αl[t]
=

∂Hα(û
l[t])

∂α
=

{
0, if

∣∣∣ûl[t]
∣∣∣ > 1

2α

−diag(1
α2 ⊙ ûl[t]), otherwise

(11)

In this way, the gradient mismatching will gradually dimin-
ish when adaptive α decreases against spike noise. Besides,
it avoids tricky adjustments for width α which usually has
a significant impact on performance (Wu et al., 2018; Ha-
genaars et al., 2021). Moreover, this idea provides valuable
insights into surrogate gradient learning. For instance, if we
use full spike (p = 1) for forwarding computation, ASGL

will transform into surrogate gradient while still allowing
the adaptive width learning. Furthermore, ASGL naturally
benefits from the pretrained ANNs by increasing gradu-
ally p from 0. Therefore, both ANN-SNN conversion and
surrogate gradient learning could be implemented within
the framework of ASGL, with different settings of noise
probability p.

4.3. Theoretical Analysis

In this section, we demonstrate how the dynamics of noisy
networks with learnable α can evolve into those of embed-
ded SNNs. Let F noise represent the noisy network used in
training with Hα(x) across all layers, while F snn denotes
the target SNN embedded within F noise using fully spike-
based calculation. To estimate the real loss ℓnoise(F , s) of
the hybrid network F noise, we take the expectation over the
mask matrix into account. The expression can be formulated
as:

ℓnoise(F , s) ≜ Em̂[ℓ(F noise(s))] = Em̂[ℓ(F snn(s, m̂))]
(12)

Here, m̂ = m/p represents the normalized mask gathered
from all layers, and s denotes the input spike pattern. By
employing perturbation analysis (refer to Appendix A.2),
we have the following proposition:

Approximation 4.1. Minimizing the loss of noisy network
ℓnoise(F, s) can be approximated into minimizing the loss of
the embedded SNN ℓsnn(F, s), regularized by the layerwise
distance between Θ(ûl) and Hα(û

l).

ℓnoise(F , s) ≈ ℓsnn(F , s)

+
1− p

2p

L∑
l=1

〈
Cl, diag(Hα(û

l)−Θ(ûl))⊙2
〉

(13)

where Cl = D2
(
ℓ ◦ Em̂[Gl]

)
[sl] represents the second

derivative of loss function ℓ with respect to the l-th layer
spike activation sl through the constructed network Gl,
which could be treated as a constant (Nagel et al., 2020).
Gl denotes the network using mixed activations after the
l-th layer, with full spikes being adopted in the preceding l
layers. To provide an intuitive explanation for the approxi-
mation, we analyze the non-trivial case when p ̸= 1 from
the perspective of iterative alternate optimization, involv-
ing two steps: (1) fixing weights W , optimizing width α,
and (2) fixing width α, optimizing weights W . In the first
steps, as ℓsnn(F , s) remains constant with fixed weights, the
width α tends to minimize the distance between Hα(û

l)
and Θ(ûl). Consequently, the penalty term diminishes, and
ℓnoise(F , s) approaches ℓsnn(F , s) during this step. In the
second step, the noisy network, subject to global task-related
loss ℓnoise(F , s), is optimized under a specified smooth de-
gree. Through iterative and alternating execution of these

5

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Table 1. Performance Comparison on DVS-CIFAR10 dataset.
Method Type Architecture Time steps Accuracy

Streaming Rollout (Kugele et al., 2020) Conversion DenseNet 10 66.8
STBP-tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 10 67.8

Conv3D (Wu et al., 2021b) Surrogate Gradient LIAF-Net 10 71.70
LIAF (Wu et al., 2021b) Surrogate Gradient LIAF-Net 10 70.40

SEW ResNet (Fang et al., 2021a) Surrogate Gradient Wide-7B-Net 16 74.40
PLIF-SNN (Fang et al., 2021b) Surrogate Gradient CifarNet-C 20 74.80

Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18 10 75.45
TET (Deng et al., 2022)∗ Surrogate Gradient VGGSNN 10 83.17 ± 0.15

Ours ASGL VGGSNN 10 84.50 ± 0.08

Table 2. Ablation Study on Image Classification.

Width (α) CIFAR-10 CIFAR-100

SG ASGL SG ASGL

0.5 93.19 94.11 75.76 76.54
1.0 93.78 94.30 65.19 76.09
2.5 90.68 94.09 15.12 76.18
5.0 62.34 93.61 8.04 76.68
10.0 30.85 93.53 6.14 76.00

two steps, a high-performance SNN can be achieved by
training a noisy network, even without explicitly increas-
ing p during training. The theoretical findings are further
supported by the empirical results presented in Figure 3b,
where training with fixed p is demonstrated. Notably, both
trainable width and random noise injection with spikes play
crucial roles in ensuring the validity of the first step. The
spike noise could be transformed into the penalty on lay-
erwise activations, while the learnable α facilitates local
optimization by enforcing Hα(x) to align with Θ(x).

5. Experiments
To validate the effectiveness of the proposed method, we
perform experiments on various types of data, including
static images and spatio-temporal patterns such as dynamic
event streams, spoken digital speech, and instrumental mu-
sic. Additionally, we investigate the evolutions of network
dynamics and the impact of noise probability to understand
how injecting noise with spikes provides real observation
about the loss landscape of target SNNs. More specific im-
plementation details and energy estimation could be found
in Appendix B.1 and Appendix B.2, respectively.

5.1. Ablation Study

In Table 2, we compare ASGL with Surrogate Gradient
(SG) on both CIFAR datasets under timestep N = 3 using
ResNet-19 (Zheng et al., 2021) and ResNet-18 architecture
for the ablation study, respectively. For a fair comparison,
the same optimizer setting, seed, and weight initialization
are employed. In particular, we use the SGD optimizer with
the weight decay of 5e-4 over 100 epochs (CIFAR-10) and

Table 3. Ablation Study with Different Noisy Probabilities p

Noisy Prob. Width α = 2 Width α = 1 Width α = 0.5

Fixed Adapt. Fixed Adapt. Fixed Adapt.

p = 1.0 91.75 92.74 92.80 92.94 91.04 91.68

p = 0.8 91.97 93.11 93.08 93.32 91.12 92.26

Table 4. Classification Performance on SHD dataset
Method Type #Param. Acc. (%)

(Yin et al., 2020) SG 14.13w 84.4
(Cramer et al., 2020) SG 178.59w 83.2 ± 1.3

(Perez-Nieves et al., 2021) SG 10.85w 82.7 ± 0.8
(Zenke & Vogels, 2021) SG 24.99w 82.0 ± 2.0

(Perez-Nieves & Goodman, 2021) Sparse SG 28.80w 77.5
(Nowotny et al., 2022) EventProp 24.99w 84.8 ± 1.5

Ours ASGL 23.04w 86.9 ± 1.0

300 epochs (CIFAR-100). For CIFAR-100, in addition to the
shifted clipping function depicted in Equation (8), we use
hα(x) = 1/(1 + e−αx) as a surrogate forwarding function
to show ASGL could be also applied to other alternative
functions. The results demonstrate that ASGL outperforms
SG across a range of width initialization on both datasets.
It is catastrophic damage for SG when width α is selected
inappropriately. For instance, even a small adjustment of
0.5 to the width in SG can lead to a significant drop in
performance of nearly 10% on CIFAR-100 (from 75.76% to
65.19%). In contrast, ASGL exhibits surprising robustness
for different width α as well as performance improvements.

To further validate the effectiveness of adaptive α, we con-
duct the four sets of experiments on the CIFAR-10 dataset
using spiking ResNet-19 under 2 time steps. The experi-
ments involve different settings of p and α. The results in
Table 3 reveal that the adaptive α introduced by ASGL leads
to notable performance improvement compared to the fixed
α setting in both cases (p = 1 and p = 0.8), across all the
well-selected initial width settings in SG. In addition, dual-
mode switching leads to a certain performance improvement
when comparing the results of p = 0.8 and p = 1.

5.2. Performance on Static Images

In Table 5, we compare our method with state-of-the-art
approaches on the CIFAR and Tiny ImageNet datasets. For

6

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Table 5. Classification Performance on Static Image Benchmarks.
Dataset Method Type Architecture Time steps Accuracy(%)

CIFAR-10

Opt. (Deng & Gu, 2021) Conversion
CifarNet

400-600 90.61
TSSL-BP (Zhang & Li, 2020) Time-based Gradient 5 91.41

TL (Wu et al., 2021a) Tandem Learning 8 90.98
PLIF-SNN (Fang et al., 2021b) Surrogate Gradient CifarNet-B 8 93.50

IM-Loss (Guo et al., 2022) Surrogate Gradient CifarNet 4 92.20 ± 0.12

Ours ASGL CifarNet 4 94.74 ± 0.10
2 93.80 ± 0.11

Hybrid (Rathi et al., 2020) Hybrid ResNet-20 250 92.22

STBP-tdBN (Zheng et al., 2021) Surrogate Gradient ResNet-19 4 92.92
2 92.34

TET (Deng et al., 2022) Surrogate Gradient ResNet-19 4 94.44 ± 0.08
2 94.16 ± 0.03

SEW-ResNet (Fang et al., 2021a)* Surrogate Gradient SEW-ResNet-18 4 94.39 ± 0.18
2 91.22 ± 0.14

SpikeDHS (Leng et al., 2022) Surrogate Gradient SpikeDHS-CLA (n4s1) 6 94.68 ± 0.05

Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18 4 93.66 ± 0.05
2 93.13 ± 0.07

GLIF (Yao et al., 2022) Surrogate Gradient ResNet-18 4 94.67 ± 0.05
2 94.15 ± 0.04

Ours ASGL ResNet-18 4 95.35 ± 0.25
2 95.27 ± 0.06

CIFAR-100

Hybrid (Rathi & Roy, 2020) Hybrid ResNet-20 5 64.07

TET (Deng et al., 2022) Surrogate Gradient ResNet-19 4 74.47 ± 0.15
2 72.87 ± 0.10

Dspike (Li et al., 2021b) Surrogate Gradient ResNet-18 4 73.35 ± 0.14
2 71.68 ± 0.12

IM-Loss (Guo et al., 2022) Surrogate Gradient VGG-16 5 70.18 ± 0.09

SpikeDHS (Leng et al., 2022) Surrogate Gradient SpikeDHS-CLA (n4s1) 6 76.03 ± 0.20

Ours ASGL
CifarNet 4 74.59 ± 0.07

2 74.31 ± 0.15

ResNet-18 4 77.74 ± 0.07
2 76.59 ± 0.05

Tiny-ImageNet

Spike-thrift (Kundu et al., 2021) Hybrid VGG-16 150 51.92
DCT (Garg et al., 2020) Hybrid VGG-13 125 56.90

SNN Calibration (Li et al., 2021a)† Conversion VGG-16 32 53.96
QCFS (Bu et al., 2021)† Conversion VGG-16 32 53.54

Online LTL (Yang et al., 2022) Tandem Learning VGG-13 16 54.82
Offline LTL (Yang et al., 2022) Tandem Learning VGG-13 16 55.37

Ours ASGL VGG-13 8 56.81
4 56.57

* The results are reproduced through the publicly available code.

CIFAR datasets, we use the widely-used CifarNet (Wu et al.,
2019) and a modified ResNet-18 structure (Li et al., 2021b).
As done in (Li et al., 2021b; Deng et al., 2022), AutoAug-
ment (Cubuk et al., 2018) and Cutout (DeVries & Tay-
lor, 2017) are used for data augmentation. However, we
do not adopt a pretrained ANN (Li et al., 2021b; Rathi
et al., 2020; Rathi & Roy, 2020) to initialize weights and
Time Inheritance Training (TIT) (Li et al., 2021b; Deng
et al., 2022) to improve performance under low time steps.
Nonetheless, ASGL outperforms the state-of-the-art sur-
rogate gradient and conversion methods with the same or
fewer time steps on both datasets. Moreover, Tiny-ImageNet
contains 200 categories and 100,000 64×64 colored im-
ages for training, which is a more challenging static image
dataset than CIFAR datasets. For Tiny-ImageNet, we use

hα(x) =
1
2 tanh(αx) + 1

2 as the surrogate forwarding func-
tion. The initial width α and decay γ is set as 2.5 and 0.5
respectively. As shown in Table 5, ASGL still achieves
competitive results compared to other methods using only 4
time steps which further verifies the effectiveness of ASGL.

5.3. Performance on Spatio-temporal Patterns.

To validate that our method handles spatio-temporal error
backpropagation properly, we conduct experiments on dif-
ferent datasets of spatio-temporal patterns such as DVS-
CIFAR10 (Li et al., 2017), and Spiking Heidelberg Dataset
(SHD) (Cramer et al., 2020). More results of MedlyDB (Bit-
tner et al., 2014) and DVS128 Gesture (Amir et al., 2017)
could be found in Appendix B.4.

7

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Epoch

A
cc

u
ra

cy

Noise Probability p

Epoch

C
o

si
n

e
Si

m
ila

ri
ti

es

Epoch

(a) (b) (c)

(d) (e) (f)

A
cc

u
ra

cy

W
id

th

V
a

lid
a

ti
o

n
 A

cc
u

ra
cy

Epoch

Noise Probability p

Tr
a

in
 A

cc
u

ra
cy

Figure 3. (a) explores the evolution procedure by observing accuracy change with increasing spike noise. (b) and (c) examine the accuracy
for different fixed p selections during the test and training, respectively. (d) and (e) shows the similarities between the noisy network and
embedded SNN when training with fixed p. (f) manifests the width change in the image reconstruction task.

Performance on DVS-CIFAR10. DVS-CIFAR10 (Li et al.,
2017) is a challenging benchmark neuromorphic dataset,
where each sample is a record of an image of CIFAR10
scanning with repeated closed-loop motion in front of a
DVS. DVS-CIFAR10 has the same number of categories
(10) and samples (1k/class) as CIFAR10, but its recording
process generates more noise, thus making classification
more difficult. To alleviate the overfitting problem caused by
data size and noise, we adopt the VGGSNN architecture and
data augmentation method in (Deng et al., 2022). As shown
in Table 1, our method achieves state-of-the-art performance
(84.50% ± 0.08%) without a larger network (e.g., ResNet-
19, DenseNet), which is competitive to existing surrogate-
gradient based approaches.

Performance on Sound Datasets. The SHD dataset is
a spiking dataset containing 10k spoken digits generated
through an encoding model simulating auditory bushy cells
in the cochlear nucleus. For training and evaluation, the
dataset is split into a training set (8156 samples) and a test
set (2264 samples). In this experiment, we train a three-layer
SNN (700-240-20) with recurrent synaptic connections to
identify the keywords in utterances (More details about re-
current connections could be found in Appendix A.4). As
shown in Table 4, the proposed method achieves 2% accu-
racy improvement at least without any data augmentation
introduced in (Cramer et al., 2020). Notably, we use stan-
dard LIF neurons shown in Equations (1) to (3) while the

adaptive LIF model (Yin et al., 2020) and the heterogenous
LIF model (Perez-Nieves et al., 2021) are adopted to en-
hance the dynamics of spiking neurons, respectively. The
number of parameters listed in Table 4 is the minimum num-
ber of parameters inferred from the corresponding network
structure described in the original paper.

5.4. Effect of Noise Probability

In this section, we aim to analyze how noise probability
affects the performance of SNNs. Firstly, we conduct ex-
periments by increasing noise probability p from 0 to 0.8
in increments of 0.1 every 30 epochs during the training of
ResNet-19 on the CIFAR-10 dataset. As shown in Figure 3a,
the training accuracy of the noisy network is extremely sta-
ble while the validation accuracy of the target SNN exhibits
erratic growth in the first 30 epochs. This behavior is ex-
pected since there is no noise injection (p = 0) initially, and
the network operates purely in the analog domain without
any spike injections. However, when 10% spikes are in-
jected (p = 0.1), the validation accuracy of the embedded
SNN starts to increase rapidly around the 30th epoch at the
cost of a drop in training accuracy for the noisy network.
This indicates that the noisy network begins to transform
into the target SNNs. Interestingly, for the noise injection at
the 60-th and 90-th epoch, the training accuracy is actually
improved, suggesting that a small number of spikes in the

8

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

first injection is sufficient for the dynamics of SNNs and the
presence of analog activations may hinder fast convergence
instead.

Next, we investigate the effect of different choices of fixed p
in Figure 3b and Figure 3c. Generally, selecting a low value
of p blocks the evolution toward SNNs due to high analog
activations. On the other hand, choosing an excessively
high value of p does not achieve the best generalization
performance. There exists an optimal range of p that bal-
ances the analog and spiking dynamics, leading to better
generalization.

5.5. Network Evolution

To understand the evolution of the noisy network, we visual-
ize accuracy changes of the noisy network and the embedded
SNN with shared weights during training under two noise
probability settings p = 0.8 and p = 0.5. As shown in
Figure 3d, the accuracy curves of SNNs and the noisy net-
work are extremely close in both cases, indicating that the
noisy network consistently predicts outputs similar to the
embedded SNN. Furthermore, we record layer-wise acti-
vations of the noisy network and the embedded SNN for
each sample, and calculate the average cosine similarities
S across all layers after each training epoch with ASGL.
Figure 3(e) reports the mean and standard deviation of S
across all samples in the CIFAR-10 training set. According
to the results, even with shared weights, the hybrid network
initially has relatively low overall similarities, but as training
progresses with ASGL, the hybrid network gradually shifts
toward an SNN, resulting in similarities reaching approxi-
mately 0.8. The decreasing standard deviation also validates
the effectiveness of ASGL. Additionally, we evaluate the
evolution of the noisy network by monitoring the change of
learnable width α (Figure 3f) in the image reconstruction
task. The width αs consistently decline throughout training
and converge to specific values across all layers, indicating
a convergence towards the desired SNN behavior.

6. Conclusion
In this paper, we introduce ASGL, a novel training method
to develop deep SNNs. Different from the typical surrogate
gradient learning, our method circumvents the gradient mis-
matching problem naturally and updates weights adaptively
against the random noise injection in spikes. Specifically,
we train a special hybrid network with a mixture of spike
and analog signals where only the analog part is involved
in gradient calculation. This allows the hybrid network to
learn the optimal shapes of the activation functions against
the spike noise and evolve into SNNs. To validate the ef-
fectiveness and generalization of the proposed method, we
study theoretically and practically the evolution from hybrid
networks to SNNs further. Besides, we conduct extensive

experiments on various benchmark datasets. Experimental
result shows our method achieves state-of-the-art perfor-
mance across all the tested datasets. Meanwhile, it exhibits
surprising robustness for different selections of smooth fac-
tors.

Acknowledgements
This work is supported by the National Key Re-
search and Development Program of China under Grant
2020AAA0105900 and the National Natural Science Foun-
dation of China under Grant 62236007, Grant U2030204.
We sincerely thank the anonymous reviewers and AC for
their valuable suggestions on this work.

References
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R.,

Arthur, J., Merolla, P., Imam, N., Nakamura, Y., Datta,
P., Nam, G.-J., et al. Truenorth: Design and tool flow of
a 65 mw 1 million neuron programmable neurosynaptic
chip. IEEE transactions on computer-aided design of
integrated circuits and systems, 34(10):1537–1557, 2015.

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J.,
Di Nolfo, C., Nayak, T., Andreopoulos, A., Garreau, G.,
Mendoza, M., et al. A low power, fully event-based
gesture recognition system. In CVPR, pp. 7243–7252,
2017.

Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., and An-
dreopoulos, Y. Graph-based spatio-temporal feature learn-
ing for neuromorphic vision sensing. IEEE Transactions
on Image Processing, 29:9084–9098, 2020.

Bittner, R. M., Salamon, J., Tierney, M., Mauch, M., Can-
nam, C., and Bello, J. P. Medleydb: A multitrack dataset
for annotation-intensive mir research. In ISMIR, vol-
ume 14, pp. 155–160, 2014.

Bohte, S. M., Kok, J. N., and La Poutre, H. Error-
backpropagation in temporally encoded networks of spik-
ing neurons. Neurocomputing, 48(1-4):17–37, 2002.

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T.
Optimal ann-snn conversion for high-accuracy and ultra-
low-latency spiking neural networks. In International
Conference on Learning Representations, 2021.

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. The
heidelberg spiking data sets for the systematic evaluation
of spiking neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 2020.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501, 2018.

9

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
et al. Loihi: A neuromorphic manycore processor with
on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Deng, S. and Gu, S. Optimal conversion of conventional ar-
tificial neural networks to spiking neural networks. ICLR,
2021.

Deng, S., Li, Y., Zhang, S., and Gu, S. Temporal effi-
cient training of spiking neural network via gradient re-
weighting. arXiv preprint arXiv:2202.11946, 2022.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:21056–21069, 2021a.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In ICCV,
pp. 2661–2671, 2021b.

Garg, I., Chowdhury, S. S., and Roy, K. Dct-snn: Using
dct to distribute spatial information over time for learn-
ing low-latency spiking neural networks. arXiv preprint
arXiv:2010.01795, 2020.

Gu, P., Xiao, R., Pan, G., and Tang, H. Stca: Spatio-
temporal credit assignment with delayed feedback in deep
spiking neural networks. In IJCAI, pp. 1366–1372, 2019.

Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang, X.,
and Ma, Z. Im-loss: Information maximization loss for
spiking neural networks. In Advances in Neural Informa-
tion Processing Systems, 2022.

Gütig, R. Spiking neurons can discover predictive features
by aggregate-label learning. Science, 351(6277), 2016.

Hagenaars, J., Paredes-Vallés, F., and De Croon, G. Self-
supervised learning of event-based optical flow with spik-
ing neural networks. Advances in Neural Information
Processing Systems, 34:7167–7179, 2021.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks.
CoRR, abs/1506.02626, 2015.

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., Ding,
W., Wang, W., and Xie, Y. Comparing snns and rnns on
neuromorphic vision datasets: similarities and differences.
Neural Networks, 132:108–120, 2020.

Kaiser, J., Mostafa, H., and Neftci, E. Synaptic plasticity
dynamics for deep continuous local learning (decolle).
Frontiers in Neuroscience, 14:424, 2020.

Kim, J., Kim, K., and Kim, J.-J. Unifying activation-and
timing-based learning rules for spiking neural networks.
NeurIPS, 33:19534–19544, 2020.

Kugele, A., Pfeil, T., Pfeiffer, M., and Chicca, E. Effi-
cient processing of spatio-temporal data streams with
spiking neural networks. Frontiers in Neuroscience, 14:
439, 2020.

Kundu, S., Datta, G., Pedram, M., and Beerel, P. A. Spike-
thrift: Towards energy-efficient deep spiking neural net-
works by limiting spiking activity via attention-guided
compression. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3953–
3962, 2021.

Leng, L., Che, K., Zhang, K., Zhang, J., Meng, Q., Cheng,
J., Guo, Q., and Liao, J. Differentiable hierarchical and
surrogate gradient search for spiking neural networks.
In Advances in Neural Information Processing Systems,
2022.

Lewicki, M. S. Efficient coding of natural sounds. Nature
neuroscience, 5(4):356–363, 2002.

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. Cifar10-dvs: an
event-stream dataset for object classification. Frontiers
in neuroscience, 11:309, 2017.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free lunch
from ANN: towards efficient, accurate spiking neural
networks calibration. In ICML, volume 139, pp. 6316–
6325, 2021a.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. Dif-
ferentiable spike: Rethinking gradient-descent for train-
ing spiking neural networks. NeurIPS, 34, 2021b.

Mostafa, H. Supervised learning based on temporal coding
in spiking neural networks. IEEE transactions on neural
networks and learning systems, 29(7):3227–3235, 2017.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In International Conference
on Machine Learning, pp. 7197–7206. PMLR, 2020.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient
learning in spiking neural networks: Bringing the power
of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Nowotny, T., Turner, J. P., and Knight, J. C. Loss shaping
enhances exact gradient learning with eventprop in spik-
ing neural networks. arXiv preprint arXiv:2212.01232,
2022.

10

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S.,
Wang, G., Zou, Z., Wu, Z., He, W., et al. Towards artificial
general intelligence with hybrid tianjic chip architecture.
Nature, 572(7767):106–111, 2019.

Perez-Nieves, N. and Goodman, D. Sparse spiking gradient
descent. Advances in Neural Information Processing
Systems, 34, 2021.

Perez-Nieves, N., Leung, V. C., Dragotti, P. L., and Good-
man, D. F. Neural heterogeneity promotes robust learning.
Nature communications, 12(1):1–9, 2021.

Pons, J., Slizovskaia, O., Gong, R., Gómez, E., and Serra, X.
Timbre analysis of music audio signals with convolutional
neural networks. In 2017 25th European Signal Process-
ing Conference (EUSIPCO), pp. 2744–2748. IEEE, 2017.

Rathi, N. and Roy, K. DIET-SNN: direct input encoding
with leakage and threshold optimization in deep spiking
neural networks. CoRR, abs/2008.03658, 2020.

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. Enabling
deep spiking neural networks with hybrid conversion and
spike timing dependent backpropagation. In ICLR 2020,.
OpenReview.net, 2020.

Roy, K., Jaiswal, A., and Panda, P. Towards spike-based ma-
chine intelligence with neuromorphic computing. Nature,
575(7784):607–617, 2019.

Samadi, A., Lillicrap, T. P., and Tweed, D. B. Deep learning
with dynamic spiking neurons and fixed feedback weights.
Neural computation, 29(3):578–602, 2017.

Severa, W., Vineyard, C. M., Dellana, R., Verzi, S. J., and
Aimone, J. B. Training deep neural networks for binary
communication with the whetstone method. Nature Ma-
chine Intelligence, 1(2):86–94, 2019.

Shrestha, S. B. and Orchard, G. Slayer: Spike layer error
reassignment in time. arXiv preprint arXiv:1810.08646,
2018.

Wang, Q., Zhang, Y., Yuan, J., and Lu, Y. Space-time
event clouds for gesture recognition: From rgb cameras
to event cameras. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1826–1835.
IEEE, 2019.

Wang, Z., Lian, S., Zhang, Y., Cui, X., Yan, R., and Tang,
H. Towards lossless ann-snn conversion under ultra-low
latency with dual-phase optimization. arXiv preprint
arXiv:2205.07473, 2022.

Wei, C., Kakade, S., and Ma, T. The implicit and explicit
regularization effects of dropout. In International Con-
ference on Machine Learning, pp. 10181–10192. ICML,
2020.

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C.
A tandem learning rule for effective training and rapid
inference of deep spiking neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems, pp.
1–15, 2021a.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in neuroscience, 12:
331, 2018.

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. Direct
training for spiking neural networks: Faster, larger, bet-
ter. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 1311–1318, 2019.

Wu, Z., Zhang, H., Lin, Y., Li, G., Wang, M., and Tang,
Y. Liaf-net: Leaky integrate and analog fire network
for lightweight and efficient spatiotemporal information
processing. IEEE Transactions on Neural Networks and
Learning Systems, 2021b.

Wunderlich, T. C. and Pehle, C. Event-based backpropa-
gation can compute exact gradients for spiking neural
networks. Scientific Reports, 11(1):1–17, 2021.

Yang, Q., Wu, J., Zhang, M., Chua, Y., Wang, X., and Li,
H. Training spiking neural networks with local tandem
learning. NeurIPS, 2022.

Yang, Y., Zhang, W., and Li, P. Backpropagated neighbor-
hood aggregation for accurate training of spiking neural
networks. In ICML, pp. 11852–11862, 2021.

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z., and
Li, G. Temporal-wise attention spiking neural networks
for event streams classification. In ICCV, pp. 10221–
10230, 2021.

Yao, X., Li, F., Mo, Z., and Cheng, J. Glif: A unified
gated leaky integrate-and-fire neuron for spiking neural
networks. arXiv preprint arXiv:2210.13768, 2022.

Yin, B., Corradi, F., and Bohté, S. M. Effective and efficient
computation with multiple-timescale spiking recurrent
neural networks. In International Conference on Neuro-
morphic Systems 2020, pp. 1–8, 2020.

Zenke, F. and Vogels, T. P. The remarkable robustness of
surrogate gradient learning for instilling complex function
in spiking neural networks. Neural Computation, 33(4):
899–925, 2021.

Zhang, W. and Li, P. Temporal spike sequence learning via
backpropagation for deep spiking neural networks. In
NeurIPS, 2020.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. Going
deeper with directly-trained larger spiking neural net-
works. In AAAI 2021, pp. 11062–11070, 2021.

11

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

A. Detailed Derivation and Neuron Dynamics
A.1. Spike-based Backpropagation incorporated with Adaptive Width

Firstly, we decompose the gradients of aggregate loss over the entire time window into gradients corresponding to different
target time steps t∗:

∇W l =
∂L(cL,y)

∂cL
∂cL

∂W l
= − 1

N
(yT − ŷT)

N∑
t∗=1

∂cL[t∗]

∂W l
(14)

To obtain the expression of ∂cL[t∗]
∂W , we first assign the credits for cL[t∗] to the membrane potential ul[t] at all time steps

satisfying t ≤ t∗:

∂cL[t∗]

∂W l
=

t∗∑
t=1

∂cL[t∗]

∂ul[t]

∂ul[t]

∂cl[t]

∂cl[t]

∂W l
=

t∗∑
t=1

∂cL[t∗]

∂ul[t]

∂cl[t]

∂W l
(15)

Here, ∂cl[t]
∂W is a three-dimensional tensor scattered with the afferent spikes sl−1[t]. For simplicity, we denote the credit

∂cL[t∗]
∂ul[t]

assigned to ul[t] as δl[t], which can be calculated as follows when t < t∗ and l < L− 1:

δl[t] = δl[t+ 1]
∂ul[t+ 1]

∂ul[t]
+ δl+1[t]

∂ul+1[t]

∂ul[t]

∂ul[t+ 1]

∂ul[t]
= γ diag

(
1− sl[t]− ul[t]⊙Θ

′
(ul[t]− ϑ)

)
∂ul+1[t]

∂ul[t]
= W l+1diag

(
Θ

′
(ul[t]− ϑ)

) (16)

where Θ
′
(x) = [Θ

′
(x1),Θ

′
(x2), ...,Θ

′
(xn)]

T represents the element-wise partial on the colum vector x. For the boundary
condition of the layer L− 1 and time step t∗, the expression of δl[t] can be obtained as:

δl[t] =

δL−1[t+ 1]
∂uL−1[t+ 1]

∂uL−1[t]
if l = L− 1 and t < t∗

δl+1[t∗]
∂ul+1[t∗]

∂ul[t∗]
if t = t∗and l < L− 1

WLdiag
(
Θ

′
(uL−1[t∗]− ϑ)

)
if t = t∗and l = L− 1

(17)

Furthermore, by replacing Θ(x) with Ĥα(x) and incorporating the smooth factor α into the computational flow of SNNs as
shown in Equation (10), ASGL can compute the gradient with respect to α:

∇αl =
∂L(cL,y)

∂cL
∂cL

∂αl
= − 1

N
(yT − ŷT)

N∑
t∗=1

∂cL[t∗]

∂αl

∂cL[t∗]

∂αl
=

t∗∑
t=1

(
∂cL[t∗]

∂cl+1[t]

∂cl+1[t]

∂sl[t]
+

∂cL[t∗]

∂ul[t+ 1]

∂ul[t+ 1]

∂sl[t]

)
∂sl[t]

∂αl[t]

=

t∗∑
t=1

(
∂cL[t∗]

∂ul+1[t]

∂ul+1[t]

∂cl+1[t]

∂cl+1[t]

∂sl[t]
+

∂cL[t∗]

∂ul[t+ 1]

∂ul[t+ 1]

∂sl[t]

)
∂sl[t]

∂αl[t]

=

t∗∑
t=1

(
δl+1[t]W l+1 − γδl[t+ 1]diag(ul[t])

) ∂sl[t]

∂αl[t]

(18)

where ∂sl[t]
∂αl[t]

relies on the selection of surrogate forwarding function Hα(x). For the specific case of the surrogate clipping
function, it could be obtained as follows:

∂sl[t]

∂αl[t]
=

∂Hα(û
l[t])

∂α
=

{
0, if

∣∣∣ûl[t]
∣∣∣ > 1

2α

−diag(1
α2 ⊙ ûl[t]), otherwise

(19)

12

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

This derivative captures how changes in α affect the spiking activity sl[t] when using the surrogate clipping function as the
surrogate forwarding function. Subsequently, the complete backward propagation through time of SNNs utilizing the LIF
model can be derived from Equations (14) to (19).

A.2. Theory Analysis for Error Decomposition

Table 6. The symbols and corresponding definitions (explanations).

Symbol Defination

ℓ loss function
s or s0 input spike pattern
f l the l-th spiking layer with Θ(ûl)

F l f l ◦ f l−1 ◦ ... ◦ f1

sl the output of F l with fully spike propagation
gl the l-th noise spiking layer with random mask m̂l

Gl gL ◦ gL−1 ◦ ... ◦ gl+1

p noise probability controlling the percent of spike mode

Approximation A.1. Minimizing the loss of noisy network ℓnoise(F, s) can be approximated into minimizing the loss of the
embedded SNN ℓsnn(F, s) regularized by the layerwise distance between Θ(ûl) and Hα(û

l).

ℓnoise(F , s) ≈ ℓsnn(F , s) +
1− p

2p

L∑
l=1

〈
Cl, diag(Hα(û

l)−Θ(ûl))⊙2
〉

(20)

Derivation. Suppose Gl ◦ F l as the hybrid network using spike activations Θ(x) in the preceding l layers and hybrid
activations Hα(x) after the l-th layer. Moreover, sl is the output spikes at the l-th layer across all time steps and neurons.
Detailed symbol definitions and descriptions are provided in Table 6. Then we can have:

ℓnoise(F , s) = ℓ(F snn(s)) + Em̂[ℓ(F snn(s, m̂))− ℓ(F snn(s))]

= ℓ(F snn(s)) + Em̂[ℓ(G0(s0, m̂))− ℓ(GL(sL))]

= ℓ(F snn(s)) + Em̂

[
L∑

l=1

(
ℓ(Gl−1(sl−1, m̂))− ℓ(Gl(sl, m̂))

)]

= ℓ(F snn(s)) +

L∑
l=1

Em̂[ℓ(Gl−1(sl−1, m̂))− ℓ(Gl(sl, m̂))]

= ℓ(F snn(s)) +

L∑
l=1

R(Gl, sl)

(21)

Then we adopt Taylor expansion on sl inspired by (Wei et al., 2020) to analyze the effect of the perturbation of m̂ at the l-th
layer. From Equation (10) and Equation (3), we could obtain:

Gl−1
(
sl−1, m̂

)
= Gl

(
(1− m̂l)⊙Hα(û

l) + m̂l ⊙Θ(ûl), m̂
)

= Gl
(
(1− m̂l)⊙ (Hα(û

l)−Θ(ûl)) + sl, m̂
) (22)

Here, we denote ∆ = (1− m̂l)⊙ (Hα(û
l)−Θ(ûl)) for simplication. As the expection of ∆ is zero (Em̂[1− m̂] = 0)

and |∆| is bounded in [0,max(1−p
2p , 1

2)], we adopt Taylor expansion around ∆ = 0 and approximate R(Gl, sl) here:

R(Gl, sl) = Em̂[ℓ(Gl−1(sl−1, m̂))− ℓ(Gl(sl, m̂))]

= Em̂[ℓ(Gl(sl +∆, m̂))− ℓ(Gl(sl, m̂))]

≈ Em̂

[
D(ℓ ◦Gl)[sl]∆ +

1

2
∆T

(
D2(ℓ ◦Gl)[sl]

)
∆

] (23)

13

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

As ∆ is a zero-mean vector, we discard the first-order term for expectation calculation here:

R(Gl, sl) ≈ Em̂

[
1

2
∆T

(
D2(ℓ ◦Gl)[sl]

)
∆

]
(24)

Then we could take the expectation over ∆:

R
(
Gl, sl

)
≈ 1

2

〈
D2

(
ℓ ◦ Em̂[Gl]

) [
sl
]
,E∆

[
∆∆T

]〉
=

1− p

2p

〈
D2

(
ℓ ◦ Em̂[Gl]

) [
sl
]
, diag

((
Hα(û

l)−Θ(ûl)
)⊙2

)〉 (25)

Here, only the diagonal elements in the covariance matrix E∆

[
∆∆T

]
are non-zero because of the independent sampling

strategy presented in m̂. For the second-order term, we could just take it as a constant Cl(Nagel et al., 2020). Furthermore,
by substituting Equation (25) into Equation (21), we get:

ℓnoise(F , s) ≈ ℓ(F snn(s)) +
1− p

2p

L∑
l=1

〈
Cl, diag(Hα(û

l)−Θ(ûl))⊙2
〉

(26)

A.3. C-LIF Model

For the instrumental recognization, we adopt the current-base LIF model (C-LIF) (Gütig, 2016) as the basic computational
unit for a fair comparison. The iterative form of C-LIF can be represented as:

sl[t] = Θ
(
ul[t]− ϑ

)
cl[t] = u0 ⊙W lsl−1[t]

ul[t] = ml[t]− vl[t]− el[t]

vl[t] = βvv
l[t− 1] + cl[t]

ml[t] = βmml[t− 1] + cl[t]

el[t] = βmml[t− 1] + ϑsl[t− 1]

Θ(x) =

{
1, x ≥ ϑ
0, x < ϑ

(27)

where u0 is the normalization factor. ml[t]−vl[t] models the current integration of the synapse with the double exponential
function. The variable el[t] simulates the refractory period in spiking neurons. The decay factors βv(m) = exp(− ∆t

τv(m)
),

where βv(m) < 1, represents the rate at which the input response and output response decay over time. If no spike occurs,
the input and output responses will gradually decrease to 0 by recursively multiplying the decay factors. All other symbols
keep consistent with the standard LIF model.

A.4. Reccurent Connections

In order to enhance the memory capacity of SNNs in the temporal domain, synaptic recurrence is widely adopted distinguish
from the internal dynamics with decay mechanism in spiking neurons. The fundamental equation for this external recurrence
can be described as follows:

dcl

dt
= − 1

τsyn
cl(t)︸ ︷︷ ︸

exp. decay

+W lsl−1(t)︸ ︷︷ ︸
feedforward

+V lsl(t)︸ ︷︷ ︸
recurrent

, (28)

where the terms of decay τsyn and τm in Equation (1) both contribute to the internal recurrence, influencing the dynamics
of the spike-based system. Furthermore, synaptic recurrence, characterized by the weight V l, plays a role in enhancing
temporal memory capabilities.

14

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Table 7. Different hyperparameters related with p.

Dataset p ζ Milestones (Epochs)

CIFAR-10 / DVS-CIFAR10 / DVS128 Gesture 0.8 1 NA (300)

Tiny-ImageNet 0.9 1 NA (300)

CIFAR-100 0.6 0.8 90-th, 210-th, 270-th, 285-th (300)

SHD 0.8 0.9 30-th, 70-th, 90-th, 95-th (100)

MedlyDB 0.5 0.9 30-th, 70-th, 90-th, 95-th (100)

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2022

Table 4. Classification Performance on Music Instrument Dataset
Method Type Encoding Method #Param. Recall(%) Precision(%) F1 score(%)

CNN (Pons et al., 2017) Direct BP Spectrogram 76.9w 99.21 95.94 97.51
LSTM Direct BP Spectrogram 27.6w 93.31 96.08 94.62

FA (Samadi et al., 2017) DSNN (Feedback Alignment) Spikegram 27.6w 86.56 75.62 80.73
STCA (Gu et al., 2019) DSNN (Surrogate Gradient) Spikegram 27.6w 97.29 97.23 97.25

Ours DSNN (Noisy Spike) Spikegram 27.6w 98.58 98.52 98.59

Figure 4. The changed accuracies with the decreased noisy proba-
bility.

rapidly around 30-th epoch at the expense of the training
accuracy drop of the noisy network. That means the noisy
network begins to transform into target SNNs. Interestingly,
for the following noise injection at the 60-th and 90-th epoch,
the training accuracy is improved actually which indicates
the small account of spikes in the first injection are enough
to obtain the dynamics of SNNs for the static image dataset.
And the analog activations may become the obstacle for fast
convergence instead. In practice, we could develop similar
schedulers like those well-known learning rate schedulers
to adjust the noisy probability adaptively.

5.5. Sparsity and Energy Efficiency

In this section, we visualize the average spike rate of each
layer of spiking ResNet-18 shown in Figure 5 and provide
the estimated energy by counting synaptic operations (SOP)
compared to the ANN counterpart. Especially, the SOP
with MAC presented in ANNs is constant given a specified
structure. However, the SOP in SNN is executed by AC with
lower power consumption and varies with the spike sparsity
(More details could be found in Appendix F). Here, we
select 1024 samples randomly and estimate the average SOP
for SNNs. Meanwhile, we measure 32-bit floating-point AC
by 0.9 pJ per operation and 32-bit floating-point MAC by 4.6
pJ per operation (Han et al., 2015). The experimental result
shows the SNN achieves 94.11% classification accuracy
under two time steps on CIFAR-100 with only 8.96% energy

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Av

er
ag

e
Sp

ik
e

R
at

e

Figure 5. The average spike rate of each layer.

consumption compared to the ANN in the same architecture.

6. Conclusion
In this paper, we propose a novel training method called
Noisy Spike to develop deep SNNs. Different from the typ-
ical surrogate gradient learning, our method circumvents
the gradient mismatching problem naturally and updates
weights adaptively with the random noise injection in spikes.
Specifically, we train a special hybrid network with a mix-
ture of spikes and analogs where only the analogs are in-
volved in the calculation of gradient. In this way, the analog
part of the hybrid network will learn the optimal shapes
of the activation functions against the spikes. As a result,
the dynamics of the hybrid network will evolve into that of
target SNNs evaluated in network validation. To validate the
effectiveness and generalization of the proposed method, we
analyze theoretically the evolution from hybrid networks to
SNNs. Besides, we conduct extensive experiments on static
images, dynamic event streams, speech, and instrumental
sounds in practice. Experimental result shows our method
achieve SOTA across all the datasets. Generally, our method
explores the potential power of hybrid architectures by cou-
pling dual modes of spikes and analog during training. We
believe the idea brings solid insights for the training of deep
SNNs.

Figure 4. The average spike rate of each layer on the CIFAR-10 dataset .

B. Supplemental Experiments and Details
B.1. Experimental Details

We utilize the ADAM optimizer with an initial learning rate λ = 0.001 for the CIFAR100 dataset when adjusting p, while
for the CIFAR10 dataset, we employ the SGD optimizer with an initial learning rate of λ = 0.1. To augment the data in both
static image datasets, we use AutoAugment (Cubuk et al., 2018) and Cutout (DeVries & Taylor, 2017), as done in (Li et al.,
2021a; Bu et al., 2021; Wang et al., 2022). Additionally, a cyclic cosine annealing learning rate scheduler is adopted. For the
SHD dataset, we discretize the time into 250 time steps and initiate a decrease in noise probability starting from 0.2. The
corresponding network architecture is 700− 240− 20, with the middle layer neurons connected with recurrent synapses.
For the MedlyDB dataset, we increase the noise probability at 30-th, 70-th, 90-th, 95-th epoch with a discretization of 500
time steps. Specifically, we update p as 1− (1− p) · ζ at each milestone and attenuate the ratio of analog activations at the
rate of ζ. All the p and ζ values we use for each dataset are shown in Table 7 unless otherwise specified. For the CIFAR-10
results of Table 8, we provide detailed statistics and configurations in Table 12. For the CIFAR-100 results of Table 8, we set
p and ζ as 0.8 and 1 for ASGL, respectively.

B.2. Energy Estimation

In this section, we visualize the spike rate of each layer in the spiking ResNet-18, as shown in Figure 4. Additionally,
we follow the convention of the neuromorphic computing community by counting the total synaptic operations (SOP) to
estimate the computation overhead of SNN models and compare it to the energy consumption of the ANN counterpart.
Especially, the SOP with MAC presented in ANNs is constant given a specified structure. However, the SOP in SNN is
executed by AC with lower power consumption and varies with spike sparsity. For SNNs, the total synaptic operation with
accumulation NAC is defined as:

NAC =

T∑
t=1

L−1∑
l=1

N l∑
i=1

f l
is

l
i[t] (29)

15

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

where fan-out f l
i is the number of outgoing connections to the subsequent layer, and N l

i is the neuron number of the l-th
layer. For ANNs, the similar synaptic operation NMAC with more expensive multiply-accumulate is defined as:

NMAC =

L−1∑
l=1

N l∑
i=1

f l
i (30)

Specially, we use MAC to estimate the energy cost of the first layer in SNNs as the direct current input without explicit
encoding is adopted in our experiments on static images. Here, we randomly select 1024 samples and estimate the average
SOP for SNNs. Meanwhile, we measure 32-bit floating-point AC by 0.9 pJ per operation and 32-bit floating-point MAC by
4.6 pJ per operation, as done in (Han et al., 2015). The experimental result shows the SNN achieves 94.11% classification
accuracy under two time steps on the CIFAR-10 dataset with only 8.96% energy consumption compared to the ANN with
the same architecture.

B.3. Ablation Study on Image Reconstruction

Table 8. Comparison of Image Reconstruction.

Width (α) PSNR SSIM

SG ASGL SG ASGL

0.1 11.91 17.36 0.21 0.78
0.5 17.75 17.75 0.80 0.80
1.0 16.55 16.79 0.73 0.74
2.5 15.27 16.09 0.65 0.70
5.0 14.66 15.79 0.59 0.68

In addition to evaluating the performance of ASGL on classification tasks, image reconstruction, a challenging regression
task for SNNs, is also conducted to verify the effectiveness of ASGL. Here, we use hα(x) =

1
2 tanh(αx) + 1

2 as a surrogate
to show ASGL could be also applied to other functions. The fully-connected autoencoder is adopted for evaluation with the
architecture of 784-128-64-32-64-128-784. Table 8 reports the peak signal-to-noise ratio (PSNR) and Structural Similarity
(SSIM) of reconstructed MNIST images under 8 time steps. We could find the adaptive mechanism in ASGL reduces
sensitivity for width in SG and shows higher performance.

B.4. Experiments on MedlyDB, DVS128 Gesture

Table 9. Classification Performance on Music Instrument Dataset
Method Type Encoding Method #Param. Recall(%) Precision(%) F1 score(%)

CNN (Pons et al., 2017) Direct BP Spectrogram 76.9w 99.21 95.94 97.51
LSTM Direct BP Spectrogram 27.6w 93.31 96.08 94.62

FA (Samadi et al., 2017) DSNN (Feedback Alignment) Spikegram 27.6w 86.56 75.62 80.73
STCA (Gu et al., 2019) DSNN (Surrogate Gradient) Spikegram 27.6w 97.29 97.23 97.25

Ours DSNN (ASGL) Spikegram 27.6w 98.58 98.52 98.59

Performance on MedlyDB. In this experiment, we explore the instrument recognization task with various music pieces in
different melodies and styles. Specifically, we follow the approach of (Gu et al., 2019) and subtract a subset of MedlyDB
that contains the monophonic stems of 10 instruments. To test our algorithm in sparse spike patterns, we adopt the efficient
coding scheme based on the sparse representation theory (Lewicki, 2002). Moreover, we use the same metric, network
structure (384-700-10), and C-LIF neuron as the previous work for a fair comparison. The results show that our method
exhibits superior performance compared to other approaches across most metrics, with the exception of the Recall rate
achieved by the specialized CNN developed by (Pons et al., 2017). This CNN utilizes specially designed convolutional
kernels that are optimized for capturing temporal information in music.

Performance on DVS128 Gesture. The DVS128 Gesture dataset is a challenging neuromorphic dataset that records 11
gestures performed by 29 different participants under three lighting conditions. The dataset comprises 1,342 samples with

16

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

Table 10. Classification Performance on DVS128 Gesture
Method Type Architecture Acc.(%)

SLAYER (Shrestha & Orchard, 2018)

Surrogate Gradient

SNN(8 layers) 93.64
STBP in DVS (He et al., 2020) SNN(8 layers) 93.40

STBP-tdBN (Zheng et al., 2021) SNN(ResNet17) 96.87
Temporal-wise Attention (Yao et al., 2021) SNN(8 layers) 95.49

PLIF-SNN (Fang et al., 2021b) SNN(8 layers) 97.57
DECOLLE (Kaiser et al., 2020) Online Local Learning SNN(4 layers) 95.54

Streaming rollouts (Kugele et al., 2020) Conversion SNN(DenseNet) 95.56

PointNet-like ANN (Wang et al., 2019) Gradient training DNN 95.32
RG-CNN (Bi et al., 2020) DNN 97.20

Ours ASGL SNN(8 layers) 97.90

an average duration of 6.5 ± 1.7 s and all samples are split into a training set (1208 samples) and a test set (134 samples).
Given the long sample duration and the limited sample size, we follow the RCS approach (Yao et al., 2021) and randomly
select the starting point of the sample to maximize the use of the dataset. The time step N is set to be 60 and the network
receives only one slice at each step, where the temporal resolution of each slice is adjusted to 25ms according to the tuning
method (He et al., 2020). In Table 10, our method has achieved the state-of-the-art performance (97.90 %) without a larger
network (e.g., ResNet17, DenseNet), outperforming the directly-trained approaches based on surrogate gradient. Even
compared with the specially-designed DNN approaches for neuromorphic data, our model also performs better.

B.5. Ablation Study on ResNet-19

Table 11. Comparison with Surrogate Gradient Learning with VGG-19 architecture on the CIFAR-10 dataset.
Method SG (α = 0.5) SG (α = 1) SG (α = 2.5) SG (α = 5) SG (α = 7.5) SG (α = 10)

Acc. 10.00 ± 0.00 10.00 ± 0.00 87.64 ± 0.28 81.89 ± 0.57 66.00 ± 1.82 53.65 ± 1.12

Method ASGL+SG (p = 0.5, α=1) ASGL+SG (p = 0.5, α=2.5) ASGL+SG(p = 0.5, α=5) ASGL(ζ=0.2) ASGL(ζ=0.5) ASGL(ζ=0.8)

Acc. 10.00 ± 0.00 85.72 ± 0.35 53.41 ± 2.13 89.62 ± 0.20 89.69 ± 0.17 88.83 ± 0.09

We have included the results of ResNet-19 (Zheng et al., 2021) under time-steps N = 3 in Table 12 (rectangular function)
and Table 13 (Dspike function (Li et al., 2021b)). Specifically, we test the effect of different width initializations while using
the same optimizer settings and weight initialization for fairness. Notably, ResNet-19 has approximately 10× operations than
ResNet-18 (Li et al., 2021b). Therefore we train 100 epochs for each case considering time cost. As shown in both tables,
ASGL shows robustness surprisingly on different width initializations compared to surrogate gradient with rectangular
function and Dspike function. From Table 13, we could find that the Dspike function shows certain robustness with respect
to the rectangular function . However, it could still be improved greatly by ASGL when α ≤ 0.5 as shown in Table 13.

Table 12. Comparison between ASGL and Surrogate Gradient
with rectangular functions under different width initializations.

Width SG ASGL

ξ = 0.2 ξ = 0.5 ξ = 0.8

α = 0.5 93.19 93.89 93.93 94.11
α = 1.0 93.78 93.83 94.30 94.15
α = 2.5 90.68 93.71 94.09 93.89
α = 5.0 62.34 93.61 93.53 93.08
α = 10.0 30.85 92.48 93.53 93.00

Table 13. Comparison between ASGL and Surrogate Gradient
with Dspike functions under different width initializations.

Width SG ASGL

ξ = 0.2 ξ = 0.5 ξ = 0.8

α = 0.10 82.48 90.81 91.23 89.24
α = 0.12 89.42 90.83 92.65 91.34
α = 0.14 91.41 93.20 94.03 93.36
α = 0.5 93.93 94.02 94.34 94.28
α = 1.0 93.85 93.83 94.30 93.15
α = 2.5 93.61 93.60 93.98 93.98

17

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

(a) (b)

Epoch

Epoch Epoch

W
id
th

W
id
th

Figure 5. Fig. (a) and (b) visualize the width update in image reconstruction and image recognization, respectively.

B.6. Width Update

We evaluate the evolution of such a noisy network by observing the change of learnable width α. For the image reconstruction
(Figure 5a), the width α decreases progressively across all layers. This indicates the injection of spike noise forces the noisy
network to evolve into the desired SNN and simultaneously optimize it in a coupled manner. Additionally, Figure 5b presents
the variation of α in CIFAR-10 classification. Notably, the width α of the final layer in CIFARNet increases while others
consistently decrease. This phenomenon likely stems from the coupled training, which aims to simultaneously minimize the
loss of SNN and narrow the gap between the noisy network and SNN. Moreover, it suggests that the dynamically adjusting
the width is non-trivial and essential for different network layers and training epochs.

B.7. Effect of fixed α

In this section, we delve into the impact of a fixed α coefficient on the tradeoff between minimizing the propotion of dead
neurons and minimizing smoothing error. To investigate this , we utilize a spiking VGG16 architecture on the CIFAR10
dataset, considering 3 discrete time steps. Each sample in the CIFAR-10 training set is treated as a trial, allowing us
to ascertain the frequency of neuron death across 50,000 trials, thus approximating the probability of neuron inactivity.
Figure 6a illustrates the average proportion of inactive neurons at each layer. Generally, as the network width increases, the
ratio of inactive neurons gradually diminishes. Furthermore, due to the inability to compute the true gradient of the binary
spikes, we estimate the degree of gradient mismatching by evaluating the activation discrepancy between the SNN with the
Heaviside function Θ(x) and the ANN with the surrogate feedforward function Θα(x). In this regard, we employ the metric
of err = 1− cos(al, sl) to quantitatively assess the level of activation mismatch at each layer. As depicted in Figure 6b,
with increasing width, the smoothing error at each layer grows larger, demonstrating an opposing trend to the proportion of
inactive neurons. Taking into account both scenarios, it becomes crucial to develop a suitable adaptive approach for the
smooth factor α.

(a) (b)

Figure 6. The proportion of dead neurons (a) and smoothing error (b) in relation to the changing width parameter α on CIFAR-10.

18

Adaptive Smoothing Gradient Learning for Spiking Neural Networks

B.8. Effect of Adaptive α (α ↛ 0)

In practice, as depicted in Figure 3f, the αs have not approached 0 against spike noise. Based on the approximation in
Section 4.3 , minimizing the loss of noisy network ℓnoise(F, s) can be approximated into minimizing the loss of the embedded
SNN ℓsnn(F, s) regularized by the layerwise distance between Θ(ûl) and Hα(û

l). As the width α approaches 0, minimizing
the first term of ℓsnn (F , s) tends to difficult due to the phenomenon of dead neurons, while the second term decreases with
the layer-wise distance between noisy networks and SNNs (refer to the Appendix B.7). Therefore, the alphas tend to be
optimized adaptively to make a tradeoff between both losses in ASGL rather than just approaching 0.

To investigate the effect of adaptive alpha on the network evolution, we train a noisy network on the CIFAR-10 dataset under
the conditions of adaptive alpha and without adaptive alpha, respectively. After each training epoch, we record layer-wise
activations of the noisy network and the embedded SNN with shared weights for each sample, and calculate the average
cosine similarities S over all layers. We compare the network similarities of both cases in Figure 7. The results show that, in
general, adaptive α achieves higher similarities (over 9%) with the embedded SNN than the case without adaptive α. This
provides additional evidence for the effectiveness of adaptive α in helping the noisy network converge to an SNN, even if it
does not approach 0.

0 10 20 30 40
Epoch

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Co
sin

e
Si

m
ila

rit
ie

s

adaptive
w/o adaptive

Figure 7. Comparing network similarities under the cases of adaptive α and w/o adaptive α.

B.9. Results without Auto-Augment and Cutout

Table 14. Comparing ASGL with the SG method without using auto-augment and cutout.

Width (α)
CIFAR-10 CIFAR-100

SG ASGL SG ASGL

0.5 92.67 93.25 73.15 73.51
1.0 93.05 93.33 67.49 74.12
2.5 90.98 92.74 32.01 73.32
5.0 78.04 92.01 12.86 73.90
10.0 36.96 91.52 8.90 73.03

We have conducted additional experiments under 3 time steps to evaluate the performance of ASGL without using auto-
augment and cutout. Similar to Table 2, the results in Table 14 show that ASGL outperforms SG across a wide range of
width initialization on both datasets. The experiments demonstrate that catastrophic damage still exists for SG when width
α is inappropriately selected, such as α = 1 in the CIFAR-100 dataset. In contrast, ASGL exhibits remarkable robustness
for different widths α and achieves notable performance improvements.

19

