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Abstract
Semi-supervised semantic segmentation involves
assigning pixel-wise labels to unlabeled images
at training time. This is useful in a wide range
of real-world applications where collecting pixel-
wise labels is not feasible in time or cost. Current
approaches to semi-supervised semantic segmen-
tation work by predicting pseudo-labels for each
pixel from a class-wise probability distribution
output by a model. If the predicted probability
distribution is incorrect, however, this leads to
poor segmentation results, which can have knock-
on consequences in safety critical systems, like
medical images or self-driving cars. It is, there-
fore, important to understand what a model does
not know, which is mainly achieved by uncer-
tainty quantification. Recently, neural processes
(NPs) have been explored in semi-supervised im-
age classification, and they have been a computa-
tionally efficient and effective method for uncer-
tainty quantification. In this work, we move one
step forward by adapting NPs to semi-supervised
semantic segmentation, resulting in a new model
called NP-SemiSeg. We experimentally evaluated
NP-SemiSeg on the public benchmarks PASCAL
VOC 2012 and Cityscapes, with different training
settings, and the results verify its effectiveness.

1. Introduction
Semi-supervised image segmentation has seen a rapid pro-
gress in recent years and involves assigning class labels to
every pixel in an unlabeled image at training time. This
has many real-world applications, from medical imaging
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to autonomous driving systems, where the cost and time to
annotate large-scale training datasets with pixel-level labels
is prohibitive.

Most recent works (Alonso et al., 2021; Chen et al., 2021a;b;
French et al., 2020; Hu et al., 2021a; Ouali et al., 2020;
Zhong et al., 2021; Wang et al., 2022b; Guan et al., 2022;
Liu et al., 2022; Kwon & Kwak, 2022; Yang et al., 2022;
Zhao et al., 2023) belong to the deterministic approach that
aims at directly making a prediction for an input image.
That is, it does not model the predictive distribution, and
only gives a point estimate. In contrast, a method model-
ing a predictive distribution for the input is classified as
probabilistic approach. Its key advantage is that one can
estimate the uncertainty for an input by simply sampling
from the posterior. The uncertainty provides information
about whether the prediction is reliable, and thus how to
estimate uncertainty should be considered under the setting
of semi-supervised learning (SSL), as the performance of
segmentation models is vulnerable to unlabeled data with
incorrect pseudo-labels, and decision-makers need to know
when they should not trust the models.

Unfortunately, the probabilistic approach is insufficiently
investigated, as researchers barely explored its application
to semi-supervised semantic segmentation for computer vi-
sion, and most related works focus on medical imaging
(Sedai et al., 2019; Shi et al., 2021; Yu et al., 2019; Li
et al., 2020; Wang et al., 2021; Wang & Lukasiewicz, 2022;
Meyer et al., 2021; Xiang et al., 2022), in which Monte
Carlo (MC) dropout has been the mainstream option for
uncertainty quantification. MC dropout, however, has some
limitations that hinder it from real scenarios. For instance,
it can be time-consuming when it is combined with cumber-
some segmentation models, as several feedforward passes
are required for estimating uncertainty. In addition, archi-
tectural choices, such as where to insert dropout layers and
the value of the dropout rate, are usually empirically set,
which may result in a suboptimal performance. To tackle
the limitations, a very recent work (Wang et al., 2022a) has
studied neural processes (NPs) for SSL, in which a new
model named NP-Match is proposed. Compared to MC-
dropout-based SSL models, NP-Match is computationally
significantly more efficient, as it only needs to perform one

1



NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic Segmentation

feedforward pass to derive the prediction with an uncertainty
estimate for a given input. Moreover, in NP-Match, NPs
are directly built on top of convolutional neural networks
(CNNs), and hence, unlike MC dropout, which has to be
empirically set, NPs are more convenient to use.

Considering the success of NP-Match and insufficient
exploration towards the probabilistic approach for semi-
supervised semantic segmentation, in this work, we investi-
gate the application of NPs on semi-supervised semantic seg-
mentation, and propose a new model, called NP-SemiSeg.
In particular, we primarily made two modifications when
designing NP-SemiSeg. First, a global latent variable is pre-
dicted for each input image, rather than producing a global
latent vector shared by different images.1 This change is
inspired by the fact that different images may have differ-
ent prior label distributions. Hence, it is more reasonable
to assume that every image has its own specific prior, and
NP-SemiSeg should separately predict a global latent vector
for every image, shared by all its pixels. Second, atten-
tion mechanisms are additionally introduced to both the
deterministic path and the latent path. In the original NPs
(Garnelo et al., 2018b), the information of context points or
target points is summarized via a mean aggregator in both
paths, and NP-Match also follows this practice. However,
the mean aggregator introduces the issue that the decoder of
NPs cannot capture relevant information for a given target
prediction, as the mean aggregator gives the same weight to
each point. Inspired by another model named attentive NPs
(Kim et al., 2019), attention mechanisms are also integrated
into NP-SemiSeg to solve this issue.

To validate the effectiveness of NP-SemiSeg, we conducted
several experiments on two public benchmarks, namely,
PASCAL VOC 2012 and Cityscapes, with diverse SSL set-
tings, and the results show two merits of NP-SemiSeg. First,
NP-SemiSeg is versatile and flexible, because it can be in-
tegrated into different segmentation frameworks, such as
CPS (Chen et al., 2021b) or U2PL (Wang et al., 2022b).
Equipped with NP-SemiSeg, those frameworks are turned
into probabilistic models, which are able to make predic-
tions and quantify the uncertainty for input samples. Second,
compared to the widely used MC-dropout-based segmen-
tation models, the segmentation models with NP-SemiSeg
are faster in terms of uncertainty quantification and are able
to give higher-quality uncertainty estimates with less per-
formance degradation, indicating that NP-SemiSeg can be a
good alternative probabilistic method to MC dropout.

It should be noted that the principal objective of this re-
search is not to introduce a new segmentation approach that
surpasses all state-of-the-art methods. Rather, the aim is

1In NP-Match (Wang et al., 2022a), NPs generate a global
latent vector shared by all images within a given batch, which
follows the pipeline of the original NPs (Garnelo et al., 2018b).

to present a novel probabilistic model for semi-supervised
semantic segmentation, capable of delivering both a good
performance and reliable uncertainty estimates. Summariz-
ing, the main contributions of this paper are:
• We adjust NPs to semi-supervised semantic segmenta-

tion, and propose a new probabilistic model, named NP-
SemiSeg, which is flexible and can be combined with
different existing segmentation frameworks for making
predictions and estimating uncertainty.

• We integrate an attention aggregator into NP-SemiSeg,
which assigns higher weights to the information that is
more relevant to target data, enhancing the performance
of NP-SemiSeg.

• Compared to MC-dropout-based segmentation models,
NP-SemiSeg not only performs better in terms of accu-
racy, but also runs faster regarding uncertainty estimation,
showing its potential to be a new probabilistic model for
semi-supervised semantic segmentation.

The rest of this paper is organized as follows. In Section 2,
we briefly discuss related works. Section 3 elaborates our
NP-SemiSeg, followed by our experimental details and re-
sults in Section 4. Finally, we give a conclusion and some
future research directions in Section 5. The source code is
available at: https://github.com/Jianf-Wang/NP-SemiSeg.

2. Related Works
In this section, we briefly review related works, including
SSL for image classification, semi-supervised semantic seg-
mentation, and the neural process (NP) family.

SSL for Image Classification. In the past few years, many
methods have been proposed for semi-supervised image
classification, which provide insights and research direc-
tions for semi-supervised semantic segmentation. The most
prevalent method is FixMatch (Sohn et al., 2020). During
training, it produces pseudo-labels for weakly-augmented
unlabeled data based on a preset confidence threshold, and
the pseudo-labels are used as the ground-truth for their
strongly augmented version to train the whole framework.
FixMatch (Sohn et al., 2020) thereafter inspired a series
of promising methods (Li et al., 2021; Rizve et al., 2021;
Zhang et al., 2021; Nassar et al., 2021; Pham et al., 2021;
Hu et al., 2021b). For example, Li et al. (2021) incorpo-
rate contrastive learning through additionally designing the
projection head that generates low-dimensional embeddings
for samples. The low-dimensional embeddings with sim-
ilar pseudo-labels are encouraged to be close, which im-
proves the quality of pseudo-labels. Zhang et al. (2021)
use dynamic confidence thresholds that are adjusted based
on the model’s learning status of each class, rather than
the fixed preset confidence threshold. A more relevant
method, named uncertainty-aware pseudo-label selection
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(UPS) framework, was proposed by Rizve et al. (2021). This
framework can be regarded as a probabilistic approach, as it
applies MC dropout to obtain uncertainty estimates, based
on which unreliable pseudo-labels are filtered out. Due to
the weaknesses of MC dropout mentioned above, Wang
et al. (2022a) try to explore a new alternative probabilistic
model, i.e., NPs, for semi-supervised image classification,
and propose a new method called NP-Match, which not only
shows a promising accuracy on several public benchmarks,
but also alleviates the problem of MC dropout. These results
encourage us to further investigate the application of NPs
on semi-supervised semantic segmentation.

Semi-supervised Semantic Segmentation. Most meth-
ods can be classified into two training paradigms, namely,
consistency-training (French et al., 2020; Zhou et al., 2021;
Ouali et al., 2020; Zhong et al., 2021; Liu et al., 2022; Ke
et al., 2019) and self-training (Alonso et al., 2021; Chen
et al., 2021a; Hu et al., 2021a; Wang et al., 2022b; Guan
et al., 2022; Kwon & Kwak, 2022; Yang et al., 2022; Zou
et al., 2021; Zhao et al., 2023).

The consistency-training methods aim to maintain the con-
sistency among the segmentation results of different pertur-
bations of the same unlabeled sample. For example, Ouali
et al. (2020) propose a cross-consistency training (CCT)
method, and it contains a main decoder and several aux-
iliary decoders, which share the same encoder. For the
unlabeled examples, a consistency between the main de-
coder’s outputs and the auxiliary outputs is maintained, over
different kinds of perturbations leveraged to the inputs of
the auxiliary decoders. Zhong et al. (2021) design a new
framework, named PC2Seg, which takes advantage of both
the pixel-contrastive property and the consistency property
during training, and their combination further enhances the
performance. Considering the potential inaccurate training
signal caused by perturbations, Liu et al. (2022) introduce
an additional teacher model, a stricter confidence-weighted
cross-entropy loss, and a new type of feature perturbation
to improve consistency learning.

Self-training methods assign pixel-wise pseudo-labels to
unlabeled data, and re-train the segmentation networks. For
instance, PseudoSeg (Zou et al., 2021) utilizes the predic-
tions of unlabeled data as the labels to re-train the whole
framework. To obtain accurate pseudo-labels, a calibrated
fusion module is incorporated, which fuses both the out-
puts of the decoder and the refined class activation map
(CAM). The success of self-supervised learning motivates
Alonso et al. (2021) to integrate the pixel-level contrastive
learning scheme into their framework, which aims at en-
forcing the feature vector of a target pixel to be similar to
the same-class features from the memory bank. Recently,
Wang et al. (2022b) have discovered that some pixels may
never be learned in the entire self-training process, due to

their low confidence scores. Then, they propose a new
framework, called U2PL, which reconsiders those pixels as
negative samples for training. Zhao et al. (2023) reconsider
the data augmentation techniques used in the self-training
process, and they design a new highly random intensity-
based augmentation method and an adaptive cutmix-based
augmentation method to enhance the performance.

All above methods do not involve any probabilistic model,
and it is only valued in medical imaging (Sedai et al., 2019;
Shi et al., 2021; Yu et al., 2019; Li et al., 2020; Wang et al.,
2021; Wang & Lukasiewicz, 2022; Meyer et al., 2021; Xiang
et al., 2022), where most methods rely on MC dropout
for approximating BNNs and estimating uncertainty. In a
nutshell, those methods usually leverage uncertainty maps
given by MC dropout to refine pseudo-labels for unlabeled
data, thereby boosting the capability of their models.

NP Family. The first member of the NP family comes from
Garnelo et al. (2018a); it is called conditional NP (CNP).
CNPs model the predictive distribution over context sets
and target sets. However, CNPs only provide a point-wise
uncertainty estimate. In most cases, it would be beneficial to
exploit the correlation among different points during infer-
ence. Therefore, NPs are proposed to build the correlation
points by introducing global latent variables as priors for
those points (Garnelo et al., 2018b). Kim et al. (2019) have
observed that NPs tend to underfit the context set, which
is caused by the mean aggregator giving equal weights to
all the context points. To remedy this issue, they propose
a new model, called attentive NP, which uses an attention
mechanism to attend to relevant context points with respect
to target predictions. Concerning that the application ar-
eas of NPs are time series or spatial data, the translation
equivalence should be an important property, i.e., if the data
are translated in time or space, the predictions should be
translated correspondingly. This property was ignored in
previous models, until Gordon et al. (2020) designed a new
model called convolutional CNPs. Besides, concerning that
the global latent variables are not flexible for encoding in-
ductive biases, Louizos et al. (2019) employ local latent
variables along with a dependency structure among them in-
stead, obtaining a new functional NP (FNP). Similarly, Lee
et al. (2020) also point out the limited flexibility of a single
latent variable to model functional uncertainty, and they use
a classic frequentist technique, namely, bootstrapping, to
model functional uncertainty, leading to a new NP variant,
named Bootstrapping Neural Processes (BNPs). Bruinsma
et al. (2021) propose a new NP variant called Gaussian NPs
(GNPs), which not only involves translation equivariance
with Gaussian processes (Rasmussen & Williams, 2006),
but also provides universal approximation guarantees. Note
that we only summarize some classical members of the NP
family in this part, and for more variants and their applica-
tions, please refer to the survey paper (Jha et al., 2022).
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3. Methodology
3.1. Background

Neural Processes (NPs) are a neural network-based formu-
lation that learn to approximate a stochastic process through
finite-dimensional marginal distributions (Garnelo et al.,
2018b). Their working mechanism is closely related to a
classical non-parametric model, Gaussian Processes (GPs).
A GP makes the assumption that each point in the input
space essentially maps to a normally distributed random
variable. The GP model is fully specified by a mean func-
tion, which provides the expected value of these random
variables, and a kernel function, which describes the de-
pendencies among the variables. Thus, GPs are a powerful
probabilistic model that can provide a measure of uncer-
tainty along with predictions. However, GPs are computa-
tionally expensive for large datasets and require a careful
choice and tuning of the kernel function, which hinders their
practical applications. To address these issues, NPs have
been proposed.

Before formally defining NPs, we first give the definition
of a stochastic process. In general, a stochastic process
can be defined as {F (x, ω) : x ∈ X} over a probability
space (Ω,Σ,Π) and an index set X , where F (· , ω) is a
sample function mapping X to another space Y for any
point ω ∈ Ω. Therefore, for any finite sequence x1:n, a
marginal joint distribution function can be defined on the
function values F (x1, ω), F (x2, ω), . . . , F (xn, ω), which
satisfies two conditions given by the Kolmogorov Extension
Theorem (Øksendal, 2003):

Exchangeability: This condition indicates that the marginal
joint distribution should remain unaffected by any permuta-
tion of the sequence.

Consistency: This condition requires that the marginal
joint distribution should remain unaffected when a part of
the sequence is marginalized out.

With the two conditions, a stochastic process can be de-
scribed by the marginal joint distribution function, namely:

p(y1:n|x1:n) =

∫
π(ω)p(y1:n|F (· , ω), x1:n)dµ(ω), (1)

where π denotes density, namely, dΠ = πdµ. Here, the
function F (· , ω) is determined by the kernels, which mea-
sure how all variables interact with each other.

To approximate stochastic processes, NPs parameterize the
function F (· , ω) in the marginal joint distribution with
neural networks and latent vectors. Specifically, let (Ω,Σ)
be (Rd,B(Rd)), where B(Rd) denotes the Borel σ-algebra
of Rd, and NPs use a latent vector z ∈ Rd sampled from
a multivariate Gaussian distribution to govern the function

F (· , ω). Then, F (xi, ω) can be replaced by ϕ(xi, z),
where ϕ(·) denotes a neural network, and Eq. (1) becomes:

p(y1:n|x1:n) =

∫
π(z)p(y1:n|ϕ(x1:n, z), x1:n)dµ(z). (2)

By doing this, NPs are capable of predicting and estimating
uncertainty for each data point, circumventing the explicit
access to kernel functions and comparisons of distances
among distinct points. This capability renders them practical
for application in real-world scenarios.

The training objective of NPs is to maximize p(y1:n|x1:n),
which can be implemented by maximizing its evidence
lower-bound (ELBO). The learning procedure reflects the
NPs’ property that they have the capability to make predic-
tions for target data conditioned on context data (Garnelo
et al., 2018b).

3.2. NP-SemiSeg

3.2.1. NPS FOR SEMI-SUPERVISED SEMANTIC
SEGMENTATION

Semantic segmentation can be treated as a pixel-wise clas-
sification problem, and therefore, p(y1:n|ϕ(x1:n, z), x1:n)
in Eq. (2) can be changed to the categorical distribution
(denoted as C). Specifically, a weight matrix (W) and a soft-
max function (Φ) can be sequentially applied to the feature
presentation of every pixel from the decoder ϕ(·), outputting
a probability vector that can parameterize C. Furthermore,
different images can have distinct prior label distributions,
as some objects cannot appear in the same image. For ex-
ample, if an image captures the main road of a city, fish will
not appear, whose prior should be zero. But if the image
records the creatures in the sea, the prior of fish is close
to one. Because of this, rather than using a global latent
variable for different images, we instead use a latent variable
per image. This can be viewed as giving each image its own
prior. Thus, we rewrite p(y1:n|ϕ(x1:n, z), x1:n) as follows:

p(y1:n|ϕ(x1:n, z1:n), x1:n) = C(Φ(Wϕ(x1:n, z1:n))), (3)

where the decoder ϕ(·) can be learned through amortised
variational inference. Specifically, as for a finite sequence
with length n, we assume m context data (x1:m) and r target
data (xm+1: m+r) in it, i.e., m+ r = n. We also assume a
variational distribution over latent variables, and the ELBO
is given by (with proof in the appendix):

log p(y1:n|x1:n) ≥

Eq(zm+1: m+r|xm+1: m+r,ym+1: m+r)

[ m+r∑
i=m+1

log p(yi|zi, xi)−

log
q(zm+1: m+r|xm+1: m+r, ym+1: m+r)

q(zm+1: m+r|x1:m, y1:m)

]
+ log p(y1:m|x1:m).

(4)
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Then, one can maximize the ELBO to learn the NP model.
During training, we follow the setting of NP-Match (Wang
et al., 2022a) which treats only labeled data as context data
and treats either labeled or unlabeled data as target data.

3.2.2. NP-SEMISEG PIPELINE

We formulate NP-SemiSeg in a modular fashion, so that
it can directly replace the classification layer of any seg-
mentation pipeline without changing other modules in the
pipeline, to output predictions with uncertainty estimates.
As a result, NP-SemiSeg is flexible and can be used for
different segmentation frameworks. To achieve this goal,
the input of NP-SemiSeg should be feature maps,2 which is
consistent with the input of a classifier in other segmentation
frameworks. To make explanations clearer, we only focus
on NP-SemiSeg itself.

The overall pipeline of NP-SemiSeg is shown in Figure 1,
where we represent the context and target data as generic
feature maps, which could be obtained from any semantic
segmentation pipeline such as U2PL (Wang et al., 2022b)
and AugSeg (Zhao et al., 2023). NP-SemiSeg has a training
mode and an inference mode. The former aims to calculate
loss functions with real labels or pseudo-labels during train-
ing, while the latter makes predictions for unlabeled data
during training or test data during testing. In what follows,
we describe these two modes:

Training mode. Given a batch of labeled data and a batch
of unlabeled data, NP-SemiSeg is initially switched to infer-
ence mode, and it makes predictions for the unlabeled data.
Those predictions are regarded as pseudo-labels for unla-
beled data by taking the class with the highest probability.
Then, NP-SemiSeg turns to training mode, and it duplicates
the labeled samples and treats them as context data. Subse-
quently, the context data are passed through a deterministic
path, which aims to obtain order-invariant context represen-
tations, and the target data are passed through a latent path,
which aims to produce latent variables. The outputs from
both paths are finally concatenated and then passed through
a decoder before the loss is computed. Below, we provide
details for the latent path and the deterministic path.

As for the latent path, target data are processed by a small
ConvNet3 at first for dimensionality reduction, whose out-
puts are transformed feature maps with a low channel di-
mension. The transformed feature maps are further split
along the width (W ) and the height (H), resulting in feature
vectors. Based on the number of classes, a set of latent mem-
ory banks have been initialized, each of which is assigned

2In general, most segmentation frameworks are based on
DeepLab (Chen et al., 2017), where a classifier acts on the final
output feature maps from the decoder to predict for every location.

3The small ConvNet is mainly composed by 1×1 convolutions,
and its outputs have the same spatial size as its inputs.

to a category. Those feature vectors are passed to the latent
memory banks according to their real or pseudo labels.4

Then, a mean operator is used for each memory bank, and
we can obtain a center for each class. Those centers and
the target transformed feature maps are input to an attention
aggregator, whose outputs are feature maps composed by
target centers. Specifically, the feature vector of each lo-
cation in such centers-based feature maps is the weighted
summation of the centers, which intends to represent every
location by the most relevant features from the memory.
Thereafter, the global average pooling and MLPs are used to
produce a mean vector and a variance vector for each target
data point, followed by a reparameterization trick to get T
latent vectors whose dimension is Dt. Finally, those latent
vectors are copied for W ×H times, thereby forming latent
maps for each target data point with size T ×Dt ×W ×H .

As for the deterministic path, context data are processed in
the same way as the target data, until we obtain the context
centers for classes. Then, the context centers as well as
the target transformed feature maps are fed to the attention
aggregator, in order to get the feature maps composed by
the context centers, which are further processed by global
average pooling, leading to an order-invariant context rep-
resentation with dimension Dc for each target data point.
Finally, the order-invariant context representation is copied
for T ×W ×H times, thereby forming context maps for
each target data point with size T ×Dc ×W ×H .

After the latent maps and the context maps are obtained
for each target data point, they are concatenated with the
original feature maps of the target data whose size is T ×
D×W×H , and the concatenated feature maps will have the
size T×(D+Dt+Dc)×W×H , based on which a decoder
ϕ(·) makes pixel-wise predictions. The final prediction for
each target data point can be obtained by averaging the T
prediction maps, and the uncertainty map is computed as
the entropy of the average prediction (Kendall & Gal, 2017).
For saving space, only those centers are stored for inference
after training, instead of saving those memory banks.

Inference mode. As for a set of test data, they are treated as
target data and are first processed by the small ConvNet. Its
outputs, the target centers, and the context centers are taken
as inputs to the attention aggregator to acquire the feature
maps composed by centers. Subsequently, the remaining
steps are the same as in the training mode to generate con-
catenated feature maps where the decoder ϕ(·) acts on to
make predictions, along with their associated uncertainty
estimates.

4Note that q(z∗|xm+1:m+r, ym+1:m+r) is conditioned on both
data and labels, which is implemented by using them as inputs to
MLPs in NP-Match, but in NP-SemiSeg, the condition on labels is
implicitly implemented, i.e., how data are stored in memory banks
is determined by the labels.
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Figure 1. Overview of NP-SemiSeg. Both the small ConvNet and the attention aggregator are shared by the deterministic path and the
latent path. T , W , and H represent the number of sampled latent vectors, and the width and height of the input feature maps, respectively.

3.2.3. ATTENTION AGGREGATOR

To predict a target data point, it is beneficial to gather rele-
vant information from memory banks, as the centers close
to the target provide similar representations. To achieve
this, an attention aggregator is required, whose role is to
produce centers-based feature maps based on the distance
between query feature maps and a set of centers. We denote
the input feature maps and the input centers as M and C,
respectively. The output MC is calculated as follows:

MC[i, j] =
∑
l

e−Θ(M[i,j],C[l]))∑
k e

−Θ(M[i,j],C[k]))
C[l], (5)

where i and j denote the index of feature maps along width
and height. Both l and k denote the index of centers. Θ is
defined as Euclidean distance over two vectors. In summary,
the attention aggregator uses Θ to calculate the distance
between the feature vector M[i, j] at the location (i, j) and
every center, and all distances are further used to calculate
weights through the softmax function for centers. Then, the
output feature at location [i, j], namely, MC[i, j], is the
weighted combination of those centers. Similarly to ANPs
(Kim et al., 2019), by using an attention aggregator, only
the relevant information from the latent path and the deter-

ministic path is involved for making predictions, thereby
improving the model’s performance.

3.2.4. LOSS FUNCTIONS

The loss function for NP-SemiSeg is derived from the ELBO
(Eq. (4)). In particular, the first term can be achieved by
pixel-wise cross entropy loss Lc for both labeled and un-
labeled data, which is widely used in different segmen-
tation frameworks. The second term is the KL diver-
gence between q(zm+1: m+r|xm+1: m+r, ym+1: m+r) and
q(zm+1: m+r|x1:m, y1:m). Due to the i.i.d assumption,
those z∗ are conditionally independent, and thus they can be
calculated independently. We assume that the variational dis-
tribution follows a multivariate Gaussian with independent
components, and for each target sample, the KL divergence
term can be analytically written as:

Lkl =0.5× [
∑
Dt

log
σ2
c

σ2
t

+
∑
Dt

σ2
t

σ2
c

−Dt+

(mc −mt)diag(σ
−2
c )(mc −mt)

T ],

(6)

where diag(·) receives a vector and converts it into a
diagonal matrix. mc and mt denote the mean vector
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Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732)
MT 48.37 58.44 65.49 68.92

PS-MT 63.32 67.78 74.68 76.54
U2PL 62.13 68.11 73.22 75.60

AugSeg 64.22 72.17 76.17 77.40
MT w/ MC dropout 47.78 57.02 64.82 67.79

PS-MT w/ MC dropout 62.09 66.46 73.11 74.30
U2PL w/ MC dropout 59.17 66.89 72.16 74.19

AugSeg w/ MC dropout 62.78 69.87 74.76 76.13
MT w/ NP-SemiSeg 49.02 58.91 65.27 69.34

PS-MT w/ NP-SemiSeg 63.76 68.17 74.93 76.33
U2PL w/ NP-SemiSeg 59.45 68.73 74.16 75.77

AugSeg w/ NP-SemiSeg 65.78 72.38 75.77 77.40

Table 1. The mean IoU of different frameworks using ResNet-50
with either MC dropout or NP-SemiSeg on the classic PASCAL
VOC 2012 validation set under different partition protocols.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
MT 66.77 70.78 73.22 75.29

PS-MT 72.83 75.70 76.43 77.88
U2PL 74.74 77.44 77.51 78.62

AugSeg 77.28 78.27 78.24 79.02
MT w/ MC dropout 65.46 69.29 72.39 74.67

PS-MT w/ MC dropout 71.28 74.03 74.97 75.97
U2PL w/ MC dropout 73.79 76.23 76.56 76.41

AugSeg w/ MC dropout 76.42 76.87 77.02 77.56
MT w/ NP-SemiSeg 66.93 71.25 73.10 75.31

PS-MT w/ NP-SemiSeg 73.44 76.58 76.74 76.82
U2PL w/ NP-SemiSeg 75.59 77.77 77.78 77.23

AugSeg w/ NP-SemiSeg 77.00 78.68 78.69 79.03

Table 2. The mean IoU of different frameworks using ResNet-50
with either MC dropout or NP-SemiSeg on the blender PASCAL
VOC 2012 validation set under different partition protocols.

of q(z∗|x1:m, y1:m) and q(z∗|ym+1: m+r), respectively.
Similarly, σ2

c and σ2
t denote the variance vector of

q(z∗|x1:m, y1:m) and q(z∗|ym+1: m+r), respectively. The
third term is a conditional distribution over the context data,
but it is ignored in our loss function, as its maximization
has been implicitly implemented by the attention aggre-
gator, i.e., matching the transformed feature maps to the
centers (classes) according to their distances. The overall
loss function for NP-SemiSeg can be written as:

Lloss = Lc + λklLkl, (7)

where λkl is the coefficient. When NP-SemiSeg is incorpo-
rated into different segmentation frameworks, Lloss can be
naturally incorporated into their loss functions for end-to-
end training.

4. Experiments
In this section, we present our experimental results. To save
space, the implementation details are given in the appendix.

4.1. Datasets

We tested our models on two public segmentation bench-
marks, namely, Cityscapes (Cordts et al., 2016) and PAS-
CAL VOC 2012 (Everingham et al., 2010). Cityscapes is an

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
MT 66.14 72.03 74.47 77.43

PS-MT 70.12 74.49 76.12 77.64
U2PL 69.03 73.02 76.31 78.64

AugSeg 73.73 76.49 78.76 79.33
MT w/ MC dropout 65.25 71.09 72.48 74.96

PS-MT w/ MC dropout 68.83 73.11 75.25 75.47
U2PL w/ MC dropout 67.89 72.13 75.11 75.85

AugSeg w/ MC dropout 72.28 75.84 77.69 78.04
MT w/ NP-SemiSeg 66.20 72.14 73.89 76.29

PS-MT w/ NP-SemiSeg 70.27 74.67 76.14 76.93
U2PL w/ NP-SemiSeg 69.10 73.04 75.79 75.75

AugSeg w/ NP-SemiSeg 73.01 77.10 78.82 78.77

Table 3. The mean IoU of different frameworks using ResNet-
50 with either MC dropout or NP-SemiSeg on the Cityscapes
validation set under different partition protocols.

Dataset Label Amount MC Dropout NP-SemiSeg

Cityscapes

1/16 (186) 82.89 84.05
1/8 (372) 82.84 83.97
1/4 (744) 82.78 84.55

1/2 (1488) 82.92 84.61

VOC (classic)

1/16 (92) 85.79 86.87
1/8 (183) 86.42 87.98
1/4 (366) 87.05 88.74
1/2 (732) 87.64 89.69

VOC (blender)

1/16 (662) 88.04 89.62
1/8 (1323) 87.96 89.87
1/4 (2646) 88.18 89.99
1/2 (5291) 88.42 89.34

Table 4. The PAvPU of U2PL (Wang et al., 2022b) using ResNet-
50 with either MC dropout or NP-SemiSeg on different datasets.

urban scene understanding dataset containing 2, 975 train-
ing images with fine-annotated masks and 500 validation
images. We followed previous works (Wang et al., 2022b;
Zhao et al., 2023; Chen et al., 2021b) to use the sliding
evaluation for fair comparisons. PASCAL VOC 2012 is a
standard semantic segmentation dataset that has 20 semantic
classes and 1 background class. There are 1,464 and 1,449
images in the training set and the validation set, respectively.
Following Wang et al. (2022b); Zhao et al. (2023); Chen
et al. (2021b), we used coarsely-labeled 9,118 images from
the Segmentation Boundary dataset (SBD) (Hariharan et al.,
2011) as additional training data, and we also evaluated our
model on the classic set and the blender set. As in previous
works (Wang et al., 2022b; Zhao et al., 2023; Chen et al.,
2021b), the center-crops of images were used for evaluation.

4.2. Main Results

In the following, we report the main experimental results
on the mean of Intersection over Union (mIoU), the Patch
Accuracy vs. Patch Uncertainty (PAvPU) metric (Mukhoti
& Gal, 2018), and the running time of NP-SemiSeg over the
two benchmarks.

First, because of the flexibility of NP-SemiSeg, we inte-
grated it into different segmentation frameworks to show
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(a) Center-crop evaluation on PASCAL VOC 2012 (b) Sliding evaluation on Cityscapes

Figure 2. Time consumption of estimating uncertainty for U2PL
(Wang et al., 2022b) with MC dropout and NP-SemiSeg. The
horizontal axis refers to the number of predictions used for the
uncertainty quantification, and the vertical axis indicates the time
consumption (sec).

Dataset Label Amount w/o Attention w/ Attention

Cityscapes

1/16 (186) 67.86 69.10
1/8 (372) 72.44 73.04
1/4 (744) 75.33 75.79

1/2 (1488) 75.45 75.75

VOC (classic)

1/16 (92) 58.52 59.45
1/8 (183) 68.12 68.73
1/4 (366) 73.72 74.16
1/2 (732) 75.64 75.77

VOC (blender)

1/16 (662) 74.80 75.59
1/8 (1323) 77.26 77.77
1/4 (2646) 77.38 77.78
1/2 (5291) 76.91 77.23

Table 5. Ablation studies of attention aggregation on different
datasets. The results are all based on U2PL (Wang et al., 2022b)
using ResNet-50, and mean IoU is reported.

its performance. We chose four frameworks, namely, MT
(Tarvainen & Valpola, 2017), PS-MT (Liu et al., 2022),
U2PL (Wang et al., 2022b), and AugSeg (Zhao et al., 2023).
The first two frameworks are classified as the consistency-
training method, while the rest belongs to the self-training
method. Since MC dropout is the mainstream probabilis-
tic approach in SSL, we also evaluated it by applying it to
the four frameworks, and it is inserted after every activation
layer in their decoders. From Tables 1, 2, and 3, we have two
findings. First, on PASCAL VOC 2012, NP-SemiSeg can
help to further improve the mIoU in most cases. In contrast,
MC dropout leads to a poor performance, and it is outper-
formed by NP-SemiSeg with a healthy margin. Second, on
Cityscapes, though NP-SemiSeg only achieves compara-
ble results, it still performs clearly better than MC dropout.
Thus, compared to MC dropout, NP-SemiSeg is a more fa-
vorable choice for semi-supervised semantic segmentation,
as it does not cause a serious performance degradation. In
the other experiments, we fixed a single framework, i.e.,
U2PL (Wang et al., 2022b), to further explore NP-SemiSeg.

Second, we compare the PAvPU of NP-SemiSeg with that
of MC dropout in Table 4 for the purpose of evaluating their
uncertainty estimation. Under the same label amount setting

Dataset Label Amount w/o Attention w/ Attention

Cityscapes

1/16 (186) 83.46 84.05
1/8 (372) 83.61 83.97
1/4 (744) 84.32 84.55

1/2 (1488) 84.60 84.61

VOC (classic)

1/16 (92) 86.22 86.87
1/8 (183) 87.54 87.98
1/4 (366) 88.57 88.74
1/2 (732) 89.53 89.69

VOC (blender)

1/16 (662) 89.46 89.62
1/8 (1323) 89.53 89.87
1/4 (2646) 89.57 89.99
1/2 (5291) 89.35 89.34

Table 6. Ablation studies of attention aggregation on different
datasets. The results are all based on U2PL (Wang et al., 2022b)
using ResNet-50, and PAvPU is reported.

for each dataset, NP-SemiSeg achieves a higher PAvPU
metric than MC dropout, showing that the former can output
more reliable uncertainty estimates. Therefore, it is more
suitable than MC dropout for semi-supervised semantic
segmentation in terms of uncertainty quantification.

Finally, we compare the running time of NP-SemiSeg and
MC dropout for quantifying uncertainty, under two evalua-
tion strategies, namely, the center-crop evaluation on PAS-
CAL VOC 2012 and the sliding evaluation on Cityscapes.
Note that the encoder of U2PL in our experiments is a
ResNet-50 (He et al., 2016) pretrained on the ImageNet
dataset (Deng et al., 2009), and therefore MC dropout is only
inserted into the decoder, and only the decoder performs T
times of feedforward passes for saving time. From Figure 2,
we have the following observations. First, when the number
of predictions (T ) increases, the time cost of MC dropout
also rises accordingly, and the gap between NP-SemiSeg
and MC dropout gradually becomes significant. Second,
if the sliding evaluation is used, the time consumption of
MC dropout is hardly acceptable, as MC dropout requires
more numbers of feedforward passes than NP-SemiSeg for
this strategy. For instance, to evaluate a large image, we
need to move the sliding window for r strides in total, and
in this case, MC dropout needs T × r feedforward passes,
while NP-SemiSeg only needs r feedforward passes. These
observations demonstrate that NP-SemiSeg is computation-
ally more efficient than MC dropout for semi-supervised
semantic segmentation.

4.3. Ablation Studies

We conducted ablation studies of the attention aggregator on
two public benchmarks, which are shown in Tables 5 and 6.
For the experiments without using the attention aggregator,
we followed the previous work (Wang et al., 2022a) to use a
mean aggregator for assembling the information instead.

The results show the importance of the attention aggregator.
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In particular, when it is removed, we can observe that the
mIoU decreases in Table 5. From the perspective of uncer-
tainty quantification, we also see the gap regarding PAvPU
between NP-SemiSeg with and without attention aggregator,
even though the gap is marginal. These two findings support
the significance of the attention aggregator, which involves
relevant information from the memory banks to infer the
latent maps and the context maps.

5. Conclusion and Outlook
In this work, we proposed a new probabilistic model, named
NP-SemiSeg, which adjusts neural processes (NPs) to semi-
supervised semantic segmentation. To better utilize the in-
formation from context data and target data, we integrated an
attention aggregator into NP-SemiSeg for assigning higher
weights to important information during aggregation, which
is not considered in NP-Match. Our experimental results
confirm the effectiveness of NP-SemiSeg in both accuracy
and uncertainty estimation, thus highlighting its potential to
supplant MC dropout as an innovative method for quantify-
ing uncertainty in semi-supervised semantic segmentation.

For future research, it is valuable to explore NPs in other
SSL tasks, such as object detection. In addition, it would
also be interesting to see the application of NP-SemiSeg on
semi-supervised medical image segmentation in the future.

6. Limitations
While NP-SemiSeg is superior to MC dropout with respect
to uncertainty estimation, it is important to acknowledge
its performance deterioration in some SSL settings, partic-
ularly with the Cityscapes dataset. This could potentially
restrict its practical application. We hypothesize two po-
tential causes for this degradation, both of which warrant
further investigation.

Firstly, during the training phase, incorrect pixel-wise
pseudo-labels may be assigned to unlabeled data. This could
negatively affect NP-SemiSeg’s ability to approximate the
variational distribution to the true distribution over latent
variables, leading to a subpar performance. A similar issue
in NP-Match is partially resolved through an uncertainty-
guided skew-geometric Jensen-Shannon (JS) divergence.
However, it is challenging to directly apply this divergence
to the task of segmentation.

Secondly, considering that the performance drop is pro-
nounced in the Cityscapes dataset, it might be attributed
to the sliding evaluation strategy, which contradicts NP-
SemiSeg’s use of global latent variables. NP-SemiSeg op-
erates on the premise that a single latent variable is shared
among all pixels in an image. This suggests that the global
latent vector is dependent on the entire content (topic) of the

target image. If a sliding evaluation strategy is employed,
we do not obtain a global latent vector for the entire image,
but rather a latent vector for the local region covered by the
sliding window. This could negatively impact performance,
given the importance of global information in generating a
global latent vector for a target image.
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Appendix

A. Implementation Details
NP-SemiSeg is a flexible module, and in our experiments, we evaluated it with four different segmentation frameworks,
including MT (Tarvainen & Valpola, 2017), PS-MT (Liu et al., 2022), U2PL (Wang et al., 2022b), and AugSeg (Zhao
et al., 2023). When NP-SemiSeg is incorporated into them, we followed their original hyper-parameter settings for fair
comparisons, and we only made the following changes due to limited computational resources. On the PASCAL VOC 2012
dataset, the training crop size is set to 480× 480, and those frameworks with NP-SemiSeg are trained with 0.001 learning
rate and 12 batch size. On the Cityscapes dataset, the training crop size is set to 580× 580, and we used 0.005 learning rate
and 8 batch size for training. When calculating PAvPU, we use a window size 64, and the uncertainty threshold is set to 0.4.
The encoder is ResNet-50 (He et al., 2016) that is pre-trained on ImageNet (Deng et al., 2009).

The hyper-parameters of NP-SemiSeg include the length of each memory bank (Q), the coefficient λkl, the number of
latent maps T . We followed NP-Match to set Q = 2560 for all memory banks. T was set to 5 at both the training phase
and the testing phase. The coefficient λkl is set to 0.005. The configuration of the small ConvNet and the decoder are
separately shown in Tables 7 and 8. The implementation of NP-SemiSeg is modified based on the public official source code
of NP-Match (Wang et al., 2022a). All experiments are conducted on GeForce RTX 3090 GPUs.

Type Configuration
2D Conv # In-C: 512, # Out-C: 32, Kernel Size: 1× 1, Stride: 1× 1, Padding: 0

InstanceNorm # In-C: 32, # Out-C: 32
ReLU # In-C: 32, # Out-C: 32

2D Conv # In-C: 32, # Out-C: 32, Kernel Size: 1× 1, Stride: 1× 1, Padding: 0
InstanceNorm # In-C: 32, # Out-C: 32

ReLU # In-C: 32, # Out-C: 32
2D Conv # In-C: 32, # Out-C: 32, Kernel Size: 1× 1, Stride: 1× 1, Padding: 0

Table 7. Configuration of the small ConvNet. It is used for dimensional reduction, in order to save GPU memory. “In-C” and “Out-C”
denote the channel dimension of the input feature maps and the output feature maps, respectively.

Type Configuration
2D Conv # In-C: 576, # Out-C: 256, Kernel Size: 3× 3, Stride: 1× 1, Padding: 1× 1

InstanceNorm # In-C: 256, # Out-C: 256
ReLU # In-C: 256, # Out-C: 256

2D Conv # In-C: 256, # Out-C: 256, Kernel Size: 3× 3, Stride: 1× 1, Padding: 1× 1
InstanceNorm # In-C: 256, # Out-C: 256

ReLU # In-C: 256, # Out-C: 256
2D Conv # In-C: 256, # Out-C: nclass, Kernel Size: 1× 1, Stride: 1× 1, Padding: 0

Table 8. Configuration of the decoder. “In-C” and “Out-C” denote the channel dimension of the input feature maps and the output feature
maps, respectively. “nclass” represents the number of classes.
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B. Hyper-parameter Exploration
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Figure 3. The mean IoU under different hyper-parameter settings for training.

Additional experiments are conducted on PASCAL VOC 2012 (blender) and Cityscapes with different amounts of labeled
data for hyper-parameters exploration. Three hyper-parameters are investigated in total, including the length of each memory
bank (Q), the coefficient λkl, and the number of latent maps T . By Figure 3(a), Q should be set properly, as a small value
leads to an inferior performance on both datasets. Once Q is large enough, further increasing the length will not affect
performance. Figure 3(b) shows the results using different λkl. It can be seen that when λkl rises from 0.005 to 0.1, the
performance of NP-SemiSeg gets worse. Conversely, decreasing λkl cannot impact the performance too much. Finally,
Figure 3(c) shows the relationship between the number of latents and the performance. We can observe that the performance
is insensitive to the setting of T , unless it is set to 1. Therefore, in our other experiments, it is a good practice to set
λkl = 0.005, Q = 2560, and T = 5.
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C. Derivation of ELBO (Eq. (4))
Proof. As for the marginal joint distribution p(y1:n|x1:n) over n data points in which there are m context data points and
r target data points (i.e., m+ r = n), we assume a variational distribution over latent variables for the target data points,
namely, q(zm+1: m+r|xm+1: m+r, ym+1: m+r). According to the i.i.d assumption, those z∗ are independent from each
other, and we denote its integral domain as Dz . Then:

log p(y1:n|x1:n) = log

∫
· · ·

∫
Dz

p(zm+1: m+r, y1:n|x1:n)

= log

∫
· · ·

∫
Dz

p(zm+1: m+r, y1:n|x1:n)

q(zm+1: m+r|xm+1: m+r, ym+1: m+r)
q(zm+1: m+r|xm+1: m+r, ym+1: m+r)

≥
m+r∑

i=m+1

Eq(zi|xm+1: m+r,ym+1: m+r)[log
p(zi, y1:n|x1:n)

q(zi|xm+1: m+r, ym+1: m+r)
]

= Eq(zm+1: m+r|xm+1: m+r,ym+1: m+r)[log
p(y1:m|x1:m)p(zm+1: m+r|x1:m, y1:m)

∏m+r
i=m+1 p(yi|zi, xi)

q(zm+1: m+r|xm+1: m+r, ym+1: m+r)
]

= Eq(zm+1: m+r|xm+1: m+r,ym+1: m+r)[

m+r∑
i=m+1

log p(yi|zi, xi) + log
p(zm+1: m+r|x1:m, y1:m)

q(zm+1: m+r|xm+1: m+r, ym+1: m+r)
+ log p(y1:m|x1:m)]

= Eq(zm+1: m+r|xm+1: m+r,ym+1: m+r)[

m+r∑
i=m+1

log p(yi|zi, xi)− log
q(zm+1: m+r|xm+1: m+r, ym+1: m+r)

p(zm+1: m+r|x1:m, y1:m)
] + log p(y1:m|x1:m).

(8)
Similar to NPs (Garnelo et al., 2018b), p(zm+1: m+r|x1:m, y1:m) is unknown, we replace it with q(zm+1: m+r|x1:m, y1:m),
and then we get:

log p(y1:n|x1:n) ≥

Eq(zm+1: m+r|xm+1: m+r,ym+1: m+r)

[ m+r∑
i=m+1

log p(yi|zi, xi)− log
q(zm+1: m+r|xm+1: m+r, ym+1: m+r)

q(zm+1: m+r|x1:m, y1:m)

]
+ log p(y1:m|x1:m).

(9)
□
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D. Visualization Results
We visualize some prediction results and uncertainty maps given by NP-SemiSeg on both PASCAL VOC 2012 (blender) and
Cityscapes. For the uncertainty maps, we calculate pixel-wise predictive entropy, and represent the uncertainty with gray
images. Each uncertainty map uses pixel values, ranging from black to white, to denote the levels of uncertainty, starting
from low to high.

According to the visualization results, NP-SemiSeg can provide a good quality of uncertainty estimates. In general, it can
give a high uncertainty for the pixels that are wrongly predicted. Furthermore, the boundary of an object is more likely to be
misclassfied, and therefore, NP-SemiSeg also gives high uncertainties to boundaries. Based on this information, one can
make decisions or further improve the results in a real-world scenario.

(a) Image

(b) Ground Truth

(c) Prediction and Uncertainty Map
(662 labeled images)

(d) Prediction and Uncertainty Map
(1323 labeled images)

(e) Prediction and Uncertainty Map
(2646 labeled images)

(f) Prediction and Uncertainty Map
(5291 labeled images)

Figure 4. First set of visualization results on PASCAL VOC 2012 (blender) under different training protocols. The predictions and their
corresponding uncertainty maps are shown.
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(a) Image

(b) Ground Truth

(c) Prediction and Uncertainty Map
(662 labeled images)

(d) Prediction and Uncertainty Map
(1323 labeled images)

(e) Prediction and Uncertainty Map
(2646 labeled images)

(f) Prediction and Uncertainty Map
(5291 labeled images)

Figure 5. Second set of visualization results on PASCAL VOC 2012 (blender) under different training protocols. The predictions and their
corresponding uncertainty maps are shown.

(a) Image

(b) Ground Truth

(c) Prediction and Uncertainty Map
(662 labeled images)

(d) Prediction and Uncertainty Map
(1323 labeled images)

(e) Prediction and Uncertainty Map
(2646 labeled images)

(f) Prediction and Uncertainty Map
(5291 labeled images)

Figure 6. Third set of visualization results on PASCAL VOC 2012 (blender) under different training protocols. The predictions and their
corresponding uncertainty maps are shown.
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(a) Image (b) Ground Truth

(c) Uncertainty Map and Prediction (186 labeled images )

(d) Uncertainty Map and Prediction (372 labeled images )

(e) Uncertainty Map and Prediction (744 labeled images )

(f) Uncertainty Map and Prediction (1488 labeled images )

Figure 7. First set of visualization results on Cityscapes under different training protocols. The predictions and their corresponding
uncertainty maps are shown.
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(a) Image (b) Ground Truth

(c) Uncertainty Map and Prediction (186 labeled images )

(d) Uncertainty Map and Prediction (372 labeled images )

(e) Uncertainty Map and Prediction (744 labeled images )

(f) Uncertainty Map and Prediction (1488 labeled images )

Figure 8. Second set of visualization results on Cityscapes under different training protocols. The predictions and their corresponding
uncertainty maps are shown.
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(a) Image (b) Ground Truth

(c) Uncertainty Map and Prediction (186 labeled images )

(f) Uncertainty Map and Prediction (1488 labeled images )

(d) Uncertainty Map and Prediction (372 labeled images )

(e) Uncertainty Map and Prediction (744 labeled images )

Figure 9. Third set of visualization results on Cityscapes under different training protocols. The predictions and their corresponding
uncertainty maps are shown.
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