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Abstract
A big convergence of model architectures across
language, vision, speech, and multimodal is
emerging. However, under the same name “Trans-
formers”, the above areas use different imple-
mentations for better performance, e.g., Post-
LayerNorm for BERT, and Pre-LayerNorm for
GPT and vision Transformers. We call for the de-
velopment of Foundation Transformer for true
general-purpose modeling, which serves as a go-
to architecture for various tasks and modalities
with guaranteed training stability. In this work,
we introduce a Transformer variant, named MAG-
NETO, to fulfill the goal. Specifically, we propose
Sub-LayerNorm for good expressivity, and the
initialization strategy theoretically derived from
DeepNet (Wang et al., 2022a) for stable scaling up.
Extensive experiments demonstrate its superior
performance and better stability than the de facto
Transformer variants designed for various appli-
cations, including language modeling (i.e., BERT,
and GPT), machine translation, vision pretraining
(i.e., BEiT), speech recognition, and multimodal
pretraining (i.e., BEiT-3).

1. Introduction
Recent years have witnessed a big convergence of model ar-
chitectures across language, vision, speech, and multimodal.
Specifically, starting from the natural language processing,
Transformers (Vaswani et al., 2017) have become the de
facto standard for various areas, including computer vi-
sion (Dosovitskiy et al., 2021), speech (Zhang et al., 2020b),
and multimodal (Kim et al., 2021; Wang et al., 2022b).
Transformers fully leverage the parallelism advantage of
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Figure 1. MAGNETO performs better than the previous state-of-
the-art backbones across tasks and modalities with a unified archi-
tecture. Note that a lower score for speech recognition is better.

GPU hardware and large-scale data. It is appealing that we
can use the same network architecture for a broad range of
applications. So the pretrained models can be seamlessly
reused with the shared implementation and hardware opti-
mization. Moreover, general-purpose modeling is important
to multimodal models, as different modalities can be jointly
encoded and fused by one model.

However, despite using the same name “Transformers”,
there are significant differences in the implementation of the
architectures for different tasks. Figure 1 summarizes the
architectures for state-of-the-art models that are widely used
in various communities. For instance, some models (e.g.,
ViT, BEiT) adopt Pre-LayerNorm (Pre-LN) Transformers,
while others use Post-LayerNorm (Post-LN) variants (e.g.,
BERT) for better performance. Rather than directly using
the same architecture, we need to compare two Transformer
variants on the specific tasks or modalities to determine
the backbone, which is ineffective for model development.
More importantly, considering multimodal models, the op-
timal Transformer variants are usually different for input
modalities. For the example of BEiT-3 (Wang et al., 2022b)
vision-language pretraining, using Post-LN is sub-optimal
for vision encoding while Pre-LN is sub-optimal for the
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def subln(x):
return x + fout(LN(fin(LN(x))))

def subln_init(w):
if w is ['ffn', 'v_proj', 'out_proj']:

nn.init.xavier_normal_(w, gain=γ)
elif w is ['q_proj', 'k_proj']:

nn.init.xavier_normal_(w, gain=1)

Architectures Encoder Decoder
γ γ

Encoder-only √
log 2N -(e.g., BERT, ViT)

Decoder-only -
√
log 2M(e.g., GPT)

Encoder-decoder √
1
3 log 3M log 2N

√
log 3M(e.g., NMT, BART)
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Figure 2. Top left: pseudocode of Sub-LN. We take Xavier initialization (Glorot & Bengio, 2010) as an example, and it can be replaced
with other standard initialization. Notice that γ is a constant. Top right: parameters of Sub-LN for different architectures (N -layer
encoder, M -layer decoder). Bottom: the layout of Sub-LN for different architectures.

language part. The true convergence of multimodal pre-
training requires a unified architecture that performs well
across tasks and modalities. In addition, a pain point of
Transformer architectures is training stability, especially for
large-scale models. We usually need significant efforts to
tune hyperparameters or babysit training processes.

As a result, we call for developing Foundation Transform-
ers for true general-purpose modeling. First, the desired
modeling should be able to serve as a go-to architecture
for various tasks and modalities, so that we can use the
same backbone without trial and error. The general-purpose
design principle also greatly supports the development of
multimodal foundation models, as we can use one unified
Transformer for various modalities without performance
degradation. Second, the architectures should provide guar-
anteed training stability. The favored property can signif-
icantly mitigate the difficulty of large-scale pretraining of
foundation models.

In this work, we introduce MAGNETO as an implemen-
tation of Foundation Transformers to fulfill the above
goals. Specifically, we introduce Sub-LayerNorm (Sub-
LN), which adds an extra LayerNorm to each sublayer (i.e.,
multi-head self-attention, and feed-forward network). More-
over, MAGNETO has a novel initialization method that has

a theoretical guarantee to fundamentally improve the train-
ing stability. This allows the models to be scaled up with-
out pain. We evaluate MAGNETO on extensive tasks and
modalities, namely, masked language modeling (i.e., BERT),
causal language modeling (i.e., GPT), machine translation,
masked image modeling (i.e., BEiT), speech recognition,
and vision-language pretraining (i.e., BEiT-3). Experimen-
tal results show that MAGNETO significantly outperforms
de facto Transformer variants on the downstream tasks. In
addition, MAGNETO is more stable in terms of optimization,
which allows larger learning rates to improve results without
training divergence.

2. TL;DR for Practitioners
Figure 2 illustrates the overview of the MAGNETO architec-
ture. There are two key improvements in terms of modeling.
First, compared to the Pre-LN variant, Sub-LN introduces
another LayerNorm inside each sublayer (i.e., multi-head
self-attention, and feed-forward network): one before the
input projection, and the other before the output projec-
tion. Second, we use the initialization with the theoretical
derivation from DeepNet (Wang et al., 2022a), which funda-
mentally improves the training stability, allowing the model
to be scaled up to massive sizes without pain.
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As shown in Figure 2, we present the implementation of
MAGNETO. There are only lines of code changes on top of
the vanilla Transformer architecture. Notably, following the
derivation from DeepNet, the weights of query projection
and key projection are not scaled during initialization. Be-
sides, there is only one LayerNorm inside the cross-attention
for the encoder-decoder architecture and we do not scale the
initialized weights of cross-attention.

3. MAGNETO: A Foundation Transformer
3.1. Architecture: Sub-LayerNorm

Vanilla Transformers are based on either Pre-LayerNorm
(Pre-LN) structures or Post-LayerNorm (Post-LN). Differ-
ent from them, MAGNETO is built on the Sub-LayerNorm
(Sub-LN). It inherits the multihead attentions and the feed-
forward network from Transformers and introduces two
layer normalization modules inside each sublayer (except
the cross-attention).

For the multihead attentions, the layer normalization mod-
ules are before the qkv projection and the output projection,
which can be formulated as:

Q,K, V = WQLN(x),WKLN(x),WV LN(x) (1)

MSA(x) = x+WOLN(Attention(Q,K, V )) (2)

where WQ, WK , WV , and WO are the parameters of the
multihead self-attention. Similarly, for the feed-forward
network, the layer normalization modules are before the
input projection and the output projection, which are written
as:

FC1(x) = W 1LN(x) (3)

FC2(x) = W 2LN(x) (4)
FFN(x) = FC2(ϕ(FC1(x))) (5)

where W 1 and W 2 are parameters of the feed-forward lay-
ers, and ϕ is the non-linear activation function.

3.2. Initialization: Theoretical Derivation from DeepNet

We adopt the theoretical derivation from DeepNet (Wang
et al., 2022a) to improve the training stability. DeepNet
estimates the expected model update for Post-LN and intro-
duces DeepNorm to bound the model update to a constant.
Following DeepNet, we first estimate the expected model
update of Sub-LN and then demonstrate how to bound the
model update with a proper initialization.

Expected Model Update for Pre-LN We start with the
expected model update for Pre-LN. The forward propagation
for an N -layer Pre-LN Transformer with N attention sub-
layers and N feed-forward sub-layers can be formulated
as:

F (x; θ) = W vocabxe (6)

xe = LN(x+

L∑
l=1

Gl(xl−1, θel)) (7)

xl = Gl(xl−1, θel) andx0 = x (8)

where xl−1, xl denotes the input and output for the l-th
sub-layer Gl. If l is odd, Gl refers to self-attention MSA;
if l is even, Gl refers to FFN. xe is the output of the back-
bone. θ denotes the parameters of output projection W vocab

and the backbone {θel}Ll=1. W vocab ∈ RV×d, where d is
hidden dimension, V is dictionary size. L equals to 2N for
simplicity. Without the loss of generality, we set the inter-
mediate dimension of feed-forward layers equals to hidden
dimension.

Following (Wang et al., 2022a), the magnitude of atten-
tion output only depends on value and output projec-
tion: MSA(X)

Θ
= WOWV LN(X). Similarly we have

FFN(x) = W 2ϕ(W 1LN(X)). Therefore, for vanilla Pre-
LN, the forward computation of the l-th sub-layer can be
formulated as:

xl = xl−1 +W l,2ϕ(W l,1LN(xl−1)) (9)

We introduce two constants vl, wl to represent the scales
of W l,2,W l,1 respectively. For example, the i-th row, j-th
column entry of W l,2 satisfies that:

W l,2
ij ∽ N (0,

v2l
d
) (10)

We define the model update ∆F = ||γT (F (x; θ∗) −
F (x; θ))||2, where γ, F (x) ∈ RV×1. x and F (x) denote
the input and output of the model respectively. γ is the
label of x, which is a one-hot vector with a single entry as
1 and all the others as 0. With above analysis, we have the
following theorem to characterize ∆F pre for an N -layer,
encoder-only Pre-LN Transformer under SGD update.

Theorem 3.1. Given an N -layer Pre-LN Transformer
F (x, θ), the l-th sub-layer is formulated as xl = xl−1 +
W l,2ϕ(W l,1LN(xl−1)). Under SGD update, ∆F pre satis-
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fies:

∆F pre ≤ ηd(

∑L
l=1 v

2
l + w2

l∑L
n=1 v

2
nw

2
n

(11)

+

L∑
l=1

L∑
k=2

v2l + w2
l∑L

n=1 v
2
nw

2
n

v2kw
2
k∑k−1

n=1 v
2
nw

2
n

)) (12)

where η is learning rate, L equals to 2N .

Based on Theorem 3.1, with vl = wl = 1 (i.e., stan-
dard initialization) for vanilla Pre-LN, we have ∆F pre =
O(ηd logL), which shows that the magnitude of the model
update grows logarithmically as the depth increases. It is
also verified by Liu et al. (2020). Wang et al. (2022a) proves
that under SGD update, the model update of vanilla Post-
LN ∆F post is O(

∑L
l=1 v

2
l + w2

l ). ∆F pre is much smaller
than ∆F post with the same model depth L. It indicates that
the loss landscape of vanilla Pre-LN is smoother than that
of vanilla Post-LN, which leads to faster and more stable
optimization.

Expected Model Update for MAGNETO Based on the
analysis on Pre-LN, we further estimate the expected model
update of Sub-LN. With Sub-LN, the forward signal propa-
gation of the l-th sub-layer can be formulated as:

xl = xl−1 +W l,2LN(ϕ(W l,1LN(xl−1))) (13)

We then give the expected bound of the model update’s
magnitude ∆F sub for an N -layer, encoder-only MAGNETO.
Theorem 3.2. Given an N -layer MAGNETO F (x, θ),
the l-th sub-layer is formulated as xl = xl−1 +
W l,2LN(ϕ(W l,1LN(xl−1))). Under SGD update, ∆F sub

satisfies:

∆F sub ≤ ηd(

∑L
l=1(1 +

v2l
w2

l

)∑L
n=1 v

2
n

+

L∑
l=1

L∑
k=2

1 +
v2l
w2

l∑L
n=1 v

2
n

v2k∑k−1
n=1 v

2
n

)

(14)
where η is learning rate, L equals to 2N .

When the activation of the l-th sub-layer explodes, it leads
to wl ≫ wi, i ̸= l. Equation (15) proves that the model
update of MAGNETO is smaller than that of vanilla Pre-LN
in this case.

1 +
v2l
w2

l∑L
n=1 v

2
n

≤
v2l + w2

l∑L
n=1 v

2
nw

2
n

, wherewl ≫ wi, i ̸= l (15)

Furthermore, we study the magnitude of model update for
MAGNETO with the encoder-decoder architecture. θe fol-
lows the same definition as in Theorem 3.2. Similarly θd

denotes parameters of decoder. Theorem 3.3 shows that the
bound of the magnitude of model update under SGD up-
date ∆Fed = ||γT (Fed(x, y, θ

∗
e , θ

∗
d) − Fed(x, y, θe, θd))||,

where x and y denote the input of encoder and decoder
respectively.

Theorem 3.3. Given an encoder-decoder MAGNETO
Fed(x, y, θe, θd) with N encoder layers and M decoder
layers, where the l-th sub-layer is formulated as xl =
xl−1 + W l,2LN(ϕ(W l,1LN(xl−1))). Under SGD update,
∆Fed satisfies:

∆Fed ≤ ∆Fd (16)

+

Ld∑
l=1,l%3=1

v2dl∑Ld

n=1 v
2
dn

(1 +

Ld∑
k=2

v2dk∑k−1
n=1 v

2
dn

)∆Fe

(17)

∆Fd
Θ
= ηd(

∑Ld

l=1(1 +
v2dl
w2

dl

)∑Ld

n=1 v
2
dn

+
1∑Ld

n=1 v
2
dn

Ld∑
l=1

Ld∑
k=2

(1 +
v2dl
w2

dl

)
v2dk∑k−1

n=1 v
2
dn

) (18)

∆Fe
Θ
= ηd(

∑Le

l=1(1 +
v2el
w2

el

)∑Le

n=1 v
2
en

+
1∑Le

n=1 v
2
en

Le∑
l=1

Le∑
k=2

(1 +
v2el
w2

el

)
v2ek∑k−1

n=1 v
2
en

) (19)

where η is learning rate, Ld equals to 3M and Le equals
to 2N .

Derivation and Implementation We then demonstrate
that the expected model update of MAGNETO above can be
bounded with proper initialization. We provide the analysis
on the encoder-only architecture, which can be naturally
extended to encoder-decoder models in the same way. Anal-
ogous to Zhang et al. (2019b) and Wang et al. (2022a), we
set our goal for the model update as follows:

GOAL: F (x, θ) is updated by Θ(η) per SGD step after
initialization as η → 0. That is ∆F sub = Θ(ηd) where
∆F sub ∆

= F (x, θ − η ∂L
∂θ )− F (x, θ).

Based on Theorem 3.2, there are multiple methods to bound
∆F sub independent of the depth by setting proper vl and wl.
In this work, we simply set vl = wl = γ for all sub-layers.
With Equation (14), the term related to L can be bounded
as:
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∑L
l=1(1 +

v2l
w2

l

)∑L
n=1 v

2
n

+
1∑L

n=1 v
2
n

L∑
l=1

L∑
k=2

(1 +
v2l
w2

l

)
v2k∑k−1

n=1 v
2
n

= O(
logL

γ2
) (20)

We use v = w = γ =
√
logL to bound Equation (20) to

O(1). In summary, we apply our initialization as follows:

Encoder-only (or decoder-only) architecture

1. Apply standard initialization (e.g., Xavier initial-
ization) for each layer.

2. For each layer, scale the weights of feed-forward
networks as well as the value projection and the
output projection of attention layers by

√
log 2N

(or
√
log 2M ).

The derivation of encoder-decoder architectures can be con-
ducted in the same way (see Appendix B.2). We summarize
the steps as follows:

Encoder-decoder architecture

1. Apply standard initialization (e.g., Xavier initial-
ization) for each encoder and decoder layer.

2. For encoder layers, scale the weights of feed-
forward networks as well as the value projection
and the output projection of attention layers by√

1
3 log 3M log 2N .

3. For decoder layers, scale the weights of feed-
forward networks as well as the value projection
and the output projection of attention layers by√
log 3M .

4. Experiments on Language Tasks
We conduct experiments to evaluate MAGNETO on the lan-
guage tasks, including causal language modeling, masked
language modeling, and neural machine translation.

4.1. Causal Language Modeling

We implement MAGNETO on causal language modeling,
which is the pretraining task for recent large language mod-
els (e.g., GPT-3 (Brown et al., 2020), PaLM (Chowdhery
et al., 2022), etc). We start with a model that has the same
model configuration as GPT-3 Medium (350M), and further
scale its depth from 24L to 48L and 72L. The model is

trained on an English-language corpus, which is a subset of
the data from Liu et al. (2019) and the English portion of
CC100 corpus. We use the same tokenizer as GPT-2 (Rad-
ford et al., 2019) to preprocess the data. The 24L model is
trained for 500K steps, while the 48L and 72L models are
trained for 250K steps. More details regarding the hyperpa-
rameters can be found in the appendix.

We compare MAGNETO with vanilla Pre-LN Transformer
and Normformer (Shleifer et al., 2021). Vanilla Pre-LN
is the backbone for GPT, while Normformer is a state-of-
the-art model for causal language modeling. We use the
implementation on the Fairseq1 codebase, and pre-train the
models with the same monolingual data as described above.

We evaluate the performance of in-context learning. Fol-
lowing the previous work (Brown et al., 2020; Hao et al.,
2022), we choose Winogrande (Sakaguchi et al., 2020),
Winograd (Levesque et al., 2012), Storycloze (Mostafazadeh
et al., 2017), and Hellaswag (Zellers et al., 2019) as the
benchmark datasets, covering the cloze and completion
tasks. We conduct experiments in the setting of zero-shot,
one-shot, and four-shot learning. We randomly sample the
examples from training data as demonstrations for the few-
shot setting. The examples are concatenated with a separator
</s>.

Table 1 summarizes the results in the zero-shot setting. It
shows that MAGNETO achieves significant improvement
over both vanilla Pre-LN Transformer and Normformer. The
improvement is consistent across different scales. Besides, it
tolerates a larger learning rate than the baselines, indicating
that MAGNETO is more stable in optimization. This allows
the model to further scale up without pain. Table 2 and
Table 3 report the results in the few-shot setting. MAGNETO
is also better at few-shot learning than the baselines across
four datasets, proving the effectiveness of Sub-LN on causal
language modeling.

4.2. Masked Language Modeling

We further conduct experiments on masked language model-
ing. We pre-train MAGNETO on a 16GB English corpus (Liu
et al., 2019), a combination of Wikipedia and Bookcorpus.
We adopt the BERT-base setting and train a model with 12
layers, 768 hidden dimensions, and 3072 FFN dimensions.
The batch size is 2048 and the model is trained for 125K
steps. The vocabulary is built from a SentencePiece (Kudo
& Richardson, 2018) tokenizer with 64K tokens. More
details are in the appendix.

We compare MAGNETO with both Post-LN and Pre-LN.
Post-LN is the de-facto standard for masked language mod-
eling. We search the pre-training learning rate among {5e-4,

1https://github.com/facebookresearch/
fairseq/
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Models # Layers LR WGe WG SC HS Avg.

Pre-LN

24L

5e-4 55.2 65.3 70.8 44.8 59.0
Pre-LN 1e-3 diverged
Normformer 5e-4 54.3 68.1 72.0 45.9 60.1
Normformer 1e-3 diverged
MAGNETO 1e-3 54.3 71.9 72.4 46.9 61.4

Pre-LN
48L

5e-4 57.3 67.0 74.0 48.0 61.6
Normformer 5e-4 56.5 70.5 74.0 49.8 62.7
MAGNETO 1.2e-3 57.0 73.3 74.7 51.2 64.1

Pre-LN
72L

5e-4 58.0 70.9 75.7 51.7 64.1
Normformer 5e-4 57.4 75.4 75.2 53.6 65.4
MAGNETO 1.2e-3 57.9 73.7 76.6 55.1 65.8

Table 1. Zero-shot results for MAGNETO and the baselines (WGe: Winogrande, WG: Winograd, SC: Storycloze, and HS: Hellaswag
dataset).

Models # Layers LR WGe WG SC HS Avg.

Pre-LN

24L

5e-4 54.4 66.7 71.0 44.8 59.2
Pre-LN 1e-3 diverged
Normformer 5e-4 54.0 67.4 72.1 45.6 59.8
Normformer 1e-3 diverged
MAGNETO 1e-3 54.1 70.2 72.8 47.3 61.1

Pre-LN
48L

5e-4 56.0 69.5 74.2 48.5 62.1
Normformer 5e-4 54.7 71.2 74.8 50.6 62.8
MAGNETO 1.2e-3 56.8 71.6 74.9 51.5 63.7

Pre-LN
72L

5e-4 56.9 71.2 76.0 52.2 64.1
Normformer 5e-4 57.8 69.8 76.8 54.0 64.6
MAGNETO 1.2e-3 59.8 74.0 77.9 55.5 66.8

Table 2. One-shot results for MAGNETO and the baselines (WGe: Winogrande, WG: Winograd, SC: Storycloze, and HS: Hellaswag dataset).

1e-3, 2e-3, 3e-3}, and choose the largest one that can con-
verge. We fine-tune the models on the GLUE (Wang et al.,
2018) benchmarks. We run each experiment with three
seeds and report the average results. Table 4 summarizes
the results. It shows that MAGNETO has better performance
than the strong baselines with a gain of average 0.6 points.

4.3. Neural Machine Translation

We also evaluate MAGNETO on machine translation. We
perform experiments on OPUS-100 corpus, a multilingual
machine translation dataset provided by Zhang et al. (2020a).
OPUS-100 is an English-centric multilingual corpus cov-
ering 100 languages, which is randomly sampled from the
OPUS collection. We implement MAGNETO with an 18-
layer encoder, an 18-layer decoder, and 512 hidden dimen-
sion. We train the model with a batch size of 500K tokens
for 100K steps. During testing, we select the checkpoint
based on the performance of the validation set. We use the
beam search algorithm with a beam size of 5 and set the
length penalty as 1.0. More details are in the appendix.

Table 5 reports the BLEU scores on the OPUS-100 test sets.
Post-LN can not converge with the depth of 18L-18L due

to the training instability. Pre-LN is the standard alternative
when the model is deep and large. Compared to Pre-LN and
its variant Normformer, MAGNETO has an improvement of
average 0.5 and 0.6 BLEU scores, proving the effectiveness
on the machine translation task.

5. Experiments on Vision Tasks
We pretrain MAGNETO under masked image modeling
framework (BEiT; Bao et al. 2022; Peng et al. 2022), and
then fine-tune it on various downstream vision tasks by
appending lightweight task layers. To be specific, we en-
courage MAGNETO to reconstruct corresponding discrete
visual tokens (Peng et al., 2022), based on the corrupt input
images.

In comparison, Pre-LN is instantiated as vanilla ViT (Doso-
vitskiy et al., 2021) here and pretrained under the same
settings. We pretrain all models on ImageNet-1k (Rus-
sakovsky et al., 2015) with 300 epochs schedule. After
that, we fine-tune the pretrained models on ImageNet-1k for
the image classification task and on ADE20k (Zhou et al.,
2019) for the semantic segmentation task. Moreover, we
evaluate the robustness of all fine-tuned models on various
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Models # Layers LR WGe WG SC HS Avg.

Pre-LN

24L

5e-4 54.0 67.7 69.8 44.6 59.0
Pre-LN 1e-3 diverged
Normformer 5e-4 54.3 70.2 71.4 45.9 60.5
Normformer 1e-3 diverged
MAGNETO 1e-3 57.6 74.7 72.8 47.5 63.2

Pre-LN
48L

5e-4 57.7 71.2 73.8 48.7 62.9
Normformer 5e-4 56.8 75.4 75.9 50.7 64.7
MAGNETO 1.2e-3 57.9 71.9 76.4 51.9 64.5

Pre-LN
72L

5e-4 57.5 73.3 76.1 52.4 64.8
Normformer 5e-4 57.7 74.0 77.0 54.9 65.9
MAGNETO 1.2e-3 58.3 74.0 79.0 55.7 66.8

Table 3. Four-shot results for MAGNETO and the baselines (WGe: Winogrande, WG: Winograd, SC: Storycloze, and HS: Hellaswag
dataset).

Models LR MNLI QNLI QQP SST CoLA MRPC STS Avg.

Post-LN 5e-4 86.7/86.7 92.2 91.0 93.4 59.8 86.4 89.4 85.7
Post-LN 1e-3 diverged
Pre-LN 1e-3 85.6/85.4 92.2 91.1 93.4 55.6 85.1 88.4 84.6
Pre-LN 2e-3 diverged

MAGNETO 3e-3 86.7/86.7 92.4 91.2 93.9 62.9 87.2 89.2 86.3

Table 4. Results on the GLUE development set.

Models En → X X → En Avg.

Post-LN diverged
Pre-LN 28.3 32.7 30.5
NormFormer 28.5 32.3 30.4

MAGNETO 28.7 33.2 31.0

Table 5. BLEU scores for MAGNETO and the baselines on the
OPUS-100 test sets.

ImageNet variants, e.g., ImageNet-Adversarial (Hendrycks
et al., 2021b), ImageNet-Rendition (Hendrycks et al., 2021a)
and ImageNet-Sketch (Wang et al., 2019). We summarize
the results of those vision tasks in Table 6. Hyperparameters
are given in Appendix C.

As shown in Table 6, MAGNETO outperforms its Pre-LN
counterpart by 0.4% and 0.6% when the number of layers is
12 and 24 on ImageNet validation set, respectively. More-
over, MAGNETO outperforms ViT by a significant margin
across three ImageNet variants. By appending the Uper-
Net (Xiao et al., 2018) task layer, we conduct semantic
segmentation experiments on ADE20k. For 12-layer mod-
els, MAGNETO reach 52.2% mIoU, which is 0.8% higher
than vanilla ViT. For 24-layer models, MAGNETO can boost
the performance to 54.6%.

6. Experiments on Speech Tasks
We implement the proposed MAGNETO based on the
open-source ESPnet repository (Watanabe et al., 2018) for
speech recognition, and evaluate its performance on the
LibriSpeech 960h (Panayotov et al., 2015) benchmark.

Since the transducer framework is proven to obtain bet-
ter accuracy with low latency, we choose the Transformer
Transducer (T-T; Zhang et al. 2020b) as the backbone frame-
work, where the encoder is either Pre-LN Transformer or
MAGNETO, and the predictor network is a two-layer LSTM
network. The model input is 80 dimension filter bank feature
and its output vocabulary is 5000 subword units. There is a
VGG component before Transformer blocks to downsample
the speech frame rate from 10 to 40 milliseconds.

We evaluate 18L and 36L T-T with hidden state dimensions
of 512 and FFN dimensions of 2048. Their numbers of
parameters are 80M and 140M respectively. The models
are trained for 150 epochs on the full 960 hours of au-
dio data in LibriSpeech, where the adaptive specaugement
(Park et al., 2019; 2020) is employed for data augmentation.
The auxiliary loss proposed in (Boyer et al., 2021) is used
for better performance. Table 7 shows the evaluation re-
sults on dev-clean, dev-other, test-clean, and
test-other. MAGNETO achieves over 6% WER reduc-
tion against the Transformer baseline in the 18L setting.
A similar gain is also observed in the 36L setting. When
searching for the best learning rate, we find that 36L MAG-
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Models # Layers ImageNet ImageNet ImageNet ImageNet ADE20kAdversarial Rendition Sketch

Pre-LN 12L 84.5 45.9 55.6 42.2 51.4
MAGNETO 84.9 48.9 57.7 43.9 52.2

Pre-LN 24L 86.2 60.1 63.2 48.5 54.2
MAGNETO 86.8 65.4 67.5 52.0 54.6

Table 6. Results on vision tasks. Pre-LN is instantiated as vanilla ViT (Dosovitskiy et al., 2021). We report top-1 accuracy on ImageNet
and its variants, and mIoU metric on ADE20k for semantic segmentation. We compare both ViT-Base (12L) and ViT-Large (24L).

Models # Layers Dev-Clean Dev-Other Test-Clean Test-Other

Pre-LN 18L 2.97 6.52 3.19 6.62
MAGNETO 2.68 6.04 2.99 6.16

Pre-LN 36L 2.59 6.10 2.89 6.04
MAGNETO 2.43 5.34 2.72 5.56

Table 7. Results on speech recognition. All models are without language model shallow fusion.

Models VQA NLVR2
test-dev test-std dev test-P

Pre-LN 78.37 78.50 82.57 83.69
MAGNETO 79.00 79.01 83.35 84.23

Table 8. Results on vision-language tasks. We report vqa-score
on VQA test-dev and test-standard split, as well as accuracy on
NLVR2 development and public test set (test-P).

NETO allows a learning rate up to 3e-3, while Transformer
can only be trained with lr = 1.5e− 3. Regarding the 18L
setting, MAGNETO and Pre-LN are trained with lr = 5e−3
and lr = 3e− 3, respectively.

7. Experiments on Vision-Language Tasks
We conduct experiments on multimodal pretraining follow-
ing BEiT-3 (Wang et al., 2022b) and evaluate the model on
downstream vision-language benchmarks, including VQA
2.0 (Goyal et al., 2017) and NLVR2 (Suhr et al., 2019).
Specifically, we perform masked data modeling on images,
texts and image-text pairs to learn multimodal representa-
tions. We compare MAGNETO with the Pre-LN variant as
in ViT (Dosovitskiy et al., 2021) under the same pretraining
setting. We pretrain a 24-layer base model with 544 hid-
den dimensions and 2176 FFN dimensions using the same
pretraining data as in BEiT-3. The learning rate is 2e-3 and
the batch size is 12,288 for MAGNETO and the baseline.
Each batch contains 4096 images, 4096 texts, and 4096
image-text pairs. Both models are trained for 300k steps.

As presented in Table 8, MAGNETO achieves consistent im-
provements across two vision-language benchmarks. MAG-

NETO outperforms standard Pre-LN by 0.5% on VQA test-
standard split and NLVR2 test set.

8. Related Work
Transformers have shown great success across many fields.
However, there are significant differences in the implemen-
tation of the architectures for different tasks. Post-LN Trans-
formers are generally used for machine translation (Vaswani
et al., 2017; Ma et al., 2021) and masked language mod-
elling (Devlin et al., 2019; Liu et al., 2019), while some
models adopt Pre-LN variants as the backbone for language
modelling (Radford et al., 2019; Brown et al., 2020), speech
recognition (Zhang et al., 2020b), vision pre-training (Doso-
vitskiy et al., 2021; Bao et al., 2022; Peng et al., 2022) and
vision-language pre-training (Wang et al., 2022b).

There are a lot of efforts to understand and improve the sta-
bility of Transformers (Zhang et al., 2019b;a; Huang et al.,
2020; Liu et al., 2020; Shleifer et al., 2021; Ding et al., 2021;
Wang et al., 2022a). For Post-LN Transformers, Zhang et al.
(2019a) showed that a depth-scaled initialization can reduce
output variance of residual connections to ease gradient van-
ishing through layer normalization. Liu et al. (2020) argued
that gradient vanishing of decoder is addressed by Adam,
and heavy dependency on Post-LN’s residual branches am-
plifies small parameter perturbations, leads to significant
disturbances in the model output.

Xiong et al. (2020) and Nguyen & Salazar (2019) both
empirically validate that Pre-LN is easier to be optimized
than Post-LN. For Pre-LN Transformers, Ding et al. (2021)
adopted precision bottleneck relaxation and sandwich-LN
to stabilize the training. Shleifer et al. (2021) introduced
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head-scaled attention mechanism and extra normalization
to improve the performance and training speed of Pre-LN
variants for language modeling.

9. Conclusion
In this paper, we call for the development of Foundation
Transformers, and present MAGNETO, an implementation of
Foundation Transformers towards a true general-purpose ar-
chitecture across various tasks and modalities. Experiments
demonstrate that MAGNETO achieves better results than the
baselines on language, vision, speech, and multimodal tasks.
More importantly, MAGNETO has theoretically-guaranteed
training stability which makes it a promising option for
scaling up any Transformer models.

10. Limitations
This work presents MAGNETO for true general-purpose
modeling across various tasks and modalities with guaran-
teed training stability. Like most of the existing pre-trained
models, our method may have some potential bias origi-
nating from the pre-training data. In addition, we do not
explore the training stability across width for MAGNETO in
the paper, which will be left as future work.
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A. Model update for Encoder-only
Transformers

A.1. Pre-LN

Following Wang et al. (2022a), query and key projection do
not impact the bound of model update’s magnitude. We thus
only consider the re-scaling effect of input and output pro-
jection in feed-forward layers, value and output projection
in attention layers. The forward propagation for an N -layer
Pre-LN Transformer based on encoder-only architecture is:

F (x; θ) = W vocabxe (21)

xe = LN(x+

L∑
l=1

Gl(xl−1, θel)), xl = Gl(xl−1, θel)

(22)

x0 = x, xi ∽ N (0, 1) andW vocab
ij ∽ N (0,

1

d
) (23)

θe denotes the parameters of output projection W vocab and
backbone {θel}Ll=1. W o ∈ RV×d, where d is hidden di-
mension. L equals to 2N for simplicity. Without the loss
of generality, we set the intermediate dimension of feed-
forward layers equals to hidden dimension. The forward
computation of l-th sub-layer can be formulated as follows:

xl
i =

d∑
j=1

W l,2
ij ul

j + xl−1
i (24)

ul
i = ϕ(zli) (25)

zli =

d∑
j=1

W l,1
ij LNj(x

l−1) (26)

=
∑
j=1

W l,1
ij

xl−1
j −

1

d

∑d
k=1 x

l−1
k√

1

d

∑d
k=1(x

l−1
k −

−
xl−1)2

(27)

xl−1
i and xl

i is i-th entry of input and output vector respec-
tively. ϕ refers to activation function. W l,1

ij , W l,2
ij denotes

the i-th row, j-th column entry of input and output projec-
tion for feed-forward layer, or value and output projection
for attention layer. We first perform Xavier initialization
for all parameters, then re-scale them with a constant. For
example, W l,1

ij , W l,2
ij satisfies that:

W l,1
ij ∽ N (0,

w2
l

d
), W l,2

ij ∽ N (0,
v2l
d
) (28)
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vl and wl are factors for re-scaling after standard initializa-
tion. For vanilla Pre-LN Transformer, vl and wl equal to
1.

By means of Taylor expansion, we ignore the second-order
term. Model update ∆F satisfies that:

∆F =

d∑
i=1

∂F

∂xe
i

∂xe
i

∂W
(29)

To simplify the derivation, we make following assumption:
for i-th entry of backbone output xe, we only consider the
update of corresponding entry of each sub-layer’s output xl,
which means that ∂xe

i

∂xl
j

equals to 0 when i ̸= j.

With Equation (24), Equation (25) and Equation (26), we
estimate the magnitude of ∂xe

i

∂W l,2
ij

and ∂xe
i

∂W l,1
ij

. For simplicity,

we omit the index of output, i.e., xe
i = xe in the following.

∂xe

∂W l,2
ij

= δliu
l
j , δli =

∂xe

∂Gl
i

(30)

∂xe

∂W l,1
mn

=
∂xe

∂Gl
i

∂Gl
i

∂ul
m

∂ul
m

∂zlm
LNn(x

l−1)
Θ
= δliW

l,2
im (31)

Since the magnitude of the gradients which goes through
more than two layer normalization converges as the depth
L grows, for δlk we consider the magnitude of ∂xe

∂Gl
i

and∑L
k=l+1

∂xe

∂Gk
i

∂Gk
i

∂Gl
i

. With ∂LN(x)
∂x = O(

√
d

||x||2 ), the magnitude

of δlk satisfies that:

δlk
Θ
= (1 +

L∑
k=l+1

vkwk√∑k−1
n=1 v

2
nw

2
n

)
1√∑L

n=1 v
2
nw

2
n

= δl,

1 ≤ l ≤ L− 1 (32)

δLk
Θ
=

1√∑L
n=1 v

2
nw

2
n

(33)

We have the bounds of model update caused by W 2 =
{W l,2}Ll=1 and W 1 = {W l,1}Ll=1:

∆FW 2 =

L∑
l=1

d∑
i,j

∂F

∂xe
i

∂xe
i

∂W l,2
ij

∆W l,2
ij

=

L∑
l=1

d∑
i,j

δlul
jW

vocab
i ∆W l,2

ij (34)

∆FW 1 =

L∑
l=1

d∑
i,m,n

∂F

∂xe
i

∂xe
i

∂W l,1
mn

∆W l,1
mn

=

L∑
l=1

d∑
i,m,n

δlW l,2
imW vocab

i ∆W l,1
mn (35)

Then we estimate ∆F under SGD update. Following

Karakida et al. (2019), we introduce
−
p
l

and
−
q
l

for forward
and backward signal propagation of l-th sub-layer.

−
q
l

=

d∑
i=1

(δli)
2 Θ
=

d∑L
n=1 v

2
nw

2
n

(1 +

L∑
k=l+1

v2kw
2
k∑k−1

n=1 v
2
nw

2
n

)

(36)

−
p
l

=
1

d

d∑
j=1

(ul
j)

2 Θ
= w2

l (37)

Above all, we have the bound for N -layer Pre-LN Trans-
former’s update ∆F , where η is learning rate:

∆F = ∆FW 1 +∆FW 2 = η

L∑
l=1

(v2l + w2
l )

−
q
l

(38)

Θ
= ηd(

∑L
l=1 v

2
l + w2

l∑L
n=1 v

2
nw

2
n

(39)

+

L∑
l=1

L∑
k=2

v2l + w2
l∑L

n=1 v
2
nw

2
n

v2kw
2
k∑k−1

n=1 v
2
nw

2
n

)) (40)

A.2. MAGNETO

We give theoretical analysis in the following section. For an
N -layer, encoder-only MAGNETO, the forward computation
of the l-th sub-layer can be formulated as:

xl
i =

d∑
j=1

W l,2
ij ul

j + xl−1
i (41)

ul
i = LN(ϕ(zli)) (42)

12
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zli =

d∑
j=1

W l,1
ij LNj(x

l−1) (43)

Following the same assumptions in Appendix A.1, the gra-
dient ∂xe

∂W l,2
ij

is the same as it in Equation (30). With Equa-

tion (41), Equation (42) and Equation (43), we estimate
∂xe

∂W l,1
mn

as follows:

∂xe

∂W l,1
mn

=
∂xe

∂Gl
i

∂Gl
i

∂ul
m

∂ul
m

∂zlm
LNn(x

l−1)
Θ
=

δlk
wl

W l,2
ki (44)

It is noted that with additional normalization, re-scaling fac-
tor wl of input projection does not impact the magnitude of

sublayer’s output Gl, and
−
p
l

is normalized to 1. Therefore,

we have the bound of the magnitude of δlk and
−
q
l

:

δlk
Θ
= (1 +

L∑
k=l+1

vk√∑k−1
n=1 v

2
n

)
1√∑L
n=1 v

2
n

, 1 ≤ l ≤ L− 1

(45)

δLk =
1√∑L
n=1 v

2
n

(46)

−
q
l Θ
=

d∑L
n=1 v

2
n

(1 +

L∑
k=l+1

v2k∑k−1
n=1 v

2
n

) (47)

We have the bound of model update caused by W 1 and W 2

under SGD respectively:

∆FW 2 = η

L∑
l=1

−
q
l

, ∆FW 1 = η

L∑
l=1

v2l
w2

l

−
q
l

(48)

Above all, the bound of the model update’s magnitude ∆F
satisfies that:

∆F = ∆FW 1 +∆FW 2 = η

L∑
l=1

(1 +
v2l
w2

l

)
−
q
l

(49)

Θ
= ηd(

∑L
l=1 1 +

v2l
w2

l∑L
n=1 v

2
n

+
1∑L

n=1 v
2
n

L∑
l=1

L∑
k=2

(1 +
v2l
w2

l

)
v2k∑k−1

n=1 v
2
n

) (50)

B. Model update for Encoder-decoder
Transformers

B.1. Pre-LN

The derivation of self-attention and FFN layers is given in
Appendix A.1. For l-th cross attention layer, the forward
computation is:

yli =

d∑
j=1

W l,2
ij ul

j + yl−1
i (51)

ul
i = ϕ(zli) (52)

zli =

d∑
j=1

W l,1
ij xe

j (53)

xe is the output of the encoder. δld and
−
q
l

d are given in
Equation (32) and Equation (36) respectively. Then we
estimate the bound of ∂f

∂xe
j

:

∂F

∂xe
j

Θ
=

Ld∑
l=1,l%3=1

∂F

∂ydi

∂ydi
∂yli

∂yli
∂xe

j

(54)

Θ
=

Ld∑
l=1,l%3=1

W vocab
i δli

d∑
k=1

W l,2
ik

d∑
j=1

W l,1
kj (55)

The bound of ||
∂F

∂xe
||22 satisfies that:

||
∂F

∂xe
||22 =

d∑
j=1

(
∂F

∂xe
j

)2
Θ
=

Ld∑
l=1,l%3=1

v2l w
2
l

d

−
q
l

d (56)

Above all, under SGD update, we have the model update
∆Fed for a N -layer encoder, M -layer decoder Pre-LN
Transformer:

13
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∆Fed ≤ ∆Fd +

Ld∑
l=1,l%3=1

v2dlw
2
dl∑Ld

n=1 v
2
dnw

2
dn

(1

+

Ld∑
k=2

v2dkw
2
dk∑k−1

n=1 v
2
dnw

2
dn

)∆Fe (57)

∆Fd
Θ
= ηd(

∑Ld

l=1 v
2
dl + w2

dl∑Ld

n=1 v
2
dnw

2
dn

+

Ld∑
l=1

Ld∑
k=2

v2dl + w2
dl∑Ld

n=1 v
2
dnw

2
dn

v2dkw
2
dk∑k−1

n=1 v
2
dnw

2
dn

)) (58)

∆Fe
Θ
= ηd(

∑Le

l=1 v
2
el + w2

el∑Le

n=1 v
2
enw

2
en

+

Le∑
l=1

Le∑
k=2

v2el + w2
el∑Le

n=1 v
2
enw

2
en

v2ekw
2
ek∑k−1

n=1 v
2
enw

2
en

)) (59)

where Ld equals to 3M , Le equals to 2N .

B.2. MAGNETO

The forward computation of cross attention layer for MAG-
NETO is:

yli =

d∑
j=1

W l,2
ij ul

j + yl−1
i (60)

ul
i = LN(ϕ(zli)) (61)

zli =

d∑
j=1

W l,1
ij xe

j (62)

Similarly we estimate the bound of ||
∂F

∂xe
||22:

∂F

∂xe
j

Θ
=

Ld∑
l=1,l%3=1

∂F

∂yli

∂yli
∂xe

j

Θ
=

Ld∑
l=1,l%3=1

W vocab
i δli

d∑
k=1

W l,2
ik

d∑
j=1

√
d

||ϕ(zl)||
W l,1

kj

(63)

||
∂F

∂xe
||22 =

d∑
j=1

(
∂F

∂xe
j

)2
Θ
=

Ld∑
l=1,l%3=1

v2l
d

−
q
l

d (64)

With Equation (64), we have the bound of the model update
∆Fed for a N -layer encoder, M -layer decoder MAGNETO:

∆Fed ≤ ∆Fd+

+

Ld∑
l=1,l%3=1

v2dl∑Ld

n=1 v
2
dn

(1 +

Ld∑
k=2

v2dk∑k−1
n=1 v

2
dn

)∆Fe

(65)

∆Fd
Θ
= ηd(

∑Ld

l=1(1 +
v2dl
w2

dl

)∑Ld

n=1 v
2
dn

+
1∑Ld

n=1 v
2
dn

Ld∑
l=1

Ld∑
k=2

(1 +
v2dl
w2

dl

)
v2dk∑k−1

n=1 v
2
dn

) (66)

∆Fe
Θ
= ηd(

∑Le

l=1(1 +
v2el
w2

el

)∑Le

n=1 v
2
en

+
1∑Le

n=1 v
2
en

Le∑
l=1

Le∑
k=2

(1 +
v2el
w2

el

)
v2ek∑k−1

n=1 v
2
en

) (67)

There are multiple methods to bound ∆Fed independent
of the depth by setting proper vel, wel, vdl and wdl. In
this work, we set vel = wel = γe and vdl = wdl = γd
for all sub-layers. We first use γd =

√
log 3M to bound

∆Fd to O(ηd). With γd =
√
log 3M , the second term of

Equation (65) satisfies that:

Ld∑
l=1,l%3=1

v2dl∑Ld

n=1 v
2
dn

(1 +

Ld∑
k=2

v2dk∑k−1
n=1 v

2
dn

)∆Fe

= O(
log 3M log 2N

3γ2
e

) (68)

= O(1) (69)

It leads to γe =
√

1
3 log 3M log 2N .
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C. Hyperparameters

Hyperparameters Base Size Large Size Xd Size

Layers 24 48 72
Hidden size 1024
FFN inner hidden size 3072
Attention heads 16

Training updates 500K 250K
Peak learning rate {5e-4, 7e-4, 1e-3, 1.2e-3}
Tokens per sample 2048
Batch size 256
Adam β (0.9, 0.98)
Learning rate schedule Polynomial decay
Warmup updates 750

Gradient clipping ✗
Dropout ✗ 0.1
Attention dropout ✗ 0.1
Weight decay 0.01

Table 9. Hyperparameters for MAGNETO and the baselines pre-
training on causal language modeling.

Hyperparameters MLM pretraining

Layers 12
Hidden size 768
FFN inner hidden size 3072
Attention heads 12

Peak Learning rate {5e-4, 1e-3, 2e-3, 3e-3}
Learning rate schedule Polynomial decay
Warm-up updates 10,000
Warm-up init learning rate 1e-7
Tokens per sample 512
Batch size 2048
Mask ratio 15%
Adam β (0.9, 0.98)
Training updates 125K

Gradient clipping 2.0
Dropout 0.1
Weight decay ✗

Table 10. Hyperparameters for MAGNETO and the baselines on
masked language model pretraining.

Hyperparameters Large Task Small Task

Peak Learning rate {1e-5, 2e-5, 3e-5, 4e-5,
1e-4, 2e-4, 3e-4, 4e-4}

Adam β (0.9, 0.98)
Warm-up {10%, 20%} {10%, 16%}
Batch size 32 {16, 32}
Training epochs 3 {2, 3, 5, 10}
Seed {1, 2, 3}

Gradient clipping ✗
Dropout 0.1
Weight decay 0.01

Table 11. Hyperparameters for MAGNETO and the baselines fine-
tuning on the GLUE benchmark. (Large tasks include MNLI,
QNLI, QQP, and SST. Small tasks are CoLA, MRPC, and STS.)

Hyperparameters Base Size

Layers 18L-18L
Hidden size 512
FFN inner hidden size 2048
Attention heads 8

Peak Learning rate 4e-3
Learning rate schedule Inverse sqrt
Warm-up updates 8,000
Warm-up init learning rate 1e-7
Max tokens 128 × 4K
Adam β (0.9, 0.98)
Label smoothing 0.1
Training updates 100K

Gradient clipping 1.0
Dropout 0.1
Weight decay ✗

Table 12. Hyperparameters for MAGNETO and the baselines on
the machine translation.

Hyperparameters BEiT pretraining

Layers 12 24
Hidden size 768 1024
FFN inner hidden size 3072 4096
Attention heads 12 16
Patch size 16× 16

Training epochs 300
Batch size 2048
Adam β (0.9, 0.98)
Peak learning rate 1.5e-3
Minimal learning rate 1e-5
Learning rate schedule Cosine
Warmup epochs 10

Gradient clipping 3.0
Dropout ✗
Drop path 0
Weight decay 0.05

Data Augment RandomResizeAndCrop
Input resolution 224× 224
Color jitter 0.4

Table 13. Hyperparameters for MAGNETO pretraining on
ImageNet-1K.
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Hyperparameters L=12 L=24

Peak learning rate 5e-4 3e-4
Fine-tuning epochs 100 50
Warmup epochs 20 5
Layer-wise learning rate decay 0.65 0.8
Batch size 1024
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Minimal learning rate 1e-6
Learning rate schedule Cosine

Repeated Aug ✗
Weight decay 0.05
Label smoothing ε 0.1
Drop path 0.1 0.2
Dropout ✗
Gradient clipping ✗

Erasing prob. 0.25
Input resolution 224× 224
Rand Augment 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0

Table 14. Hyperparameters for fine-tuning MAGNETO on
ImageNet-1K.

Hyperparameters L=18 L=36

Layers 18 36
Hidden size 512 512
FFN inner hidden size 2048 2048
Attention heads 8 8
Relative positional embeddings ✓ ✓

Training steps 400K 400K
Epochs 150 150
AdamW ϵ 1e-6 1e-6
AdamW β (0.9, 0.98) (0.9, 0.98)
Peak learning rate 5e-3 3e-3
Learning rate schedule Linear Linear
Warmup steps 32k 32k

Gradient clipping 1.0 1.0
Dropout 0.1 0.1
Weight decay 0.01 0.01

Speed perturbation ✗ ✗
Frequency masks 2 2
Maximum frequency-mask width 27 27
Time masks 10 10
Maximum time-mask ratio 0.04 0.04

Table 15. Hyperparameters for training MAGNETO on Lib-
riSpeech.

Hyperparameters BEiT-3 pretraining

Layers 24
Hidden size 544
FFN inner hidden size 2176
Attention heads 16
Patch size 16× 16
Relative positional embeddings ✗

Training steps 300K
Batch size 12288
AdamW ϵ 1e-6
AdamW β (0.9, 0.98)
Peak learning rate 2.8e-3
Learning rate schedule Cosine
Warmup steps 20k

Gradient clipping 3.0
Dropout ✗
Drop path 0.1
Weight decay 0.05

Data Augment RandomResizeAndCrop
Input resolution 2242

Color jitter 0.4

Table 16. Hyperparameters for vision-language pretraining.

Hyperparameters NLVR2 VQA

Peak learning rate {1e-5, 2e-5, 3e-5}
Fine-tuning epochs 10
Warmup epochs 1
Layer-wise learning rate decay 1.0
Batch size 128
AdamW ϵ 1e-8
AdamW β (0.9, 0.999)
Weight decay 0.01
Drop path 0.2 0.1
Dropout ✗
Input resolution 2242 3842

Table 17. Hyperparameters for fine-tuning MAGNETO and the
baseline on NLVR2 and VQA.
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