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Abstract

Reinforcement learning (RL) has made significant
progress in areas such as Atari games and robotic
control, where the agents have perfect sensing
capabilities. However, in many real-world se-
quential decision-making tasks, the observation
data could be noisy or incomplete due to the in-
trinsic low quality of the sensors or unexpected
malfunctions; that is, the agent’s perceptions are
rarely perfect. The current POMDP RL meth-
ods, such as particle-based and Gaussian-based,
can only provide a probability estimate of hidden
states rather than certain belief regions, which
may lead to inefficient and even wrong decision-
making. This paper proposes a novel algorithm
called Set-membership Belief state-based Rein-
forcement Learning (SBRL), which consists of
two parts: a Set-membership Belief state learning
Model (SBM) for learning bounded belief state
sets and an RL controller for making decisions
based on SBM. We prove that our belief estima-
tion method can provide a series of belief state
sets that always contain the true states under the
unknown-but-bounded (UBB) noise. The effec-
tiveness of the proposed method is verified on
a collection of benchmark tasks, and the results
show that our method outperforms the state-of-
the-art methods.

1. Introduction
Boosted by advanced and rapid developments of reinforce-
ment learning (RL), sequence decisions in stochastic envi-
ronments have made considerable progress and have been
found in many applications, such as Atari games (Mnih
et al., 2015), autonomous navigation (Wang et al., 2019),
and robotics control (Kurniawati, 2021). However, most
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remarkable improvements in areas such as autonomous driv-
ing or robotics control with such powerful technology are
limited to simulation platforms, which have yet not been
used in widespread real-world applications (Haarnoja et al.,
2018; Richter et al., 2019; Chen et al., 2021a). One of the
critical issues in real-world applications is that the agent
may have to decide under uncertain or partially observable
(i.e., the agent’s observations could be noisy or incomplete,
which cannot accurately represent the complete state). Thus
the decisions based on the observations are likely wrong. In
practical tasks, it is ubiquitous that the agents often have
to take action continuously, even when their observations
of the environment are noisy or incomplete (Somani et al.,
2013; Hausknecht & Stone, 2015; Ni et al., 2022). Take
autonomous driving as an example. A running autonomous
driving car must keep moving despite its radar perception
sensors being noisy or partially occluded rather than stop
abruptly itself and then move again. In such cases, ignoring
the imperfect state information or setting specific action
selection rules is inappropriate and could even bring disaster
to the system. Consequently, it is necessary to research
the decision-making problem with noisy and incomplete
observations.

Generally, this type of decision-making problem is usually
modeled as partially observable Markov decision processes
(POMDPs) (Åström, 1965; Kurniawati et al., 2008; Somani
et al., 2013), which is suitable for scenarios where an agent
cannot accurately observe the complete state of the envi-
ronment. There are two main approaches for POMDPs in
the existing literature. The first type uses a recurrent neural
network (RNN) as a function approximator to learn the rep-
resentation of the hidden states from the state-transition data
(Hausknecht & Stone, 2015; Zhu et al., 2017; Chen et al.,
2022). Despite these RNN-based methods being simple and,
to some extent, practical, they are often likely suboptimal in
complex tasks due to performing inference implicitly requir-
ing a known or learned model. The second type is the belief
inference approach, which can characterize the uncertainty
of the current hidden state by introducing particle filters,
diagonal Gaussians, or other technologies. Compared to
the first type, this method can explicitly characterize the
uncertainty of the knowledge about the current hidden state.
To mention a few, DVRL (Igl et al., 2018) and DPFRL (Ma
et al., 2020) introduce particle filter-based methods that use
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sampling particles to approximate the belief states. Still,
particle filters are reported to experience the curse of dimen-
sionality and therefore suffer from low sample efficiency
and performance (Lee et al., 2020). In addition, many re-
searchers use the Gaussian model (Han et al., 2019; Wang &
Tan, 2021) to construct the dynamics and generative model
and obtain the current posterior belief state. Unfortunately,
due to the reliance on Gaussian assumptions, this approach
may lead to poor performance when detailed statistical infor-
mation is not accurately available or the environmental noise
is non-Gaussian. Furthermore, among the particle-based or
Gaussian-based probabilistic methods, the common draw-
back is that they can only provide a probability estimate of
hidden states rather than a certain belief region. However,
in many real-world applications, accurate belief estimation
is crucial since it is the cornerstone of the agent to make
the right decision, which motivates us to investigate a new
POMDP RL method based on a bounded belief state set.

To address the sequences decision-making problem un-
der uncertain or partially observable, we propose a novel
POMDP RL algorithm called Set-membership Belief state-
based Reinforcement Learning (SBRL). The algorithm
consists of a Set-membership Belief state learning Model
(SBM) for learning bounded belief state sets and an RL
controller for making decisions based on SBM. We also
demonstrate the results on several challenging control tasks,
showing that our SBRL algorithm outperforms the state-of-
the-art methods under challenging POMDP scenarios.

To summarize the main contributions of this paper can be
summarized as follows:

• We propose a set-membership belief state-based rein-
forcement learning algorithm to solve POMDP tasks by
training a set-membership belief state learning model
(SBM) and an RL controller network.

• We prove that our belief estimation method can provide
a series of belief state sets that always contain the true
states under the unknown-but-bounded (UBB) noise.

• Extensive experiments on benchmark tasks show that
our SBRL algorithm outperforms the state-of-the-art
methods under various challenging POMDP scenarios.
SBM allows the agent to provide a reasonable basis for
the agent to make good decisions.

2. Preliminaries
2.1. POMDPs

A POMDPs can be described as an 8-tuple <
S,A,O, T, Z, r, γ, b0 >, where S, A and O represent the
set of state, action, and observation spaces, respectively. T
is a set of conditional transition functions between states.

Figure 1. The BIGM of POMDP. The white circles represent the
unobservable hidden states s; the grey icons represent observations
o, rewards r are accessible, and the agent determines the actions
a; the green and purple circles represent the belief states obtained
through inference.

Z is a set of conditional observation functions. In addition,
r : S ×A → R represents the reward function and outputs
a scalar. γ ∈ (0, 1] is the discount factor, and b0 is the initial
belief set.

At each timestep t − 1, the state of the environment is
st−1 ∈ S . The agent take an action at−1 ∈ A, which causes
the environment to transit to state st with T (st|st−1, at−1).
The agent then receives an observation ot ∈ O, which de-
pends on the new state st with Z(ot|st). The agent’s goal
is to maximize the expected sum of discounted rewards
E
[∑∞

k=0 γ
krk
]
. Such a POMDP model can be described

using a belief inference graphical model (BIGM), as shown
in Figure 1. After taking action at−1 and obtaining observa-
tion ot, the agent needs to update its belief state, defined as
a bounded set containing the true state.

2.2. Set-membership Filter

It is more desirable to use a bounded region containing all
possible hidden states instead of using the particle-based
or Gaussian-based probabilistic methods to approximate
the prior and posterior belief distributions. Therefore, we
introduce the set-membership filter (Witsenhausen, 1968;
Calafiore, 2005; Yang & Li, 2009) to estimate the hidden
state.

Rather than needing the statistics of the distribution itself,
the set-membership filter method can provide a series of
bounded regions, which guarantees to contain the true state
of the system when one obtains the amplitude boundary.
More specifically, it limits the boundary of possible hidden
states by identifying the noise amplitude, i.e.,

Wa
t =

{
ωa
t : (ωa

t )
T(Ma

t )
−1ωa

t ≤ 1
}
,

Wo
t =

{
ωo
t : (ωo

t )
T(Mo

t )
−1ωo

t ≤ 1
}
,
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Figure 2. Architecture of set-membership filter.

where ωa
t and ωo

t are the noise vectors. Ma
t = (Ma

t )
T > 0

and Mo
t = (Mo

t )
T > 0 are known matrices with compati-

ble dimensions, which physical considerations sensors and
actuators of the agent can obtain. This noise description is
often more realistic than a probabilistic description in many
applications.

3. The Proposed Method
This section proposes a novel POMDP RL algorithm called
Set-membership Belief state-based Reinforcement Learning
(SBRL). Similar to prior methods for POMDPs (Igl et al.,
2018; Ma et al., 2020; Wang & Tan, 2021), SBRL adopts
the belief inference scheme to maintain a belief of the state
based on past trajectory data and propagates the belief state
recurrently during the execution phase. The difference is
that our SBRL algorithm consists of a Set-membership Be-
lief state learning Model (SBM) and an RL controller, in
which the SBM can provide a bounded belief region rather
than a probability estimate of hidden states. In addition, we
prove that our belief estimation method can give a series of
belief state sets that always contain the true states under the
UBB sequence noise.

3.1. Set-membership Belief state learning Model

To accurately describe the hidden state, we propose the Set-
membership Belief state learning Model (SBM) to provide
a series of belief state sets that always contain the true
states under the UBB sequence noise. Specifically, the SBM
model consists of the following components:

State transition model : st = T (st−1, at−1, ω
a
t−1)

Observation model : ot = Z(st, ω
o
t )

Reward model : rt = R(st).

(1)

In addition, we have a belief inference model based on the
set-membership filter to depict the true state, and the belief

learning approach for a single timestep is as follows.

At the time t − 1, the hidden state st−1 is assumed to be
satisfied the condition

st−1 = ŝt−1 + Et−1z, ||z|| ≤ 1, (2)

where ŝt−1 is an estimate of st−1 , and Et−1 is a matrix
used to describe the estimated range. The belief state at time
t − 1 is denoted by b (ŝt−1, diag{Et−1}), abbreviated as
bt−1. Then, the Equation (2) can be described in the form
of a bounded set as follows:

st−1 ∈ ϵ(ŝt−1, Pt−1)

=
{
st−1 : (st−1 − ŝt−1)

T
P−1
t−1 (st−1 − ŝt−1) ≤ 1

}
,

(3)

where the shape matrix Pt−1 = Et−1E
T
t−1 > 0. Then, the

agent selects an action at at−1 ∈ A based on πϕ(bt−1).

In what follows, a prior belief state bt/t−1 at timestep t can
be directly obtained through a state transition model st =
T̂ (st−1, at−1, ω

a
t−1), which modeled by a neural network

with parameter ϕ. The ωa
t−1 is an additive noise that is

confined to a specified bounded set

Wa
t−1 = {ωa

t−1 : (ωa
t−1)

T(Ma
t−1)

−1ωa
t−1 ≤ 1}, (4)

where Ma
t−1 = (Ma

t−1)
T ≥ 0 is a known matrix with

compatible dimensions.

Next, an imputation and filtering operation on between the
new observation ot and bt/t−1 is applied, which is of the
follow form:

ŝt = ŝt/t−1 +Ktot, (5)

where ωo
t is the observation noise which is confined to a

specified bounded set

Wo
t = {ωo

t : (ωo
t )

T(Mo
t )

−1ωo
t ≤ 1}, (6)

where Mo
t−1 = (Mo

t−1)
T ≥ 0 is a known matrix with

compatible dimensions and Kt is a filter parameter to be
determined.

In formulas, we want to compute the state estimate ŝt and
the shape matrix Pt with the smallest trace at timestep t,
such that the condition

(st − ŝt)T P−1
t (st − ŝt) ≤ 1 (7)

holds for any ωo
t obeying Equation (6). Subsequently, the

result for the updated bounded belief and the existence con-
ditions are developed, which are given in the following
theorem.

Theorem 3.1. If Equation (4), Equation (5), and Equa-
tion (6) hold, the updated bounded optimized belief set
for the state st can be computed by solving the following
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semidefinite program (SDP) in the variables Pt ≥ 0, τz ≥
0, τoω ≥ 0, ŝt

minTr (Pt)

subject to τz ≥ 0, τoω ≥ 0
(8)

[
−Pt Φt

(Φt)
T −Πt

]
≤ 0, (9)

where Φt = [−Ktŝt/t−1 (I −Kt)Et/t−1 −Kt], Πt =

diag
(
1− τz − τoω,−τzI,−τoω(Mo

t )
−1)
)
, and I is the iden-

tity matrix with appropriate dimensions.

The proof of this theorem is reported in Appendix B.

The architecture of the set-membership filter is demon-
strated in Figure 2. Computing the optimal solution to the
optimization problem in Theorem 3.1 essentially requires
O(n3) operations, which is challenging to be solved by
the existing optimization toolbox in the high dimensional
state space. Thus, we also provide a parameterized calcula-
tion method to make model training more convenient and
practical.

Firstly, according to the Equation (1) and Equation (5), we
can deduce it as follows

st = ŝt + Etz

= ŝt/t−1 +Ktot + Et/t−1z +Ktω
o
t

= ŝt/t−1 +Kt(ŝt/t−1 + Et/t−1z + ωo
t )

+ Et/t−1z +Ktω
o
t

= (I +Kt)ŝt/t−1 + (I +Kt)Et/t−1z + 2Ktω
o
t .

(10)

Then, by using Lemma A.1 and Lemma A.2 (the details are
reported in Appendix A), we can draw

st = (I +Kt)ŝt/t−1 + (I +Kt)Et/t−1z + 2Ktω
o
t

∈ ϵ
(
(I +Kt)ŝt/t−1, (I +Kt)

2Pt/t−1

)
⊕ ϵ
(
0, 4K2

tM
o
t

)
⊆ ϵ (ŝt, Pt) ,

(11)

where ŝt = (I + Kt)ŝt/t−1, Pt = (1 − η)−1(I +
Kt)

2Pt/t−1 + 4η−1K2
tM

o
t , and η ∈ [0, 1] is a scalar pa-

rameter.

As a result, the new belief b (ŝt, diag{Et}) is obtained. Fi-
nally, the belief bt is employed by the policy π to decide an
action

π(bt)
.
= π (ŝt, diag{Et}) . (12)

Remark 3.2. Different from the probability-based belief
state distribution, the belief state obtained based on set-
membership filtering are formalized as a strictly bounded
region of the estimated midpoint and shape matrix. It has
significant advantages in the following two scenarios:

Figure 3. Overview of SBRL. The SBRL consists of two parts: a
Set-membership Belief state learning Model (SBM) for learning
bounded belief state sets and an RL controller for making decisions
based SBM.

• Unknown-but-bounded(UBB) noise: In this situation,
sensor and state transition noise distributions are multi-
modal and imprecise due to complex factors, making
it impossible to model the noise accurately.

• Safety-critical environment: To meet the application
requirements of safety-critical systems such as au-
tonomous driving(Ma et al., 2021; Chen et al., 2021b)
or robot control(Zhao et al., 2021), many safe RL
works pursue agents to learn a zero-violation policy.
Our approach also has significant implications for safe
RL under partially observable, which is an inevitable
challenge when RL is geared toward real-world appli-
cations.

3.2. POMDP RL Framework based on SBM

To show the advantage of SBM in POMDP tasks, we in-
tegrate SBM into a POMDPs RL framework and propose
the Set-membership Belief-based Reinforcement Learning
(SBRL) algorithm based PPO (Schulman et al., 2017) to
learn the optimal policy. The detail of SBRL can be found
in Appendix C, and the overview of SBRL is shown in
Figure 3.

In our algorithm, both actor and critic make decisions based
on the bounded belief sets b (ŝt, diag{Et}) obtained by the
SBM rather than the probabilistic belief state distribution.
The algorithm may reduce the impact of the inaccuracy
observation and decrease the precision requirements of sen-
sors.

In addition, we construct an observation generation model
to predict future observations in the decision-making pro-
cess, which be represented by recurrent neural networks
parameterized by qθ(st|o≤t, a≤t). For simplification, let
ψ
.
= (ϕ, θ,K, η) denote all the parameters to be learned for
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Algorithm 1 SBRL algorithm
Input: Initial belief b (ŝ1, diag{E1})
Parameter: Buffer B, interacting step T , max epoches
N

1: while not converged do
2: // Execution Phase
3: Start with b (ŝ1, diag{E1})
4: Receive an observation o1 from the environment
5: for t = 1 to T do
6: Select action at based on (12)
7: Receive a reward rt and a new observation ot+1

8: Update the next belief state b (ŝt+1, diag{Et+1})
by (5) and (8)

9: Add experience to bufferB = B∪{(ot, at, rt)Tt=1}
10: b (ŝt, diag{Et})← b (ŝt+1, diag{Et+1})
11: end for
12: // Training Phase
13: for k = 1 to T do
14: Compute At and V t for t = 1 . . . T
15: Train the networks by (14) with {(ot, at, rt)Tt=1}
16: end for
17: end while

the belief computation. Then, the belief inference network
can be jointly optimized by maximizing the Evidence Lower
BOund (ELBO):

Lm(ψ) = log p(o1:T |a1:T )

≥ Eq(s1:T |o1:T ,a1:T )

[
T∏

t=1

log p(ot|st)

+ log T (st|st−1, at−1)− log q(st|o≤t, a≤t)] .

(13)

The detailed derivations can be found in Appendix D. All
three networks, the policy network, the value network, and
the belief inference network, can be trained jointly. The
overall loss function is

LSBM(ζ, ξ, ψ) = −Lp(ζ) + λυL
υ(ξ)− λmLm(ψ), (14)

where λυ and λm are the coefficients to trade-off the losses.
We adopt the normalized advantage values and rewards to
train policy and value network; therefore, all three terms
have similar magnitude across different tasks. Our SBRL
algorithm is presented in Algorithm 1.

4. Experiments
We empirically evaluate our method for several challenging
control tasks in this section. Our experiments aim to answer
the following questions: First, can SBRL algorithm achieve
good results in both partially observable and uncertain envi-
ronments? Second, can SBM maintain accurate belief states

(a) Mountain Hike Task (b) Performance

Figure 4. Mountain Hike Task. An agent navigates on the map
from the start position (white dot) to the goal (green dot with the
shaded area as the threshold). Partial observation is introduced by
a bounded random noise and appended with a long noise vector
of length l. The reward r(x, y) for position (x, y) is given by the
heat map.

to provide a reasonable basis for agents’ decision-making
under uncertain and partially observable environments?

To answer the first question, we conduct experiments on
Mountain Hike, several variants of Safety Gym, and Flicker-
ing Atari games. We train SBRL and baselines with similar
network architecture and hyperparameters as the original
DPFRL implementation. We compare our method against
the following algorithms: 1) DPFRL (Ma et al., 2020),
which performs belief inference relying on a particle fil-
ter and learns the environment models simultaneously; 2)
DRBPN (Wang & Tan, 2021), which employs the Gaussian
model to learn belief states. Concerning the second ques-
tion, we give two ablation experiments on the variant of
Safety Gym, which takes PPO-ISSA (Zhao et al., 2021) as
the nominal policy because PPO-ISSA can make a Zero-
Violation policy on the standard Safety Gym environment.
All reported results are averages over three random seeds,
and the curves are smoothed over time.

4.1. Mountain Hike

Experimental Setup : Mountain Hike is a continuous
control environment with observation uncertainty where an
agent navigates on a fixed 20× 20 map, introduced by (Igl
et al., 2018) to demonstrate the benefit of belief tracking
for POMDP RL. (Ma et al., 2020) concatenates the original
observation vector with a random noise vector to make
the environment more challenging. The main difference
between our environment setup and (Ma et al., 2020) is
that both state-transition noise and observation noise are
set to be bounded. More specifically, the state space and
action space in Mountain Hike are defined as S = A = R2,
where st = [xt, yt] and at = [δxt, δyt]. Transitions of
the agent are stochastic with an additive bounded random
noise st+1 = st + at + ωa

t , where ωa
t ∼ U(−1, 1). The

observation space is O = R2+l, where l is a predefined
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(a) Point-Goal1-v0 (b) Car-Goal1-v0 (c) Doggo-Goal1-v0

(d) Point-Button1-v0 (e) Car-Button1-v0 (f) Doggo-Button1-v0

Figure 5. Safe Gym with noise. Average episodic return of SBRL and baseline methods in the 6 benchmark environments. The curves are
smoothed uniformly for better visualization.

Table 1. Max average return on Flickering Atari Games. The op-
timal value for each task is bolded. ± corresponds to a single
standard deviation.

ENV SBRL DPFRL DVRL

PONG 18.72±0.83 15.40±0.76 18.17±2.67
CHOPPER 8,002±139.1 8,086±159.1 6,602±449
MSPACMAN 3,143±245.2 3,028±545.3) 2,221±199
CENTIPEDE 4,429±191.4 4,849±291.4 4,240±116
BEAMRIDER 4,120±99.4 3,940±107.4 1,663±183
FROSTBITE 298.5±6.18 293.5±5.06 297±7.85
BOWLING 30.51±0.26 33.89±0.34 29.53±0.23
ICEHOCKEY -4.12±0.05 -4.06±0.02 -4.88±0.17
DDUNK -7.32±1.12 -11.25±1.25 -5.95±1.25
ASTEROIDS 1,892±153 1,948±202.6 1,539±73

constant. Observations are ot = [ost , o
n
t ], where ost = st +

ωo
t and ont ⊆ Rl is sampled from a uniform distribution
U(−10, 10). The reward for each step is given by rt =
r(xt, yt)−0.01∥at∥, where r(xt, yt) is shown in Figure 4(a).
The results are shown in Figure 4(b) when l = 100.

Evaluation : Figure 4(b) shows SBRL achieves superior
performance and learns faster than the DPFRL and DRBPN,
demonstrating the ability of SBRL under the observation
uncertainty environment.

4.2. Safety Gym with noise

Experimental Setup : Safety Gym is a state-of-the-
art high-dimensional continuous control environment (Ray
et al., 2019), where an agent can only observe part of the
environment state through its sensors. In our experiment,
we choose 6 games from Safety Gym: Robot-Goal1-v0,
Car-Goal1-v0, Doggo-Goal1-v0, Robot-Button1-v0, Car-
Button1-v0, and Doggo-Button1-v0 to evaluate SBRL al-
gorithm. It is worth noting that we added bounded random
observation noise to the above benchmark environment:
ot = st + ωo

t , where ωo
t is less than 15% of st. We conduct

tests under different environments, and Figure 5 presents
the experimental results.

Evaluation : From Figure 5, we can see that compared
to DPFRL and DVRL, SBRL can also achieve better per-
formance under the partially observable environment with
uncertainty. In addition, when the environment becomes
complex, such as in Figure 5(c) and Figure 5(f), the advan-
tages of the SBRL algorithm are more prominent. These
results demonstrate the ability of SBRL in the robot naviga-
tion task with noise and incomplete observation.

4.3. Flickering Atari Games

Our algorithm is designed specifically for the decision prob-
lems under the environment with UBB noise, but consider-
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(a) Point-Goal1-v0

(b) Doggo-Button1-v0

Figure 6. Ablation Studies. The first row is the average episodic return, episodic cost, and overall cost rate on Point-Goal1-v0; the second
row is the average episodic return, episodic cost, and overall cost rate on Doggo-Button1-v0.

ing that many works (Hausknecht & Stone, 2015; Igl et al.,
2018; Ma et al., 2020) were tested in Flickering Atari envi-
ronments, which is another partially observable environment
and does not violate the UBB noise setting. So, we added
these experiments to show that our algorithm is still valid in
the environment with the missing observations.

Experimental Setup : Flickering Atari Games are the vari-
ant of the Atari Games, and here image observations are
single frames randomly replaced by a blank frame with a
probability of 0:5. We test our algorithm on the same subset
of games on which DPFRL and DVRL (Igl et al., 2018)
were evaluated. The comparisons about max average return
are summarized in Table 1.

Evaluation: From Table 1, we can see that SBRL and
DPFRL significantly outperform DVRL in almost all games,
and SBRL beats DPFRL in 6 out of 10 games (Pong, MsPac-
man, BeamRider, Frostbite, IceHockey, and DDunk) and
performs comparably in 4 other games (Chopper, Centipede,
Bowling, Asteroids). These results show that SBRL can
also outperform or achieve performance similar to advanced
algorithms, where the observation image of the agent is
probabilistically missing. The simulation results are in line
with our expectations.

4.4. Ablation Studies

We additionally test the performance of SBM in the Safety
Gym with noise. In our experiment, using the PPO-ISSA
agent as the nominal policy, which can realize zero-violation
under the standard Safe Gym environments, and estimat-
ing the current belief state of the agent through SBM, this
structure is called SBM-PPO-ISSA. Similarly, the compari-
son algorithms DPFRL and DRBPN adopt the same nom-
inal strategy and are combined to form DPF-PPO-ISSA
and DRBPN-PPO-ISSA, respectively. We conduct tests on
Robot-Goal1-v0 and Doggo-Button1-v0 with noise. The
experimental results are indicated in Figure 6, showing that
SBM-PPO-ISSA has fewer constraint violations than DPF-
PPO-ISSA and DRBPN-PPO-ISSA in all environments and
gets slightly higher rewards than the other two methods.
These experimental results demonstrate the ability of SBM
to track a latent state, which is consistent with the above-
mentioned analysis.
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5. Related Work
5.1. POMDPs

POMDPs (Åström, 1965; Kurniawati et al., 2008; Somani
et al., 2013) provide a principled and generic framework
for modeling complex planning and decision problems in
stochastic domains, which is suitable for scenarios where
an agent cannot accurately observe the complete hidden
state of the environment. Unfortunately, the modeling ad-
vantages of POMDPs come at cost-precise solutions that
are computationally very expensive and thus only work in
practice for elementary problems. Thus, in recent years,
many researchers have tried to introduce the value function
approximation method, such as point-based methods (Kur-
niawati et al., 2008; Shani et al., 2013) and Monte-Carlo
sampling in the belief space (Silver & Veness, 2010; Kur-
niawati & Yadav, 2016), to solve approximate solutions
of POMDPs. However, these studies only focus on the
POMDP problems in discrete spaces. Subsequently, to track
belief states in POMDPS with continuous state and action
spaces, some works (Silver & Veness, 2010; Wu et al., 2021)
use Monte Carlo algorithms like particle filters to maintain
sample sets extracted from belief states. Other continuous
space POMDP solvers often approximate the belief states
with distributions like diagonal Gaussians (Lee et al., 2020),
Gaussian mixture (Tschiatschek et al., 2018), and categori-
cal distribution (Hafner et al., 2020) and solve the problem
analytically using gradients.

5.2. Belief inference

Recent researches in model-based belief inference provide
promising methods to deal with high-dimensional continu-
ous control problems under partially observable or uncertain.
Learning effective latent dynamics models to solve chal-
lenging continuous control problems is becoming feasible
through advances in deep generative modeling and latent
variable models. Among these, some works propose particle
filter-based methods that use samples to approximate the
belief states (Igl et al., 2018; Ma et al., 2020; Wu et al.,
2021). However, particle filters are reported to experience
the curse of dimensionality and therefore suffer from low
sample efficiency and performance (Lee et al., 2020).

In addition, many researchers use the Gaussian model (Han
et al., 2019; Wang & Tan, 2021) to construct the dynamics
and generative model to obtain the current posterior belief
state analytically. However, they assume the belief states
that obey diagonal Gaussian distributions. Such assump-
tions impose substantial restrictions on belief inference and
lead to limitations in practice, including mode collapse,
posterior collapse, and object vanishing in reconstruction
uses a Gaussian mixture to approximate the belief states.
More recently, to learn general continuous belief states for
POMDPs, FORBES (Chen et al., 2022) incorporates Nor-

malizing Flows into the variational inference step to con-
struct flexible belief states. However, this approach relies
on iteratively applying the transformations at each time step
to learn general belief state distribution, increasing compu-
tational complexity.

Specifically, different from the above method of probabilis-
tic belief inference, we depart from the Bayesian approach
and propose a new methodology for the POMDP task which
requires no assumption on the noise statistics.

5.3. Set-membership filter

Set-membership filter (Granichin et al., 2021) serves as
a well-appreciated robust filtering scheme, which ensures
the true states are confined in some optimized region with
high confidence at each time step, even in the presence
of unknown-but-bounded process and observation noises.
For the past two decades, many researchers have attempted
to solve the set-membership filter problems with various
methods. For example, a convex optimization approach
was applied to deal with the robust set-membership filter
for the systems with norm-bounded uncertainty in the sys-
tem matrices (Calafiore, 2005). The base point and trunca-
tion errors are introduced by the linearization of nonlinear
functions, which are respectively confined to bounded ellip-
soids (Yang & Li, 2009). To guarantee satisfactory filtering
performance, the authors introduce a parameter-dependent
set-membership filter (Zou et al., 2021) to generate a time-
varying ellipsoidal region containing the true state. The
applications of the set-membership filter include the system
over WSNs (Ding et al., 2020), photovoltaic grid-connected
generation system (Zhang et al., 2020), and autonomous
ground vehicles (Mousavinejad et al., 2021).

6. Conclusion
Uncertain and partially observable is a tremendous chal-
lenge for reinforcement learning when applied to real-world
environments. In this paper, we propose a Set-membership
belief state learning model to learn accurate belief states. In
addition, we prove that our belief estimation method can
provide a series of belief state sets that always contain the
true states under the UBB noise. Furthermore, we integrate
the SBM into a POMDP RL framework and propose a novel
algorithm called Set-membership Belief state-based Rein-
forcement Learning (SBRL), which combines the strength
of both the set-membership filter and end-to-end RL. Ex-
tensive experimental results show that the proposed method
significantly outperforms the state-of-the-art methods un-
der uncertain environments and is better or comparable to
current state-of-the-art methods in partially observable envi-
ronments.
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Åström, K. J. Optimal control of markov processes with

incomplete state information. Journal of Mathematical
Analysis and Applications, 10(1):174–205, 1965.

Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V.
Linear Matrix Inequalities in System and Control Theory.
SIAM, 1994.

Calafiore, G. Reliable localization using set-valued non-
linear filters. IEEE Transactions on Systems, Man, and
Cybernetics-part A: Systems and Humans, 35(2):189–
197, 2005.

Chen, J., Li, S. E., and Tomizuka, M. Interpretable end-
to-end urban autonomous driving with latent deep rein-
forcement learning. IEEE Transactions on Intelligent
Transportation Systems, 2021a.

Chen, J., Li, S. E., and Tomizuka, M. Interpretable end-
to-end urban autonomous driving with latent deep rein-
forcement learning. IEEE Transactions on Intelligent
Transportation Systems, 23(6):5068–5078, 2021b.

Chen, X., Mu, Y. M., Luo, P., Li, S., and Chen, J. Flow-
based recurrent belief state learning for pomdps. In ICML,
pp. 3444–3468, 2022.

Ding, D., Wang, Z., and Han, Q. A set-membership ap-
proach to event-triggered filtering for general nonlinear
systems over sensor networks. IEEE Transactions on
Automatic Control, 65:1792–1799, 2020.

Durieu, C., Polyak, B. T., and Walter, E. Trace versus de-
terminant in ellipsoidal outer-bounding, with application
to state estimation. IFAC Proceedings Volumes, 29(1):
3975–3980, 1996.

Granichin, O. N., Erofeeva, V., Ivanskiy, Y., and Jiang, Y. Si-
multaneous perturbation stochastic approximation-based
consensus for tracking under unknown-but-bounded dis-
turbances. IEEE Transactions on Automatic Control, 66:
3710–3717, 2021.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Han, D., Doya, K., and Tani, J. Variational recurrent mod-
els for solving partially observable control tasks. arXiv
preprint arXiv:1912.10703, 2019.

Hausknecht, M. and Stone, P. Deep recurrent q-learning for
partially observable mdps. In AAAI, 2015.

Igl, M., Zintgraf, L., Le, T. A., Wood, F., and Whiteson, S.
Deep variational reinforcement learning for pomdps. In
ICML, pp. 2117–2126, 2018.

Kurniawati, H. Partially observable markov decision
processes (pomdps) and robotics. arXiv preprint
arXiv:2107.07599, 2021.

Kurniawati, H. and Yadav, V. An online pomdp solver for
uncertainty planning in dynamic environment. Robotics
Research, 114:611–629, 2016.

Kurniawati, H., Hsu, D., and Lee, W. S. Sarsop: Efficient
point-based pomdp planning by approximating optimally
reachable belief spaces. In Robotics: Science and Sys-
tems, 2008.

Kurzhanskiy, A. A. and Varaiya, P. Ellipsoidal toolbox
(et). In IEEE Conference on Decision and Control, pp.
1498–1503, 2006.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine, S.
Stochastic latent actor-critic: Deep reinforcement learn-
ing with a latent variable model. In NIPS, pp. 741–752,
2020.

Ma, H., Liu, C., Li, S. E., Zheng, S., Sun, W., and
Chen, J. Learn zero-constraint-violation policy in model-
free constrained reinforcement learning. arXiv preprint
arXiv:2111.12953, 2021.

Ma, X., Karkus, P., Hsu, D., Lee, W. S., and Ye, N. Discrim-
inative particle filter reinforcement learning for complex
partial observations. In ICLR, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mousavinejad, E., Ge, X., Han, Q., Lim, T. J., and Vlacic,
L. B. An ellipsoidal set-membership approach to dis-
tributed joint state and sensor fault estimation of au-
tonomous ground vehicles. IEEE/CAA Journal of Au-
tomatica Sinica, 8:1107–1118, 2021.

9



Set-membership Belief State-based Reinforcement Learning for POMDPs

Ni, T., Eysenbach, B., and Salakhutdinov, R. Recurrent
model-free rl can be a strong baseline for many pomdps.
In ICML, pp. 16691–16723, 2022.

Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
ploration in deep reinforcement learning. arXiv preprint
arXiv:1910.01708, 7:1, 2019.

Richter, F., Orosco, R. K., and Yip, M. C. Open-sourced
reinforcement learning environments for surgical robotics.
arXiv preprint arXiv:1903.02090, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shani, G., Pineau, J., and Kaplow, R. A survey of point-
based pomdp solvers. In AAMAS, pp. 1–51, 2013.

Silver, D. and Veness, J. Monte-carlo planning in large
pomdps. In NIPS, 2010.

Skelton, R. E., Iwasaki, T., and Grigoriadis, K. A unified
algebric approach to control design, 1997.

Somani, A., Ye, N., Hsu, D., and Lee, W. S. Despot: Online
pomdp planning with regularization. In NIPS, 2013.

Tschiatschek, S., Arulkumaran, K., Stühmer, J., and Hof-
mann, K. Variational inference for data-efficient model
learning in pomdps. arXiv preprint arXiv:1805.09281,
2018.

Wang, C., Wang, J., Shen, Y., and Zhang, X. Autonomous
navigation of uavs in large-scale complex environments:
A deep reinforcement learning approach. IEEE Transac-
tions on Vehicular Technology, 68:2124–2136, 2019.

Wang, Y. and Tan, X. Deep recurrent belief propagation
network for pomdps. In AAAI, pp. 10236–10244, 2021.

Witsenhausen, H. S. Sets of possible states of linear sys-
tems given perturbed observations. IEEE Transactions
on Automatic Control, 13:556–558, 1968.

Wu, C., Yang, G., Zhang, Z., Yu, Y., Li, D., Liu, W.,
and Hao, J. Adaptive online packing-guided search for
pomdps. In NIPS, pp. 28419–28430, 2021.

Yang, F. and Li, Y. Set-membership filtering for discrete-
time systems with nonlinear equality constraints. IEEE
Transactions on Automatic Control, 54(10):2480–2486,
2009.

Zhang, Y., Xia, N., Han, Q., and Yang, F. Set-membership
global estimation of networked systems. IEEE Transac-
tions on Cybernetics, 52:1454–1464, 2020.

Zhao, W., He, T., and Liu, C. Model-free safe control for
zero-violation reinforcement learning. In ICRL, 2021.

Zhu, P., Li, X., Poupart, P., and Miao, G. On improving
deep reinforcement learning for pomdps. arXiv preprint
arXiv:1704.07978, 2017.

Zou, L., Wang, Z., Geng, H., and Liu, X. Set-membership
filtering subject to impulsive measurement outliers: A
recursive algorithm. IEEE/CAA Journal of Automatica
Sinica, 8:377–388, 2021.

10



Set-membership Belief State-based Reinforcement Learning for POMDPs

A. Lemma
Lemma A.1. ((Kurzhanskiy & Varaiya, 2006)) For the affine transformation x 7→ Ax+ b with known matrix A and vector
b, if x ∈ ϵ(a, P ), we have

Aϵ(a, p) + b = ϵ(Aa+ b, APAT).

Lemma A.2. ((Durieu et al., 1996)) The elementwise sum of given ellipsoids ϵ(ai, Pi), i = 1, 2, · · · ,m, can be enclosed by
a bounding ellipsoid

ϵ(a1, P1)⊕ ϵ(a2, P2)⊕ · · · ⊕ ϵ(am, Pm) ⊆ ϵ(a, P ),

with the center a =
∑m

i=1 ai and the shape matrix

P =

(
m∑
i=1

ρi

)(
m∑
i=1

ρ−1
i Pi

)
∀ρi > 0.

Lemma A.3. (S-Procedure (Skelton et al., 1997)) Let Y0(η), Y1(η), · · · , Yp(η) be quadratic functions of η ∈ Rn

Yi(η) = ηTTiη, i = 0, 1, · · · , p

with Ti = TT
i . Then, the implication

Y1(η) ≤ 0, · · · , Yp(η) ≤ 0⇒ Y0(η) ≤ 0

holds if there exist τ1, · · · , τp ≥ 0 such that

ηT

(
T0 −

p∑
i=1

τiTi

)
η ≤ 0.

Lemma A.4. (Schur Complements (Boyd et al., 1994)) Given constant matrices L1, L2, L3 where L1 = LT
1 and L2 =

LT
2 < 0, then

L1 − LT
3 L

−1
2 L3 ≤ 0

if and only if [
L1 LT

3

L3 L2

]
≤ 0

or equivalently [
L1 L3

LT
3 L2

]
≤ 0.

B. The proof of Theorem 1
First, we write the estimation error st − ŝt , taking into account Equation (5)

st − ŝt
= ŝt/t−1 + Et/t−1z − ŝt/t−1 −Ktot

= Et/t−1z −Kt(ŝt/t−1 + Et/t−1z + ωo
t )

= −Ktŝt/t−1 + (I −Kt)Et/t−1z −Ktω
o
t

= Φtξ,

(15)

where, ξ = [1 zT (ωo)T]T, and

Φt = [−Ktŝt/t−1 (I −Kt)Et/t−1 −Kt]. (16)

Thus, (st − ŝt)T(Pt)
−1(st − ŝt) ≤ 1 can be rewritten as

ξT
[
(Φt)

T
(Pt)

−1
Φt − diag(1,0,0)

]
ξ ≤ 0, (17)
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all the inequality conditions can be expressed as follows:

ξT diag(−1, I,0)ξ ≤ 0, (18)

ξT diag(−1,0, (Mo
t )

−1)ξ ≤ 0, (19)

where I is the identity matrix or vector with appropriate dimensions.

By using the S-procedure Lemma A.3, the sufficient conditions such that the Equation (17) hold is that there exists positive
scalars of τz, τoω such that

ξT[(Φt)
T
(Pt)

−1
Φt − diag(1,0,0)− τz diag(−1, I,0)− τoω diag(−1,0, (Mo

t )
−1)]ξ ≤ 0. (20)

Equation (20) is written in the following compact form:

ξT[(Φt)
T
(Pt)

−1
Φt − diag(1− τz − τoω,−τzI,−τoω(Mo

t )
−1))]ξ ≤ 0. (21)

By denoting
Πt = diag

(
1− τz − τoω,−τzI,−τoω(Mo

t )
−1)
)
, (22)

Equation (21) is written as
ξT
[
(Φt)

T
(Pt)

−1
Φt −Πt

]
ξ ≤ 0. (23)

Then, the statement of the Theorem 3.1 then follows by straightforward application of the Lemma A.4 to the above matrix
inequality.

C. RL controller
The RL controller follows an actor-critic framework, which makes decisions based on belief states by a modifying PPO. The
parameter ζ of the policy πζ is learned by optimizing a clipped ”surrogate” objective

Lp(ζ) = Ebt,at

[
min

(
πζ(at|bt)
πζold(at|bt)

Ât, clip

(
πζ(at|bt)
πζold(at|bt)

, 1− δ, 1 + δ

)
Ât

)]
, (24)

where δ is the clipping parameter, Ât =
∑T

k=0(γλ)
k
[
rt + γV̂ϕ(bt+k+1 − V̂ϕ(bt+k)

]
is the Generalized Advantage Estima-

tor with a trade-off coefficient λ; and V̂ϕ is the approximated value function, which is trained by Lv(ξ) = Ebt ||V̂ξ(bt)− V̂ϕ||,
where V̂t =

∑T
k=0 γ

krt+k is the discounted accumulated reward from timestep t onwards.

D. Evidence Lower BOund (ELBO)
The belief inference network can be optimized by maximizing the Evidence Lower BOund (ELBO). The detailed derivation
is as follow: The variational bound for latent dynamics models p(o1:T , s1:T |a1:T ) = Πtp(st|st−1, at−1)p(ot|st) and a
variational posterior q(s1:T |o1:T , a1:T ) = Πtq(st|o≤t, a≤t) follows from importance weighting and Jensen’s inequality as
shown,

Lm(ψ) = log p(o1:T |a1:T )

= logEp(s1:T |a1:T

[
T∏

t=1

p(ot|st)

]

= logEq(s1:T |o1:T ,a1:T )

[
T∏

t=1

p(ot|st)T (st|st−1, at−1)

q(st|o≤t, a≤t)

]

≥ Eq(s1:T |o1:T ,a1:T )

[
T∏

t=1

log p(ot|st) + log T (st|st−1, at−1)− log q(st|o≤t, a≤t)

]
.

(25)
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