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Abstract
In conventional supervised classification, true la-
bels are required for individual instances. How-
ever, it could be prohibitive to collect the true
labels for individual instances, due to privacy con-
cerns or unaffordable annotation costs. This mo-
tivates the study on classification from aggregate
observations (CFAO), where the supervision is
provided to groups of instances, instead of indi-
vidual instances. CFAO is a generalized learning
framework that contains various learning prob-
lems, such as multiple-instance learning and learn-
ing from label proportions. The goal of this paper
is to present a novel universal method of CFAO,
which holds an unbiased estimator of the classifi-
cation risk for arbitrary losses—previous research
failed to achieve this goal. Practically, our method
works by weighing the importance of each label
for each instance in the group, which provides pu-
rified supervision for the classifier to learn. The-
oretically, our proposed method not only guaran-
tees the risk consistency due to the unbiased risk
estimator but also can be compatible with arbi-
trary losses. Extensive experiments on various
problems of CFAO demonstrate the superiority of
our proposed method.

1. Introduction
Classification is one of the most frequently encountered
problems in machine learning (Kotsiantis et al., 2006). Over
the past ten years, deep learning models have achieved
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promising performance on various classification tasks, while
such a success heavily relies on a large number of high-
quality labels for individual instances (Jordan & Mitchell,
2015). In many real-world scenarios, it could be prohibitive
to collect strong supervision information for individual in-
stances, due to privacy issues, confidentiality concerns, or
unaffordable annotation costs. These challenges of individ-
ual annotations motivate us to consider the supervision for
groups of instances, instead of individual instances.

The supervision of groups of instances can be feasible in
many realistic applications. For example, to protect the
information of individual data points, some summary statis-
tics of groups of data could be disclosed. For the drug
activity prediction task (Dietterich et al., 1997), individual
annotations are inaccessible, while group annotations are
provided. Besides, collecting the supervision information
of groups of instances could incur much fewer costs when
the annotations costs are unaffordable for individual in-
stances (Zhou, 2018). In addition, making predictions about
individual-level behavior based on group-level data also has
gained much attention from other fields, such as ecologi-
cal inference (Schuessler, 1999; Flaxman et al., 2015) and
preference learning (Fürnkranz & Hüllermeier, 2003; Chu
& Ghahramani, 2005).

The feasibility of group supervision motivates us to investi-
gate the task of classification from aggregate observations
(CFAO), where we aim to learn a classifier with only su-
pervision on groups of instances. In CFAO, training data
are represented by groups of instances and we can only ob-
serve the aggregate information of the group. CFAO can be
considered as a general learning framework, which contains
various learning problems with different types of aggregate
information. A well-known problem belonging to CFAO is
multiple-instance learning (Maron & Lozano-Pérez, 1997;
Carbonneau et al., 2018), where the aggregate information
is whether the group has at least one positive instance. An-
other typical problem is learning from label proportions
(Yu et al., 2013; Scott & Zhang, 2020), where the aggregate
information is the proportion of instances from each class
in the group. In recent years, CFAO has received increas-
ing attention and some interesting problems of CFAO have
been investigated. Bao et al. (2018a) studied classification
from pairwise similarities, where the aggregate information
is whether two instances in the group belong to the same
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class (similar) or not (dissimilar). Cui et al. (2020) studied
classification from triplet comparisons, where the aggregate
information is whether one instance is more similar to the
other one, compared with the third one.

The goal of this paper is to propose a universal approach that
can be applied to various types of aggregate observations for
CFAO. To the best of our knowledge, there is currently only
one universal approach (Zhang et al., 2020) that can be used
in various problems of CFAO. This approach is based on
maximum likelihood estimation and can gain the theoretical
property of restricted classifier consistency under specific
conditions. However, this approach has both practical and
theoretical limitations. For the practical limitation, it fails
to consider differentiating the true label for each instance
in the group, which could limit its empirical performance
due to the lack of any purified supervision information of
individual instances. For the theoretical limitation, it can-
not guarantee the risk consistency, i.e., the estimator (by
aggregate observations) is biased to the classification risk
(by fully labeled data). Besides, it has a strict restriction on
the used loss function due to the log-likelihood, making it
not flexible enough when the loss needs to be changed with
the dataset in practice.

In this paper, we propose a universal unbiased method for
CFAO, which holds an unbiased estimator of the classifica-
tion risk. Although many previous studies have explored
unbiased risk estimators (UREs) to solve specific weakly
supervised learning problems (Ishida et al., 2018; Cao et al.,
2021; Feng et al., 2021), they only focused on a certain
learning problem. This limits the usage of existing UREs,
and whether there exists a universal URE for various prob-
lems of CFAO is still unknown. We for the first time give
an affirmative answer to this question. Our proposed univer-
sal URE works by weighing the importance of each label
for instance in the group, which could guide the classifier
to identify the true label for gaining purified supervision
of individual instances. Theoretically, the risk consistency
of our method can be naturally guaranteed due to its unbi-
asedness, which also makes our method compatible with
arbitrary losses. Extensive experiments on various problems
of CFAO demonstrate the superiority of our method.

2. Preliminary Knowledge
In this section, we introduce preliminary knowledge of the
supervised classification task and the task of classification
from aggregate observations.

2.1. Supervised Classification

Let X P Rd be the feature space with d dimensions and
Y P rks be the label space. We denote by x P X a feature
vector and y P Y the ground-truth label of x. Each example

px, yq is supposed to be sampled from an underlying dis-
tribution with probability density ppx, yq. For the k-class
classification task, the goal is to train a learning function
f : X ÞÑ Rk that tries to the classification risk defined as

Rpfq “ Eppx,yq

“

Lpx, y; fq
‰

, (1)

where Eppx,yqr¨s denotes the expected value over ppx, yq

and L denotes a classification loss (e.g., the softmax cross
entropy loss: Lpx, y; fq “ ´ log

exppfypxqq
řk

j“1 exppfjpxqq
), where

fypxq is the y-th element of fpxq. The predicted label ŷ
of x is given as ŷ “ argmaxyPYfypxq. Since the prob-
ability density ppx, yq is not accessible, we need to col-
lect identically and independently distributed training exam-
ples tpxpiq, ypiqquni“1 and minimize the empirical version of
Eq. (1) instead:

pRpfq “
ÿn

i“1

“

Lpxpiq, ypiq; fq
‰

, (2)

which is referred to as empirical risk minimization princi-
ple (Vapnik, 1999).

2.2. Classification from Aggregate Observations

For the CFAO task, we aim to learn a classifier with only
supervision (i.e., aggregate information) on groups of in-
stances. Concretely, given a group of instances x1:m “

tx1,x2 . . . ,xmu where m denotes the size of the group,
their true labels y1:m “ ty1, y2 . . . , ymu are unavailable,
and we only know an aggregate label z P Z where Z rep-
resents the space of aggregate labels. Each aggregate la-
bel can be obtained from y1:m via an aggregate function
g : Ym Ñ Z , i.e., z “ gpy1:mq. Our goal is to use obser-
vations of px1:m, zq to train a classifier that can predict the
true label as accurately as possible.

In Table 1, we show some typical examples of the CFAO
task and their corresponding aggregate functions. All the
problems listed in Table 1 can be solved by our proposed uni-
versal unbiased risk estimator. In what follows, we introduce
two necessary assumptions for mathematically formulating
the CFAO task, which were also adopted by the previous
study (Zhang et al., 2020).

Assumption 2.1. ppz|x1:m, y1:mq “ ppz|y1:mq.

This assumption indicates that given the true labels y1:m,
the aggregate label z is independent of the instances x1:m.
This assumption was commonly used in previous studies
(Carbonneau et al., 2018; Cui et al., 2020; Zhang et al., 2020;
Bao et al., 2022). It can be implied in the data collection
process, e.g., when we first collect px, yq-pairs but only
disclose some summary statistics of y1:m for learning due
to privacy concerns. It also means that we expect the true
label y to carry enough information about x, so that we do
not need to extract more information from x1:m to obtain z.
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Table 1. A brief introduction for typical examples of classification from aggregate observations. For a group of examples px1:m, y1:mq,
the aggregate label is generated by z “ gpy1:mq.

Classification from ¨ ¨ ¨ Size m Aggregate Information Aggregate Function g

pairwise similarity m “ 2 if y1 and y2 belong to same class or not gpy1, y2q “ Iry1 “ y2s

triplet comparison m “ 3 if dpy1, y2q is smaller than dpy1, y3q gpy1:3q “ Irdpy1, y2q ă dpy1, y3qs

multiple instances m ě 2 if at least one positive label exits in y1:m (k “ 2) gpy1:mq “ maxpy1:mq

label proportion m ě 2 proportion of data from each class in the group gjpy1:mq “ p
řm

i“1 Iryi “ jsq{m

ordinal rank m “ 2 if y1 is larger than y2, i.e., y1 ě y2. gpy1, y2q “ Iry1 ą y2s

Assumption 2.2. ppy1:m|x1:mq “
śm

i“1 ppyi|xiq.

This assumption indicates that the examples in the same
group are independent. It is worth noting that all the exam-
ples in the training set are independently collected, and we
extend such an independent property to the group level.

Combing Assumption 2.1 and Assumption 2.2, we can de-
compose the joint distribution ppx1:m, y1:m, zq as

ppx1:m, y1:m, zq “ ppz|y1:mq
źm

i“1
ppyi|xiqppxiq, (3)

which would be beneficial for us to derive a universal unbi-
ased risk estimator.

3. The Proposed Method
In this section, we present our universal unbiased method
for CFAO. Throughout this paper, we use a slightly differ-
ent definition of “unbiased”, i.e., we say that a method is
unbiased if the derived risk of this method on weakly su-
pervised data is equivalent to the ordinary classification risk
on fully supervised data (as shown in Eq. (1)). Hence, our
key idea is to solve the problem by risk rewriting (Sugiyama
et al., 2022), i.e., rewriting the classification risk into an
equivalent form that can be estimated from the given aggre-
gate observations. Existing risk rewriting methods can only
solve a single problem of CFAO. In this paper, we propose a
universal method for CFAO, which is presented as follows.

3.1. Unbiased Risk Estimator

Theorem 3.1. The classification risk Rpfq in Eq. (1) can
be equivalently expressed as follows:

Raggpfq “ Eppx1:m,zq

“

Laggpx1:m, z; fq
‰

. (4)

where Laggpx1:m, z; fq (with z “ gpy1:mq and y1:m is un-
known to the learning algorithm) is defined as

Laggpx1:m, z; fq “
1

m

1

ppz|x1:mq
¨ (5)

ÿm

i“1

ÿk

j“1
ppz, yi “ j|x1:mq ¨ Lpxi, j; fq,

where Lpxi, j; fq is an ordinary classification loss function
as discussed in Eq. (1).

The proof of Theorem 3.1 is provided in Appendix A.

Theorem 3.1 indicates that we could recover the classifica-
tion risk by using aggregate observations with a specially
defined loss function Laggpx1:m, z; fq in Eq. (5). For the
introduced loss function Lagg, we do not impose any re-
strictions on the ordinary classification loss L, hence our
method can be compatible with arbitrary losses. We can
observe that Lagg works as an importance-weighting loss,
due to the instance-level probability ppz, yi “ j|x1:mq and
the group-level probability ppz|x1:mq. Specifically, when
ppz, yi “ j|x1:mq is small, the probability of the label j
being the true label of i-th instance xi in the group x1:m

is small. This means that pxi, jq is unlikely to be true (i.e.,
drawn from the fully supervised data distribution ppx, yq),
therefore we should assign a small weight to Lpxi, j; fq.
The group-level probability ppz|x1:mq can be regarded as
a normalization factor that normalizes the instance-level
probability ppz, yi “ j|x1:mq.

It is worth noting that in Theorem 3.1, we do not impose
any restrictions on the group size m, which means that with
aggregate observations of arbitrary group sizes, we could
still recover the classification risk in Eq. (1). Therefore,
for classification from a given set of aggregate observations
tpx

piq
1:m, zpiqquni“1, we can minimize the following empirical

risk (i.e., the empirical version of Eq. (4)):

pRaggpfq “
1

n

ÿn

i“1
Laggpx

piq
1:m, zpiq; fq. (6)

Here, the key challenge becomes how to calculate Lagg

given an aggregate observation px
piq
1:m, zpiqq and a classi-

fier f . According to Eq. (5), we can observe that the
remaining issue is to empirically estimate ppz|x1:mq and
ppz, yi “ j|x1:mq. Once the two probabilities ppz|x1:mq

and ppz, yi “ j|x1:mq are estimated by the classifier f , we
can substitute the estimated values into Lagg to obtain the
loss value for training the classifier f . It is also noteworthy
that different problems of CFAO have different rules on the
aggregate function gpy1:mq “ z. Therefore, ppz|x1:mq and
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ppz, yi “ j|x1:mq can be estimated in different ways in
terms of different problems of CFAO.

3.2. Analysis from the EM Perspective

Here, we provide a theoretical justification on how the es-
timated ppz,yi“j|x1:mq

ppz|x1:mq
helps train the classifier and differ-

entiates the ground truth label. We show that our method
actually maximizes the likelihood logpppzpvq,x

pvq

1:m; θqq dur-
ing training when we employ the widely used cross-entropy
loss. Let us denote by θ the parameters of the classifier,
pp¨; θq the probability function estimated by the classifier,
Spzq “ ty1:m P Ym | gpy1:mq “ zu where g denotes
the aggregation function, and ω

pvq
y1:m the weight correspond-

ing to y1:m for the v-th example in the dataset, where
0 ď ω

pvq
y1:m ď 1 and

ř

y1:mPSpzpvqq ω
pvq
y1:m “ 1. Then, we

have the following theorem.

Theorem 3.2. The following inequality holds:

logpppzpvq | x
pvq

1:m; θqq ě
ÿ

y
pvq

1:mPSpzpvqq
ωpvq
y1:m

(7)

logpppy
pvq

1:m,x
pvq

1:m; θq{ωpvq
y1:m

q,

where the inequality holds with equality when ω
pvq
y1:m “

ppy
pvq

1:m | x
pvq

1:m; θq{ppzpvq | x
pvq

1:m; θq and Eq. (7) can be
considered identical to Eq. (5) during the training.

The proof of Theorem 3.2 is provided in Appendix B.

Thanks to Theorem 3.2, our method can be consid-
ered as an EM algorithm (Moon, 1996) that maxi-
mizes a log-likelihood objective. At the E-step, our

method assigns ω
pvq
y1:m “

ppy
pvq

1:m|x
pvq

1:m;θq

ppzpvq|x
pvq

1:m;θq
, to make

the inequality holds with equality, i.e., to maximize
řn

v“1

ř

y
pvq

1:mPSpzpvqq
ω

pvq
y1:m logp

ppy
pvq

1:m,x
pvq

1:m;θq

ω
pvq
y1:m

q with respect

to ω when ppy
pvq

1:m,x
pvq

1:m; θq is fixed. At the M-step, our
method aims to maximize Eq. (7) with respect to θ when
ω is fixed (i.e., to train the classifier by maximizing the
improved lower bound).

4. Realizations of Our Proposed Method
In this section, we describe the realizations of our method for
various problems of CFAO, including classification via pair-
wise similarity (Hsu et al., 2018), classification via triplet
comparison (Zhang et al., 2020), multiple-instance learning
(Carbonneau et al., 2018), and learning from label propor-
tions (Yu et al., 2013). We also provide the realization of
our method for ordinal classification with only ranking or
triplet comparison observations, in Appendix C.

It is worth noting that for classification via pairwise sim-
ilarity or triplet comparison, the learned classifier is not

identifiable, which means the identifiable mapping from
the classifier outputs to semantic classes is lost. This prob-
lem is caused by the extremely limited supervision infor-
mation provided by these two problems. In this case, the
classifier consistency cannot be strictly guaranteed (Zhang
et al., 2020) while the risk consistency of our proposed
method still holds, which also confirms the superiority of
our method. Pratically, an identifiable mapping could be
obtained if we could obtain a permutation of classes in ac-
cordance with the learned classifier (Zhang et al., 2020).
A common method to obtain an identifiable mapping is by
using a validation dataset to solve the mapping problem.
Hsu et al. (2018) proposed a method to obtain an optimal
mapping by solving a linear sum assignment problem using
the Hungarian algorithm (Kuhn, 1955). In the experiments,
we follow (Hsu et al., 2018) to evaluate the performance of
classification methods with the obtained optimal mapping.

In what follows, we demonstrate how to estimate ppz|x1:mq

and ppz, yi “ j|x1:mq of our proposed Lagg in Eq. (5),
for a certain problem of CFAO with the classifier f . Once
the two probabilities ppz|x1:mq and ppz, yi “ j|x1:mq are
estimated by the classifier f , we can substitute the estimated
values into Lagg to obtain the loss value for training the
classifier f .

For convenience, we represent ppyi “ j|xiq by ηjpxiq,
which denotes the probability of the true label yi being the
j-th class, for the instance xi. Given a classifier f , ηjpxiq

can be approximated by applying the softmax function to
the classifier output fpxiq P Rk, i.e.,

ηjpxiq “
exppfjpxiqq

řk
v“1 exppfvpxiqq

. (8)

In what follows, we will demonstrate how ppz|x1:mq and
ppz, yi “ j|x1:mq of Lagg can be derived from ηjpxiq for
various problems of CFAO.

4.1. Classification via Pairwise Similarity

In the problem of classification via pairwise similarity, each
group has two instances (i.e., m “ 2), and the aggregate
information is whether two instances in the group belong to
the same class (similar) or not (dissimilar). In this case, the
aggregation function g is defined as gpy1:2q “ Iry1 “ y2s

where I is the indicator function, which returns 1 if y1 “ y2
and 0 otherwise. This problem was investigated as semi-
supervised clustering in early studies (Bilenko et al., 2004;
Basu et al., 2004). In recent years, this problem has been
studied from the perspective of classification (Hsu et al.,
2018; Zhang et al., 2020), based on the maximum likelihood
principle (Nishii, 1989).

We also study this problem from the perspective of classifi-
cation, and our proposed loss function Lagg can be applied
to solve this problem, by using the following proposition.
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Proposition 4.1. For the problem of classification via pair-
wise similarity (m “ 2), ppz|x1:mq and ppz, yi “ j|x1:mq

of Lagg in Eq. (5) can be empirically estimated by

ppz “ 1|x1:2q “
ÿk

j“1
ηjpx1qηjpx2q,

ppz “ 0|x1:2q “ 1 ´ ppz “ 1|x1:2q,

and

ppz “ 1, y1 “ j|x1:2q “ ηjpx1qηjpx2q,

ppz “ 1, y2 “ j|x1:2q “ ηjpx1qηjpx2q,

ppz “ 0, y1 “ j|x1:2q “ p1 ´ ηjpx2qq ηjpx1q,

ppz “ 0, y2 “ j|x1:2q “ p1 ´ ηjpx1qq ηjpx2q.

4.2. Classification via Triplet Comparison

In the problem of classification via triplet comparison, each
group has three instances (i.e., m “ 3), and the aggre-
gation information is whether one instance is more sim-
ilar to the other one, compared with the third one. In
this case, the aggregate function g is defined as gpy1:3q “

I rdpy1, y2q ă dpy1, y3qs where d : Y ˆ Y ÞÑ R is a dis-
tance measure between classes (a smaller distance means a
larger similarity). In our studied classification setting, the
distance measure is defined as dpy, y1q “ Iry ‰ y1s.

Triplet comparison data has been widely studied in metric
learning (Schultz & Joachims, 2003; Kumar & Kumma-
muru, 2008; Sohn, 2016; Mojsilovic & Ukkonen, 2019).
Recently, Cui et al. (2020) showed that we can successfully
learn a binary classifier from only triplet comparison data,
and Zhang et al. (2020) studied multi-class classification
from triplet comparison data. We also study multi-class clas-
sification from triplet comparison data, and our proposed
loss function Lagg can be applied to solve this problem, by
using the following proposition.
Proposition 4.2. For the problem of classification via triplet
comparison (m “ 3), ppz|x1:mq and ppz, yi “ j|x1:mq of
Lagg in Eq. (5) can be empirically estimated by

ppz “ 1|x1:3q “
ÿk

j“1
ηjpx1qηjpx2q

`

1 ´ ηjpx3q
˘

,

ppz “ 0|x1:3q “ 1 ´ ppz “ 1|x1:3q,

and

ppz “ 1, y1 “ j|x1:3q “ ηjpx2q p1 ´ ηjpx3qq ηjpx1q,

ppz “ 1, y2 “ j|x1:3q “ ηjpx1q p1 ´ ηjpx3qq ηjpx2q,

ppz “ 1, y3 “ j|x1:3q “
ÿ

v‰j
ηvpx1q ¨ ηvpx2qηjpx3q,

ppz “ 0, y1 “ j|x1:3q “ p1 ´ ηjpx2q p1 ´ ηjpx3qqq ηjpx1q,

ppz “ 0, y2 “ j|x1:3q “ p1 ´ ηjpx1q p1 ´ ηjpx3qqq ηjpx2q,

ppz “ 0, y3 “ j|x1:3q “

´

1 ´
ÿ

v‰j

ηvpx1q ¨ ηvpx2q

¯

ηjpx3q.

4.3. Learning from Label Proportions

Learning from label proportions (Yu et al., 2014; Quadrianto
et al., 2008; Dulac-Arnold et al., 2019; Scott & Zhang, 2020)
is also an attractive problem of CFAO. In learning from
label proportions, each group has at least two instances (i.e.,
m ě 2), and the aggregate information is the proportion
of data from each class in the group. In this problem, the
aggregate label space Z is a k-dimensional vector space (i.e.,
Z “ Rk). The aggregate function is defined as gjpy1:mq “
řm

i“1 Iryi “ js “ zj , which corresponds to the number
of instances from each class in the group. It is noteworthy
that this aggregate function is slightly different from the
original aggregate function mentioned in Table 1, where
the denominator m is removed for realization convenience,
which would not affect the natural property of this problem.

We can also solve this problem using our proposed Lagg by
the following proposition.

Proposition 4.3. For the problem of learning from label
proportions (m ě 2), ppz|x1:mq and ppz, yi “ j|x1:mq of
Lagg in Eq. (5) can be empirically estimated by

ppz|x1:mq “
ÿ

y1:mPδpzq

źm

i“1
ηyipxiq,

where δpzq “ ty1:m|gpy1:mq “ zu and

ppz “ gpy1:mq, yi “ j|x1:mq

“
ÿ

y1:mziPδpz,i,jq

ź

v‰i
ηyv

pxvqηjpxiq,

where δpz, i, jq “ ty1:mzi|gpy1:mq “ z, yi “ ju.

4.4. Multiple-Instance Learning

Multiple-instance learning (Maron & Lozano-Pérez, 1997;
Zhang & Goldman, 2001; Carbonneau et al., 2018; Ilse et al.,
2018) is a widely studied weakly supervised learning prob-
lem, which also belongs to the task of CFAO. In multiple-
instance learning, each group has multiple instances (i.e.,
m ě 2), and the aggregate information is whether the group
has at least one positive instance. Since multiple-instance
learning focuses on binary classification (i.e., k “ 2), we
define the label space Y as t0, 1u. In this case, the aggre-
gate function is defined as gpy1:mq “ maxpy1:mq, which
means that the group that has at least one positive instance
is a positive group, otherwise, it is a negative group. Since
the output of the binary classifier fpxq P R is a scalar,
we apply the Sigmoid function to approximate ηpxq, i.e.,
η1pxiq “ 1

1`expp´fpxiqq
and η0pxiq “ 1 ´ η1pxiq.

Our proposed loss function Lagg can also be applied to solve
this problem, by the following proposition.

Proposition 4.4. For the problem of multiple-instance learn-
ing (m ě 2 and k “ 2), ppz|x1:mq and ppz, yi “ j|x1:mq
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Table 2. Statistics of the used benchmark-simulated datasets and the corresponding models. #Sampled groups represents the number of
groups sampled for classification via pairwise similarity/triplet comparison/label proportion.

Dataset #Train #Val #Test #Classes #Features #Sampled groups Model

MNIST 45,000 15,000 10,000 10 784 120,000/120,000/30,000 5-layer LeNet
Kuzushiji-MNIST 45,000 15,000 10,000 10 784 120,000/120,000/30,000 5-layer LeNet
Fashion-MNIST 45,000 15,000 10,000 10 784 120,000/120,000/30,000 5-layer LeNet

CIFAR-10 37,500 12,500 10,000 10 3,072 120,000/120,000/30,000 22-layer DenseNet
SVHN 54,942 18,315 26,032 10 3,072 120,000/120,000/30,000 22-layer DenseNet

msplice 1,905 635 635 3 240 6,350/6,350/1,587 3-layer MLP (d-300-k)
optdigits 3,372 1,124 1,124 10 62 11,240/11,240/2,810 3-layer MLP (d-300-k)
pendigits 6,594 2,199 2,199 10 16 21,984/21,984/5,496 3-layer MLP (d-300-k)

usps 5,578 1,860 1,860 10 256 18,596/18,596/4,649 3-layer MLP (d-300-k)
vehicle 507 169 170 4 18 1,692/1,692/423 3-layer MLP (d-300-k)

of Lagg in Eq. (5) can be empirically estimated by

ppz “ 0|x1:mq “
źm

i“1
η0pxiq,

ppz “ 1|x1:mq “ 1 ´ ppz “ 0|x1:mq,

and

ppz “ 1, yi “ 1|x1:mq “ η1pxiq,

ppz “ 1, yi “ 0|x1:mq “ p1 ´
ź

j‰i
η0pxjqqη0pxiq,

ppz “ 0, yi “ 0|x1:mq “
ź

j‰i
η0pxjqη0pxiq,

ppz “ 0, yi “ 1|x1:mq “ 0.

5. Experiments
In this section, we conduct extensive experiments to empiri-
cally demonstrate the effectiveness of our proposed method
in various problems of CFAO. For classification via pairwise
similarity/triplet comparison/label proportion, we use five
popular large-scale benchmark datasets including MNIST
(LeCun et al., 1998), Kuzushiji-MNIST (Clanuwat et al.,
2018), Fashion-MNIST (Xiao et al., 2017), SVHN (Netzer
et al., 2011), and CIFAR-10 (Krizhevsky et al., 2009) and
five regular-scale datasets from the UCI Machine Learning
Repository (Dua & Graff, 2017) including usps, pendidigts,
optdigits, msplice, and vehicle. For multiple-instance learn-
ing, we use five common benchmark datasets in this area
(Dietterich et al., 1997; Andrews et al., 2002), inclduing
Musk1, Musk2, Elephant, Fox, and Tiger. Since our pro-
posed method can be compatible with arbitrary models
and losses, we use various base models, including 5-layer
LeNet (LeCun et al., 1998), 22-layer DenseNet (Huang
et al., 2017), and 3-layer (d-300-k) Multilayer Perceptron
on the above datasets. For the classification loss L in our
proposed Lagg, we simply adopt the widely used softmax
cross entropy loss for multi-class classification and adopt the
logistic loss for binary classification. Detailed descriptions
of the used datasets and the corresponding models are pro-
vided in Table 2. The details of our algorithmic procedure,

hyperparameter settings, and the characteristics of datasets
for multiple-instance learning are provided in Appendix D.

For classification via pairwise similarity/triplet compari-
son/label proportion, the aggregate observations are ran-
domly generated from the training set with replacement,
according to Assumption 2.2. Since the learned classifier
for classification via pairwise similarity/triplet comparison
is not identifiable, we follow Hsu et al. (2018); Zhang et al.
(2020) to evaluate the performance by modified accuracy
that allows any permutation of classes, and the optimal per-
mutation is obtained by solving a linear sum assignment
problem using the Hungarian algorithm (Kuhn, 1955).

We run five trials on each dataset and record the mean ac-
curacy and standard deviation (mean ˘ std). The best per-
formance among all the methods is highlighted in boldface.
We also conduct paired t-test at 5% significance level, and
use ‚{˝ to denote whether our proposed universal unbiased
method (UUM) is significantly better/worse than a com-
pared method.

5.1. Classification via Pairwise Similarity

Experimental setup. For classification via pairwise simi-
larity, the size of the generated training set is 120,000 for
large-scale benchmark datasets and is twice the size of the
original training set for regular-scale UCI datasets. We
compare our proposed method with three methods of clas-
sification via pairwise similarity, including the universal
method based on log-likelihood (Zhang et al., 2020) and
two representation/metric learning methods including the
Siamese network (Koch et al., 2015) and the contrastive loss
(Hadsell et al., 2006). Since the output of the two represen-
tation/metric learning methods is a vector representation,
we use the K-means clustering algorithm (Bock, 2007) on
vector representations to obtain unidentifiable class predic-
tions and evaluate the performance by modified accuracy
with the optimal permutation of classes (Kuhn, 1955).
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Table 3. Test accuracy (mean ˘ std) of each method for classification via pairwise similarity on large-scale benchmark datasets.

METHOD MNIST KUZUSHIJI FASHION CIFAR10 SVHN

LOG-LIKELIHOOD 98.87 ˘ 0.06%‚ 93.40% ˘ 0.64% 88.75 ˘ 0.31%‚ 71.45 ˘ 0.47%‚ 91.06 ˘ 0.24%‚

SIAMESE 98.63 ˘ 0.15%‚ 89.25 ˘ 1.87%‚ 82.20 ˘ 1.45%‚ 58.16 ˘ 1.92%‚ 87.42 ˘ 4.06%‚

CONTRASTIVE 98.86 ˘ 0.14%‚ 93.63 ˘ 0.53%‚ 89.17 ˘ 0.31% 23.69 ˘ 0.65%‚ 91.30 ˘ 0.33%‚

UUM (OURS) 98.99 ˘̆̆ 0.04% 94.04 ˘̆̆ 0.50% 89.19 ˘̆̆ 0.37% 72.52 ˘̆̆ 0.68% 92.41 ˘̆̆ 0.46%

Table 4. Test accuracy (mean ˘ std) of each method for classification via pairwise similarity on regular-scale UCI datasets.

METHOD MSPLICE OPTDIGITS PENDIGITS USPS VEHICLE

LOG-LIKELIHOOD 94.93 ˘ 0.43% 98.10 ˘ 0.49% 88.18 ˘ 14.14% 96.87 ˘ 0.17%‚ 79.41 ˘̆̆ 4.23%
SIAMESE 94.62 ˘ 0.42% 90.05 ˘ 3.50%‚ 77.13 ˘ 1.95%‚ 81.96 ˘ 6.16%‚ 45.76 ˘ 5.29%

CONTRASTIVE 93.36 ˘ 0.36%‚ 95.78 ˘ 0.83%‚ 90.50 ˘ 1.14%‚ 93.52 ˘ 0.46%‚ 60.35 ˘ 2.31%

UUM (OURS) 94.99 ˘̆̆ 0.71% 98.31 ˘̆̆ 0.37% 96.95 ˘̆̆ 4.14% 97.02 ˘̆̆ 0.13% 78.71 ˘ 4.20%

Table 5. Test accuracy (mean ˘ std) of each method for classification via triplet comparison on large-scale benchmark datasets.

METHOD MNIST KUZUSHIJI FASHION CIFAR10 SVHN

LOG-LIKELIHOOD 98.92 ˘ 0.11% 93.46 ˘ 0.10%‚ 88.76 ˘ 0.28% 70.57 ˘ 0.59%‚ 90.61 ˘ 0.60%‚

TRIPLET 97.40 ˘ 0.10%‚ 85.65 ˘ 0.98%‚ 82.14 ˘ 2.68%‚ 47.09 ˘ 3.80%‚ 84.10 ˘ 2.15%‚

(2+1) TUPLE 96.85 ˘ 0.33%‚ 80.26 ˘ 1.46%‚ 74.19 ˘ 1.12%‚ 45.53 ˘ 1.58%‚ 74.02 ˘ 1.28%‚

UUM (OURS) 99.06 ˘̆̆ 0.09% 93.88 ˘̆̆ 0.29% 89.18 ˘̆̆ 0.47% 72.41 ˘̆̆ 0.98% 92.44 ˘̆̆ 0.29%

Table 6. Test accuracy (mean ˘ std) of each method for classification via triplet comparison on regular-scale UCI datasets.
DATASET MSPLICE OPTDIGITS PENDIGITS USPS VEHICLE

LOG-LIKELIHOOD 95.09 ˘ 0.90% 98.15 ˘̆̆ 0.21% 64.30 ˘ 35.63%‚ 96.42 ˘ 0.34% 75.53 ˘ 3.28%
TRIPLET 92.69 ˘ 1.47%‚ 91.81 ˘ 1.31%‚ 65.66 ˘ 17.16% 87.04 ˘ 3.46%‚ 65.88 ˘ 5.37%‚

(2+1)TUPLE 91.43 ˘ 1.32%‚ 81.64 ˘ 6.29%‚ 64.36 ˘ 0.12% 74.72 ˘ 0.96%‚ 63.88 ˘ 3.50%‚

UUM (OURS) 95.37 ˘̆̆ 1.10% 98.13 ˘ 0.41% 66.48 ˘̆̆ 36.24% 96.49 ˘̆̆ 0.59% 76.71 ˘̆̆ 2.06%

Experimental results. Table 3 and Table 4 report the test
accuracy (mean ˘ std) of each method for classification via
pairwise similarity on large-scale benchmark datasets and
UCI datasets, respectively. As can be observed from Table 3,
UUM achieves the best performance among all the methods
on all the large-scale benchmark datasets and significantly
outperforms the compared methods in most cases. Table 4
shows that UUM achieves the best performance on 4 out
of 5 UCI datasets. From the two tables, we can see that
UUM significantly outperforms other compared methods
when a complex model (i.e., DenseNet) is used on large-
scale datasets. This phenomenon indicates that UUM could
obtain a more precise estimation of the importance of each
label for each instance in the group, with a powerful model
on larger-scale datasets.

5.2. Classification via Triplet Comparison

Experimental setup. For classification via triplet compar-
ison, the size of the generated training set is 120,000 for
large-scale benchmark datasets and twice the size of the

original training set for UCI datasets. We compare our
proposed UUM with three methods of classification via
triplet comparison, including the universal method based
on log-likelihood (Zhang et al., 2020) and two represen-
tation/metric learning methods including the triplet loss
(Schroff et al., 2015) and the (2+1) tuple loss (Sohn, 2016).
We also use the K-means clustering algorithm (Bock, 2007)
on vector representations obtained by the triplet loss and
the (2+1) tuple loss to get unidentifiable class predictions
and evaluate the performance by modified accuracy with the
optimal permutation of classes (Kuhn, 1955).

Experimental results. Table 5 and Table 6 report the test
accuracy (mean ˘ std ) of each method for classification via
triplet comparison on large-scale benchmark datasets and
UCI datasets, respectively. The experiments for classifica-
tion via triplet comparison show similar results compared
with the experiments for classification via pairwise similar-
ity. Hence the superiority of our proposed method is also
demonstrated. The experimental results for classification via
triplet comparison also demonstrate that the performance of
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Table 7. Test accuracy (mean ˘ std) of each method for learning from label proportions on large-scale benchmark datasets.
DATASET MNIST KUZUSHIJI FASHION CIFAR10 SVHN

LOG-LIKELIHOOD 98.99 ˘̆̆ 0.06% 94.06% ˘ 0.27%‚ 89.72 ˘ 0.23% 70.56 ˘ 0.39% 90.61 ˘ 0.43%
ROT 98.95 ˘ 0.08% 94.32% ˘ 0.22% 89.40 ˘ 0.31%‚ 70.44 ˘ 0.48%‚ 92.09 ˘̆̆ 0.17%

UUM (OURS) 98.96 ˘ 0.10% 94.41 ˘̆̆ 0.16% 89.87 ˘̆̆ 0.20% 70.77 ˘̆̆ 0.66% 91.76 ˘ 0.18%

Table 8. Test accuracy (mean ˘ std) of each method for learning from label proportions on regular-scale UCI datasets.

DATASET MSPLICE OPTDIGITS PENDIGITS USPS VEHICLE

LOG-LIKELIHOOD 95.12 ˘ 0.84%‚ 98.35 ˘ 0.38% 99.35 ˘ 0.13% 96.89 ˘ 0.31%‚ 79.39 ˘ 1.44%
ROT 95.21 ˘ 0.79%‚ 98.40 ˘ 0.27% 99.35 ˘ 0.17% 97.18 ˘ 0.32% 80.14 ˘̆̆ 0.23%

UUM (OURS) 95.62 ˘̆̆ 0.64% 98.43 ˘̆̆ 0.38% 99.38 ˘̆̆ 0.17% 97.24 ˘̆̆ 0.41% 79.41 ˘ 1.93%

Table 9. Test accuracy (mean ˘ std) of each method for multiple-instance learning on common benchmark datasets.
DATASET ELEPHANT FOX TIGER MUSK1 MUSK2

LOG-LIKELIHOOD 98.50 ˘ 1.27% 94.30 ˘ 1.96% 98.70 ˘ 0.67% 99.35 ˘ 1.46%‚ 80.20 ˘ 12.70%‚

MINIMAX-FEATURE 90.90 ˘ 2.46%‚ 81.00 ˘ 2.65%‚ 91.70 ˘ 1.72%‚ 98.59 ˘ 1.46%‚ 98.43 ˘ 1.29%‚

UUM (OURS) 99.00 ˘̆̆ 1.06% 94.90 ˘̆̆ 1.98% 99.00 ˘̆̆ 0.61% 100.00 ˘̆̆ 0.00% 99.61 ˘̆̆ 0.37%

UUM would be more remarkable when large-scale datasets
and more complex models are used.

5.3. Learning from Label Proportions

Experimental setup. For learning from label proportions,
the size of the generated training set is 30,000 for benchmark
datasets and half of the size of the original training set for
UCI datasets. The group size m is set to 6. We compare our
proposed method with two methods of learning from label
proportions, including the log-likelihood method (Zhang
et al., 2020) and ROT (Dulac-Arnold et al., 2019).

Experimental results. Table 7 and Table 8 report the test
accuracy of each method for learning from label propor-
tions on large-scale datasets and UCI datasets, respectively.
We can find that UUM achieves the best performance for
learning from label proportions in most cases. Hence the
effectiveness of our proposed method is also demonstrated
in the problem of learning from label proportions.

5.4. Multiple-Instance Learning

Experimental setup. For multiple-instance learning, we
collect 5 widely used benchmark datasets, including Ele-
phant, Fox, Tiger, Musk1, and Musk2. We randomly split
the given datasets into training, validation, and test sets by
60%, 20% and 20% for each trial. Since these datasets
only contain aggregate labels, we evaluate the performance
by group-level accuracy. We compare our UUM with two
methods, including the log-likelihood method (Zhang et al.,
2020) and the minimax-feature method (Gärtner et al., 2002).
We use the linear model as the base model to realize our

method and the compared methods, for fair comparison.

Experimental results. Table 9 reports the test accuracy
of each method for multiple-instance learning on com-
mon benchmark datasets. It can be seen that our proposed
method achieves the best performance on all datasets and
significantly outperforms the minimax-feature method in
all cases. Therefore, the effectiveness of our method in
multiple-instance learning is also validated.

6. Conclusion
In this paper, we investigated an interesting learning task
called classification from aggregate observations, where we
aim to learn a classifier with supervision on groups of in-
stances, instead of supervision on individual instances. This
task is quite general and contains a variety of learning prob-
lems such as multiple-instance learning and learning from
label proportions. To handle this task, we proposed a novel
universal method that holds an unbiased estimator of the
classification risk for arbitrary losses. Our method has both
practical and theoretical advantages. Practically, our method
works by importance weighting for each instance and each
label in the group, which provides purified supervision for
the classifier to learn. Theoretically, our provided unbi-
ased risk estimator not only guarantees the risk consistency
of our method but also can be compatible with arbitrary
losses. Comprehensive experimental results validated the
effectiveness of our proposed method in various problems of
classification from aggregate observations. In future work,
we plan to extend our proposed universal unbiased method
to the regression setting with aggregate observations.
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A. Proof of Theorem 3.1
The classification risk Rpfq “ Eppx,yqrLpx, y; fqs can be expressed as

Rpfq “

ż

X

ÿk

y“1
ppx, yqLpx, y; fqdx.

When we take m examples into one group, we can represent Rpfq as follows:

Rpfq “

ż

X

ÿ

y1:m

ppx1:m, y1:mq
1

m

m
ÿ

i“1

Lpxi, yi; fqdx1:m

“

ż

X
ppx1:mq

ÿ

y1:m

ppy1:m|x1:mq
1

m

m
ÿ

i“1

Lpxi, yi; fqdx1:m

“ Eppx1:mq

”

ÿ

y1:m

ppy1:m|x1:mq
1

m

m
ÿ

i“1

Lpxi, yi; fq

ı

“ Eppx1:mq

”

ÿ

y1:m
ppz|x1:mq

ppy1:m|x1:mq

ppz|x1:mq
¨
1

m

ÿm

i“1
Lpxi, yi; fq

ı

“ Eppx1:mq

”

ÿ

zPZ
ppz|x1:mq

ÿ

y1:mPSpzq

ppy1:m|x1:mq

ppz|x1:mq
¨
1

m

ÿm

i“1
Lpxi, yi; fq

ı

,

where Spzq “ ty1:m P Ym|gpy1:mq “ zu contains all the possibilities of y1:m that satisfy the condition gpy1:mq “ z. Then,
we have

Rpfq “ Eppx1:mq

”

ÿ

zPZ
ppz|x1:mq

ÿ

y1:mPSpzq

ppy1:m|x1:mq

ppz|x1:mq
¨
1

m

m
ÿ

i“1

Lpxi, yi; fq

ı

“ Eppx1:m,zq

”

ÿ

y1:mPSpzq

ppy1:m|x1:mq

ppz|x1:mq
¨
1

m

m
ÿ

i“1

Lpxi, yi; fq

ı

(9)

“ Eppx1:m,zq

” 1

m

1

ppz|x1:mq

m
ÿ

i“1

k
ÿ

j“1

ÿ

y1:mziPSpz,jq

ppy1:mzi|x1:mziq ¨ ppyi “ j|xiq ¨ Lpfpxiq, jq

ı

, (10)

where we have switched the two summations in the last equality above, and y1:mzi “ ty1, . . . , yi´1, yi`1, . . . , ymu and
Spz, jq “ ty1:mzi P Ym´1 | gpy1 ¨ ¨ ¨ yi´1, j, yi`1 ¨ ¨ ¨ , ymq “ zu contains all the possibilities of y1:mzi on the condition of
yi “ j. It is worth noting that

ÿ

y1:mziPSpz,jq

ppy1:mzi|x1:mziq

“

ř

y1:mziPSpz,jq ppy1:mzi|x1:mziqppyi “ j|xiq

ppyi “ j|xiq

“
ppgpy1:mq “ z, yi “ j|x1:mq

ppyi “ j|xiq
(11)

“
ppz, yi “ j|x1:mq

ppyi “ j|xiq
(12)

By substituting Eq. (11) into Eq. (10), we obtain

Rpfq “ Eppx1:m,zq

” 1

m

1

ppz|x1:mq

m
ÿ

i“1

k
ÿ

j“1

ÿ

y1:mziPSpz,jq

ppy1:mzi|x1:mziq ¨ ppyi “ j|xiq ¨ Lpfpxiq, jq

ı

“ Eppx1:m,zq

” 1

m

1

ppz|x1:mq
¨

m
ÿ

i“1

k
ÿ

j“1

ppz, yi “ j|x1:mq ¨ Lpfpxiq, jq

ı

“ Raggpfq,

11
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where completes the proof of Theorem 3.1.

B. Proof of Theorem 3.2
The log likelihood

řn
v“1 logpppzpvq, x

pvq

1:m; θqq could be transformed into:

n
ÿ

v“1

logpppzpvq, x
pvq

1:m; θqq (13)

“

n
ÿ

v“1

logp
ÿ

y
pvq

1:mPSpzpvqq

ppzpvq, y
pvq

1:m, x
pvq

1:m; θqq (14)

“

n
ÿ

v“1

logp
ÿ

y
pvq

1:mPSpzpvqq

ppzpvq | y
pvq

1:m, x
pvq

1:mqppy
pvq

1:m, x
pvq

1:m; θqq (15)

“

n
ÿ

v“1

logp
ÿ

y
pvq

1:mPSpzpvqq

ppy
pvq

1:m, x
pvq

1:m; θqq (16)

“

n
ÿ

v“1

logp
ÿ

y
pvq

1:mPSpzpvqq

ωpvq
y1:m

ppy
pvq

1:m, x
pvq

1:m; θq

ω
pvq
y1:m

q (17)

ě

n
ÿ

v“1

ÿ

y
pvq

1:mPSpzpvqq

ωpvq
y1:m

logp
ppy

pvq

1:m, x
pvq

1:m; θq

ω
pvq
y1:m

q, (18)

where the second equality is due to ppz|y1:mq “ ppz|y1:m, x1:mq “ 1 when gpy1:mq “ z. The last inequality relies on
Jensen’s inequality and the properties of the weight ωpvq

y1:m (i.e., 0 ď ω
pvq
y1:m ď 1 and

ř

y1:mPSpzpvqq ω
pvq
y1:m “ 1). The inequality

holds with equality when ppy
pvq

1:m,x
pvq

1:m;θq

ω
pvq
y1:m

is a constant. i.e., ppy
pvq

1:m,x
pvq

1:m;θq

ω
pvq
y1:m

“ C where C is a constant.

In this case, we have

ppy
pvq

1:m, x
pvq

1:m; θq

C
“ ωpvq

y1:m
(19)

ÿ

y
pvq

1:mPSpzpvqq

ppy
pvq

1:m, x
pvq

1:m; θq

C
“

ÿ

y
pvq

1:mPSpzpvqq

ωpvq
y1:m

(20)

ÿ

y
pvq

1:mPSpzpvqq

ppy
pvq

1:m, x
pvq

1:m; θq

C
“ 1 (21)

ÿ

y
pvq

1:mPSpzpvqq

ppy
pvq

1:m, x
pvq

1:m; θq “ C (22)

ÿ

y
pvq

1:mPSpzpvqq

ppy
pvq

1:m, x
pvq

1:m, zpvq; θq “ C (23)

ppx
pvq

1:m, zpvq; θq “ C, (24)

where the last derivation is due to the fact that we exhausted all the possible y
pvq

1:m in Spzpvqq. In this way, we have

ωpvq
y1:m

“
ppy

pvq

1:m, x
pvq

1:m; θq

ppx
pvq

1:m, zpvq; θq
“

ppy
pvq

1:m | x
pvq

1:m; θq

ppzpvq | x
pvq

1:m; θq
. (25)

12
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Therefore, the E-step of our method is to set ωpvq
y1:m “

ppy
pvq

1:m|x
pvq

1:m;θq

ppzpvq|x
pvq

1:m;θq
, to make the inequality holds with equality, i.e., to

maximize
řn

v“1

ř

y
pvq

1:mPSpzpvqq
ω

pvq
y1:m logp

ppy
pvq

1:m,x
pvq

1:m;θq

ω
pvq
y1:m

q with respect to ω when ppy
pvq

1:m, x
pvq

1:m; θq is fixed.

On the other hand, the M-step of our method is to maximize
řn

v“1

ř

y
pvq

1:mPSpzpvqq
ω

pvq
y1:m logp

ppy
pvq

1:m,x
pvq

1:m;θq

ω
pvq
y1:m

q (i.e., Eq. (18))

with respect to θ when ω is fixed.

For the M-step, ω is fixed, thus we have

logp
ppy

pvq

1:m, x
pvq

1:m; θq

ω
pvq
y1:m

q (26)

“ logp
ppy

pvq

1:m, x
pvq

1:m; θq

ppx1:m; θq
q ` plogpppx1:m; θqq ´ logpωpvq

y1:m
qq (27)

“ logpppy1:m|x1:mq; θq ` logp
ppx1:m; θq

ω
pvq
y1:m

q (28)

“

m
ÿ

i“1

logpppyi|xi; θqq ` logp
ppx1:m; θq

ω
pvq
y1:m

q (29)

“

m
ÿ

i“1

logpppyi|xi; θqq ` logp
ppx1:mq

ω
pvq
y1:m

q, (30)

where the last term logp
ppx1:mq

ω
pvq
y1:m

q is a constant when ω is fixed. When the cross-entropy loss is applied, Lpxi, yi; fq “

´ logpppyi|xi; θqq. Therefore, maximizing logpppy1:m|x1:mqq is equivalent to minimizing Lpxi, yi; fq.

It is noteworthy that the objective function we analyze above (i.e.,
ř

y
pvq

1:mPSpzpvqq
ω

pvq
y1:m logp

ppy
pvq

1:m,x
pvq

1:m;θq

ω
pvq
y1:m

q) can be considered

identical to the Eq. (9), i.e.,
ř

y1:mPSpzpvqq

ppy1:m|x1:mq

ppz|x1:mq
¨ 1
mLpxi, yi; fq except for the differences of the two constant terms

1
m and logp

ppx1:mq

ω
pvq
y1:m

q when training the classifier, which is also identical to the final objective function used in our paper.

In summary, the E-step of our method improves the lower bound (i.e., Eq. (18)) of the likelihood logpppzpvq, x
pvq

1:m; θqq and
the M-step of our method trains the classifier by maximizing the improved lower bound, which indicates that our method
actually maximizes the likelihood logpppzpvq, x

pvq

1:m; θqq.

C. Additional CFAO Problems
C.1. Rank observation

In the next two aggregate observation learning tasks, we focus on ordinal regression. Ordinal regression has a similar
label space Y “ t1, 2 ¨ ¨ ¨ ku compared with muti-class classification. But there exists an order between different labels
in label space, i.e., 1 ă 2 ă 3 ¨ ¨ ¨ ă k. For notation convenience, we use ηjpxiq to denote the probability ppyi ď j|xiq

of the true label yi less or equal to j. Specifically, η0pxiq “ 0 and ηkpxiq “ 1, and ppyi “ j|xiq can be calculated by
ηjpxiq ´ ηj´1pxiq. In the rank observation task, there are two instances in one bag (i.e., m “ 2), and the aggregate function
is defined as gpy1:2q “ Iry1 ă y2s.

This task is also a CFAO task in an ordinal classification setting, which can be solved by the following proposition.

Proposition C.1. For the problem of classification via ordinal ranks (m “ 2), ppz|x1:mq and ppz, yi “ j|x1:mq of Lagg in
Eq. (5) can be empirically estimated by

ppz “ 1|x1:2q “

k
ÿ

j“1

ηj´1px1qpηjpx2q ´ ηj´1px2qq,

ppz “ 0|x1:2q “ 1 ´ ppz “ 1|x1:2q,

13
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and

ppz “ 1, y1 “ j|x1:2q “ p1 ´ ηjpx2qq pηjpx1q ´ ηj´1px1qq,

ppz “ 1, y2 “ j|x1:2q “ηj´1px1qpηjpx2q ´ ηj´1px2qq,

ppz “ 0, y1 “ j|x1:2q “ηjpx2qpηjpx1q ´ ηj´1px1qq,

ppz “ 0, y2 “ j|x1:2q “ p1 ´ ηj´1px1qq pηjpx2q ´ ηj´1px2qq.

C.2. Ordinal triplet observation

Ordinal triplet observation task is similar to triplet observation task, each bag has three instances (i.e. m “ 3) and the
aggregate function is defined as gpy1:3q “ I rdpy1, y2q ă dpy1, y3qs. In ordinal regression, we define dpy1, y2q “ |y1 ´ y2|.

Proposition C.2. For the problem of classification via ordinal triplet comparison (m “ 3), ppz|x1:mq and ppz, yi “ j|x1:mq

of Lagg in Eq. (5) can be empirically estimated by

ppz “ 1|x1:3q “

k
ÿ

j“1

k
ÿ

v“1

pηvpx3q ´ ηv´1px3qqpp|y2 ´ j| ă |v ´ j||x2qpηjpx1q ´ ηj´1px1qq

ppz “ v|x1:3q “1 ´ ppz “ 1|x1:3q

and

ppz “ 1, y1 “ j|x1:3q “

k
ÿ

v“1

pηvpx3q ´ ηv´1px3qqpp|y2 ´ j| ă |v ´ j||x2qpηjpx1q ´ ηj´1px1qq

ppz “ 1, y2 “ j|x1:3q “

k
ÿ

v“1

pηvpx1q ´ ηv´1px1qqpp|y3 ´ v| ą |j ´ v||x3qpηjpx2q ´ ηj´1px2qq

ppz “ 1, y3 “ j|x1:3q “

k
ÿ

v“1

pηvpx1q ´ ηv´1px1qqpp|y2 ´ v| ă |j ´ v||x2qpηjpx3q ´ ηj´1px3qq

ppz “ 0, y1 “ j|x1:3q “

k
ÿ

v“1

pηvpx3q ´ ηv´1px3qqp1 ´ pp|y2 ´ j| ă |v ´ j||x2qqpηjpx1q ´ ηj´1px1qq

ppz “ 0, y2 “ j|x1:3q “

k
ÿ

v“1

pηvpx1q ´ ηv´1px1qqp1 ´ pp|y3 ´ v| ą |j ´ v||x3qqpηjpx2q ´ ηj´1px2qq

ppz “ 0, y3 “ j|x1:3q “

k
ÿ

v“1

pηvpx1q ´ ηv´1px1qqp1 ´ pp|y2 ´ v| ă |j ´ v||x2qqpηjpx3q ´ ηj´1px3qq

For the calculation of pp|y2 ´ v| ă |j ´ v||x2q and pp|y3 ´ v| ą |j ´ v||x3q in above equation:

pp|y2 ´ v| ă |j ´ v||x2q “ maxpη|j´v|`v´1px2q ´ ηv´|j´v|px2q, 0q

pp|y3 ´ v| ą |j ´ v||x3q “ 1 ´
`

ηv`|j´v|px3q ´ ηv´|j´v|´1|px3q
˘

The function of max in the first equation is to make the equality holds when |j ´ v| “ 0.

D. Experiments Details
D.1. Training Algorithm

The pseudo-code of our proposed algorithm is presented in Algorithm 1. The training algorithm work with a similar process
with RC (Feng et al., 2020) which treats ηpxq as weights and updates ηpxq during the training process. The main training

14
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Algorithm 1 RC Algorithm
Input: Model f , epoch Tmax, iteration Imax, size of label space k, whether to use log-likelihood to initialize flaginit,
log-likelihood initialize epoch Tinit, whether to use confidence matrix flagmat, aggregate observation training set D “

tpx
piq
1:m, zpiqquni“1;

1: if flagmat=TRUE then
2: Initialize confidence tensor C P Rnˆmˆk,Cijv “ 1

k ,@1 ď i ď n, 1 ď j ď m, 1 ď v ď k, we use Cijv to store
ηvpx

piq
j q;

3: end if
4: for t “ 1, 2, . . . , Tmax do
5: Shuffle D “ tpx

piq
1:m, zpiqquni“1;

6: for j “ 1, 2, . . . Imax do
7: Fetch mini-batch Dj from Dj ;
8: if flaginit and t ď Tinit then
9: Update model f by log-likelihood method (Zhang et al., 2020);

10: else
11: if flagmat=True then
12: Fetch ηpx

piq
v q, 1 ď v ď m from C;

13: else
14: Calculate ηpx

piq
v q, 1 ď v ď m by model f and detach the gradient;

15: end if
16: Update model f by R̂pfqagg in Eq. (6);
17: end if
18: if flagmat “TRUE then
19: Update C by model f ;
20: end if
21: end for
22: end for
Output: f .

process is provided between line 11 to line 19 in Algorithm 1. It contains 2 steps: 1) obtaining approximated ηpxq. 2)
using the approximated ηpxq to calculate R̂aggpfq and update model f . Since different CFAO tasks need different training
strategies, we provide two strategies to obtain approximated ηpxq. One way is to approximate ηpxq using the current model
outputs. The other way is to approximate ηpxq by the model outputs from last epoch. We implement this by storing the
outputs of model in a matrix and fetching ηpxq from the matrix during training. These two strategies corresponding to
whether to use a radical way to update weights during training. We use flagmat to denote the strategy to update weights
during training. We use a matrix to store ηpxq when flagmat is set to TRUE, otherwise we obtain ηpxq by current model
outputs. The matrix is initialized uniformly, which means we initialize all elements in the matrix to 1

k .

ppz|x1:mq and ppz, yi “ j|x1:mq play an important rule in UUM to provide purified supervision for the classifier to learn.
Especially, the value of these two probability functions depends on two components during the training process, i.e. ηpxq

approximated by the model outputs and z given by the aggregate observation dataset. During the warm-up phase, ppz | x1:mq

and ppz, yi “ j | x1:mq mainly depend on z since the model learned limited information in warm-up phase.

However, in some CFAO problems, z provides little information to weights during the warm-up phase, e.g. pairwise
similarity and triplet comparison. If we set ηjpxq “ 1

k for all j, ppz,yi“j|x1:mq

ppz|x1:mq
would equal to 1

k for all i and j no matter z
takes 0 or 1, which means aggregate label would provides little information to help UUM approximating weights precisely.

Table 10. Test performance of UUM on flaginit=FALSE for pairwise similarity

DATASET MNIST KUZUSHIJI FASHION CIFAR10 SVHN

LOG-LIKELIHOOD 98.87 ˘ 0.06% 93.40% ˘ 0.64% 88.75 ˘ 0.31% 71.45 ˘ 0.47%‚ 91.06 ˘ 0.24%‚

UUM(OURS) 99.01 ˘̆̆ 0.13% 93.66 ˘̆̆ 0.47% 89.00 ˘̆̆ 0.49% 73.45 ˘̆̆ 0.40% 92.37 ˘̆̆ 0.23%
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In order to obtain precise weights, we could use another method which dose not rely on weights to warm up model. We use
log-likelihood as the warm-up method in our algorithm. The warm-up phase is shown in line 9 in Algorithm 1. We use
flaginit and Tinit to denote whether to use log-likelihood to warm up model and the number of warm-up epoch respectively.

We also conduct experiments on UUM on flaginit “ FALSE for pairwise similarity on benchmark datasets. We trained
model for 100 epochs. For MINIST, Kuzushiji-MNIST and Fashion, the falgmat is set to FALSE in first 30 epoch and set to
TRUE in last 70 epochs. For CIFAR-10 and SVHN, the flagmat is set to FALSE in first 50 epoch and set to TRUE in last 50
epochs. The experimetal results are provided on Table 10.

D.2. Training Details

We used Adam (Kingma & Ba, 2015) optimizer with 0 weight decay to train the model. The learning rates were 1e-3,
1e-3 and 2e-1 for benchmark datasets, UCI datasets and MIL datasets respectively. The batch size is 128 for benchmark
datasets and UCI datasets. We search the batch size from (128, 256,512,1024,2048,4096) for MIL datasets. The model is
trained for 100, 200, and 3500 epochs for benchmark datasets, UCI datasets and MIL datasets respectively. We evaluate test
performance on the model obtained the best performance on validation sets.

The flaginit in Algorithm 1 is set TRUE for pairwise similarity and triplet comparison and set FALSE for MIL and LLP.
flagmat is set TRUE for classification via pairwise similarity/triplet comparison/learning from label proportions, and set
FALSE for multiple-instance learning. The value of Tinit in pairwise similarity and triplet comparison is set to 20 and 100
for benchmark datasets and UCI datasets respectively.

D.3. Benchmark Datasets for Multiple-Instance Learning

We use five commonly used benchmark datasets in MIL studies (Dietterich et al., 1997; Andrews et al., 2002), including
Musk1, Musk2, Elephant, Fox, and Tiger. For these datasets, Musk1 has 47 positive bags and 45 negative bags. Musk2
consists of 39 positive bags and 63 negative bags. The other three datasets contain 100 positive bags and 100 negative
bags. It is worth noting that these datasets are too small to evaluate the task of MIL from similar and dissimilar bags, we
follow Bao et al. (2018b) to augment them for increasing the number of bags. Specifically, bags chosen randomly from the
original datasets were duplicated and then Gaussian noise with mean zero and variance 0.01 was added to each dimension.
In this way, we increased the number of samples in the Musk datasets (Musk1 and Musk2) 10 times and the Corel datasets
(Elephant, Fox, and Tiger) 5 times. Table 11 reports the characteristics of these datasets1 after preprocessing.

Table 11. The characteristics of the used benchmark datasets for multiple-instance learning.

Dataset # Features # Positive bags # Negative bags # Avg. Pos. Ins. per bag # Avg. Neg. Ins. per bag

Musk1 166 475 445 2.2˘2.5 2.9˘7.0
Musk2 166 413 607 8.9˘22.7 49.9˘169.7
Elephat 230 504 496 3.9˘4.2 3.2˘3.6

Fox 230 498 502 3.2˘3.6 3.4˘3.8
Tiger 230 506 494 2.8˘3.1 3.4˘3.9

E. Additional Experiments for Variant Size of Training Set
Since the size of training sets may vary from a large range depending on different tasks in practice, we conducted additional
experiments by reducing the sample size for training. The experimental results are shown in Table 12 and Table 13. As
shown in Table 12 and Table 13, when reducing the sample size for training, our proposed method consistently outperforms
other compared methods.

1http://www.cs.columbia.edu/˜andrews/mil/datasets.html
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Table 12. Experiments on classification via pairwise similarity with different aggregate observation sample size formed by CIFAR10

Method 10000 30000 60000 90000 120000

log-likelihood 33.30% 56.15% 66.30% 70.97% 71.45%
siamese 31.74% 41.63% 48.01% 54.27% 58.16%

contrastive 20.23% 20.35% 20.66% 21.79% 23.69%

UUM 34.14% 59.02% 69.17% 72.64% 72.52%

Table 13. Experiments on classification via triplet comparison with different aggregate observation sample size formed by CIFAR10

Method 10000 30000 60000 90000 120000

log-likelihood 31.74% 53.15% 66.66% 68.67% 70.57%
triplet 26.48% 33.81% 7.21% 39.85% 47.09%

(2+1)tuple 24.64% 29.74% 36.65% 40.55% 45.53%

UUM 33.03% 56.44% 63.38% 72.97% 72.09%
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