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Abstract
In this paper, we consider federated Q-learning,
which aims to learn an optimal Q-function by pe-
riodically aggregating local Q-estimates trained
on local data alone. Focusing on infinite-horizon
tabular Markov decision processes, we provide
sample complexity guarantees for both the syn-
chronous and asynchronous variants of feder-
ated Q-learning. In both cases, our bounds ex-
hibit a linear speedup with respect to the num-
ber of agents and sharper dependencies on other
salient problem parameters. Moreover, exist-
ing approaches to federated Q-learning adopt an
equally-weighted averaging of local Q-estimates,
which can be highly sub-optimal in the asyn-
chronous setting since the local trajectories can
be highly heterogeneous due to different local
behavior policies. Existing sample complexity
scales inverse proportionally to the minimum en-
try of the stationary state-action occupancy dis-
tributions over all agents, requiring that every
agent covers the entire state-action space. In-
stead, we propose a novel importance averag-
ing algorithm, giving larger weights to more fre-
quently visited state-action pairs. The improved
sample complexity scales inverse proportionally
to the minimum entry of the average stationary
state-action occupancy distribution of all agents,
thus only requiring the agents collectively cover
the entire state-action space, unveiling the bless-
ing of heterogeneity.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018) is an
area of machine learning for sequential decision making,

1Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, USA. Correspondence
to: Jiin Woo <jiinw@andrew.cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

aiming to learn an optimal policy that maximizes the to-
tal rewards via interactions with an unknown environment.
RL is widely used in many real-world applications, such as
autonomous driving, games, clinical trials, and recommen-
dation systems. However, due to the high dimensionality
of the state-action space, training of RL agents typically
requires a significant amount of computation and data to
achieve desirable performance. Moreover, data collection
can be extremely time-consuming with limited access in
the wild, especially when performed by a single agent. On
the other hand, it is possible to leverage multiple agents to
collect data simultaneously, under the premise that they can
learn a global policy collaboratively with the aid of a cen-
tral server without the need of sharing local data. As a re-
sult, there is a growing need to conduct RL in a distributed
or federated fashion.

Although there have been many studies analyzing federated
learning (Kairouz et al., 2021) in other areas such as super-
vised machine learning (McMahan et al., 2017; Bonawitz
et al., 2019; Wang et al., 2020b), there are only a few re-
cent works focused on federated RL. They consider issues
such as robustness to adversarial attacks (Wu et al., 2021;
Fan et al., 2021), environment heterogeneity (Jin et al.,
2022), as well as sample and communication complexities
(Doan et al., 2021; Khodadadian et al., 2022; Shen et al.,
2022). Encouragingly, some of these prior works offer non-
asymptotic sample complexity analyses of federated RL
algorithms that highlight a linear speedup of the required
sample size in terms of the number of agents. However, the
performance characterization of these federated algorithms
is still far from complete.

1.1. Federated Q-Learning: Prior Art and Limitations

This paper focuses on Q-learning (Watkins & Dayan,
1992), one of the most celebrated model-free RL algo-
rithms, which aims to learn the optimal Q-function directly
without forming an estimate of the model. Two sampling
protocols are typically studied: synchronous sampling and
asynchronous sampling. With synchronous sampling, all
state-action pairs are updated uniformly assuming access to
a generative model or a simulator (Kearns & Singh, 1999).
With asynchronous sampling, only the state-action pair that
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is visited by the behavior policy is updated at each time
(Tsitsiklis, 1994). Despite its long history of theoretical
investigation, the tight sample complexity of Q-learning in
the single-agent setting has only recently been pinned down
in Li et al. (2023). As we shall elucidate, there remains a
large gap in terms of the sample complexity requirement
between the federated setting and the single-agent setting
in terms of dependencies on salient problem parameters.

To harness the power of multiple agents, Khodadadian et al.
(2022) proposed and analyzed a federated variant of Q-
learning with asynchronous sampling that periodically ag-
gregates local Q-estimates trained on local Markovian tra-
jectories collected over K agents. To set the stage, con-
sider an infinite-horizon tabular Markov decision process
(MDP) with state space S, action space A, and a discount
factor γ ∈ [0, 1). To learn an ε-optimal Q-function esti-
mate (in the ℓ∞ sense), Khodadadian et al. (2022) requires
a per-agent sample size on the order of

Õ

( |S|2
Kµ5

min(1− γ)9ε2

)
(1)

for sufficiently small ε, where µmin :=
min1≤k≤K min(s,a)∈S×A µk

b(s, a) is the minimum
entry of the stationary state-action occupancy distributions
µk
b of the sample trajectories over all agents, and Õ

hides logarithmic terms. On the other hand, the sample
requirement of single-agent Q-learning (Li et al., 2023) for
learning an ε-optimal Q-function is

Õ

(
1

µmin(1− γ)4ε2

)
(2)

for sufficiently small ε. Comparing the two sample com-
plexity bounds reveals several drawbacks of existing anal-
yses and raises the following natural questions.

• Near-optimal sample size. Despite the appealing linear
speedup in terms of the number of agents K shown in
Khodadadian et al. (2022), it has unfavorable dependen-
cies on other salient problem parameters. In particular,
since 1/µmin ≥ |S||A|, the sample complexity in (1)
will be better than that of the single-agent case in (2)
only if K is at least above the order of |S|6|A|4

(1−γ)5 , which
may not be practically feasible with large state-action
space and long effective horizon. Can we improve the
dependency on the salient problem parameters for fed-
erated Q-learning while maintaining linear speedup?

• Benefits of heterogeneity. Existing analyses in Khodada-
dian et al. (2022) require that each agent has full cover-
age of the state-action space (i.e., µmin > 0), which is
as stringent as the single-agent setting. However, given
that the insufficient coverage of individual agents can be

complemented by each other when agents have hetero-
geneous local trajectories, it may not be necessary to re-
quire full coverage of the state-action space from every
agent. Can we exploit the heterogeneity in the agents’
local trajectories and relax the coverage requirement on
individual agents?

1.2. Summary of Our Contributions

In this paper, we answer these questions in the affirmative,
by providing a sample complexity analysis of federated Q-
learning under both the synchronous and asynchronous set-
tings. The main contributions are summarized as follows,
with Table 1 providing a comparison with the prior art.

• Sample complexity of federated synchronous Q-learning
with equal averaging. We show that with high probabil-
ity, the sample complexity of federated synchronous Q-
learning (FedSynQ) to learn an ε-optimal Q-function
in the ℓ∞ sense is (see Theorem 3.1)

Õ

( |S||A|
K(1− γ)5ε2

)
, (3)

which exhibits a linear speedup with respect to the num-
ber of agents K and nearly matches the tight sam-
ple complexity bound of single-agent synchronous Q-
learning up to a factor of 1/(1 − γ) in Li et al. (2023)
for K = 1.

• Sample complexity of federated asynchronous Q-
learning with equal averaging. We provide a sharp-
ened sample complexity analysis of the algorithm de-
veloped in Khodadadian et al. (2022) for federated asyn-
chronous Q-learning with equal averaging (FedAsynQ-
EqAvg). To learn an ε-optimal Q-function in the ℓ∞
sense, FedAsynQ-EqAvg requires at most (see Theo-
rem 4.2)

Õ

(
Chet

Kµmin(1− γ)5ε2

)
(4)

samples per agent for sufficiently small ε (ignoring the
burn-in cost that depends on the mixing times of the
Markovian trajectories over all agents), where Chet ≥
1 captures the heterogeneity of the behavior policies
across agents. This sample complexity greatly sharpens
the dependency on all the salient problem parameters
— including 1/(1 − γ), |S|, and 1/µmin — by orders
of magnitudes compared to the bound obtained in Kho-
dadadian et al. (2022).

• Leveraging heterogeneity in federated asynchronous Q-
learning via importance averaging. Heterogeneous be-
havior policies at agents may induce local trajectories
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sampling reference number of coverage sample
agents complexity

synchronous
Wainwright (2019); Chen et al. (2020) 1 full |S||A|

(1−γ)5ε2

(Li et al., 2023) 1 full |S||A|
(1−γ)4ε2

FedSynQ (Theorem 3.1) K full |S||A|
K(1−γ)5ε2

Qu & Wierman (2020) 1 full tmix

µ2
min(1−γ)5ε2

asynchronous

Li et al. (2021b) 1 full 1
µmin(1−γ)5ε2

Li et al. (2023) 1 full 1
µmin(1−γ)4ε2

FedAsynQ-EqAvg (Khodadadian et al., 2022) K full |S|2
Kµ5

min(1−γ)9ε2

FedAsynQ-EqAvg (Theorem 4.2) K full Chet

Kµmin(1−γ)5ε2

FedAsynQ-ImAvg (Theorem 4.3) K partial 1
Kµavg(1−γ)5ε2

Table 1. Comparison of sample complexity upper bounds of single-agent and federated Q-learning algorithms under synchronous and
asynchronous sampling protocols to learn an ε-optimal Q-function in the ℓ∞ sense, where logarithmic factors and burn-in costs are
hidden. Here, S is the state space, A is the action space, γ is the discount factor, K is the total number of agents, and tmix is the
mixing time of the behavior policy. In addition, µmin = mink,s,a µ

k
b (s, a) denotes the minimum entry of the stationary state-action

occupancy distributions µk
b of all agents, µavg = mins,a

1
K

∑K
k=1 µ

k
b (s, a) denotes the minimum entry of the average stationary state-

action occupancy distribution of all agents, and Chet := maxk,s,a Kµk
b (s, a)/

(∑K
k=1 µ

k
b (s, a)

)
captures the heterogeneity across the

agents.

covering different parts of the state-action space. How-
ever, equally weighting the local Q-estimates fails to ex-
ploit this diversity, and the convergence is bottlenecked
by the slowest converging agent. To address this is-
sue, we propose a novel importance averaging scheme
in federated Q-learning (FedAsynQ-ImAvg) that aver-
ages the local Q-estimates by assigning larger weights to
more frequently updated local estimates. To learn an ε-
optimal Q-function in the ℓ∞ sense, FedAsynQ-ImAvg
requires at most (see Theorem 4.3)

Õ

(
1

Kµavg(1− γ)5ε2

)
(5)

samples per agent for sufficiently small ε (ignoring
the burn-in cost that depends on the mixing times
of the Markovian trajectories over all agents), where
µavg is the minimum entry of the average stationary
state-action occupancy distribution of all agents. Since
µavg ≥ µmin, the sample complexity of FedAsynQ-
ImAvg improves over that of FedAsynQ-EqAvg. More
importantly, as long as the agents collectively cover the
entire state-action space (i.e., µavg > 0), FedAsynQ-
ImAvg ensures efficient learning even when individual

agents fail to cover the entire state-action space (i.e.,
µmin = 0), unveiling the blessing of heterogeneity.

1.3. Related Work

Analysis of single-agent Q-learning. There has been
extensive research on the convergence guarantees of Q-
learning, focusing on the single-agent case. Many initial
studies have analyzed the asymptotic convergence of Q-
learning (Tsitsiklis, 1994; Szepesvári, 1998; Jaakkola et al.,
1994; Borkar & Meyn, 2000). Later, Even-Dar & Man-
sour (2003); Beck & Srikant (2012); Wainwright (2019);
Chen et al. (2020); Li et al. (2023) have studied the sam-
ple complexity of Q-learning under synchronous sampling,
and Even-Dar & Mansour (2003); Beck & Srikant (2012);
Qu & Wierman (2020); Li et al. (2023; 2021b); Chen et al.
(2021b) have investigated the finite-time convergence of Q-
learning under asynchronous sampling (also referred to as
Markovian sampling). In addition, Jin et al. (2018); Bai
et al. (2019); Zhang et al. (2020); Li et al. (2021a); Yang
et al. (2021) studied Q-learning with optimism for online
RL, and Shi et al. (2022); Yan et al. (2022) dealt with Q-
learning with pessimism for offline RL.
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Distributed and federated RL. Several recent works
have developed distributed versions of RL algorithms to ac-
celerate training (Mnih et al., 2016; Espeholt et al., 2018;
Assran et al., 2019). Theoretical analyses of convergence
and communication efficiency of these distributed RL al-
gorithms have also been considered in recent works. For
example, a collection of works (Doan et al., 2019; Sun
et al., 2020; Wang et al., 2020a; Wai, 2020; Chen et al.,
2022a; Zeng et al., 2021) have analyzed the convergence of
decentralized temporal difference (TD) learning. Further-
more, Chen et al. (2022b); Shen et al. (2022) have analyzed
the finite-time convergence of distributed actor-critic algo-
rithms and Chen et al. (2021a) proposed a communication-
efficient policy gradient algorithm with provable conver-
gence guarantees.

Notation. Throughout this paper, we denote by ∆(S) the
probability simplex over a set S, and [K] := {1, · · · ,K}
for any positive integer K > 0. In addition, f(·) = Õ(g(·))
or f ≲ g (resp. f(·) = Ω̃(g(·)) or f ≳ g) means that f(·) is
orderwise no larger than (resp. no smaller than) g(·) mod-
ulo some logarithmic factors. The notation f ≍ g means
f ≲ g and f ≳ g hold simultaneously.

2. Model and Background
In this section, we introduce the mathematical model and
background of Markov decision processes.

Infinite-horizon Markov decision process. We consider
an infinite-horizon Markov decision process (MDP), which
is represented by M = (S,A, P, r, γ). Here, S and A
denote the state space and the action space, respectively,
P : S ×A×S → [0, 1] indicates the transition kernel such
that P (s′ | s, a) denotes the probability that action a in state
s leads to state s′, r : S ×A → [0, 1] denotes a determinis-
tic reward function, where r(s, a) is the immediate reward
for action a in state s, and γ ∈ [0, 1) is the discount factor.

Policy, value function, and Q-function. A policy is an
action-selection rule denoted by the mapping π : S →
∆(A), such that π(a|s) is the probability of taking ac-
tion a in state s. For a given policy π, the value function
V π : S → R, which measures the expected discounted
cumulative reward from an initial state s, is defined as

V π(s) := E

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s

]
(6)

for all s ∈ S, where the expectation is taken with respect to
the randomness of the trajectory {st, at, rt}∞t=0, sampled
based on the transition kernel (i.e., st+1 ∼ P (·|st, at))
and the policy π (i.e., at ∼ π(·|st)) for any t ≥ 0.
Similarly, the state-action value function (i.e., Q-function)

Qπ : S×A → R, which measures the expected discounted
cumulative reward from an initial state-action pair (s, a), is
defined as

Qπ(s, a) := r(s, a) + E

[ ∞∑
t=1

γtr(st, at)
∣∣ s0 = s, a0 = a

]
for all (s, a) ∈ S × A. Again here, the expectation
is taken with respect to the randomness of the trajectory
{st, at, rt}∞t=1 generated similarly as above. Since the re-
wards lie within [0, 1], it follows that for any policy π,

0 ≤ V π ≤ 1

1− γ
, 0 ≤ Qπ ≤ 1

1− γ
. (7)

Optimal policy and Bellman’s principle of optimality.
A policy that maximizes the value function uniformly over
all states is called an optimal policy and denoted by π⋆.
Note that the existence of such an optimal policy is always
guaranteed (Puterman, 2014), which also maximizes the Q-
function simultaneously. The corresponding optimal value
function and Q-function are denoted by V ⋆ := V π⋆

and
Q⋆ := Qπ⋆

, respectively. It is well-known that the optimal
Q-function Q⋆ can be determined as the unique fixed point
of the Bellman operator T , given by

T (Q)(s, a) := r(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]
.

Q-learning (Watkins & Dayan, 1992), perhaps the most
widely used model-free RL algorithm, which seeks to learn
the optimal Q-function based on samples collected from the
underlying MDP without estimating the model.

3. Federated Synchronous Q-Learning:
Algorithm and Theory

In this section, we begin with understanding federated syn-
chronous Q-learning, where all the state-action pairs are
updated simultaneously assuming access to a generative
model or simulator at all the agents.

3.1. Problem Setting

In the synchronous setting, each agent k ∈ [K] has access
to a generative model, and generates a new sample

skt (s, a) ∼ P (·|s, a) (8)

for every state-action pair (s, a) ∈ S × A independently
at every iteration t. Our goal is to learn the optimal Q-
function Q⋆ collaboratively by aggregating the local Q-
learning estimates periodically.

Review: synchronous Q-learning with a single agent.
To facilitate algorithmic development, let us recall the syn-
chronous Q-learning update rule with a single agent. Start-
ing with certain initialization Q0, at every iteration t ≥ 1,
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the Q-function is updated according to

Qt(s, a) = (1− η)Qt−1(s, a)

+ η

(
r(s, a) + γmax

a′∈A
Qt−1(st(s, a), a

′)

)
,(9)

where st(s, a) ∼ P (·|s, a) is drawn independently for ev-
ery state-action pair (s, a) ∈ S×A, and η denotes the con-
stant learning rate. The sample complexity of synchronous
Q-learning has been recently investigated and sharpened
in a number of works, e.g. Li et al. (2023); Wainwright
(2019); Chen et al. (2020).

3.2. Algorithm Description

We propose a natural federated synchronous Q-learning al-
gorithm called FedSynQ that alternates between local up-
dates at agents and periodic averaging at a central server.
The complete description is summarized in Algorithm 1.
FedSynQ initializes a local Q-function as Qk

0 = Q0 at
each agent k ∈ [K]. Suppose at the beginning of each iter-
ation t ≥ 1, each agent maintains a local Q-function esti-
mate Qk

t−1 and a local value function estimate V k
t−1, which

are related via

∀s ∈ S : V k
t (s) := max

a∈A
Qk

t (s, a). (10)

FedSynQ proceeds according to the following steps in the
rest of the t-th iteration.

1. Local updates: Each agent first independently updates
all entries of its Q-estimate Qk

t−1 to reach some inter-
mediate estimate following the update rule:

Qk
t− 1

2
(s, a) = (1− η)Qk

t−1(s, a)

+ η
(
r(s, a) + γV k

t−1(s
k
t (s, a))

)
(11)

for all (s, a) ∈ S×A, where skt (s, a) is drawn according
to (8), and η ≥ 0 is the learning rate.

2. Periodic averaging: These intermediate estimates will
be periodically averaged by the server to form the up-
dated estimate Qk

t at the end of the t-th iteration. For-
mally, denoting τ ≥ 1 as the synchronization period, for
all (s, a) ∈ S ×A, it follows

Qk
t (s, a) =

{
1
K

∑K
k=1 Q

k
t− 1

2

(s, a) if t ≡ 0 (mod τ)

Qk
t− 1

2

(s, a) otherwise
.

(12)

Denoting the number of total iterations by T , the algorithm
outputs the final Q-estimate as the average of all local es-
timates, i.e. QT = 1

K

∑
k Q

k
T . Without loss of generality,

we assume the total number of iterations T is divisible by
τ , where Cround = T/τ is the rounds of communication.

Algorithm 1 Federated Sync. Q-learning (FedSynQ)
1: inputs: learning rate η, discount factor γ, number of

agents K, synchronization period τ , number of itera-
tions T .

2: initialization: Qk
0 = Q0 for all k.

3: for t = 1, · · · , T do
4: for k ∈ [K] do
5: Draw skt (s, a) ∼ P (· | s, a) for all (s, a) ∈ S×A.
6: Compute Qk

t− 1
2

according to (11).

7: Compute Qk
t according to (12).

8: end for
9: end for

10: return: QT = 1
K

∑
k Q

k
T .

3.3. Performance Guarantees

We are ready to provide the finite-time convergence analy-
sis of Algorithm 1.

Theorem 3.1 (Sample complexity of FedSynQ). Con-
sider any given δ ∈ (0, 1) and ε ∈ (0, 1

1−γ ]. Suppose that
the initialization of Algorithm 1 satisfies 0 ≤ Q0 ≤ 1

1−γ ,
and the synchronization period τ obeys

τ ≤ 1 +
1

η
min

{
1− γ

8γ
,
1

K

}
. (13a)

There exist some sufficiently large constant cT > 0 and
sufficiently small constant cη > 0, such that with prob-
ability at least 1 − δ, the output of Algorithm 1 satisfies
∥QT −Q⋆∥∞ ≤ ε, provided that the sample size per agent
T and the learning rate η satisfy

T ≥ cT log2((1− γ)2ε) log (|S||A|KT/δ)

K(1− γ)5ε2
, (13b)

η =
cηK(1− γ)4ε2

log (|S||A|KT/δ)
. (13c)

Theorem 3.1 suggests that to achieve an ε-accurate Q-
function estimate in an ℓ∞ sense, the number of samples
required at each agent is no more than

Õ

( |S||A|
K(1− γ)5ε2

)
,

given that the agent collects |S||A| samples at each itera-
tion. A few implications are in order.

Linear speedup. The sample complexity exhibits an ap-
pealing linear speedup with respect to the number of
agents K. In comparison, the sharpest upper bound
known for single-agent Q-learning (Li et al., 2023) is
Õ
(

|S||A|
(1−γ)4 min{ε,ε2}

)
, which matches with its algorithmic-

dependent lower bound when ε ∈ (0, 1). Therefore, our
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federated setting enables faster learning as soon as the num-
ber of agents satisfies

K ≳
1

(1− γ)max {1, ε}

up to logarithmic factors. When K = 1, our bound nearly
matches with the lower bound of single-agent Q-learning
up to a factor of 1/(1− γ), indicating its near-optimality.

Communication efficiency. One key feature of our fed-
erated setting is the use of periodic averaging with the hope
to improve communication efficiency. According to (13a),
our theory requires that the synchronization period τ be in-
versely proportional to the learning rate η, which suggests
that more frequent communication is needed to compen-
sate the discrepancy of local updates when the learning
rate is large. To provide insights, consider the parameter
regime when K ≳ 1

1−γ and ε ≲ 1
K(1−γ)2 . Plugging the

choice of the learning rate (13c) into the upper bound of τ
in (13a), we can choose the synchronization period as τ ≍

1
K2(1−γ)4ε2 up to logarithmic factors, leading to a commu-
nication complexity no larger than Cround = T

τ ≲ K
1−γ ,

which is almost independent of the final accuracy ε.

4. Federated Asynchronous Q-Learning:
Algorithm and Theory

In this section, we study the sample complexity of feder-
ated asynchronous Q-learning, where K agents sample lo-
cal trajectories using different behavior policies. In particu-
lar, we propose a novel aggregation algorithm FedAsynQ-
ImAvg that leverages the heterogeneity of these policies
and dramatically improves the sample complexity.

4.1. Problem Setting

In the asynchronous setting, each agent k ∈ [K] indepen-
dently collects a sample trajectory {skt , akt , rkt }∞t=0 from the
same underlying MDP M following some stationary local
behavior policy πk

b such that

akt ∼ πk
b (·|skt ), rkt = r(skt , a

k
t ), skt+1 ∼ P (·|skt , akt )

(14)

for all t ≥ 0, where the initial state is initialized as sk0 for
each agent k. Note that the behavior policies {πk

b}k∈[K]

are heterogeneous across agents and can be different from
the optimal policy π⋆. Contrary to the generative model
considered in the synchronous setting, the samples col-
lected under the asynchronous setting are no longer inde-
pendent across time but are Markovian, making the analy-
sis significantly more challenging. The sample trajectory at
each agent can be viewed as sampling a time-homogeneous
Markov chain over the set of state-action pairs. Throughout

this paper, we make the following standard uniform ergod-
icity assumption (Paulin, 2015; Li et al., 2021b).

Assumption 4.1 (Uniform ergodicity). For every agent
k ∈ [K], the Markov chain induced by the stationary be-
havior policy πk

b is uniformly ergodic over the entire state-
action space S ×A.

Uniform ergodicity guarantees that the distribution of the
state-action pair (st, at) of a trajectory converges to the
stationary distribution of the Markov chain geometrically
fast regardless of the initial state-action pair, and eventu-
ally, each state-action pair is visited in proportion to the
stationary distribution.

Key parameters. Two important quantities concerning
the resulting Markov chains will govern the performance
guarantees. The first one is the stationary state-action dis-
tribution µk

b , which is the stationary distribution of the
Markov chain induced by πk

b over all state-action pairs; the
second one is tkmix, which is the mixing time of the same
Markov chain given by

tkmix := min
{
t
∣∣∣ max
(s0,a0)∈S×A

dTV
(
P k
t (· | s0, a0), µk

b

)
≤ 1

4

}
,

(15)
where P k

t (· | s0, a0) denotes the distribution of (st, at) con-
ditioned on (s0, a0) for agent k, and dTV(·, ·) is the total
variation distance. Further, let the largest mixing time of
all the Markov chains induced by local behavior policies
be

tmax
mix := max

k∈[K]
tkmix. (16)

In words, tmax
mix approximately indicates the time that the

transition of every agent starts to follow its stationary dis-
tribution regardless of its initial state.

Let us further define a few key parameters that measure the
coverage and heterogeneity of the stationary state-action
distribution µk

b across agents. First, define

µmin := min
k∈[K]

µk
min, µk

min := min
(s,a)∈S×A

µk
b(s, a). (17)

State-action pairs with small stationary probabilities are
visited less frequently, and therefore can become bottle-
necks in improving the quality of Q-function estimates.
Clearly, µmin ≤ 1

|S||A| . In addition, denote

µavg := min
(s,a)∈S×A

1

K

K∑
k=1

µk
b(s, a). (18)

In words, µavg is the minimum entry of the average station-
ary state-action distribution of all agents. The difference
between µavg and µmin stands out when an individual agent
fails to cover the entire state-action space. While µmin = 0
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in such a case, µavg can still be positive as long as each
state-action pair is explored by at least one of the agents,
i.e.,

∑K
k=1 µ

k
b(s, a) > 0. Note that µavg is always greater

than or equal to µmin since

µavg = min
(s,a)∈S×A

1

K

K∑
k=1

µk
b(s, a)

≥ min
(s,a)∈S×A,k∈[K]

µk
b(s, a) = µmin. (19)

Last but not least, we measure the heterogeneity of the sta-
tionary state-action distributions across agents by

Chet := max
k∈[K]

max
(s,a)∈S×A

µk
b(s, a)

1
K

∑K
k=1 µ

k
b(s, a)

, (20)

which satisfies 1 ≤ Chet ≤ min{K, 1/µavg}, and Chet = 1
when µk

b = µb are all equal.

Review: asynchronous Q-learning with a single agent.
Recall the update rule of asynchronous Q-learning with a
single agent, where at each iteration t ≥ 1, upon receiving
a transition (st−1, at−1, st), the Q-estimate is updated via

Qt(s, a) (21)

=

 (1− η)Qt−1(s, a) +η (r(s, a) + γVt−1(st)) ,
if (s, a) = (st−1, at−1),

Qt(s, a), otherwise,

where η denotes the learning rate and Vt is defined in (10).
The sample complexity of asynchronous Q-learning has
been recently investigated in Li et al. (2021b; 2023); Qu
& Wierman (2020).

4.2. Algorithm Description

Similar to the synchronous setting, we describe a federated
asynchronous Q-learning algorithm, called FedAsynQ
(see Algorithm 2), that learns the optimal Q-function by
periodically averaging the local Q-estimates with the aid of
a central server. See Figure 1 for an illustration. Inheriting
the notation of Qk

t and V k
t from the synchronous setting

(cf. (10)), FedAsynQ proceeds as follows in the rest of the
t-th iteration.

1. Local updates: Each agent k samples a transition
(skt−1, a

k
t−1, r

k
t−1, s

k
t ) from its Markovian trajectory

generated by the behavior policy πk
b according to (14)

and updates a single entry of its local Q-estimate Qk
t−1:

Qk
t− 1

2
(s, a) (22)

=


(1− η)Qk

t−1(s, a)+ η
(
rkt−1 + γV k

t−1(s
k
t )
)
,

if (s, a) = (skt−1, a
k
t−1)

Qk
t−1(s, a), otherwise

,

where η denotes the learning rate.

Agent 1 Agent 2 Agent 𝐾…

Parameter server

Agent 𝑘 …

A local Markovian trajectory of 𝜏 iterations

Figure 1. Federated asynchronous Q-learning with K agents and
a parameter server. Each agent k performs τ local updates on its
local Q-table along a Markovian trajectory induced by behavior
policy πk

b and sends the Q-table to the server. The server averages
and synchronizes the local Q-tables every τ iterations. For impor-
tance averaging, the agents additionally send the number of visits
over all the state-action pairs within each synchronization period,
which is not pictured.

2. Periodic averaging: The intermediate local estimates
will be averaged every τ iterations, where τ ≥ 1 is
the synchronization period. Here, we consider a more
general weighted averaging scheme, where the updated
estimate Qk

t is:

Qk
t (s, a) (23)

=

{∑K
k=1 α

k
t (s, a)Q

k
t− 1

2

(s, a), if t ≡ 0 (mod τ)

Qk
t− 1

2

(s, a), otherwise

for all (s, a) ∈ S ×A. Here, αk
t = [αk

t (s, a)]s∈S,a∈A ∈
[0, 1]|S||A| is an entry-wise weight assigned to agent k
such that

∑K
k=1 α

k
t (s, a) = 1 for all (s, a) ∈ S ×A.

After a total of T iterations, FedAsynQ outputs a global
Q-estimate QT (s, a) =

∑K
k=1 α

k
T (s, a)Q

k
T (s, a) for all

(s, a) ∈ S × A. In the subsections below, we provide two
possible ways (equal and importance weighting) to choose
αk
t and their corresponding sample complexity analyses.

4.3. Performance Guarantees with Equal Averaging

We begin with the most natural choice, which equally
weights the local Q-estimates, that is,

αk
t (s, a) =

1

K
. (24)

We call the resulting scheme FedAsynQ-EqAvg, which
is also analyzed in Khodadadian et al. (2022). We have

7
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Algorithm 2 Federated Async. Q-learning (FedAsynQ)
1: inputs: learning rate {η}, discount factor γ, number

of agents K, synchronization period τ , total number of
iterations T .

2: initialization: Qk
0 = Q0 for all k ∈ [K].

3: for t = 1, · · · , T do
4: for k ∈ [K] do
5: Draw action akt−1 ∼ πk

b (s
k
t−1), observe reward

rkt−1 = r(skt−1, a
k
t−1), and draw next state skt ∼

P (· | skt−1, a
k
t−1).

6: Compute Qk
t− 1

2

according to (22).

7: Compute Qk
t according to (23).

8: end for
9: end for

10: return: QT (s, a) =
∑K

k=1 α
k
T (s, a)Q

k
T (s, a), for all

(s, a) ∈ S ×A.

the following improved performance guarantee in the next
theorem.

Theorem 4.2 (Sample complexity of FedAsynQ-EqAvg).
Consider any given δ ∈ (0, 1) and ε ∈ (0, 1

1−γ ]. Sup-
pose that the initialization of FedAsynQ-EqAvg satisfies
0 ≤ Q0 ≤ 1

1−γ . There exist some sufficiently large con-
stant cT > 0 and sufficiently small constant cη > 0,
such that with probability at least 1 − δ, the output of
FedAsynQ-EqAvg satisfies ∥QT − Q⋆∥∞ ≤ ε, provided
that the sample size per agent T , the learning rate η, and
the synchronization period τ satisfy

T ≥ cT

(
Chet

Kµmin(1− γ)5ε2
+ T0

)
(25a)

· log2((1− γ)2ε) log (TK) log (|S||A|T 2K/δ),

η =
cη min

{
K(1−γ)4ε2

Chet
, η0

}
log (TK) log (|S||A|T 2K/δ)

,

(25b)

τ0 ≤ τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
, (25c)

where T0 = 1
µmin(1−γ)η0

, η0 = µmin min{1−γ,K−1}
tmax
mix

, and

τ0 =
443tmax

mix

µmin
log 4|S||A|TK

δ , independent of ε.

Theorem 4.2 implies that to achieve an ε-accurate esti-
mate (in the ℓ∞ sense), the sample complexity per agent
of FedAsynQ-EqAvg is no more than

Õ

(
Chet

Kµmin(1− γ)5ε2

)
for sufficiently small ε, when the burn-in cost T0 — repre-
senting the impact of the mixing times — is amortized over
time. A few implications are in order.

Linear speedup under full coverage. The sample com-
plexity of FedAsynQ-EqAvg shows linear speedup with
respect to the number of agents, which is especially pro-
nounced when the local behavior policies are similar, i.e.,
Chet ≈ 1. Furthermore, it has sharpened dependency on
nearly all problem-dependent parameters compared to the
bound Õ

(
|S|2

Kµ5
min(1−γ)9ε2

)
obtained in Khodadadian et al.

(2022) by at least a factor of

|S|2
Chetµ4

min(1− γ)4
≥ |S|5|A|3

(1− γ)4
.

For K = 1, the bound nearly matches with the sharpest
upper bound Õ

(
1

µmin(1−γ)4ε2

)
for the single-agent case (Li

et al., 2023) up to a factor of 1/(1− γ), when ignoring the
burn-in cost. Moreover, the sample complexity bound is
finite only when µmin > 0, which implies that every agent
should have full coverage of the entire state-action space.

Communication efficiency. To provide further insights
on the communication complexity of FedAsynQ-EqAvg,
consider the regime when ε is sufficiently small and the
number of agents is sufficiently large such that K ≳ 1

1−γ .
By plugging the choice of the learning rate (25b) into the
upper bound of τ in (25c), we can select the synchroniza-
tion period as large as τ ≍ Chet

K2(1−γ)4ε2 up to logarith-
mic factors, which ensures the communication complexity
Cround = T/τ is no more than Õ

(
K

µmin(1−γ)

)
.

4.4. Performance Guarantees with Importance
Averaging

In the asynchronous setting, heterogeneous behavior poli-
cies induce local trajectories that cover the state-action
space in a non-uniform manner. As a result, agents may
update the Q-estimate for a state-action pair at different
frequencies, resulting in noisier Q-estimates at agents that
rarely visit a state-action pair. Equally-weighted averaging
of such local Q-estimates is not efficient because the con-
vergence speed to the optimal Q-function for each state-
action pair is bottlenecked with the slowest converging
agent that visits it least frequently.

Our key idea to prevent such inefficiency is to increase
the contribution of frequently updated local Q-estimates,
which are likely to have smaller errors. By assigning a
weight inversely proportional to the error of the corre-
sponding local estimate, we can balance the heterogeneous
training progress of the local estimates and obtain an aver-
age estimate with much lower error. Combining this idea
with the property that the local error decreases exponen-
tially with the number of local visits, we propose an impor-
tance averaging scheme FedAsynQ-ImAvg with weights

8
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given by

αk
t (s, a) =

(1− η)−Nk
t−τ,t(s,a)∑K

k′=1(1− η)−Nk′
t−τ,t(s,a)

(26)

for all (s, a) ∈ S × A and k ∈ [K], where Nk
t−τ,t(s, a)

represents the number of iterations between [t− τ, t) when
the agent k visits (s, a). The weights in (26) can be
calculated at the server based on the number of visits
to each state-action pair by the agents in one synchro-
nization period. Therefore, each agent needs to send its
Nk

t−τ,t(s, a) for each (s, a) along with its local Q-estimate,
and FedAsynQ-ImAvg incurs twice the communication
cost of FedAsynQ-EqAvg per iteration.

We have the following theorem on the sample complexity
of FedAsynQ-ImAvg.
Theorem 4.3 (Sample complexity of FedAsynQ-ImAvg).
Consider any given δ ∈ (0, 1) and ε ∈ (0, 1

1−γ ]. Sup-
pose that the initialization of FedAsynQ-ImAvg satisfies
0 ≤ Q0 ≤ 1

1−γ . There exist some sufficiently large con-
stant cT > 0 and sufficiently small constant cη > 0,
such that with probability at least 1 − δ, the output of
FedAsynQ-ImAvg satisfies ∥QT − Q⋆∥∞ ≤ ε, provided
that the sample size per agent T , the learning rate η, and
the synchronization period τ satisfy

T ≥ cT

(
1

Kµavg(1− γ)5ε2
+ T̃0

)
(27a)

· log2((1− γ)2ε) log (TK) log (|S||A|T 2K/δ),

η =
cη min

{
K(1− γ)4ε2, η̃0

}
log (TK) log (|S||A|T 2K/δ)

,

(27b)

τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
, (27c)

where T̃0 = 1
µavg(1−γ)η̃0

and η̃0 = min
{

1
tmax
mix

, 1− γ, 1
K

}
,

independent of ε.

Theorem 4.2 implies that to achieve an ε-accurate esti-
mate (in the ℓ∞ sense), the sample complexity per agent
of FedAsynQ-ImAvg is no more than

Õ

(
1

Kµavg(1− γ)5ε2

)
for sufficiently small ε, when the burn-in cost T̃0 — repre-
senting the impact of the mixing times — is amortized over
time. A few implications are in order.

Linear speedup under partial coverage. The sample
complexity not only shows linear speedup with respect to
the number of agents but also guarantees that FedAsynQ-
ImAvg achieves better sample efficiency than FedAsynQ-
EqAvg because µavg ≥ µmin. Notably, the guarantees

hold even when some agent has insufficient coverage of
the state-action space (µmin = 0), as long as agents col-
lectively cover the entire state-action space (µavg > 0).
In FedAsynQ-EqAvg, insufficient local exploration of a
state-action pair can significantly slow down the conver-
gence to the optimal Q-function, bottlenecked by the slow-
est converging agent. On the other end, FedAsynQ-ImAvg
enables agents to overcome their insufficient local coverage
and exploit the heterogeneity of their behavior policies to
achieve faster convergence to the optimal Q-function.

Communication efficiency. To provide further insights
on the communication complexity of FedAsynQ-ImAvg,
consider again the regime when ε is sufficiently small and
K ≳ 1

1−γ . To minimize the communication frequency
while preserving the sample efficiency, we again plug the
choice of the learning rate (27b) into (27c) and select the
synchronization period as large as τ ≍ 1

K2(1−γ)4ε2 up to
logarithmic factors. Then, this ensures the communication
complexity Cround = T/τ is no more than Õ

(
K

µavg(1−γ)

)
,

which is also better than FedAsynQ-EqAvg.

5. Discussions
We presented a sample complexity analysis of federated Q-
learning in both synchronous and asynchronous settings.
Our sample complexity not only leads to linear speedup
with respect to the number of agents, but also significantly
improves the dependencies on other salient problem pa-
rameters over the prior art. For federated asynchronous
Q-learning, we proposed a novel importance averaging
scheme that weighs the agents’ local Q-estimates accord-
ing to the number of visits to each state-action pair. This
allows agents to leverage the blessing of heterogeneity of
their local behavior policies and collaboratively learn the
optimal Q-function that otherwise would not be possible,
without requiring each individual agent to cover the entire
state-action space.
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A. Numerical Experiments
In this section, we conduct numerical experiments to demonstrate the performance of the asynchronous Q-learning algo-
rithms (FedAsynQ-EqAvg and FedAsynQ-ImAvg).

Experimental setup. Consider an MDP M = (S,A, P, r, γ) described in Figure 2, where S = {0, 1} and A =
{1, 2, · · · ,m}. The reward function r is set as r(s = 1, a) = 1 and r(s = 0, a) = 0 for any action a ∈ A, and the
discount factor is set as γ = 0.9. We now describe the transition kernel P . Here, we set the self-transitioning probabilities
pa := P (0|0, a) and qa := P (1|1, a) uniformly at random from [0.4, 0.6] for each a ∈ A, and set the probability of
transitioning to the other state as P (1− s|s, a) = 1− P (s|s, a) for each s ∈ S.

We evaluate the proposed federated asynchronous Q-learning algorithms on the above MDP with K agents selecting their
behavior policies from Π = {π1, π2, · · · , πm}, where the i-th policy always chooses action i for any state, i.e., πi(i|s) = 1
for all s ∈ S. Here, we assign πi to agent k ∈ [K] if i ≡ k (mod m). Note that if an agent has a behavior policy πi, it
can visit only two state-action pairs, (s = 0, a = i) and (s = 1, a = i), as described in Figure 2. Thus, each agent covers
a subset of the state-action space, and at least K = m agents are required to obtain local trajectories collectively covering
the entire state-action space. Under this setting with m = 20, we run the algorithms for 100 simulations using samples
randomly generated from the MDP and policies assigned to the agents. The Q-function is initialized with entries uniformly
at random from (0, 1

1−γ ] for each state-action pair.
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𝑆 = 1

𝑆 = 0

𝑆 = 1

𝑝!

1 − 𝑞!

𝑞!
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… …
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𝑎 = 1 𝑎 = 𝑖 𝑎 = 𝑚

Figure 2. An illustration of the constructed synthetic MDP M. The red arrows represent transitioning paths when action a = i is taken
in s = 0 and s = 1. A trajectory induced by πi, which executes only action i for any state, can cover only two state-action pairs,
(s = 0, a = i) and (s = 1, a = i).

Faster convergence of FedAsynQ-ImAvg. Figure 3 shows the normalized Q-estimate error (1− γ)∥QT −Q⋆∥∞ with
respect to the sample size T , with K = 20 and τ = 50. Given the trajectories of agents collectively cover the entire
state-action space, the global Q-estimates of both FedAsynQ-EqAvg and FedAsynQ-ImAvg converge to the optimal Q-
function, yet at different speeds. It is interesting to observe that FedAsynQ-EqAvg still converges even when µmin = 0,
indicating room for refinement of its analysis. Although FedAsynQ-EqAvg converges in the end, we can see that it
converges much slower compared to FedAsynQ-ImAvg, because each entry of the Q-function is trained by only one agent
while the other m − 1 agents never contribute useful information. However, the vacuous values of the m − 1 agents
significantly slow down the global convergence under equal averaging.

Convergence speedup. Figure 4 demonstrates the impact of the number of agents on the convergence speed of
FedAsynQ-EqAvg and FedAsynQ-ImAvg. It can be observed that there is indeed a speedup in terms of the number
of agents K with respect to the squared ℓ∞ error ∥QT −Q⋆∥−2

∞ , which is poised to scale linearly with respect to the num-
ber of agents. In particular, the speedup is more rapid with FedAsynQ-ImAvg as K increases, while it increases much

12
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Figure 3. The normalized ℓ∞ error of the Q-estimates (1−γ)∥QT−Q⋆∥∞ with respect to the number of samples T for both FedAsynQ-
EqAvg and FedAsynQ-ImAvg, with K = 20 and τ = 50. Here, the learning rates of FedAsynQ-ImAvg and FedAsynQ-EqAvg are
set as η = 0.05 and η = 0.2, where each algorithm converges to the same error floor at the fastest speed, respectively.

slower with FedAsynQ-EqAvg. This shows that FedAsynQ-ImAvg achieves much better convergence speedup in terms
of the number of agents.
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Figure 4. The inverse squared ℓ∞ error ∥QT−Q⋆∥−2
∞ with respect to the number of agents K = 20, 40, 60, 80, 100 for both FedAsynQ-

EqAvg and FedAsynQ-ImAvg, with T = 300 and τ = 50.

Communication efficiency. Figure 5 demonstrates the impact of the synchronization period τ on the convergence of
FedAsynQ-ImAvg and FedAsynQ-EqAvg. With frequent averaging (τ = 1), FedAsynQ-ImAvg slightly outperforms
FedAsynQ-EqAvg, but there is no significant difference because the heterogeneity between local Q-functions after just
one local update is very small. The performance of FedAsynQ-EqAvg degrades as we increase τ since FedAsynQ-EqAvg
cannot cope with the increased heterogeneity between local Q-estimates as we increase the number of local steps. On the
other end, the performance of FedAsynQ-ImAvg improves first (i.e., τ = 10, 25, 50) as it balances the heterogeneity
much better than FedAsynQ-EqAvg, but drops later if τ is too large (i.e., τ = 75, 100) due to the high variance of the
averaged Q-estimates.

B. Preliminaries
We record a few useful inequalities that will be used throughout our analysis. To start with, our analysis leverages Freed-
man’s inequality (Freedman, 1975), which we record a user-friendly version as follows.
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Figure 5. The normalized ℓ∞ error of the Q-estimates (1 − γ)∥QT − Q⋆∥∞ with respect to the synchronization period τ =
1, 10, 25, 50, 75, 100 for both FedAsynQ-EqAvg and FedAsynQ-ImAvg, with K = 20 and T = 300.

Theorem B.1 (Theorem 6 in (Li et al., 2023)). Suppose that Yn =
∑n

k=1 Xk ∈ R, where {Xk} is a real-valued scalar
sequence obeying

|Xk| ≤ R and E
[
Xk | {Xj}j:j<k

]
= 0 for all k ≥ 1.

Define

Wn :=

n∑
k=1

Ek−1

[
X2

k

]
,

where we write Ek−1 for the expectation conditional on {Xj}j:j<k. Then for any given σ2 ≥ 0, one has

P
{
|Yn| ≥ τ and Wn ≤ σ2

}
≤ 2 exp

(
− τ2/2

σ2 +Rτ/3

)
. (28)

In addition, suppose that Wn ≤ σ2 holds deterministically. For any positive integer m ≥ 1, with probability at least 1− δ
one has

|Yn| ≤
√
8max

{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (29)

Another useful relation concerns the concentration of empirical distributions of uniformly ergodic Markov chains, which
is rephrased from Li et al. (2021b).
Lemma B.2 (Lemma 8 in (Li et al., 2021b)). Consider any time homogeneous and uniformly ergodic Markov chain
(X0, X1, X2, . . .) with transition kernel P , finite state space X , and stationary distribution µ. Let tmix be the mixing time of
the Markov chain and µmin be the minimum entry of the stationary distribution µ. For any 0 < δ < 1, if t ≥ 443tmix

µmin
log 4|X |

δ ,
then

∀y ∈ X : PX1=y

{
∃x ∈ X :

∣∣∣∣∣
t∑

i=1

1{Xi = x} − tµ(x)

∣∣∣∣∣ ≥ 1

2
tµ(x)

}
≤ δ.

C. Analysis Outline
Let the matrix P ∈ R|S||A|×|A| represent the transition kernel of the underlying MDP, where P (s, a) = P (·|s, a) is the
probability vector corresponding to the state transition at the state-action pair (s, a). For any vector V ∈ R|S|, we define
the variance parameter Vars,a(V ) with respect to the probability vector P (s, a) as

Vars,a(V ) := Es′∼P (·|s,a)
[
V (s′)− P (s, a)V

]2
= P (s, a)(V ◦ V )− [P (s, a)V ] ◦ [P (s, a)V ]. (30)

Here, ◦ denotes the Hadamard product such that a ◦ b = [aibi]
n
i=1 for any vector a = [ai]

n
i=1, b = [bi]

n
i=1 ∈ Rn. With

slight abuse of notation, we shall also assume V ⋆ ∈ R|S|, V k
t ∈ R|S|, Q⋆ ∈ R|S||A|, Qk

t ∈ R|S||A|, Qk
t+ 1

2

∈ R|S||A| and

r ∈ R|S||A| represent the corresponding functions in the matrix/vector form.
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C.1. Basic Facts

We first state a few basic facts that hold both for the synchronous and the asynchronous settings. It is easy to establish, by
induction, that all iterates satisfy for all 1 ≤ k ≤ K and t ≥ 0 that

0 ≤ Qk
t ≤ 1

1− γ
, 0 ≤ V k

t ≤ 1

1− γ
, (31)

as long as 0 ≤ Q0 = Qk
0 ≤ 1

1−γ ; see a similar argument, e.g., in Li et al. (2023, Lemma 4). In addition, observe that

∥V k
t − V ⋆∥∞ ≤ ∥Qk

t −Q⋆∥∞ (32)

since

∥V k
t − V ⋆∥∞ = max

s∈S

∣∣∣max
a∈A

Qk
t (s, a)−max

a∈A
Q⋆(s, a)

∣∣∣ ≤ max
s∈S,a∈A

∣∣Qk
t (s, a)−Q⋆(s, a)

∣∣ ≤ ∥Qk
t −Q⋆∥∞.

Letting Qt be the average of the local Q-estimates at the end of the t-th iteration, i.e., Qt =
1
K

∑K
k=1 Q

k
t , it follows from

(12) and (23) that for all t ≥ 0 that

Qt =
1

K

K∑
k=1

Qk
t =

1

K

K∑
k=1

Qk
t− 1

2
. (33)

Denote the error between Qt and Q⋆ by
∆t = Q⋆ −Qt,

which is the quantity we aim to control. From (31), it holds immediately that for all t ≥ 0,

∥∆t∥∞ ≤ 1

1− γ
. (34)

Next, we also introduce the following functions pertaining to periodic averaging. For any t,

• define ι(t) := τ⌊ t
τ ⌋ as the most recent synchronization step until t;

• define ϕ(t) := ⌊ t
τ ⌋ as the number of synchronization steps until t.

C.2. Proof Outline of Theorem 3.1

Define the local empirical transition matrix at the t-th iteration P k
t ∈ {0, 1}|S||A|×|S| as

P k
t ((s, a), s

′) :=

{
1, if s′ = skt (s, a)

0, otherwise
, (35)

then the local update rule (11) can be rewritten as

Qk
t− 1

2
= (1− η)Qk

t−1 + η
(
r + γP k

t V
k
t−1

)
. (36)

The proof of Theorem 3.1 consists of the following steps.

Step 1: error decomposition. To analyze the error ∆t, we first decompose the error into three terms, each of which can
be bounded in a simple form. From (33), it follows that

∆t =
1

K

K∑
k=1

(
Q⋆ −Qk

t− 1
2

) (i)
=

1

K

K∑
k=1

(
(1− η)(Q⋆ −Qk

t−1) + η(Q⋆ − r − γP k
t V

k
t−1)

)
(ii)
= (1− η)∆t−1 + η

γ

K

K∑
k=1

(
PV ⋆ − P k

t V
k
t−1

)
15
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= (1− η)∆t−1 + η
γ

K

K∑
k=1

(
P − P k

t

)
V k
t−1 + η

γ

K

K∑
k=1

P
(
V ⋆ − V k

t−1

)
,

where (i) follows from (36), and (ii) follows from Bellman’s optimality equation Q⋆ = r + γPV ⋆. By recursion over the
above relation, we obtain

∆t = (1− η)t∆0︸ ︷︷ ︸
=:E1

t

+ η
γ

K

t∑
i=1

(1− η)t−i
K∑

k=1

(P − P k
i )V

k
i−1︸ ︷︷ ︸

=:E2
t

+ η
γ

K

t∑
i=1

(1− η)t−i
K∑

k=1

P (V ⋆ − V k
i−1)︸ ︷︷ ︸

=:E3
t

. (37)

Step 2: bounding the error terms. Now, we obtain a bound of each of the error terms in (37) separately.

• Bounding ∥E1
t ∥∞. Using the fact that all agents start with the same initial Q-values, i.e., Qk

0 = Q0, the first error
term is bounded as follows:

∥E1
t ∥∞ = (1− η)t ∥∆0∥∞ ≤ (1− η)t

1− γ
, (38)

where the last inequality follows from (34).

• Bounding ∥E2
t ∥∞. Exploiting conditional independence across transitions in different iterations and applying Freed-

man’s inequality (Freedman, 1975), the second error term is bounded using Lemma C.1 below, whose proof is pro-
vided in Appendix D.1.

Lemma C.1. For any given δ ∈ (0, 1), the following holds

∥∥E2
t

∥∥
∞ ≤ 8γ

1− γ

√
η

K
log

|S||A|T
δ

(39)

for all 0 ≤ t ≤ T with probability at least 1− δ, as long as η satisfies η ≤ K
2 (log

|S||A|T
δ )−1.

• Bounding ∥E3
t ∥∞. For E3

t , we obtain the following recursive relation using Lemma C.2 below, whose proof is
provided in Appendix D.2.

Lemma C.2. Let β be any integer that satisfies 0 ≤ β ≤ ϕ(T ). For any given δ ∈ (0, 1), the following holds

∥E3
t ∥∞ ≤ 2γ

1− γ
(1− η)βτ +

16γη
√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
+ γ(1 + 4η(τ − 1)) max

ι(t)−βτ≤i<t
∥∆i∥∞

for all βτ ≤ t ≤ T with probability at least 1− δ, as long as η satisfies τη < 1/2.

Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together, for any βτ ≤ t ≤ T ,
the total error bound can be written in a simple recursive form as follows:

∥∆t∥∞ ≤ ζ + γ(1 + 4η(τ − 1)) max
ι(t)−βτ≤i<t

∥∆i∥∞ ≤ ζ +

(
1 + γ

2

)
max

ι(t)−βτ≤i<t
∥∆i∥∞, (40)

where in the first inequality we introduce the short-hand notation

ζ :=
4(1− η)βτ

1− γ
+

8γ

1− γ

√
η

K
log

|S||A|T
δ

+
16γη

√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
, (41)

and the second inequality follows from the assumption τ − 1 ≤ 1−γ
8γη .
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By invoking the recursive relation in (40) L times, where the choices of β and L will be made momentarily, it follows that
for any Lβτ ≤ t ≤ T ,

∥∆t∥∞ ≤
L−1∑
i=0

(
1 + γ

2

)i

ζ +

(
1 + γ

2

)L

max
ι(t)−Lβτ≤i<t

∥∆i∥∞

≤ 2

1− γ
ζ +

(
1 + γ

2

)L(
1

1− γ

)
, (42)

where the second line uses the crude bound in (34).

Setting β =

⌊
1
τ

√
(1−γ)T

2η

⌋
and L =

⌈√
ηT
1−γ

⌉
, which ensures Lβτ ≤ T , and plugging their choices into (41) and (42) at

t = T , we obtain that

∥∆T ∥∞ ≤ 8(1− η)βτ

(1− γ)2
+

16γ

(1− γ)2

√
η

K
log

|S||A|T
δ

+
32γη

√
τ − 1

(1− γ)2

√
log

2|S||A|KT

δ
+

(
1 + γ

2

)L(
1

1− γ

)
≤ 32

(1− γ)2

(
exp

(
−
√

(1− γ)ηT

2

)
+ γ

√
η

K
log

|S||A|T
δ

+ γη
√
τ − 1

√
log

|S||A|KT

δ

)

≤ 64

(1− γ)2

(
exp

(
−
√

(1− γ)ηT

2

)
+ γ

√
η

K
log

|S||A|KT

δ

)
, (43)

where the second line follows from

(1− η)βτ ≤ exp(−ηβτ) ≤ exp

(
−
√

(1− γ)ηT

2

)
,

(
1 + γ

2

)L

=

(
1− 1− γ

2

)L

≤ exp

(
− (1− γ)

2
L

)
≤ exp

(
−
√
(1− γ)ηT

2

)
,

and the third line follows from the choice of the synchronization period such that

τ − 1 ≤ 1

η
min

{
1− γ

8γ
,
1

K

}
. (44)

Thus, for any given ε ∈ (0, 1
1−γ ), we can guarantee that ∥∆T ∥∞ ≤ ε if

T ≥ cT
1

K(1− γ)5ε2
(log((1− γ)2ε))2 log

|S||A|KT

δ
,

η = cηK(1− γ)4ε2
1

log |S||A|KT
δ

(45)

for some sufficiently large cT and sufficiently small cη .

C.3. Proof Outline of Theorem 4.2

For simplicity, we introduce the following notation. Let Uk
v1,v2(s, a) represent a set of iteration indices between [v1, v2)

for some 0 ≤ v1 ≤ v2 ≤ T where agent k visits (s, a), i.e.,

Uk
v1,v2(s, a) :=

{
u ∈ [v1, v2) : (sku, a

k
u) = (s, a)

}
,

and Nk
v1,v2(s, a) denotes the number of visits of agent k on (s, a) during iterations between [v1, v2), i.e.,

Nk
v1,v2(s, a) = |Uk

v1,v2
(s, a)|.
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Define the local empirical transition matrix at the t-th iteration P k
t ∈ {0, 1}|S||A|×|S| as

P k
t ((s, a), s

′) :=

{
1 if (s, a, s′) = (skt−1, a

k
t−1, s

k
t )

0 otherwise
. (46)

Then the local update rule (22) can be rewritten as

Qk
t− 1

2
(s, a) =

{
(1− η)Qk

t−1(s, a) + η(rkt−1 + γP k
t (s, a)V

k
t−1) if (s, a) = (skt−1, a

k
t−1)

Qk
t−1(s, a), otherwise

. (47)

The proof of Theorem 4.2 consists of the following steps.

Step 1: error decomposition. Consider any 0 ≤ t ≤ T such that t ≡ 0 (mod τ), i.e., t is a synchronization step. To
analyze ∆t, we first decompose the error for each (s, a) ∈ S ×A as follows:

∆t(s, a) =
1

K

K∑
k=1

(Q⋆(s, a)−Qk
t− 1

2
(s, a))

=

(
1

K

K∑
k=1

(1− η)N
k
t−τ,t(s,a)

)
∆t−τ (s, a)

+
γ

K

K∑
k=1

∑
u∈Uk

t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)(P (s, a)− P k

u+1(s, a))V
k
u

+
γ

K

K∑
k=1

∑
u∈Uk

t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)P (s, a)(V ⋆ − V k

u ), (48)

where we invoke the following recursive relation of the local error at iteration u such that (su−1, au−1) = (s, a):

Q⋆(s, a)−Qk
u− 1

2
(s, a)

= (1− η)(Q⋆(s, a)−Qk
u−1(s, a)) + η(Q⋆(s, a)− rku−1 − γP k

u (s, a)V
k
u−1)

= (1− η)(Q⋆(s, a)−Qk
u−1(s, a)) + η(γP (s, a)V ⋆ − γP k

u (s, a)V
k
u−1)

= (1− η)(Q⋆(s, a)−Qk
u−1(s, a)) + γη(P (s, a)− P k

u (s, a))V
k
u−1 + γP (s, a)(V ⋆ − V k

u−1). (49)

Here, the second equality follows from Bellman’s optimality equation. Denoting

λv1,v2(s, a) :=
1

K

K∑
k=1

(1− η)N
k
v1,v2

(s,a) (50)

for any integer 0 ≤ v1 ≤ v2 ≤ T , we apply recursion to the relation (48) over the synchronization periods, and obtain

∆t(s, a)

=

ϕ(t)−1∏
h=0

λhτ,(h+1)τ (s, a)

∆0(s, a)

+

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

 γ

K

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

η(1− η)N
k
u+1,(h+1)τ (s,a)(P (s, a)− P k

u+1(s, a))V
k
u

+

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

 γ

K

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

η(1− η)N
k
u+1,(h+1)τ (s,a)P (s, a)(V ⋆ − V k

u )
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= ω0,t(s, a)∆0(s, a)

︸ ︷︷ ︸
=:E1

t (s,a)

+ γ

K∑
k=1

∑
u∈Uk

0,t(s,a)

ωk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

︸ ︷︷ ︸
=:E2

t (s,a)

+ γ

K∑
k=1

∑
u∈Uk

0,t(s,a)

ωk
u,t(s, a)P (s, a)(V ⋆ − V k

u )

︸ ︷︷ ︸
=:E3

t (s,a)

. (51)

Here, we define

ω0,t(s, a) :=

ϕ(t)−1∏
h=0

λhτ,(h+1)τ (s, a), (52a)

ωk
u,t(s, a) :=

1

K
η(1− η)N

k
u+1,(ϕ(u)+1)τ (s,a)

ϕ(t)−1∏
l=ϕ(u)+1

λlτ,(l+1)τ (s, a). (52b)

We record the following useful lemma whose proof is provided in Appendix E.1.

Lemma C.3. Consider integers v1 and v2 such that 0 ≤ v1 ≤ v2 ≤ t ≤ T , where t ≡ 0 (mod τ), and a state-action pair
(s, a) ∈ S ×A. The parameters defined in (52) satisfy

λv1,v2(s, a) ≤ (1− η)mink∈[K] N
k
v1,v2

(s,a), (53a)

ω0,t(s, a) +

K∑
k=1

∑
u∈Uk

0,t(s,a)

ωk
u,t(s, a) = 1, (53b)

K∑
k=1

∑
u∈Uk

0,h′τ (s,a)

ωk
u,t(s, a) ≤ (1− η)

∑ϕ(t)−1

h=h′ mink∈[K] N
k
hτ,(h+1)τ (s,a), ∀0 ≤ h′ ≤ ϕ(t), (53c)

K∑
k=1

∑
u∈Uk

0,t(s,a)

(ωk
u,t(s, a))

2 ≤ 2η

K
. (53d)

Step 2: bounding the error terms. Here, we derive the bound of the error terms in (51) separately for all the state-action
pairs (s, a) ∈ S ×A. Denote

τth := 443

(
max
k∈[K]

tkmix

µk
min

)
log

4|S||A|TK
δ

. (54)

• Bounding |E1
t (s, a)|. Using the initialization condition that Q0(s, a) = Qk

0(s, a) for every agent k ∈ [K], we bound
the first term for any (s, a) ∈ S ×A as follows:

|E1
t (s, a)| ≤ ω0,t(s, a)(∥Q0∥∞ + ∥Q⋆∥∞)

(i)

≤ 2ω0,t(s, a)

1− γ

(ii)

≤ 2

1− γ
(1− η)

tµmin
2 , (55)

where (i) holds because ∥Q0∥∞, ∥Q⋆∥∞ ≤ 1
1−γ (cf. (31)) and (ii) follows from the fact that

ω0,t(s, a) ≤ (1− η)
∑ϕ(t)−1

h=0 mink∈[K] N
k
hτ,(h+1)τ (s,a) ≤ (1− η)

tµmin
2 , (56)

where the first inequality holds according to (53a) of Lemma C.3, and the last inequality follows from the fact that
Nk

hτ,(h+1)τ (s, a) ≥ τµmin

2 for all (s, a, k, h) ∈ S×A×[K]×[T ] at least with probability 1−δ according to Lemma B.2
and the union bound, as long as τ ≥ τth.
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• Bounding |E2
t (s, a)|. By carefully treating the statistical dependency via a decoupling argument and applying Freed-

man’s inequality, we can obtain the following bound, whose proof is provided in Appendix E.2.

Lemma C.4. For any given δ ∈ (0, 1), the following holds for any (s, a) ∈ S ×A and 1 ≤ t ≤ T :

∣∣E2
t (s, a)

∣∣ ≤ 730γ

(1− γ)

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ
(57)

with probability at least 1− 3δ, as long as 3/T < η ≤ min
{

1
16τ ,

1
4τK , 1

256KChet log (TK) log
4|S||A|T2K

δ

}
.

• Bounding |E3
t (s, a)|. For E3

t , we can obtain the following recursive relation, whose proof is provided in Ap-
pendix E.3.

Lemma C.5. Let β be any integer that satisfies 0 < β ≤ ϕ(T ). For any given δ ∈ (0, 1), the following holds

|E3
t (s, a)| ≤

2γ(1− η)
µminβτ

2

1− γ
+

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

+
1 + γ

2
max

ϕ(t)−β≤h≤ϕ(t)−1
∥∆hτ∥∞, (58)

for all βτ ≤ t ≤ T with probability at least 1− δ, as long as τ ≥ τth and η ≤ min{ 1−γ
4γτ ,

1
2τ }.

Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together, for any βτ ≤ t ≤ T ,
the total error bound can be written in a simple recursive form as follows:

∥∆t∥∞ ≤ θ +
1 + γ

2
max

ϕ(t)−β≤h≤ϕ(t)−1
∥∆hτ∥∞, (59)

where we define

θ :=
4

1− γ
(1− η)

µminβτ

2 +
730γ

(1− γ)

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ
+

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

. (60)

Then, by invoking the recursive relation for L times, where the choices of β and L will be made momentarily, it follows
that for any Lβτ ≤ t ≤ T ,

∥∆t∥∞ ≤
L−1∑
l=0

(
1 + γ

2

)l

θ +

(
1 + γ

2

)L

max
ϕ(t)−βL≤i≤ϕ(t)−1

∥∆iτ∥∞ ≤ 2

1− γ

(
θ +

(
1 + γ

2

)L
)
, (61)

where the last inequality follows from (34).

Setting β =

⌊
1
τ

√
(1−γ)T
µminη

⌋
and L =

⌈
1
2

√
µminηT
(1−γ)

⌉
, which ensures Lβτ ≤ T , and plugging the choices into (60) and (61)

at t = T , we obtain

∥∆T ∥∞

≤ 8(1− η)
µminβτ

2

(1− γ)2
+

1460γ

(1− γ)2

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ

+
2

1− γ

(
1 + γ

2

)L

≤ 16

(1− γ)2
exp

(
−
√
(1− γ)µminηT

4

)
+

1460γ

(1− γ)2

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ
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≤ 1476

(1− γ)2

(
exp

(
−
√
(1− γ)µminηT

4

)
+ γ

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ

)
, (62)

where the second line follows from

(1− η)
µminβτ

2 ≤ exp

(
−µminηβτ

2

)
≤ exp

(
−
√
(1− γ)µminηT

4

)
,

(
1 + γ

2

)L

=

(
1− 1− γ

2

)L

≤ exp

(
−1− γ

2
L

)
≤ exp

(
−
√
(1− γ)µminηT

4

)
,

and the third line follows from the choice of the synchronization period such that

τth ≤ τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
. (63)

Thus, for any given ε ∈ (0, 1
1−γ ], we can guarantee that ∥∆T ∥∞ ≤ ε if

T ≥ cT (log((1− γ)2ε))2 log (TK) log
4|S||A|T 2K

δ

1

µmin
max

{
Chet

K(1− γ)5ε2
,

tmax
mix

µmin(1− γ)min{1− γ,K−1}

}
,

η = cη

(
log (TK) log

4|S||A|T 2K

δ

)−1

min

{
K(1− γ)4ε2

Chet
,
µmin min{1− γ,K−1}

tmax
mix

}
for some sufficiently large cT and sufficiently small cη .

C.4. Proof Outline of Theorem 4.3

The proof of Theorem 4.3 consists of the following steps.

Step 1: error decomposition. Consider any 0 ≤ t ≤ T such that t ≡ 0 (mod τ), i.e., t is a synchronization step. To
analyze ∆t, similarly to the proof of Theorem 4.2, invoking the recursive relation of the local error (cf. (49)), we first
decompose the error for each (s, a) ∈ S ×A as follows:

∆t(s, a) =

K∑
k=1

αk
t (s, a)(Q

⋆(s, a)−Qk
t− 1

2
(s, a))

=

(
K∑

k=1

αk
t (s, a)(1− η)N

k
t−τ,t(s,a)

)
∆t−τ (s, a)

+ γ

K∑
k=1

αk
t (s, a)

∑
u∈Uk

t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)(P (s, a)− P k

u+1(s, a))V
k
u

+ γ

K∑
k=1

αk
t (s, a)

∑
u∈Uk

t−τ,t(s,a)

η(1− η)N
k
u+1,t(s,a)P (s, a)(V ⋆ − V k

u )

=

(
K∑K

k′=1(1− η)−Nk′
t−τ,t(s,a)

)
∆t−τ (s, a)

+ γ

K∑
k=1

∑
u∈Uk

t−τ,t(s,a)

η(1− η)−Nk
t−τ,u+1(s,a)∑K

k′=1(1− η)−Nk′
t−τ,t(s,a)

(P (s, a)− P k
u+1(s, a))V

k
u

+ γ

K∑
k=1

∑
u∈Uk

t−τ,t(s,a)

η(1− η)−Nk
t−τ,u+1(s,a)∑K

k′=1(1− η)−Nk′
t−τ,t(s,a)

P (s, a)(V ⋆ − V k
u ), (64)
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where the last line uses the definition of αk
t (s, a) in (26). Denoting

λ̃v1,v2(s, a) :=
K∑K

k=1(1− η)N
k
v1,v2

(s,a)
(65)

for any integer 0 ≤ v1 ≤ v2 ≤ T , we apply recursion to the relation (64) over the synchronization period, and obtain

∆t(s, a)

=

ϕ(t)−1∏
h=0

λ̃hτ,(h+1)τ (s, a)

∆0(s, a)

+

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λ̃lτ,(l+1)τ (s, a)

 γ

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

η(1− η)−Nk
hτ,u+1(s,a)∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

(P (s, a)− P k
u+1(s, a))V

k
u

+

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λ̃lτ,(l+1)τ (s, a)

 γ

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

η(1− η)−Nk
hτ,u+1(s,a)∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

P (s, a)(V ⋆ − V k
u )

= ω̃0,t(s, a)∆0(s, a)

︸ ︷︷ ︸
=:E1

t (s,a)

+ γ

K∑
k=1

∑
u∈Uk

0,t(s,a)

ω̃k
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

︸ ︷︷ ︸
=:E2

t (s,a)

+ γ

K∑
k=1

∑
u∈Uk

0,t(s,a)

ω̃k
u,t(s, a)P (s, a)(V ⋆ − V k

u )

︸ ︷︷ ︸
=:E3

t (s,a)

. (66)

Here, we define

ω̃0,t(s, a) :=

ϕ(t)−1∏
h=0

λ̃hτ,(h+1)τ (s, a), (67a)

ω̃k
u,t(s, a) :=

η(1− η)−Nk
ϕ(u)τ,u+1(s,a)∑K

k′=1(1− η)
−Nk′

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

 ϕ(t)−1∏
l=ϕ(u)+1

λ̃lτ,(l+1)τ (s, a)

 . (67b)

We record the following useful lemma — mimicking Lemma C.3 — whose proof is provided in Appendix E.4.

Lemma C.6. Consider any integers 0 ≤ v1 ≤ v2 ≤ t ≤ T where t ≡ 0 (mod τ) and any state-action pair (s, a) ∈ S ×A.
Suppose that ητ ≤ 1, then the parameters defined in (67) satisfy

1

3K
≤ αk

t (s, a) ≤
3

K
, (68a)

ω̃0,t(s, a) ≤ (1− η)
1
K

∑K
k=1 Nk

0,t(s,a), (68b)

ω̃0,t(s, a) +

K∑
k=1

∑
u∈Uk

0,t(s,a)

ω̃k
u,t(s, a) = 1, (68c)

K∑
k=1

∑
u∈Uk

0,h′τ (s,a)

ω̃k
u,t(s, a) ≤ (1− η)

1
K

∑K
k=1 Nk

h′τ,t(s,a), ∀0 ≤ h′ ≤ ϕ(t), (68d)

K∑
k=1

∑
u∈Uk

0,t(s,a)

(ω̃k
u,t(s, a))

2 ≤ 6η

K
. (68e)
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Step 2: bounding the error terms. Here, we derive the bound of each error term in (66) separately for all the state-action
pairs (s, a) ∈ S ×A. Denote

tth(s, a) :=
2176tmax

mix log 8K log 4|S||A|T 2

δ

µavg(s, a)
and tth :=

2176tmax
mix log 8K log 4|S||A|T 2

δ

µavg
. (69)

Here, µavg(s, a) :=
1
K

∑K
k=1 µ

k
b(s, a).

• Bounding |E1
t (s, a)|. Using the initialization condition that Q0(s, a) = Qk

0(s, a) for every client k ∈ [K], we bound
the first term for any (s, a) ∈ S ×A as follows:

|E1
t (s, a)| ≤ ω̃0,t(∥Q0∥∞ + ∥Q⋆∥∞)

(i)

≤ 2ω̃0,t

1− γ

(ii)

≤ 2

1− γ
(1− η)

1
K

∑K
k=1 Nk

0,t(s,a)
(iii)

≤ 2

1− γ
(1− η)

1
4µavgt, (70)

where (i) holds because ∥Q0∥∞, ∥Q⋆∥∞ ≤ 1
1−γ (cf. (31)), (ii) follows from (68b) of Lemma C.6, and (iii) holds for

all (s, a, t) ∈ S × A × [T ] with probability at least 1 − δ according to Lemma C.7 below, as long as t ≥ tth. The
proof of Lemma C.7 is provided in Appendix E.5.

Lemma C.7. Consider any δ ∈ (0, 1). Under the asynchronous sampling, for any (s, a) ∈ S×A and 0 ≤ u < v ≤ T
such that v − u ≥ tth(s, a), the following holds :

1

4
(v − u)Kµavg(s, a) ≤

K∑
k=1

Nk
u,v(s, a) ≤ 2(v − u)Kµavg(s, a) (71)

with probability at least 1− δ
|S||A|T 2 .

• Bounding |E2
t (s, a)|. By carefully treating the statistical dependency via a decoupling argument and applying Freed-

man’s inequality, we can obtain the following bound, whose proof is provided in Appendix E.6.

Lemma C.8. For any given δ ∈ (0, 1), the following holds for any (s, a) ∈ S ×A and 1 ≤ t ≤ T :

∣∣E2
t (s, a)

∣∣ ≤ 2064γ

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
(72)

with probability at least 1− 2δ, as long as

3

T
< η ≤ min

{ 1

16τ
,

K

256 log (TK) log 4|S||A|T 2K
δ

,
1

34816tmax
mix log (8K) log 4|S||A|T 2

δ

}
.

• Bounding |E3
t (s, a)|. For E3

t , similarly to Lemma C.5, we can obtain the following recursive relation, whose proof
is provided in Appendix E.7.

Lemma C.9. Let β be any integer that satisfies tth
τ ≤ β ≤ ϕ(T ). For any given δ ∈ (0, 1), the following holds

|E3
t (s, a)| ≤

2(1− η)
µavgβτ

4

1− γ
+

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

+
1 + γ

2
max

ϕ(t)−β≤h≤ϕ(t)−1
∥∆hτ∥∞, (73)

for all βτ ≤ t ≤ T with probability at least 1− δ, as long as η ≤ min{ 1−γ
4γτ ,

1
2τ }.

Step 3: solving a recursive relation. By putting all the bounds derived in the previous step together, for any βτ ≤ t ≤ T ,
the total error bound can be written in a simple recursive form as follows:

∥∆t∥∞ ≤ θ +
1 + γ

2
max

ϕ(t)−β≤h≤ϕ(t)−1
∥∆hτ∥∞, (74)
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where we define

θ̃ :=
4

1− γ
(1− η)

µavgβτ

4 +
2064γ

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
+

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

. (75)

Then, by invoking the recursive relation for L times, where the choices of β and L will be made momentarily, it follows
that for any Lβτ ≤ t ≤ T ,

∥∆t∥∞ ≤
L−1∑
l=0

(
1 + γ

2

)l

θ̃ + (
1 + γ

2
)L max

ϕ(t)−βL≤i≤ϕ(t)−1
∥∆iτ∥∞ ≤ 2

1− γ

(
θ + (

1 + γ

2
)L
)
, (76)

where the last inequality follows from (34).

Setting L =
⌈
1
2

√
µavgηT
(1−γ)

⌉
and β =

⌊
1
τ

√
2(1−γ)T
µavgη

⌋
, which ensures Lβτ ≤ T , and plugging the choices into (75) and (76)

at t = T , we obtain

∥∆T ∥∞ ≤ 8(1− η)
µavgβτ

4

(1− γ)2
+

4128γ

(1− γ)2

√
η

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ

+
2

1− γ
(
1 + γ

2
)L

≤ 16

(1− γ)2
exp

(
−
√

(1− γ)µavgηT

4

)
+

4128γ

(1− γ)2

√
η

K
log (TK) log

4|S||A|T 2K

δ

+
16γη

√
τ − 1

(1− γ)2

√
log

2|S||A|TK
δ

≤ 4144

(1− γ)2

(
exp

(
−
√

(1− γ)µavgηT

4

)
+ γ

√
η

K
log (TK) log

4|S||A|T 2K

δ

)
, (77)

where the second line follows from

(1− η)
µavgβτ

4 ≤ exp

(
−ηµavgβτ

4

)
≤ exp

(
−
√

(1− γ)µavgηT

4

)
,

(
1 + γ

2

)L

=

(
1− 1− γ

2

)L

≤ exp

(
−1− γ

2
L

)
≤ exp

(
−
√

(1− γ)µavgηT

4

)
,

and the third line follows from the choice of the synchronization period such that

τ ≤ 1

4η
min

{
1− γ

4
,
1

K

}
. (78)

Thus, for any given ε ∈ (0, 1
1−γ ), optimizing η and T to make (77) bounded by ε and recalling βτ ≥ tth, we can guarantee

that ∥∆T ∥∞ ≤ ε if

T ≥ cT (log((1− γ)2ε))2 log (TK) log
4|S||A|T 2K

δ

1

µavg
max

{
1

K(1− γ)5ε2
,

tmax
mix

(1− γ)
,

1

(1− γ)min {1− γ,K−1}

}
,

η = cη min

{
K(1− γ)4ε2

1

log (TK) log 4|S||A|T 2K
δ

,
1

µavgtth
,

1

tmax
mix log (TK) log 4|S||A|T 2K

δ

}

= cη

(
log (TK) log

4|S||A|T 2K

δ

)−1

min

{
K(1− γ)4ε2,

1

tmax
mix

,min
{
1− γ,K−1

}}
for some sufficiently large cT and sufficiently small cη .
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D. Proofs for Federated Synchronous Q-Learning (Section 3)
Define the following actions

a⋆(s) = argmax
a∈A

Q⋆(s, a), aki (s) = argmax
a∈A

Qk
i (s, a), ai(s) = argmax

a∈A

1

K

K∑
k=1

Qk
i (s, a) (79)

for any state s ∈ S, which will be useful throughout the proof.

D.1. Proof of Lemma C.1

For notation simplicity, let zki (s, a) := η(1 − η)t−i(P (s, a) − P k
i (s, a))V

k
i−1, then the entries of E2

t = [E2
t (s, a)] can be

written as

E2
t (s, a) = η

γ

K

t∑
i=1

(1− η)t−i
K∑

k=1

(P (s, a)− P k
i (s, a))V

k
i−1 =

γ

K

t∑
i=1

K∑
k=1

zki (s, a), (80)

which we plan to bound by invoking Freedman’s inequality (cf. Theorem B.1) using the fact zki (s, a) is independent of the
transition events of other agents k′ ̸= k at i and has zero mean conditioned on the events before iteration i, i.e.,

E[zki (s, a)|V K
i−1, . . . , V

1
i−1, . . . , V

K
0 , . . . , V 1

0 ] = 0, ∀k ∈ [K], 1 ≤ i ≤ t. (81)

Before applying Freedman’s inequality, we first derive the following properties of the variable zki (s, a).

• First, we can bound

Bt(s, a) := max
k∈[K],1≤i≤t

|zki (s, a)| ≤ max
k∈[K],1≤i≤t

η
(
∥P (s, a)∥1 + ∥P k

i (s, a)∥1
)
∥V k

i−1∥∞ ≤ 2η

1− γ
, (82)

where the first inequality uses (1− η)t−i ≤ 1, and the last inequality follows from ∥P (s, a)∥1 ≤ 1, ∥P k
i (s, a)∥1 ≤ 1,

and ∥V k
i−1∥∞ ≤ 1

1−γ (cf. (31)).

• Next, we have

Wt(s, a) :=

t∑
i=1

K∑
k=1

E
[
(zki (s, a))

2|V K
i−1, . . . , V

1
i−1, . . . , V

K
0 , . . . , V 1

0

]
=

t∑
i=1

K∑
k=1

Var
(
zki (s, a)|V K

i−1, . . . , V
1
i−1, . . . , V

K
0 , . . . , V 1

0

)
=

t∑
i=1

K∑
k=1

η2(1− η)2(t−i)Vars,a(V
k
i−1)

≤ 2K

(1− γ)2

t∑
i=1

η2(1− η)2(t−i) ≤ 2ηK

(1− γ)2
:= σ2, (83)

where we recall the definition of Vars,a in (30). Here, the first inequality holds since

Vars,a(V
k
i−1) ≤ ∥P (s, a)∥1(∥V k

i−1∥∞)2 + (∥P (s, a)∥1∥V k
i−1∥∞)2 ≤ 2

(1− γ)2

and the last inequality follows from

t∑
i=1

η2(1− η)2(t−i) ≤ η2(1− (1− η)2t)

1− (1− η)2
≤ η. (84)
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By substituting the above bounds (cf. (82) and (83)) and m = 1 into Freedman’s inequality (see Theorem B.1), it follows
that for any s ∈ S, a ∈ A and t ∈ [T ],∣∣∣∣∣

t∑
i=1

K∑
k=1

zki (s, a)

∣∣∣∣∣ ≤
√

8max {Wt(s, a),
σ2

2m
} log 2m|S||A|T

δ
+

4

3
Bt(s, a) log

2m|S||A|T
δ

≤
√

32ηK

(1− γ)2
log

|S||A|T
δ

+
6η

1− γ
log

|S||A|T
δ

≤ 8γ

1− γ

√
η

K
log

|S||A|T
δ

(85)

with probability at least 1− δ
|S||A|T , where the last inequality holds under the assumption η ≤ K

2 (log
|S||A|T

δ )−1. Applying
the union bound over all s ∈ S, a ∈ A and t ∈ [T ] then completes the proof.

D.2. Proof of Lemma C.2

For any βτ ≤ t ≤ T and (s, a) ∈ S ×A, we can decompose the entries of E3
t = [E3

t (s, a)] as

|E3
t (s, a)| =

∣∣∣∣∣ηγK
t−1∑
i=0

K∑
k=1

(1− η)t−i−1P (s, a)(V ⋆ − V k
i )

∣∣∣∣∣
≤

∣∣∣∣∣∣ηγK
ι(t)−βτ−1∑

i=0

K∑
k=1

(1− η)t−i−1P (s, a)(V ⋆ − V k
i )

∣∣∣∣∣∣︸ ︷︷ ︸
=:E3a

t (s,a)

+

∣∣∣∣∣∣ηγK
t−1∑

i=ι(t)−βτ

K∑
k=1

(1− η)t−i−1P (s, a)(V ⋆ − V k
i )

∣∣∣∣∣∣︸ ︷︷ ︸
=:E3b

t (s,a)

. (86)

We shall bound these two terms separately.

Step 1: bounding E3a
t (s, a). First, the bound of E3a

t is obtained as follows:

E3a
t (s, a) ≤ η

γ

K

K∑
k=1

ι(t)−βτ−1∑
i=0

(1− η)t−i∥P (s, a)∥1(∥V ⋆∥∞ + ∥V k
i ∥∞)

≤ 2ηγ

1− γ

ι(t)−βτ−1∑
i=0

(1− η)t−i−1 ≤ 2γ

1− γ
(1− η)βτ , (87)

where the second inequality holds due to the fact that ∥P (s, a)∥1 ≤ 1 and ∥V ⋆∥∞ ≤ 1
1−γ , ∥V k

i ∥∞ ≤ 1
1−γ , and the last

inequality follows from

ι(t)−βτ−1∑
i=0

(1− η)t−i−1 ≤ (1− η)βτ + (1− η)βτ+1 + . . .+ (1− η)t−1 ≤ (1− η)βτ

1− (1− η)
≤ (1− η)βτ

η
.

Step 2: decomposing the bound on E3b
t (s, a). Next, E3b

t (s, a) can be bounded as follows

E3b
t (s, a) =

∣∣∣∣∣∣ηγK
t−1∑

i=ι(t)−βτ

K∑
k=1

(1− η)t−i−1P (s, a)(V ⋆ − V k
i )

∣∣∣∣∣∣
≤ γ

t−1∑
i=ι(t)−βτ

η(1− η)t−i−1

∣∣∣∣∣ 1K
K∑

k=1

P (s, a)(V ⋆ − V k
i )

∣∣∣∣∣
≤ γ

t−1∑
i=ι(t)−βτ

η(1− η)t−i−1

∥∥∥∥∥ 1

K

K∑
k=1

(V ⋆ − V k
i )

∥∥∥∥∥
∞

, (88)
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where the second inequality holds since ∥P (s, a)∥1 ≤ 1. To continue, denoting

dkv,w(s, a) := Qk
w(s, a)−Qk

v(s, a), (89)

we claim the following bound for any 0 ≤ i < T , which will be shown in Appendix D.2.1:∥∥∥∥∥ 1

K

K∑
k=1

(V ⋆ − V k
i )

∥∥∥∥∥
∞

≤ ∥∆i∥∞ + 2max
k

∥∥dkι(i),i∥∥∞. (90)

In view of (90), it boils down to control maxk
∥∥dkι(i),i∥∥∞. For any (s, a) ∈ S × A, k ∈ [K], and 0 ≤ i < T , by the

definition (89), it follows that

∣∣dkι(i),i(s, a)∣∣ =
∣∣∣∣∣∣

i−1∑
j=ι(i)

dkj,j+1(s, a)

∣∣∣∣∣∣ ≤ 2η

i−1∑
j=ι(i)

∥∆k
j ∥∞︸ ︷︷ ︸

:=B1

+ γη

∣∣∣∣∣∣
i−1∑

j=ι(i)

(P k
j+1(s, a)− P (s, a))V ⋆

∣∣∣∣∣∣︸ ︷︷ ︸
:=B2

, (91)

where
∆k

j = Q⋆ −Qk
j . (92)

The inequality (91) holds by the local update rule:

dkj,j+1(s, a) = Qk
j+1(s, a)−Qk

j (s, a)

= η(r(s, a) + γP k
j+1(s, a)V

k
j −Qk

j (s, a))

(i)
= η(r(s, a) + γP k

j+1(s, a)V
k
j − r(s, a)− γP (s, a)V ⋆ +Q⋆(s, a)−Qk

j (s, a))

= η(γP k
j+1(s, a)V

k
j − γP (s, a)V ⋆ +Q⋆(s, a)−Qk

j (s, a))

= γηP k
j+1(s, a)(V

k
j − V ⋆) + γη(P k

j+1(s, a)− P (s, a))V ⋆ + η∆k
j (s, a)

≤ 2η∥∆k
j ∥∞ + γη(P k

j+1(s, a)− P (s, a))V ⋆, (93)

where (i) follows from Bellman’s optimality equation, and the last inequality follows from ∥P k
j+1(s, a)∥1 ≤ 1 and ∥V k

j −
V ⋆∥∞ ≤ ∥∆k

j ∥∞ (cf. (32)).

Next, we bound each term in (91) separately.

• Bounding B1. The local error ∥∆k
j ∥∞ is bounded as stated in the following lemma, whose proof is provided in

Appendix D.2.2.

Lemma D.1. Assume τη ≤ 1
2 . For any given δ ∈ (0, 1), the following bound holds for any 1 ≤ i ≤ T and k ∈ [K]:

∥∆k
i ∥∞ ≤ ∥∆ι(i)∥∞ +

2

1− γ

√
η log

|S||A|KT

δ
(94)

with at least probability 1− δ, where ι(i) is the most recent synchronization step until i.

Using the fact that i− ι(i) ≤ τ − 1, we can claim that

2η

i−1∑
j=ι(i)

∥∆k
j ∥∞ ≤ 2η(τ − 1)∥∆ι(i)∥∞ +

4η(τ − 1)

1− γ

√
η log

|S||A|KT

δ
. (95)

• Bounding B2. Using the fact that the empirical transitions are independent and centered on the true transition
probability, by invoking Hoeffding’s inequality and the union bound, we can claim that the following holds for all
(s, a, k, t) ∈ S ×A× [K]× [T ],

γη

∣∣∣∣∣∣
i−1∑

j=ι(i)

(P k
j+1(s, a)− P (s, a))V ⋆

∣∣∣∣∣∣ ≤ γη

1− γ

√√√√1

2

i−1∑
j=ι(i)

log
|S||A|KT

δ
≤ γη

1− γ

√
(τ − 1) log

|S||A|KT

δ
(96)

with probability at least 1− δ for any given δ ∈ (0, 1), where τ is the synchronization period.
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By substituting the bound of B1 and B2 into (91), and applying the union bound, we obtain that: for any given δ ∈ (0, 1),
the following holds for any 0 ≤ i ≤ T and k ∈ [K]:

∥dkι(i),i∥∞ ≤ 2η(τ − 1)∥∆ι(i)∥∞ +
4η((τ − 1)

√
η +

√
τ − 1)

(1− γ)

√
log

2|S||A|KT

δ

≤ 2η(τ − 1)∥∆ι(i)∥∞ +
8η

√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
(97)

with at least probability 1− δ, where ι(i) is the most recent synchronization step until i. Here, the second line uses the fact
ητ < 1.

By combining (97) and (90) and substituting it into (88) and using the fact that
∑t−1

i=ι(t)−βτ η(1 − η)t−i−1 ≤ 1, we can
obtain the bound E3b

t (s, a) as follows:

|E3b
t (s, a)| ≤ 16γη

√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
+ γ

t−1∑
i=ι(t)−βτ

η(1− η)t−i−1
(
∥∆i∥∞ + 4η(τ − 1)∥∆ι(i)∥∞

)
≤ 16γη

√
τ − 1

(1− γ)

√
log

2|S||A|KT

δ
+ γ(1 + 4η(τ − 1)) max

ι(t)−βτ≤i<t
∥∆i∥∞. (98)

Step 3: putting all together. Now, we have the bounds of E3a
t and E3b

t separately derived above. By combining the
bounds in (86), we can finally claim the advertised bound and this completes the proof.

D.2.1. PROOF OF (90)

On one end, it follows that for any s ∈ S,

1

K

K∑
k=1

(
V ⋆(s)− V k

i (s)
)
= Q⋆(s, a⋆(s))− 1

K

K∑
k=1

Qk
i (s, a

k
i (s))

≤ Q⋆(s, a⋆(s))− 1

K

K∑
k=1

Qk
i (s, a

⋆(s)) = ∆i(s, a
⋆(s)), (99)

where we use the definitions in (79). On the other end, it follows that

1

K

K∑
k=1

(
V ⋆(s)− V k

i (s)
)
= Q⋆(s, a⋆(s))− 1

K

K∑
k=1

Qk
i (s, aι(i)(s)) +

1

K

K∑
k=1

Qk
i (s, aι(i)(s))−

1

K

K∑
k=1

Qk
i (s, a

k
i (s))

≥ Q⋆(s, aι(i)(s))−
1

K

K∑
k=1

Qk
i (s, aι(i)(s)) +

1

K

K∑
k=1

Qk
i (s, aι(i)(s))−

1

K

K∑
k=1

Qk
i (s, a

k
i (s))

= ∆i(s, aι(i)(s)) +
1

K

K∑
k=1

Qk
i (s, aι(i)(s))−

1

K

K∑
k=1

Qk
i (s, a

k
i (s)), (100)

where the inequality follows from the fact that a⋆(s) is the optimal action for state s. Notice that the latter terms can be
further lower bounded as

1

K

K∑
k=1

Qk
i (s, aι(i)(s))−

1

K

K∑
k=1

Qk
i (s, a

k
i (s))

=
1

K

K∑
k=1

Qk
i (s, aι(i)(s))−

1

K

K∑
k=1

Qk
ι(i)(s, aι(i)(s)) +

1

K

K∑
k=1

Qk
ι(i)(s, aι(i)(s))

− 1

K

K∑
k=1

Qk
ι(i)(s, a

k
i (s)) +

1

K

K∑
k=1

Qk
ι(i)(s, a

k
i (s))−

1

K

K∑
k=1

Qk
i (s, a

k
i (s))
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≥ 1

K

K∑
k=1

(
dkι(i),i(s, aι(i)(s))− dkι(i),i(s, a

k
i (s))

)
, (101)

where the inequality follows from the definition (89) and the fact that

Qk
ι(i)(s, aι(i)(s))−Qk

ι(i)(s, a
k
i (s)) ≥ 0.

The above holds, since Qk
ι(i) = Qι(i) for all k ∈ [K] agents after periodic averaging at ι(i), and aι(i)(s) is the optimal

action at state s at time ι(i) for every agent.

Combining (99), (100) and (101), we obtain

∆i(s, aι(i)(s)) +
1

K

K∑
k=1

(
dkι(i),i(s, aι(i)(s))− dkι(i),i(s, a

k
i (s))

)
≤ 1

K

K∑
k=1

(
V ⋆(s)− V k

i (s)
)
≤ ∆i(s, a

⋆(s)),

which immediately implies (90).

D.2.2. PROOF OF LEMMA D.1

By applying the decomposition in (37) to the local error for agent k, we decompose ∆k
i as follows:

∆k
i (s, a) = (1− η)i−ι(i)∆k

ι(i)(s, a)︸ ︷︷ ︸
:=D1

+ γ

i∑
j=ι(i)+1

η(1− η)i−j(P (s, a)− P k
j (s, a))V

⋆

︸ ︷︷ ︸
:=D2

+ γ

i∑
j=ι(i)+1

η(1− η)i−jP k
j (s, a)(V

⋆ − V k
j−1)︸ ︷︷ ︸

:=D3

. (102)

We shall bound each term separately.

• Bounding D1. Since ∆k
ι(i) = ∆ι(i) for every agent k at the synchronization step ι(i),

|D1| ≤ (1− η)i−ι(i)∥∆ι(i)∥∞. (103)

• Bounding D2. In a similar manner to (96), by invoking Hoeffding inequality and using the fact that
∑i

j=ι(i)+1(η(1−
η)i−j)2 ≤ η (cf. (84)), we can claim that the following holds for all (s, a, k, t) ∈ S ×A× [K]× [T ],

|D2| ≤ γ

√√√√ i∑
j=ι(i)+1

(η(1− η)i−j)2∥V ⋆∥2∞ log
|S||A|KT

δ
≤ γ

1− γ

√
η log

|S||A|KT

δ
(104)

with probability at least 1− δ for any given δ ∈ (0, 1).

• Bounding D3. By bounding ∥V ⋆ − V k
j−1∥∞ with the local error ∥∆k

j−1∥∞ (cf. (32)) and using ∥P k
j (s, a)∥1 ≤ 1, we

have

|D3| ≤ γ

i∑
j=ι(i)+1

η(1− η)i−j∥P k
j (s, a)∥1∥V ⋆ − V k

j−1∥∞ ≤ γ

i∑
j=ι(i)+1

η(1− η)i−j∥∆k
j−1∥∞. (105)

By combining the bounds obtained above in (102), we obtain the following recursive relation

∥∆k
i ∥∞ ≤ (1− η)i−ι(i)∥∆ι(i)∥∞ +

γ

1− γ

√
η log

|S||A|KT

δ︸ ︷︷ ︸
:=ρ

+γ

i∑
j=ι(i)+1

η(1− η)i−j∥∆k
j−1∥∞. (106)
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By invoking the recursive relation with some algebraic calculations, we obtain the following bound

∥∆k
i ∥∞ ≤ (1− η)i−ι(i)∥∆ι(i)∥∞ + ρ

+ γ

i∑
j1=ι(i)+1

η(1− η)i−j1

(1− η)j1−1−ι(i)∥∆ι(i)∥∞ + ρ+ γ

j1−1∑
j2=ι(i)+1

η(1− η)j1−1−j2∥∆k
j2−1∥∞


=

(1− η)i−ι(i) + γ

i∑
j1=ι(i)+1

η(1− η)i−1−ι(i)

 ∥∆ι(i)∥∞ +

1 + γ

i∑
j1=ι(i)+1

η(1− η)i−j1

 ρ

+ γ2
i∑

j1=ι(i)+1

j1−1∑
j2=ι(i)+1

η2(1− η)i−1−j2∥∆k
j2−1∥∞

≤

(1− η)i−ι(i) + γ

i∑
j1=ι(i)+1

η(1− η)i−1−ι(i)

 ∥∆ι(i)∥∞ +

1 + γ

i∑
j1=ι(i)+1

η(1− η)i−j1

 ρ

+ γ2
i∑

j1=ι(i)+1

j1−1∑
j2=ι(i)+1

η2(1− η)i−1−j2
(
(1− η)j2−1−ι(i)∥∆ι(i)∥∞ + ρ+ · · ·

)

≤

(1− η)i−ι(i) + γ

i∑
j1=ι(i)+1

η(1− η)i−1−ι(i) + · · ·+ γl
i∑

j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l−ι(i)

 ∥∆ι(i)∥∞

+

1 + γ

i∑
j1=ι(i)+1

η(1− η)i−j1 + · · ·+ γl
i∑

j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l+1−jl

 ρ

+ γl+1
i∑

j1=ι(i)+1

· · ·
jl−1∑

jl+1=ι(i)+1

ηl+1(1− η)i−l−jl+1

(
∥∆k

jl+1−1∥
)

(i)

≤
i−ι(i)∑
l=0

γl

(
i− ι(i)

l

)
ηl(1− η)i−ι(i)−l∥∆k

ι(i)∥∞ +

i−ι(i)−1∑
l=0

γl

(
i− ι(i)

l

)
ηlρ

≤ ((1− η) + γη)i−ι(i)∥∆k
ι(i)∥∞ + (1 + γη)i−ι(i)ρ

(ii)

≤ ∥∆k
ι(i)∥∞ + 2ρ, (107)

where (i) follows from ∆k
ji−ι(i)−1 = ∆k

ι(i) since jl ≤ i− l + 1,

i∑
j1=ι(i)+1

j1−1∑
j2=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l−ι(i) =

(
i− ι(i)

l

)
ηl(1− η)i−l−ι(i),

i∑
j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl(1− η)i−l+1−jl ≤
i∑

j1=ι(i)+1

· · ·
jl−1−1∑

jl=ι(i)+1

ηl ≤
(
i− ι(i)

l

)
ηl,

and (ii) follows from (1 + γη)i−ι(i) ≤ (1 + γη)τ ≤ eτη ≤ 2 since i− ι(i) ≤ τ and τη ≤ 1
2 . This completes the proof.

E. Proofs for Federated Asynchronous Q-Learning (Section 4)
E.1. Proof of Lemma C.3

First, (53a) is derived as follows:

λv1,v2(s, a) =
1

K

K∑
k=1

(1− η)N
k
v1,v2

(s,a) ≤ (1− η)mink∈[K] N
k
v1,v2

(s,a). (108)
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Next, we obtain (53b) through the following derivation:

K∑
k=1

∑
u∈Uk

0,t(s,a)

ωk
u,t(s, a) =

K∑
k=1

ϕ(t)−1∑
h=0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ωk
u,t(s, a)

=

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

 K∑
k=1

1

K

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(
η(1− η)N

k
u+1,(h+1)τ (s,a)

)

(i)
=

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

 K∑
k=1

1

K
(1− (1− η)N

k
hτ,(h+1)τ (s,a))

(ii)
=

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

 (1− λhτ,(h+1)τ (s, a))

(iii)
= 1− λ0,τλτ,2τ · · ·λ(ϕ(t)−1)τ,t = 1− ω0,t(s, a), (109)

where (i) follows from the geometric sum∑
u∈Uk

hτ,(h+1)τ
(s,a)

η(1− η)N
k
u+1,(h+1)τ (s,a) = η + η(1− η) + · · ·+ η(1− η)N

k
hτ,(h+1)τ (s,a)−1

= 1− (1− η)N
k
hτ,(h+1)τ (s,a), (110)

(ii) follows from the definition (50), and (iii) follows by cancellation.

Similarly, (53c) can be obtained with some algebraic calculations as follows:

K∑
k=1

∑
u∈Uk

0,h′τ (s,a)

ωk
u,t(s, a) =

K∑
k=1

h′−1∑
h=0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ωk
u,t(s, a)

(i)
=

h′−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

 (1− λhτ,(h+1)τ (s, a))

(ii)

≤ λh′τ,(h′+1)τ · · ·λ(ϕ(t)−1)τ,t − λ0,τλτ,2τ · · ·λ(ϕ(t)−1)τ,t

≤ λh′τ,(h′+1)τ · · ·λ(ϕ(t)−1)τ,t

(iii)

≤
ϕ(t)−1∏
h=h′

(1− η)mink∈[K] N
k
hτ,(h+1)τ (s,a), (111)

where (i) follows from similar derivations as above, (ii) follows by cancellation, and (iii) follows from (53a).

Finally, (53d) is derived as follows:

K∑
k=1

∑
u∈Uk

0,t(s,a)

(ωk
u,t(s, a))

2 =

K∑
k=1

ϕ(t)−1∑
h=0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(ωk
u,t(s, a))

2

=
1

K

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

2
K∑

k=1

1

K

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(
η(1− η)N

k
u+1,(h+1)τ (s,a)

)2
(i)

≤ 2η

K

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

 K∑
k=1

1

K

(
1− (1− η)(N

k
hτ,(h+1)τ (s,a))

)

=
2η

K

ϕ(t)−1∑
h=0

 ϕ(t)−1∏
l=(h+1)

λlτ,(l+1)τ (s, a)

(1− λhτ,(h+1)τ (s, a)
)
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(ii)

≤ 2η

K
,

where (i) holds since∑
u∈Uk

hτ,(h+1)τ
(s,a)

(
η(1− η)N

k
u+1,(h+1)τ (s,a)

)2
= η2 + η2(1− η)2 + · · ·+ η(1− η)2(N

k
u+1,(h+1)τ (s,a)−1)

≤ η
(
1− (1− η)2N

k
u+1,(h+1)τ (s,a)

)
≤ 2η

(
1− (1− η)N

k
u+1,(h+1)τ (s,a)

)
(112)

and (ii) follows from the proof of (53c) (cf. (111)).

E.2. Proof of Lemma C.4

Without loss of generality, we prove the claim for some fixed 1 ≤ t ≤ T and (s, a) ∈ S ×A. For notation simplicity, let

yku,t(s, a) =

{
ωk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a)

0 otherwise
, (113)

where

ωk
u,t(s, a) =

η

K
(1− η)N

k
u+1,(ϕ(u)+1)τ (s,a)

ϕ(t)−1∏
h=ϕ(u)+1

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)
, (114)

then E2
t (s, a) = γ

∑K
k=1

∑t−1
u=0 y

k
u,t(s, a). However, due to the dependency between P k

u+1(s, a) and ωk
u,t(s, a) arising

from the Markovian sampling, it is difficult to track the sum of y := {yku,t(s, a)} directly. To address this issue, we
will first analyze the sum using a collection of approximate random variables ŷ = {ŷku,t(s, a)} drawn from a carefully
constructed set Ŷ , which is closely coupled with the target {yku,t(s, a)}0≤u<t, i.e.,

D(y, ŷ) :=

∣∣∣∣∣
K∑

k=1

t−1∑
u=0

(
yku,t(s, a)− ŷku,t(s, a)

)∣∣∣∣∣ (115)

is sufficiently small. In addition, ŷ shall exhibit some useful statistical independence and thus easier to control its sum; we
shall control this over the entire set Ŷ . Finally, leveraging the proximity above, we can obtain the desired bound on y via
triangle inequality. We now provide details on executing this proof outline, where the crust is in designing the set Ŷ with a
controlled size.

Before describing our construction, let’s introduce the following useful event:

Bτ :=

K⋂
k=1

ϕ(t)−1⋂
h=0

{
1

2
µk
b(s, a)τ ≤ Nk

hτ,(h+1)τ (s, a) ≤ 2µk
b(s, a)τ

}
(116)

Since τ ≥ τ0 (cf. (25c)), Bτ holds with probability at least 1− δ
|S||A| according to Lemma B.2.

Step 1: constructing Ŷ . To decouple dependency between P k
u+1(s, a) and ωk

u,t(s, a), we will introduce approximates
of ωk

u,t(s, a) that only depend on history until u by replacing a factor dependent on future with some constant. To gain
insight, we first decompose ωk

u,t(s, a) as follows:

ωk
u,t(s, a) =

η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)
(1− η)N

k
ϕ(u)τ,(ϕ(u)+1)τ (s,a)∑K

k′=1(1− η)
Nk′

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

ϕ(t)−1∏
h=ϕ(u)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)
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=
η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)

ϕ(t)−1∏
h=ϕ(u)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)
︸ ︷︷ ︸

:=ω̄k
u,t(s,a)

+
η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)

(
(1− η)N

k
ϕ(u)τ,(ϕ(u)+1)τ (s,a)∑K

k′=1(1− η)
Nk′

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

− 1

)
ϕ(t)−1∏
h=ϕ(u)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)
︸ ︷︷ ︸

:=χk
u,t(s,a)

.

Considering that χk
u,t(s, a) can be small enough, which will be shown in the following step, we analyze the dominant

factor ω̄k
u,t(s, a) in detail as follows:

ω̄k
u,t(s, a) =

ϕ(u)−1∏
h=h0(u,t)

( 1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)−1


× η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)

ϕ(t)−1∏
h=ϕ(u)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)

=
η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)

ϕ(u)−1∏
h=h0(u,t)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)−1

︸ ︷︷ ︸
dependent on history until u

×
ϕ(t)−1∏

h=h0(u,t)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)
︸ ︷︷ ︸

dependent on history and future until t

=
η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)

ϕ(u)−1∏
h=h0(u,t)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)−1

︸ ︷︷ ︸
:=xk

u(s,a)

×
l(u,t)∏
l=1

ϕ(t)−(l−1)M−1∏
h=max{0,ϕ(t)−lM}

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)
︸ ︷︷ ︸

:=zl(s,a)

, (117)

where we denote h0(u, t) = max{0, ϕ(t)− l(u, t)M}, with M = M(s, a) := ⌊ 1
8ηµavg(s,a)τ

⌋ and l(u, t) := ⌈ (t−u)
Mτ ⌉. Note

that M ≥ 1
16ηµavg(s,a)τ

since ητ ≤ 1/16.

Motivated by the above decomposition, we will construct Ŷ by approximating future-dependent parameter zl(s, a) for
1 ≤ l ≤ L, where L := min{⌈ t

Mτ ⌉, ⌈64 log (K/η)⌉}. Using the fact that 1 − x ≤ exp(x) ≤ 1 − x
2 holds for any

0 ≤ x < 1, and ηNk′

hτ,(h+1)τ (s, a) ≤ ητ ≤ 1
2 ,

exp

(
−2η

K

K∑
k′=1

Nk′

hτ,(h+1)τ (s, a)

)
≤ 1− η

K

K∑
k′=1

Nk′

hτ,(h+1)τ (s, a)

≤ 1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

≤ 1

K

K∑
k′=1

exp(−ηNk′

hτ,(h+1)τ (s, a))
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≤ 1− 1

2

1

K

K∑
k′=1

ηNk′

hτ,(h+1)τ (s, a)

≤ exp

(
− η

2K

K∑
k′=1

Nk′

hτ,(h+1)τ (s, a)

)
. (118)

Therefore, for 1 ≤ l < L, under Bτ , the range of zl(s, a) is bounded as follows:

zl(s, a) ∈
[
exp(−4ηµavg(s, a)Mτ), exp(−1

4
ηµavg(s, a)Mτ)

]
.

Using this property, we construct a set of values that can cover possible realizations of zl(s, a) in a fine-grained manner as
follows:

Z :=

{
exp

(
−1

4
ηµavg(s, a)Mτ − iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (119)

Note that the distance of adjacent elements of Z is bounded by η/Ke−1/4ηµavg(s,a)Mτ , and the size of the set is bounded
by 4Kµavg(s, a)Mτ . For l = L, because the number of iterations involved in zL(s, a) can be less than Mτ , it follows that
zL(s, a) ∈ [exp(−4ηµavg(s, a)Mτ), 1]. Hence, we construct the set

Z0 :=

{
exp

(
− iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (120)

In sum, we can always find (ẑ1, · · · , ẑl, · · · , ẑL) ∈ ZL−1 × Z0 where its entry-wise distance to (zl(s, a))l∈[L−1] (resp.
zL(s, a)) is at most η/Ke−1/4ηµavg(s,a)Mτ (resp. η/K).

Moreover, we approximate xk
u(s, a) by clipping it when the accumulated number of visits of all agents is not too large as

follows:

x̂k
u(s, a) =

{
xk
u(s, a) if

∑K
k=1 N

k
h0(u,t)τ,ϕ(u)τ

(s, a) ≤ 2Kµavg(s, a)Mτ

0 otherwise
. (121)

Note that the clipping never occurs and x̂k
u(s, a) = xk

u(s, a) for all u as long as Bτ holds. To provide useful properties of
x̂k
u(s, a) that will be useful later, we record the following lemma whose proof is provided in Appendix E.2.1.

Lemma E.1. For any state-action pair (s, a) ∈ S × A, consider any integers 1 ≤ t ≤ T and 1 ≤ l ≤ ⌈ t
Mτ ⌉, where

M = ⌊ 1
8ηµavg(s,a)τ

⌋. Suppose that 4ητ ≤ 1, then x̂k
u(s, a) defined in (121) satisfy

∀u ∈ [h0, ϕ(t)− (l − 1)M) : x̂k
u(s, a) ≤

9η

K
, (122a)

ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a) ≤ 16ηµavg(s, a)Mτ, (122b)

ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(x̂k
u(s, a))

2 ≤ 64η2µavg(s, a)Mτ

K
, (122c)

where h0 = max{0, ϕ(t)− lM}.

Finally, for each z = (ẑ1, · · · , ẑL) ∈ ZL−1 × Z0, setting ω̂k
u,t(s, a; z) = x̂k

u(s, a)
∏l(u,t)

l=1 ẑl, an approximate random
sequence ŷz = {ŷku,t(s, a; z)}0≤u<t can be constructed as follows:

ŷku,t(s, a; z) =

{
ω̂k
u,t(s, a; z)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a) and l(u, t) ≤ L

0 otherwise
. (123)

If t > LMτ , for any u < t − LMτ , i.e., l(u, t) > L, we set ŷku,t(s, a; z) = 0 since the magnitude of ωk
u,t(s, a) becomes

negligible when the time difference between u and t is large enough, and the fine-grained approximation using Z is no
longer needed, as shall be seen momentarily. Finally, denote a collection of the approximates induced by ZL−1 ×Z0 as

Ŷ = {ŷz : z ∈ ZL−1 ×Z0}.
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Step 2: bounding the approximation error D(y, ŷz). We now show that under Bτ , there exists ŷz := ŷz(y) ∈ Ŷ such
that

D(y, ŷz) <
106

1− γ

√
Chetη

K
log (TK) log

4|S||A|T 2

δ
(124)

with at least probability 1− δ. To this end, we first decompose the approximation error as follows:

min
ŷz∈Ŷ

D(y, ŷz)

= min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=0

(
yku,t(s, a)− ŷku,t(s, a; z)

)∣∣∣∣∣
≤ max

z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−LMτ−1∑
u=0

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣+ min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣
≤ max

z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−LMτ−1∑
u=0

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣︸ ︷︷ ︸
=:D1

+ min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

(ω̄k
u,t(s, a)− ω̂k

u,t(s, a; z))(P (s, a)− P k
u+1(s, a))V

k
u

∣∣∣∣∣︸ ︷︷ ︸
=:D2

+

∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

χk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣︸ ︷︷ ︸
=:D3

,

and will bound each term separately.

• Bounding D1. This term appears only when t > LMτ . Since ŷku,t(s, a; z) = 0 for all u < t− LMτ regardless of z
by construction,∣∣∣∣∣

K∑
k=1

t−LMτ−1∑
u=0

yku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣ ≤
K∑

k=1

∑
u∈Uk

0,t−LMτ (s,a)

ωk
u,t(s, a)∥P (s, a)− P k

u+1(s, a)∥1∥V k
u ∥∞

(i)

≤ 2

1− γ

K∑
k=1

∑
u∈Uk

0,t−LMτ (s,a)

ωk
u,t(s, a)

≤ 2

1− γ

ϕ(t)−1∏
h=ϕ(t)−LM

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)
(ii)

≤ 2

1− γ
exp

(
− η

2K

K∑
k′=1

Nk′

t−LMτ,t(s, a)

)
(iii)

≤ 2

1− γ
exp

(
−1

4
ηµavg(s, a)LMτ

)
(iv)

≤ 2η

(1− γ)K
,

where (i) holds since ∥P (s, a)∥1, ∥P k
u (s, a)∥1 ≤ 1 and ∥V k

u−1∥∞ ≤ 1
1−γ (cf. (31)), (ii) follows from (118), (iii)

holds due to Bτ , and (iv) holds because L ≥ 64 log K
η ≥ 4

ηµavg(s,a)Mτ log K
η given that ηµavg(s, a)Mτ ≥ 1/16.
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• Bounding D2. Since x̂k
u(s, a) = xk

u(s, a) when Bτ holds, in view of (123), we have

min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

(ω̄k
u,t(s, a)− ω̂k

u,t(s, a; z))(P (s, a)− P k
u+1(s, a))V

k
u

∣∣∣∣∣
≤ min

z∈ZL−1×Z0

K∑
k=1

∑
u∈Uk

t−LMτ,t(s,a)

∣∣ω̄k
u,t(s, a)− ω̂k

u,t(s, a; z)
∣∣ ∥P (s, a)− P k

u+1(s, a)∥1∥V k
u ∥∞

≤ 2

1− γ
min

z∈ZL−1×Z0

 L∑
l=1

ϕ(t)−(l−1)M−1∑
h=ϕ(t)−lM

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a)

∣∣∣∣∣
l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑl′

∣∣∣∣∣
 ,

where the last inequality holds since ∥P (s, a)∥1, ∥P k
u (s, a)∥1 ≤ 1 and ∥V k

u−1∥∞ ≤ 1
1−γ (cf. (31)).

Note that for any given {zl(s, a)}l∈[L], under Bτ , there exists ẑ⋆ = (ẑ⋆1 , . . . , ẑ
⋆
l , . . . , ẑ

⋆
L) ∈ ZL−1 × Z0 such that

|ẑ⋆l − zl(s, a)| ≤ η
K exp(−1/4ηµavg(s, a)Mτ) for l < L and |ẑ⋆L − zL(s, a)| ≤ η

K . Also, recall that zl(s, a), ẑ⋆l ≤
exp(−1/4ηµavg(s, a)Mτ) for l < L and zL(s, a), ẑ

⋆
L ≤ 1. Then, for any l ≤ L it follows that:∣∣∣∣∣

l∏
l′=1

zl′(s, a)−
l∏

l′=1

ẑ⋆l′

∣∣∣∣∣ ≤ (∣∣∣
l∏

l′=1

zl′(s, a)− ẑ⋆1

l∏
l′=2

zl′(s, a)
∣∣∣+ · · ·+

∣∣∣zl l−1∏
l′=1

ẑ⋆l′ −
l∏

l′=1

ẑ⋆l′
∣∣∣)

≤ exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

) l∑
l′=1

η

K

≤ exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

)Lη
K

.

Then, applying the above bound and (122b) in Lemma E.1,

D2 ≤ 2

1− γ

L∑
l=1

ϕ(t)−(l−1)M−1∑
h=ϕ(t)−lM

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a)

∣∣∣∣∣
l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑ⋆l′

∣∣∣∣∣
≤ 2

1− γ

Lη

K

L∑
l=1

exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

) ϕ(t)−(l−1)M−1∑
h=ϕ(t)−lM

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a)

≤ 2

1− γ

Lη

K

1

1− exp(−1/4ηµavg(s, a)Mτ)
(16ηµavg(s, a)Mτ)

(i)

≤ 2

1− γ

Lη

K

8

ηµavg(s, a)Mτ
16ηµavg(s, a)Mτ ≤ 256Lη

(1− γ)K
,

where (i) holds since 1/4ηµavg(s, a)Mτ ≤ 1 and e−x ≤ 1− 1
2x for any 0 ≤ x ≤ 1.

• Bounding D3. Applying Freedman’s inequality, we can obtain the following bound, whose proof is provided in
Appendix E.2.2.

Lemma E.2. For any given δ ∈ (0, 1), under Bτ , the following holds for any (s, a) ∈ S ×A and 1 ≤ t ≤ T :

D3 ≤ 72

1− γ

√
Chetη

K
log (TK) log

4|S||A|T 2

δ
(125)

with probability at least 1 − δ, as long as η ≤ min{ 1
4τK , 1

64KChet log (TK) log
4|S||A|T2

δ

}, M(s, a) ≤ 1
8ηµavg(s,a)τ

and

L ≤ 64 log (TK) .

By combining the bounds obtained above and using the fact that η ≤ K

64 log (TK) log
4|S||A|T (1+τ)

δ

and L ≤ 64 log (TK), we

can conclude that

min
ŷz∈Ŷ

D(y, ŷz) ≤
2η

(1− γ)K
+

256Lη

(1− γ)K
+

72

1− γ

√
Chetη

K
log (TK) log

4|S||A|T 2

δ
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≤ 106

1− γ

√
Chetη

K
log (TK) log

4|S||A|T 2

δ
.

Step 3: concentration bound over Y . We now show that for all elements in Ŷ = {ŷz : z ∈ ZL−1 ×Z0} satisfy∣∣∣∣∣
K∑

k=1

t−1∑
u=0

ŷku,t(s, a; z)

∣∣∣∣∣ < 624

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
(126)

with probability at least 1 − δ
|S||A|T . It suffices to establish (126) for a fixed z ∈ ZL−1 × Z0 with probability at least

1− δ
|S||A|T |Y| , where

|Ŷ| = |ZL−1 ×Z0| ≤ (4Kµavg(s, a)Mτ)L ≤ (K/η)L ≤ (TK)L. (127)

For any fixed z = (ẑ1, · · · , ẑL) ∈ ZL−1 × Z0, since ω̂k
u,t(s, a; z) = x̂k

u(s, a)
∏l(u,t)

l=1 ẑl only depends on the events
happened until u, which is independent to a transition at u + 1. Thus, we can apply Freedman’s inequality to bound the
sum of ŷku,t(s, a; z) since

E[ŷku,t(s, a; z)|Yu] = 0, (128)

where Yu denotes the history of visited state-action pairs and updated values of all agents until u, i.e., Yu =
{(skv , akv), V k

v }k∈[K],v≤u. Before applying Freedman’s inequality, we need to calculate the following quantities. First,

Bt(s, a) := max
k∈[K],0≤u<t

|ŷku,t(s, a; z)| ≤ x̂k
u(s, a)

l(u,t)∏
l=1

ẑl∥P (s, a)− P k
u+1(s, a)∥1∥V k

u ∥∞ ≤ 18η

(1− γ)K
, (129)

where the last inequality follows from ∥P (s, a)∥1, ∥P k
u (s, a)∥1 ≤ 1, ∥V k

u−1∥∞ ≤ 1
1−γ (cf. (31)), ẑl ≤ 1, and (122a) in

Lemma E.1. Next, we can bound the variance as

Wt(s, a) :=

t∑
u=0

K∑
k=1

E[(ŷku,t(s, a; z))2|Yu]

=

L∑
l=1

ϕ(t)−(l−1)M−1∑
h=max{0,ϕ(t)−lM}

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(x̂k
u(s, a)

l∏
l′=1

ẑl′)
2VarP (s,a)(V

k
u )

(i)

≤ 2

(1− γ)2

L∑
l=1

(
l∏

l′=1

ẑ2l′

)
ϕ(t)−(l−1)M−1∑

h=max{0,ϕ(t)−lM}

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(x̂k
u(s, a))

2

(ii)

≤ 2

(1− γ)2

L∑
l=1

(
l∏

l′=1

ẑ2l′

)
64η2µavg(s, a)Mτ

K

(iii)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2

L∑
l=1

exp (−1/2(l − 1)ηµavg(s, a)Mτ)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2
1

1− exp(−1/2ηµavg(s, a)Mτ)

(iv)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2
4

ηµavg(s, a)Mτ
=

512η

K(1− γ)2
=: σ2, (130)

where (i) holds due to the fact that ∥VarP (V )∥∞ ≤ ∥P∥1(∥V ∥∞)2 + (∥P∥1∥V ∥∞)2 ≤ 2
(1−γ)2 because ∥V ∥∞ ≤ 1

1−γ

(cf. (31)) and ∥P∥1 ≤ 1, (ii) follows from (122c) in Lemma E.1, (iii) holds due to the range of Z and Z0 is bounded
by exp(−1/4ηµavg(s, a)Mτ) and 1, respectively, and (iv) holds since e−x ≤ 1 − 1

2x for any 0 ≤ x ≤ 1 and
1/2ηµavg(s, a)Mτ ≤ 1 .
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Now, by substituting the above bounds of Wt and Bt into Freedman’s inequality (see Theorem B.1) and setting m = 1, it
follows that for any s ∈ S, a ∈ A, t ∈ [T ] and ŷz ∈ Ŷ ,∣∣∣∣∣

K∑
k=1

t−1∑
u=0

ŷku,t(s, a; z)

∣∣∣∣∣ ≤
√
8max {Wt(s, a),

σ2

2m
} log 4m|S||A|T |Ŷ|

δ
+

4

3
Bt(s, a) log

4m|S||A|T |Ŷ|
δ

≤
√
4096

η

K(1− γ)2
log

4|S||A|T |Ŷ|
δ

+
24η

K(1− γ)
log

4|S||A|T |Ŷ|
δ

(i)

≤ 624

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
, (131)

with at least probability 1 − δ

|S||A|T |Ŷ|
, where (i) holds because |Ŷ| ≤ (TK)L given that ηµavg(s, a)Mτ ≤ 1/4, L ≤

64 log (TK) and 4ηL
K log 4|S||A|T 2K

δ ≤ 256η
K log (TK) log 4|S||A|T 2K

δ ≤ 1. Therefore, it follows that (126) holds.

Step 4: putting things together. We now putting all the results obtained in the previous steps together to achieve
the claimed bound. Under Bτ , there exists ŷz := ŷz(y) ∈ Ŷ such that (124) holds. Hence, setting q =

2064
(1−γ)

√
η
K log (TK) log 4|S||A|T 2K

δ ,

K∑
k=1

t−1∑
u=0

yku,t(s, a) ≤
∣∣∣∣∣

K∑
k=1

t−1∑
u=0

ŷku,t(s, a; z)

∣∣∣∣∣+D(y, ŷz)

≤ 624

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
+

106

1− γ

√
Chetη

K
log (TK) log

4|S||A|T 2

δ

≤ 730

(1− γ)

√
Chetη

K
log (TK) log

4|S||A|T 2K

δ
,

where the second line holds due to (126) and (124), and the last line holds due to L ≤ 64 log (TK). By taking a union
bound over all (s, a) ∈ S ×A and t ∈ [T ], we complete the proof.

E.2.1. PROOF OF LEMMA E.1

For notational simplicity, let h be the largest integer among h ∈ (h0, ϕ(t)− (l − 1)M) such that

K∑
k=1

Nk
h0τ,(h−1)τ (s, a) ≤ 2Kµavg(s, a)Mτ. (132)

Then, the following holds:

K∑
k=1

Nk
h0τ,hτ

(s, a) =

K∑
k=1

Nk
(h−1)τ,hτ

(s, a) +

K∑
k=1

Nk
h0τ,(h−1)τ

(s, a)

≤ Kτ + 2Kµavg(s, a)Mτ. (133)

Also, for the following proofs, we provide an useful bound as follows:

K∑
k′=1

(1− η)−Nk′
hτ,(h+1)τ (s,a)

K
≤
∑K

k′=1 e
ηNk′

hτ,(h+1)τ (s,a)

K
≤ 1 + 2η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

≤ exp

(
2η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

)
, (134)

which holds since 1 + x ≤ ex ≤ 1 + 2x for any x ∈ [0, 1] and ηNk′

hτ,(h+1)τ (s, a) ≤ ητ ≤ 1.

According to (121), for any integer u ∈ [hτ, t − (l − 1)Mτ), x̂k
u(s, a) is clipped to zero. Now, we prove the bounds in

Lemma E.1 respectively.
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Proof of (122a). For u ∈ [h0τ, hτ),

x̂k
u(s, a) =

η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)

ϕ(u)−1∏
h=h0(u,t)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)−1

(i)

≤ 3η

K

ϕ(u)−1∏
h=h0(u,t)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)−1

(ii)

≤ 3η

K
exp

(
2η

K

K∑
k′=1

Nk′

h0τ,(h−1)τ
(s, a)

)
(iii)

≤ 3η

K
exp (4ηµavg(s, a)Mτ)

(iv)

≤ 9η

K
,

where (i) holds since (1+η)x ≤ eηx and ηNk
ϕ(u)τ,u+1(s, a) ≤ ητ ≤ 1, (ii) holds due to (118) and the fact that ϕ(u) ≤ h−1,

(iii) follows from the condition of h in (132), and (iv) holds because 4ηµavg(s, a)Mτ ≤ 1.

Proof of (122b). By the definition of h, it follows that

ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a) =

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

xk
u(s, a).

Using the following relation for each h:

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

xk
u(s, a)

=
1

K

 K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

η(1− η)−Nk
ϕ(u)τ,u+1(s,a)

 h−1∏
h′=h0

(
1

K

K∑
k′=1

(1− η)N
k′
h′τ,(h′+1)τ

(s,a)

)−1

=

(
1

K

K∑
k=1

(1− η)−Nk
hτ,(h+1)τ (s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑
k′=1

(1− η)N
k′
h′τ,(h′+1)τ

(s,a)

)−1

≤
(

1

K

K∑
k=1

(1− η)−Nk
hτ,(h+1)τ (s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑
k=1

(1− η)−Nk
h′τ,(h′+1)τ

(s,a)

)
,

where the last inequality follows from Jensen’s inequality, and applying (134), we can complete the proof as follows:

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

xk
u(s, a) ≤

h−1∏
h′=h0

(
1

K

K∑
k=1

(1− η)−Nk
h′τ,(h′+1)τ

(s,a)

)
− 1

≤ exp

2η
∑K

k′=1 N
k′

h0τ,hτ
(s, a)

K

− 1

(i)

≤ exp (4ηµavg(s, a)Mτ + 2ητ)− 1

(ii)

≤ 16ηµavg(s, a)Mτ,

where (i) follows from (133), and (ii) holds because ex ≤ 1 + 2x for any x ∈ [0, 1] and 2ητ ≤ 4ηµavg(s, a)Mτ ≤ 1/2.
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Proof of (122c). Similarly,

ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(x̂k
u(s, a))

2 =

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(xk
u(s, a))

2.

Using the following relation for each h:∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(xk
u(s, a))

2

=
1

K2

 K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

η2(1− η)−2Nk
ϕ(u)τ,u+1(s,a)

 h−1∏
h′=h0

(
1

K

K∑
k′=1

(1− η)N
k′
h′τ,(h′+1)τ

(s,a)

)−2

≤ η

K

(
1

K

K∑
k=1

(1− η)−2Nk
hτ,(h+1)τ (s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑
k′=1

(1− η)N
k′
h′τ,(h′+1)τ

(s,a)

)−2

≤ η

K

(
1

K

K∑
k=1

(1− η)−2Nk
hτ,(h+1)τ (s,a) − 1

)
h−1∏

h′=h0

(
1

K

K∑
k=1

(1− η)−2Nk
h′τ,(h′+1)τ

(s,a)

)
,

where the last inequality follows from Jensen’s inequality, and applying (134) under the condition 2ητ ≤ 1, we can
complete the proof as follows:

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(xk
u(s, a))

2 ≤ η

K

h−1∏
h′=h0

(
1

K

K∑
k=1

(1− η)−2Nk
h′τ,(h′+1)τ

(s,a)

)
− 1

≤ η

K

exp

4η

∑K
k′=1 N

k′

h0τ,hτ
(s, a)

K

− 1


(i)

≤ η

K
(exp (8ηµavg(s, a)Mτ + 4ητ)− 1)

(ii)

≤ 64η2µavg(s, a)Mτ

K
,

where (i) follows from (133), and (ii) holds because ex ≤ 1 + 4x for any x ∈ [0, 2] and 4ητ ≤ 8ηµavg(s, a)Mτ ≤ 1.

E.2.2. PROOF OF LEMMA E.2

Recall that

χk
u,t(s, a) =

η

K
(1− η)−Nk

ϕ(u)τ,u+1(s,a)

(
(1− η)N

k
ϕ(u)τ,(ϕ(u)+1)τ (s,a)∑K

k′=1(1− η)
Nk′

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

− 1

)
ϕ(t)−1∏
h=ϕ(u)

(
1

K

K∑
k′=1

(1− η)N
k′
hτ,(h+1)τ (s,a)

)

=

(
(1− η)N

k
ϕ(u)τ,(ϕ(u)+1)τ (s,a)∑K

k′=1(1− η)
Nk′

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

− 1

)
ωk
u,t(s, a).

We can observe that χk
u,t(s, a) and ωk

u,t(s, a) are solely determined by the number of visits of agents during lo-
cal steps, i.e., (Nk

hτ,(h+1)τ (s, a))k∈[K],h∈[ϕ(t)−LM,ϕ(t)−1]. It thus suffice to consider {χk
u,t(s, a;N)}0≤u<t,k∈[K] and

{ωk
u,t(s, a;N)}0≤u<t,k∈[K] constructed with each of the possible combinations of number of visits for all k ∈ [K] and

h ∈ [ϕ(t) − LM,ϕ(t) − 1] , i.e., N ∈ [0, τ ]KLM . Then, setting X = 72
√

Chetη
K(1−γ)2 log

4|S||A|T 2

δ , by taking an union
bound,

P

[∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

χk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X

]
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=
∑

N∈[0,τ ]KLM

P

[∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

χk
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X,χk
u,t(s, a) = χk

u,t(s, a;N)

]

≤
∑

N∈[0,τ ]KLM

P

[∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X

]
,

and it suffices to show that

P

[∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣ ≥ X

]
≤ δ

|S||A|T (1 + τ)KLM
.

Since χk
u,t(s, a;N) is a constant, which does not depend on P k

u+1(s, a),

E[χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u |Yu] = 0, (135)

where Yu denotes the history of visited state-action pairs and updated values of all agents until u, i.e., Yu =
{(skv , akv), V k

v }k∈[K],v≤u, and thus, we can apply Freedman’s inequality to bound the sum.

Before applying Freedman’s inequality, we need to calculate the following quantities. First,

Bt(s, a) := max
k∈[K],t−LMτ≤u<t

|χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u |

≤ max
k∈[K],t−LMτ≤u<t

∣∣∣∣∣∣1−
1
K

∑K
k′=1(1− η)N

k′
ϕ(u)τ,(ϕ(u)+1)τ (s,a)

(1− η)
Nk

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

∣∣∣∣∣∣ωk
u,t(s, a;N)∥P (s, a)− P k

u+1(s, a)∥1∥V k
u ∥∞

(i)

≤ 2

1− γ
max

k∈[K],t−LMτ≤u<t

∣∣∣∣∣∣1−
1
K

∑K
k′=1(1− η)N

k′
ϕ(u)τ,(ϕ(u)+1)τ (s,a)

(1− η)
Nk

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

∣∣∣∣∣∣ωk
u,t(s, a;N)

(ii)

≤ 8ηµmax(s, a)τ

1− γ
max

k∈[K],t−LMτ≤u<t
ωk
u,t(s, a;N)

(iii)

≤ 8η2µmax(s, a)τ

(1− γ)K
,

where (i) holds because ∥P (s, a)∥1, ∥P k
u (s, a)∥1 ≤ 1, ∥V k

u−1∥∞ ≤ 1
1−γ (cf. (31)), (ii) follows from the fact that (which

will be shown at the end of the proof)∣∣∣∣∣∣1−
1
K

∑K
k′=1(1− η)N

k′
ϕ(u)τ,(ϕ(u)+1)τ (s,a)

(1− η)
Nk

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

∣∣∣∣∣∣ ≤ 4ηµmax(s, a)τ, (136)

with µmax(s, a) := maxk µ
k
b(s, a), and (iii) holds due to the fact that ωk

u,t(s, a;N) ≤ η
K .

Next, we can bound the variance as

Wt(s, a) :=

t−1∑
u=max{0,t−LMτ}

K∑
k=1

E
[(

χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

)2
|Yu

]
(i)

≤ (4ηµmax(s, a)τ)
2

ϕ(t)−1∑
h=max{0,ϕ(t)−LM}

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(
ωk
u,t(s, a;N)

)2
VarP (s,a)(V

k
u )

(ii)

≤ 2(4ηµmax(s, a)τ)
2

(1− γ)2

ϕ(t)−1∑
h=max{0,ϕ(t)−LM}

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(
ωk
u,t(s, a;N)

)2
(iii)

≤ 2(4ηµmax(s, a)τ)
2

(1− γ)2
6η

K
=: σ2,

41



The Blessing of Heterogeneity in Federated Q-Learning

where (i) follows from (136), (ii) holds due to the fact that ∥VarP (V )∥∞ ≤ ∥P∥1(∥V ∥∞)2 + (∥P∥1∥V ∥∞)2 ≤ 2
(1−γ)2

because ∥V ∥∞ ≤ 1
1−γ (cf. (31)) and ∥P∥1 ≤ 1, (iii) follows from (53d) in Lemma C.3.

Now, by substituting the above bounds of Wt and Bt into Freedman’s inequality (see Theorem B.1) and setting m = 1, it
follows that for any s ∈ S, a ∈ A, t ∈ [T ] and N = (Nk

hτ,(h+1)τ (s, a))k∈[K],h∈[ϕ(t)−LM,ϕ(t)−1] ∈ [0, τ ]KLM ,∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

χk
u,t(s, a;N)(P (s, a)− P k

u+1(s, a))V
k
u

∣∣∣∣∣
≤
√
8max {Wt(s, a),

σ2

2m
} log 4m|S||A|T (1 + τ)KLM

δ
+

4

3
Bt(s, a) log

4m|S||A|T (1 + τ)KLM

δ

≤
√

96
(4ηµmax(s, a)τ)2η

K(1− γ)2
log

4|S||A|T (1 + τ)KLM

δ
+

12η2µmax(s, a)τ

K(1− γ)
log

4|S||A|T (1 + τ)KLM

δ

≤
√

384
(4ητK)(µmax(s, a)2ηMτ)Lη

K(1− γ)2
log

4|S||A|T (1 + τ)

δ
+

12Lη(µmax(s, a)ηMτ)

(1− γ)
log

4|S||A|T (1 + τ)

δ

(i)

≤
√

48
ChetLη

K(1− γ)2
log

4|S||A|T (1 + τ)

δ
+

2ChetLη

(1− γ)
log

4|S||A|T (1 + τ)

δ

(ii)

≤ 72

√
Chetη

K(1− γ)2
log (TK) log

4|S||A|T 2

δ
(137)

with at least probability 1 − δ
|S||A|T (1+τ)KLM , where we invoke the definition of Chet (cf. (20)). Here, (i) holds

because ητK ≤ 1/4 and µmax(s, a)ηMτ ≤ Chetµavg(s, a)ηMτ ≤ Chet

8 , and (ii) follows from assumptions that
η ≤ 1

64KChet log (TK) log
4|S||A|T2

δ

≤ 1

KChetL log
4|S||A|T2

δ

and L ≤ 64 log (TK).

Proof of (136). Using the fact that for 0 < η < 1,

(1− η)−n ≤ eηn ≤ 1 + 2ηn if n ≥ 0 and ηn ≤ 1, and (1− η)n ≥ 1− ηn if n ≤ 0 or n ≥ 1,

we can obtain the bounds as follows:

1− η

K

K∑
k′=1

Nk′

ϕ(u)τ,(ϕ(u)+1)τ (s, a) ≤
1

K

K∑
k′=1

(1− η)N
k′
ϕ(u)τ,(ϕ(u)+1)τ (s,a) ≤

1
K

∑K
k′=1(1− η)N

k′
ϕ(u)τ,(ϕ(u)+1)τ (s,a)

(1− η)
Nk

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

≤ (1− η)−Nk
ϕ(u)τ,(ϕ(u)+1)τ (s,a)

≤ 1 + 2ηNk
ϕ(u)τ,(ϕ(u)+1)τ (s, a).

Thus, under Bτ , and recalling µmax(s, a) := maxk µ
k
b(s, a),∣∣∣∣∣∣1−

1
K

∑K
k′=1(1− η)N

k′
ϕ(u)τ,(ϕ(u)+1)τ (s,a)

(1− η)
Nk

ϕ(u)τ,(ϕ(u)+1)τ
(s,a)

∣∣∣∣∣∣ ≤ 2ηmax
{
Nk

ϕ(u)τ,(ϕ(u)+1)τ (s, a),
1

K

K∑
k′=1

Nk′

ϕ(u)τ,(ϕ(u)+1)τ (s, a)
}

≤ 4ηµmax(s, a)τ.

E.3. Proof of Lemma C.5

For any t ≥ βτ , the error term can be decomposed as follows:

E3
t (s, a) = γ

K∑
k=1

∑
u∈Uk

0,t(s,a)

ωk
u,t(s, a)P (s, a)(V ⋆ − V k

u )
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= γ

K∑
k=1

∑
u∈Uk

0,(ϕ(t)−β)τ
(s,a)

ωk
u,t(s, a)P (s, a)(V ⋆ − V k

u )

︸ ︷︷ ︸
=:E3a

t (s,a)

+ γ

K∑
k=1

∑
u∈Uk

(ϕ(t)−β)τ,t
(s,a)

ωk
u,t(s, a)P (s, a)(V ⋆ − V k

u )

︸ ︷︷ ︸
=:E3b

t (s,a)

. (138)

We shall these two terms separately.

• Bounding E3a
t (s, a). First, the bound on E3a

t (s, a) is derived as follows:

|E3a
t (s, a)| ≤ γ

K∑
k=1

∑
u∈Uk

0,(ϕ(t)−β)τ
(s,a)

ωk
u,t(s, a)∥P (s, a)∥1∥(V ⋆ − V k

u )∥∞

(i)

≤ 2γ

1− γ

K∑
k=1

∑
u∈Uk

0,(ϕ(t)−β)τ
(s,a)

ωk
u,t(s, a)

(ii)

≤ 2γ

1− γ
(1− η)

∑ϕ(t)−1

h=ϕ(t)−β
mink∈[K] N

k
h,(h+1)τ (s,a)

(iii)

≤ 2γ

1− γ
(1− η)

µminβτ

2 , (139)

where (i) holds because ∥V k
u ∥∞, ∥V ⋆∥∞ ≤ 1

1−γ (cf. (31)) and ∥P (s, a)∥1 ≤ 1, (ii) holds due to (53c) in Lemma C.3,
and (iii) follows from the fact that Nk

hτ,(h+1)τ (s, a) ≥ τµmin

2 according to Lemma B.2 as long as τ ≥ τth.

• Bounding E3b
t (s, a). Next, we bound E3b

t (s, a) as follows:

|E3b
t (s, a)| ≤ γ

K∑
k=1

∑
u∈Uk

(ϕ(t)−β)τ,t
(s,a)

ωk
u,t(s, a)

∥∥V ⋆ − V k
u

∥∥
∞

(i)

≤ γ

K∑
k=1

ϕ(t)−1∑
h=ϕ(t)−β

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ωk
u,t(s, a)(∥∆hτ∥∞ + ∥Qk

u −Qk
hτ∥∞)

(ii)

≤ γ

K∑
k=1

ϕ(t)−1∑
h=ϕ(t)−β

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ωk
u,t(s, a)((1 + 2ητ)∥∆hτ∥∞ + σlocal) (140)

where (i) follows from the following bound, which will be shown in Appendix E.3.1,

∥V ⋆ − V k
u ∥∞ ≤ ∥∆k

ι(u)∥∞ + ∥Qk
u −Qk

ι(u)∥∞, (141)

and (ii) holds due to the following lemma.

Lemma E.3. Assume ητ ≤ 1
2 . For any given δ ∈ (0, 1), the following holds for any k ∈ [K] and 0 ≤ u < T :

∥Qk
u −Qk

ι(u)∥∞ ≤ 2ητ∥∆k
ι(u)∥∞ +

8γη
√
τ − 1

1− γ

√
log

2|S||A|TK
δ

(142)

with probability at least 1− δ.
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Here, for notation simplicity, we denote σlocal :=
8γη

√
τ−1

1−γ

√
log 2|S||A|TK

δ .

Then, with some algebraic calculations, we can obtain the bound on E3b
t (s, a) as follows:

|E3b
t (s, a)|

(i)

≤ σlocal + γ

ϕ(t)−1∑
h=ϕ(t)−β

(1 + 2ητ)∥∆hτ∥∞
K∑

k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ωk
u,t(s, a)

(ii)

≤ σlocal +
1 + γ

2
max

ϕ(t)−β≤h<ϕ(t)
∥∆hτ∥∞

K∑
k=1

ϕ(t)−1∑
h=ϕ(t)−β

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ωk
u,t(s, a)

(iii)

≤ σlocal +
1 + γ

2
max

ϕ(t)−β≤h<ϕ(t)
∥∆hτ∥∞, (143)

where (i) holds according to (53b) of Lemma C.3, (ii) holds when η is small enough that η ≤ 1−γ
4γτ , and (iii) follows

from (53b) of Lemma C.3.

Now we have the bounds of E3a
t (s, a) and E3b

t (s, a) separately obtained above. By combining the bounds in (138), we
can claim the advertised bound, which completes the proof.

E.3.1. PROOF OF (141)

We prove the claim by showing

∆k
ι(u)(s, a

k
ι(u)(s))− dkι(u),u(s, a

⋆(s)) ≤ V ⋆(s)− V k
u (s) ≤ ∆k

ι(u)(s, a
⋆(s))− dkι(u),u(s, a

⋆(s)) (144)

for any s ∈ S. The upper bound is derived as follows:

V ⋆(s)− V k
u (s) = Q⋆(s, a⋆(s))−Qk

u(s, a
k
u(s))

≤ Q⋆(s, a⋆(s))−Qk
u(s, a

⋆(s))

= Q⋆(s, a⋆(s))−Qk
ι(u)(s, a

⋆(s))− (Qk
u(s, a

⋆(s))−Qk
ι(u)(s, a

⋆(s)))︸ ︷︷ ︸
dk
ι(u),u

(s,a⋆(s))

(145)

using the fact that Qk
u(s, a

k
u(s)) ≥ Qk

u(s, a
⋆(s)). Similarly, the lower bound is obtained as follows:

V ⋆(s)− V k
u (s) = Q⋆(s, a⋆(s))−Qk

u(s, a
k
u(s))

= Q⋆(s, a⋆(s))−Qk
ι(u)(s, a

k
ι(u)(s)) +Qk

ι(u)(s, a
k
ι(u)(s))−Qk

u(s, a
k
u(s))

= Q⋆(s, a⋆(s))−Qk
ι(u)(s, a

k
ι(u)(s)) +Qk

ι(u)(s, a
k
ι(u)(s))−Qk

ι(u)(s, a
k
u(s))− dkι(u),u(s, a

k
u(s))

≥ Q⋆(s, akι(u)(s))−Qk
ι(u)(s, a

k
ι(u)(s)) +Qk

ι(u)(s, a
k
ι(u)(s))−Qk

ι(u)(s, a
k
u(s))− dkι(u),u(s, a

k
u(s))

≥ Q⋆(s, akι(u)(s))−Qk
ι(u)(s, a

k
ι(u)(s))− dkι(u),u(s, a

k
u(s)) (146)

using the fact that Q⋆(s, akι(u)(s)) ≤ Q⋆(s, a⋆(s)) and Qk
ι(u)(s, a

k
ι(u)(s)) ≥ Qk

ι(u)(s, a
k
u(s)).

E.3.2. PROOF OF LEMMA E.3

For any 0 ≤ u < T , k ∈ [K], and (s, a) ∈ S ×A, we can write the bound as

|Qk
u(s, a)−Qk

ι(u)(s, a)| ≤ 2η
∑

v∈Uk
ι(u),u

(s,a)

∥∆k
v∥∞

︸ ︷︷ ︸
:=B1

+

∣∣∣∣∣∣∣γη
∑

v∈Uk
ι(u),u

(s,a)

(P k
v+1(s, a)− P (s, a))V ⋆

∣∣∣∣∣∣∣︸ ︷︷ ︸
:=B2

. (147)

The inequality holds by the local update rule:

Qk
v+1(s, a)−Qk

v(s, a) = (1− η)Qk
v(s, a) + η(r(s, a) + γP k

v+1(s, a)V
k
v )−Qk

v(s, a)
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= η(r(s, a) + γP k
v+1(s, a)V

k
v −Qk

v(s, a))

= η(γP k
v+1(s, a)V

k
v − γP (s, a)V ⋆ +Q⋆(s, a)−Qk

v(s, a))

= γηP k
v+1(s, a)(V

k
v − V ⋆) + γη(P k

v+1(s, a)− P (s, a))V ⋆ + η∆k
v(s, a), (148)

and

|Qk
u(s, a)−Qk

ι(u)(s, a)| ≤
∑

v∈Uk
ι(u),u

(s,a)

|Qk
v+1(s, a)−Qk

v(s, a)|

≤
∑

v∈Uk
ι(u),u

(s,a)

(
η|∆k

v(s, a)|+ γη|P k
v+1(s, a)(V

k
v − V ⋆)|

)

+

∣∣∣∣∣∣∣γη
∑

v∈Uk
ι(u),u

(s,a)

(P k
v+1(s, a)− P (s, a))V ⋆

∣∣∣∣∣∣∣
≤

∑
v∈Uk

ι(u),u
(s,a)

2η∥∆k
v∥∞ +

∣∣∣∣∣∣∣γη
∑

v∈Uk
ι(u),u

(s,a)

(P k
v+1(s, a)− P (s, a))V ⋆

∣∣∣∣∣∣∣ , (149)

where the last inequality holds since ∥P k
v+1(s, a)∥1 ≤ 1 and ∥V k

v − V ⋆∥∞ ≤ ∥Qk
v −Q⋆∥∞ (cf. (32)).

Now, we shall bound each term separately.

• Bounding B1. The local error ∥∆k
v∥∞ is bounded as follows.

Lemma E.4. Assume ητ ≤ 1
2 . For any given δ ∈ (0, 1), the following holds for any k ∈ [K] and 0 ≤ u < T :

∥∆k
u∥∞ ≤ ∥∆k

ι(u)∥∞ +
2γ

1− γ

√
η log

|S||A|TK
δ

(150)

with probability at least 1− δ.

Then, combining the fact that the number of local updates before the periodic averaging is at most τ − 1, we can
conclude that

2η
∑

v∈Uk
ι(u),u

(s,a)

∥∆k
v∥∞ ≤ 2η|Uk

ι(u),u(s, a)| max
v∈Uk

ι(u),u
(s,a)

∥∆k
v∥∞

≤ 2η(τ − 1)

(
∥∆k

ι(u)∥∞ +
2

1− γ

√
η log

|S||A|TK
δ

)
. (151)

• Bounding B2. Exploiting the independence of the transitions and applying the Hoeffding inequality and using the
fact that |Uk

ι(u),u(s, a)| ≤ τ − 1, B2 is bounded as follows:

B2 ≤ γη

√√√√ ∑
v∈Uk

ι(u),u
(s,a)

|(P k
v+1(s, a)− P (s, a))V ⋆| log |S||A|TK

δ

≤ 2γη

1− γ

√
(τ − 1) log

|S||A|TK
δ

(152)

for any k ∈ [K], (s, a) ∈ S × A, and 0 ≤ u < T with probability at least 1 − δ, where the last inequality follows
from ∥V ⋆∥∞ ≤ 1

1−γ , ∥P k
v+1(s, a)∥1, and ∥P (s, a)∥1 ≤ 1.

By substituting the bound on B1 and B2 into (147) and using the condition that ητ < 1, we can claim the stated bound
holds and this completes the proof.
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E.3.3. PROOF OF LEMMA E.4

For each state-action (s, a) ∈ S ×A and agent k, by invoking the recursive relation (49) derived from the local Q-learning
update in (22), ∆k

u is decomposed as follows:

∆k
u(s, a) = (1− η)N

k
ι(u),u(s,a)∆k

ι(u)(s, a)︸ ︷︷ ︸
=:D1

+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)(P (s, a)− P k

v+1(s, a))V
⋆

︸ ︷︷ ︸
=:D2

+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)P k

v+1(s, a)(V
⋆ − V k

v )

︸ ︷︷ ︸
=:D3

. (153)

Now, we obtain the bound on the three decomposed terms separately.

• Bounding D1. The term D1 can be bounded by

|D1| ≤ (1− η)N
k
ι(u),u(s,a)∥∆k

ι(u)∥∞. (154)

• Bounding D2. By applying the Hoeffding bound using the independence of transitions, the second term is bounded
as follows:

|D2| ≤ γ

√√√√ ∑
v∈Uk

ι(u),u
(s,a)

(η(1− η)N
k
v+1,u(s,a))2(∥V ⋆∥∞)2 log

|S||A|TK
δ

≤ γ

1− γ

√
η log

|S||A|TK
δ

:= ρ (155)

with probability at least 1− δ, where the last inequality holds due to the fact that ∥V ⋆∥∞ ≤ 1
1−γ and∑

v∈Uk
ι(u),u

(s,a)

(η(1− η)N
k
v+1,u(s,a))2 ≤ η2(1 + (1− η)2 + (1− η)4 + · · · ) ≤ η.

See (Li et al., 2021b)[Lemma 1] for the detailed explanation of the bound.

• Bounding D3. Lastly, we bound the third term as follows:

|D3| ≤ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)∥P k

v+1(s, a)∥1∥V ⋆ − V k
v ∥∞

≤ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)∥∆k

v∥∞, (156)

where the last inequality follows from the fact that ∥P k
v+1(s, a)∥1 = 1 and

Qk
v(s, a

⋆(s))−Q⋆(s, a⋆(s)) ≤ V k
v (s)− V ⋆(s) ≤ Qk

v(s, a
k
v(s))−Q⋆(s, akv(s))

for any s ∈ S, where we denote a⋆(s) = argmaxa Q
⋆(s, a), akv(s) = argmaxa Q

k
v(s, a).

By combining the bounds of the above three terms, we obtain the following recursive relation:

|∆k
u(s, a)| ≤ (1− η)N

k
ι(u),u(s,a)∥∆k

ι(u)∥∞ + ρ+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)∥∆k

v∥∞. (157)
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Using the recursive relation, we will prove that the following claim holds for any 0 ≤ m < τ by induction:

∥∆k
ι(u)+m∥∞ ≤ ∥∆k

ι(u)∥∞ + 2ρ, (158)

which completes the proof of Lemma E.4. First, if m = 0, the claim is obviously true. Suppose the claim holds for
ι(u), ι(u) + 1, · · · , ι(u) +m− 1. Then, for u = ι(u) +m, by invoking the recursive relation (157), we can show that the
claim (158) holds for m as follows:

|∆k
ι(u)+m(s, a)|

≤ (1− η)N
k
ι(u),u(s,a)∥∆k

ι(u)∥∞ + ρ+ γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a)(∥∆k

ι(u)∥∞ + 2ρ)

= ((1− η)N
k
ι(u),u(s,a) + γ

∑
v∈Uk

ι(u),u
(s,a)

η(1− η)N
k
v+1,u(s,a))∥∆k

ι(u)∥∞ + (1 + 2γ
∑

v∈Uk
ι(u),u

(s,a)

η(1− η)N
k
v+1,u(s,a))ρ

= ((1− η)N
k
ι(u),u(s,a) + γ(1− (1− η)N

k
ι(u),u(s,a))∥∆k

ι(u)∥∞ + (1 + 2γ(1− (1− η)N
k
ι(u),u(s,a)))ρ

≤ ∥∆k
ι(u)∥∞ + 2ρ, (159)

where the last inequality holds since

(1− η)N
k
ι(u),u(s,a) ≥ (1− η)τ ≥ (

1

4
)ητ ≥ 1

2

provided that ητ ≤ 1
2 .

E.4. Proof of Lemma C.6

First, using the fact that
1 ≤ (1− η)−Nk

t−τ,t(s,a) ≤ eητ ≤ 3

given that ητ ≤ 1, by the definition of αk
t (cf. (26)), we derive (68a) as follows:

1

3K
≤ 1

Kmaxk′∈[K](1− η)−Nk′
t−τ,t(s,a)

≤ αk
t (s, a) =

(1− η)−Nk
t−τ,t(s,a)∑K

k′=1(1− η)−Nk′
t−τ,t(s,a)

≤ (1− η)−Nk
t−τ,t(s,a)

K
≤ 3

K
.

Moving onto (68b), it follows that

ω̃0,t(s, a) =

ϕ(t)−1∏
h=0

λ̃hτ,(h+1)τ (s, a)

=

ϕ(t)−1∏
h=0

K∑
k=1

αk
(h+1)τ (s, a)(1− η)N

k
hτ,(h+1)τ (s,a)

(i)
=

ϕ(t)−1∏
h=0

K∑K
k=1(1− η)

−Nk
hτ,(h+1)τ

(s,a)

(ii)

≤
ϕ(t)−1∏
h=0

1

(1− η)
− 1

K

∑K
k=1 Nk

hτ,(h+1)τ
(s,a)

= (1− η)
∑ϕ(t)−1

h=0
1
K

∑K
k=1 Nk

hτ,(h+1)τ (s,a) = (1− η)
1
K

∑K
k=1 Nk

0,t(s,a),

where (i) follows from the definition of αk
t (cf. (26)), (ii) follows from Jensen’s inequality.

Next, we obtain (68c) through the following derivation:

K∑
k=1

∑
u∈Uk

0,t(s,a)

ω̃k
u,t(s, a) =

K∑
k=1

ϕ(t)−1∑
h=0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ω̃k
u,t(s, a)
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=

K∑
k=1

ϕ(t)−1∑
h=0

αk
(h+1)τ (s, a)

∑
u∈Uk

hτ,(h+1)τ
(s,a)

η(1− η)N
k
u+1,(h+1)τ (s,a)

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)


(i)
=

K∑
k=1

ϕ(t)−1∑
h=0

αk
(h+1)τ (s, a)

(
1− (1− η)N

k
hτ,(h+1)τ (s,a)

)ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)


(ii)
=

ϕ(t)−1∑
h=0

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)

 K∑
k=1

αk
(h+1)τ (s, a)

(
1− (1− η)N

k
hτ,(h+1)τ (s,a)

)
(iii)
=

ϕ(t)−1∑
h=0

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)

(1− K∑
k=1

αk
(h+1)τ (s, a)(1− η)N

k
hτ,(h+1)τ (s,a)

)

=

ϕ(t)−1∑
h=0

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)

(1− λ̃hτ,(h+1)τ (s, a)
)

(iv)
= 1− λ̃0,τ (s, a)λ̃τ,2τ (s, a) · · · λ̃(ϕ(t)−1)τ,t(s, a) = 1− ω̃0,t(s, a), (160)

where (i) follows from (110), (ii) follows by reordering the summation, (iii) follows by
∑K

k=1 α
k
t (s, a) = 1, and (iv) holds

by cancellation.

In a similar manner, (68d) is derived as follows:

K∑
k=1

∑
u∈Uk

0,h′τ (s,a)

ω̃k
u,t(s, a) =

K∑
k=1

h′−1∑
h=0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ω̃k
u,t(s, a)

=

h′−1∑
h=0

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)

(1− λ̃hτ,(h+1)τ (s, a)
)

≤
ϕ(t)−1∏
l=h′

λ̃lτ,(l+1)τ (s, a)

≤ (1− η)
1
K

∑k
k=1 Nk

h′τ,t(s,a),

where the last inequality follows from

ϕ(t)−1∏
l=h′

λ̃lτ,(l+1)τ (s, a) =

ϕ(t)−1∏
h=h′

K∑K
k=1(1− η)

−Nk
hτ,(h+1)τ

(s,a)
≤

ϕ(t)−1∏
h=h′

1

(1− η)
− 1

K

∑K
k=1 Nk

hτ,(h+1)τ
(s,a)

due to Jensen’s inequality.

Finally, with basic algebraic calculations, (68e) is derived as follows:

K∑
k=1

∑
u∈Uk

0,t(s,a)

(ω̃k
u,t(s, a))

2 =

K∑
k=1

ϕ(t)−1∑
h=0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(ω̃k
u,t(s, a))

2

=

K∑
k=1

ϕ(t)−1∑
h=0

(αk
(h+1)τ (s, a))

2

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)

2 ∑
u∈Uk

hτ,(h+1)τ
(s,a)

(
η(1− η)N

k
u+1,(h+1)τ (s,a)

)2
(i)

≤ 2

K∑
k=1

ϕ(t)−1∑
h=0

(αk
(h+1)τ (s, a))

2

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)

2

η
(
1− (1− η)N

k
hτ,(h+1)τ (s,a)

)
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(ii)

≤ 6η

K

ϕ(t)−1∑
h=0

ϕ(t)−1∏
l=h+1

λ̃lτ,(l+1)τ (s, a)

2
K∑

k=1

αk
(h+1)τ (s, a)

(
1− (1− η)N

k
hτ,(h+1)τ (s,a)

)
(iii)

≤ 6η

K
,

where (i) holds due to (112), (ii) follows from (68a), and (iii) follows from the same reasoning of (160).

E.5. Proof of Lemma C.7

To describe the joint probabilistic transitions of K agents formally, we first introduce the following Markov chain Xt =
(X1

t , . . . , X
K
t ), t = 0, 1, . . ., where Xk

t ∈ S × A is the state-action pair visited by agent k at time t. The joint transition
kernel P of K agents is given by

P :=


P 1

P 2

. . .
PK

 , (161)

where P k is the transition kernel of agent k, k = 1, . . . ,K. Since the agents are independent, the stationary distribution of
the joint Markov chain is µ, given by

µ(x) :=

K∏
k=1

µk
b(x

k), ∀x = (x1, x2, · · · , xK) ∈ (S ×A)K , (162)

where µk
b denotes the stationary distribution of agent k, which are induced by its behavior policy πk

b . Next, we define the
mixing time of the joint Markov chain as follows:

tmix(ϵ) := min

{
t

∣∣∣∣ sup
x0∈(S×A)K

dTV(Pt(·|x0), µ) ≤ ϵ

}
and tmix := tmix

(
1

4

)
, (163)

where

Pt(·|x0) =

K∏
k=1

P k
t (·|xk

0) (164)

denotes the distribution of the joint state-action pairs of all agents after t transitions starting from x0 = (x1
0, . . . , x

K
0 ). The

mixing time of the joint Markov chain can be connected to those of the individual chains via the following relation

tmix(ϵ) ≤ max
k

tkmix(ϵ/K), tmix ≤ 4 log 8K max
k∈[K]

tkmix, (165)

which will be proven at the end of the proof.

We now turn to the proof of Lemma C.7. Define the event

Bu,v(s, a) :=

{∣∣∣∣∣
K∑

k=1

Nk
u,v(s, a)− (v − u)

K∑
k=1

µk
b(s, a)

∣∣∣∣∣ ≥ 1

2
(v − u)

K∑
k=1

µk
b(s, a)

}
. (166)

We first establish that

max
x0∈(S×A)K

P
{
Bu,v(s, a)

∣∣{(sk0 , ak0)}Kk=1 = x0

}
≤ δ

|S||A|T 2
(167)

for any (s, a) ∈ S × A and 1 ≤ u < v ≤ T provided that u ≥ tth(s, a)/2 and v − u ≥ tth(s, a)/2. To this end, we
decompose the probability into two terms as follows:

P
{
Bu,v(s, a)

∣∣{(sk0 , ak0)}Kk=1 = x0

}
= P

{
Bu,v(s, a)

∣∣{(sk0 , ak0)}Kk=1 ∼ µ

}
︸ ︷︷ ︸

=:G1
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+ P
{
Bu,v(s, a)

∣∣{(sk0 , ak0)}Kk=1 = x0

}
− P

{
Bu,v(s, a)

∣∣{(sk0 , ak0)}Kk=1 ∼ µ

}
︸ ︷︷ ︸

=:G2

,

and show each of the terms is bounded by δ
2|S||A|T 2 for any x0 ∈ (S×A)K . We shall derive the bounds of these two terms

separately.

Step 1: bounding G1. This is for the case that the distribution of the initial state follows the joint stationary distribution.
Since the total number of visits can be written as

K∑
k=1

Nk
u,v(s, a) =

K∑
k=1

v∑
i=u+1

Zk
i (s, a) =

v∑
i=u+1

Z̄i(s, a),

where

Zk
i (s, a) =

{
1, if (s, a) ∈ (ski−1, a

k
i−1)

0, otherwise
and Z̄i(s, a) =

K∑
k=1

Zk
i (s, a),

and

νu,v(s, a) := E(sk0 ,a
k
0 )∼µk∀k∈[K]

[
v∑

i=u+1

Z̄i(s, a)

]
= (v − u)

K∑
k=1

µk
b(s, a),

we can invoke Bernstein’s inequality for Markov chains (Paulin, 2015, Theorem 3.11) and obtain

G1 = P{(sk0 ,ak
0 )}K

k=1∼µ

[∣∣∣∣∣
v∑

i=u+1

Z̄i(s, a)− νu,v(s, a)

∣∣∣∣∣ ≥ 1

2
νu,v(s, a)

]

≤ 2 exp

(
− (νu,v(s, a)/2)

2γps

8((v − u) + 1/γps)Vf + 20C(νu,v(s, a)/2)

)
. (168)

Here, γps is the pseudo spectral gap satisfying

γps ≥
1

2tmix
(169a)

for uniformly ergodic Markov chains according to Paulin (2015, Proposition 3.4). The parameters C and Vf are defined
and bounded as follows

C := max
u<i≤v

∣∣Z̄i(s, a)− E[Z̄i(s, a)]
∣∣ ≤ K, (169b)

Vf := Var(Z̄i(s, a)) =

K∑
k=1

(1− µk
b(s, a))µ

k
b(s, a) ≤

K∑
k=1

µk
b(s, a). (169c)

Plugging (169) into (168), we have

G1 ≤ 2 exp

(
− (νu,v(s, a))

2

8tmix(24(v − u)(
∑K

k=1 µ
k
b(s, a)) + 10Kνu,v(s, a))

)

≤ 2 exp

(
− (v − u)(

∑K
k=1 µ

k
b(s, a))

8tmix(24 + 10K)

)
≤ δ

2|S||A|T 2
, (170)

where the last inequality holds since (v − u) is large enough to satisfy the following condition:

v − u ≥ tth(s, a)

2
≥ 1088(maxk∈[K] t

k
mix) log 8K log 4|S||A|T 2

δ

1
K

∑K
k=1 µ

k
b(s, a)

≥ 272tmix log
4|S||A|T 2

δ
1
K

∑K
k=1 µ

k
b(s, a)

.
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Step 2: bounding G2. By the same argument of Li et al. (2021b, Section A.1), using the fact that the difference caused
by the initial state becomes very small after sufficiently long time, we have

G2 := P
{
Bu,v(s, a)

∣∣{(sk0 , ak0)}Kk=1 = x0

}
− P

{
Bu,v(s, a)

∣∣{(sk0 , ak0)}Kk=1 ∼ µ

}
≤ dTV(Pu(·|x0), µ) ≤

δ

2|S||A|T 2
, (171)

where the last inequality holds due to

u ≥ tth(s, a)

2
≥ 4 log

4|S||A|T 2K

δ
max
k∈[K]

tkmix ≥ max
k∈[K]

tkmix

(
δ

2|S||A|T 2K

)
≥ tmix

(
δ

2|S||A|T 2

)
. (172)

Here, the second inequality follows from the fact that tkmix(ϵ) ≤ 2tkmix log2
2
ϵ (Paulin, 2015), and the last inequality follows

from (165).

Step 3: summing things up. By combining the above bound, we complete the proof of (167), provided that u ≥
tth(s, a)/2 and v − u ≥ tth(s, a). Then, we can obtain the following bound for any (s, a) ∈ S ×A and 0 ≤ u < v ≤ T :

P

{
1

4
(v − u)

K∑
k=1

µk
b(s, a) ≤

K∑
k=1

Nk
u,v(s, a) ≤ 2(v − u)

K∑
k=1

µk
b(s, a)

}

≤ P

{∣∣∣∣∣
K∑

k=1

Nk

u+
tth(s,a)

2 ,v
(s, a)−

(
v − u− tth(s, a)

2

) K∑
k=1

µk
b(s, a)

∣∣∣∣∣ ≥ 1

2

(
v − u− tth(s, a)

2

) K∑
k=1

µk
b(s, a)

}

= max
x0∈(S×A)K

P
{
B
u+

tth(s,a)

2 ,v
(s, a)

∣∣∣∣{(sk0 , ak0)}Kk=1 = x0

}
≤ δ

|S||A|T 2
. (173)

Proof of (165). Notice that by the definition of dTV and (164), we have

dTV(Pt(·|x0), µ) ≤
K∑

k=1

dTV(P
k
t (·|xk

0), µ
k
b)

for any x0 ∈ (S ×A)K . Hence, setting t = maxk∈[K] t
k
mix

(
ϵ
K

)
, we have

max
x0∈(S×A)K

dTV(Pt(·|x0), µ) ≤
K∑

k=1

ϵ

K
= ϵ,

which immediately implies

tmix(ϵ) ≤ max
k

tkmix(ϵ/K).

The proof is complete by using the fact that tmix(ϵ) ≤ 2tmix log2
2
ϵ (Paulin, 2015), which leads to

tmix ≤ max
k∈[K]

tkmix

(
1

4K

)
≤ 4 log 8K max

k∈[K]
tkmix.

E.6. Proof of Lemma C.8

The proof follows similar arguments as Appendix E.2. Without loss of generality, we prove the claim for some fixed
1 ≤ t ≤ T and (s, a) ∈ S ×A. For notation simplicity, let

ỹku,t(s, a) =

{
ω̃k
u,t(s, a)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a)

0 otherwise
, (174)
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where

ω̃k
u,t(s, a) =

η(1− η)−Nk
ϕ(u)τ,u+1(s,a)

K

ϕ(t)−1∏
h=ϕ(u)

K∑K
k′=1(1− η)

−Nk′
hτ,(h+1)τ

(s,a)
, (175)

then E2
t (s, a) = γ

∑K
k=1

∑t−1
u=0 ỹ

k
u,t(s, a). However, due to the dependency between P k

u+1(s, a) and ω̃k
u,t(s, a) arising

from the Markovian sampling, it is difficult to track the sum of ỹ := {ỹku,t(s, a)} directly. To address this issue, we
will first analyze the sum using a collection of approximate random variables ŷ = {ŷku,t(s, a)} drawn from a carefully
constructed set Ŷ , which is closely coupled with the target {ỹku,t(s, a)}0≤u<t, i.e.,

D(ỹ, ŷ) :=

∣∣∣∣∣
K∑

k=1

t−1∑
u=0

(
ỹku,t(s, a)− ŷku,t(s, a)

)∣∣∣∣∣ (176)

is sufficiently small. In addition, ŷ shall exhibit some useful statistical independence and thus easier to control its sum; we
shall control this over the entire set Ŷ . Finally, leveraging the proximity above, we can obtain the desired bound on ỹ via
triangle inequality. We now provide details on executing this proof outline, where the crust is in designing the set Ŷ with a
controlled size.

Before describing our construction, let’s introduce the following useful event:

BM :=

t−Mτ⋂
u=0

{
1

4
µavg(s, a)KMτ ≤

K∑
k=1

Nk
u,u+Mτ (s, a) ≤ 2µavg(s, a)KMτ

}
, (177)

where M = M(s, a) := ⌊ 1
8ηµavg(s,a)τ

⌋. Note that M ≥ 1
16ηµavg(s,a)τ

since ητ ≤ 1/16. Combining this with the assumption
η ≤ 1

16tth(s,a)µavg(s,a)
(see (69) for the definition of tth(s, a)), it follows that Mτ ≥ tth(s, a) always holds. Then, BM holds

with probability at least 1 − δ
|S||A|T according to Lemma C.7. The rest of the proof shall be carried out under the event

BM .

Step 1: constructing Ŷ . To decouple dependency between P k
u+1(s, a) and ω̃k

u,t(s, a), we will introduce approximates
of ω̃k

u,t(s, a) that only depend on history until u by replacing a factor dependent on future with some constant. To gain
insight, we factorize ω̃k

u,t(s, a) into two components as follows:

ω̃k
u,t(s, a) =

ϕ(u)−1∏
h=h0(u,t)

(
K∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

∑K
k′=1(1− η)−Nk′

hτ,(h+1)τ (s,a)

K

)

× η(1− η)−Nk
ϕ(u)τ,u+1(s,a)

K

ϕ(t)−1∏
h=ϕ(u)

K∑K
k′=1(1− η)

−Nk′
hτ,(h+1)τ

(s,a)

=

 ϕ(u)−1∏
h=h0(u,t)

(∑K
k′=1(1− η)−Nk′

hτ,(h+1)τ (s,a)

K

)
η(1− η)−Nk

ϕ(u)τ,u+1(s,a)

K


︸ ︷︷ ︸

dependent on history until u

×

 ϕ(t)−1∏
h=h0(u,t)

K∑K
k′=1(1− η)

−Nk′
hτ,(h+1)τ

(s,a)


︸ ︷︷ ︸

dependent on history and future until t

=

 ϕ(u)−1∏
h=h0(u,t)

(∑K
k′=1(1− η)−Nk′

hτ,(h+1)τ (s,a)

K

)
η(1− η)−Nk

ϕ(u)τ,u+1(s,a)

K


︸ ︷︷ ︸

:=xk
u(s,a)
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×
l(u,t)∏
l=1

 ϕ(t)−(l−1)M−1∏
h=max{0,ϕ(t)−lM}

K∑K
k′=1(1− η)

−Nk′
hτ,(h+1)τ

(s,a)


︸ ︷︷ ︸

:=zl(s,a)

. (178)

where we denote l(u, t) := ⌈ (t−u)
Mτ ⌉ and h0(u, t) = max{0, ϕ(t)− l(u, t)M}.

Motivated by the above decomposition, we will construct Ŷ by approximating future-dependent parameter zl(s, a) for
1 ≤ l ≤ L, where L := min{⌈ t

Mτ ⌉, ⌈64 log (K/η)⌉}. Using the fact that 1 + x ≤ exp(x) ≤ 1 + 2x holds for any

0 ≤ x < 1, and η
∑K

k′=1
Nk′

hτ,(h+1)τ (s,a)

K ≤ ητ ≤ 1, and applying Jensen’s inequality,

exp

(
−η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

)
≥ K∑K

k′=1(1− η)
−Nk′

hτ,(h+1)τ
(s,a)

≥ K∑K
k′=1 e

ηNk′
hτ,(h+1)τ

(s,a)

≥ 1

1 + 2η
∑K

k′=1

∑K
k′=1

Nk′
hτ,(h+1)τ

(s,a)

K

≥ exp

(
−2η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

)
.

Therefore, for 1 ≤ l < L, under BM , the range of zl(s, a) is bounded as follows:

zl(s, a) ∈
[
exp(−4ηµavg(s, a)Mτ), exp(−1

4
ηµavg(s, a)Mτ)

]
.

Using this property, we construct a set of values that can cover possible realizations of zl(s, a) in a fine-grained manner as
follows:

Z :=

{
exp

(
−1

4
ηµavg(s, a)Mτ − iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (179)

Note that the distance of adjacent elements of Z is bounded by η/Ke−1/4ηµavg(s,a)Mτ , and the size of the set is bounded
by 4Kµavg(s, a)Mτ . For l = L, because the number of iterations involved in zL(s, a) can be less than Mτ , it follows that
zL(s, a) ∈ [exp(−4ηµavg(s, a)Mτ), 1]. Hence, we construct the set

Z0 :=

{
exp

(
− iη

K

) ∣∣∣i ∈ Z : 0 ≤ i < 4Kµavg(s, a)Mτ

}
. (180)

In sum, we can always find (ẑ1, · · · , ẑl, · · · , ẑL) ∈ ZL−1 × Z0 where its entry-wise distance to (zl(s, a))l∈[L−1] (resp.
zL(s, a)) is at most η/Ke−1/4ηµavg(s,a)Mτ (resp. η/K).

Moreover, we approximate xk
u(s, a) by clipping it when the accumulated number of visits of all agents is not too large as

follows:

x̂k
u(s, a) =

{
xk
u(s, a) if

∑K
k=1 N

k
h0(u,t)τ,ϕ(u)τ

(s, a) ≤ 2Kµavg(s, a)Mτ

0 otherwise
. (181)

Note that the clipping never occurs and x̂k
u(s, a) = xk

u(s, a) for all u as long as BM holds. To provide useful properties of
x̂k
u(s, a) that will be useful later, we record the following lemma whose proof is provided in Appendix E.6.1.

Lemma E.5. For any state-action pair (s, a) ∈ S × A, consider any integers 1 ≤ t ≤ T and 1 ≤ l ≤ ⌈ t
Mτ ⌉, where

M = ⌊ 1
8ηµavg(s,a)τ

⌋. Suppose that 4ητ ≤ 1, then x̂k
u(s, a) defined in (181) satisfy

∀u ∈ [h0, ϕ(t)− (l − 1)M) : x̂k
u(s, a) ≤

9η

K
, (182a)

ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a) ≤ 16ηµavg(s, a)Mτ, (182b)
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ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(x̂k
u(s, a))

2 ≤ 64η2µavg(s, a)Mτ

K
, (182c)

where h0 = max{0, ϕ(t)− lM}.

Finally, for each z = (ẑ1, · · · , ẑL) ∈ ZL−1 × Z0, setting ω̂k
u,t(s, a; z) = x̂k

u(s, a)
∏l(u,t)

l=1 ẑl, an approximate random
sequence ŷz = {ŷku,t(s, a; z)}0≤u<t can be constructed as follows:

ŷku,t(s, a; z) =

{
ω̂k
u,t(s, a; z)(P (s, a)− P k

u+1(s, a))V
k
u if (sku, a

k
u) = (s, a) and l(u, t) ≤ L

0 otherwise
. (183)

If t > LMτ , for any u < t − LMτ , i.e., l(u, t) > L, we set ŷku,t(s, a; z) = 0 since the magnitude of ω̃k
u,t(s, a) becomes

negligible when the time difference between u and t is large enough, and the fine-grained approximation using Z is no
longer needed, as shall be seen momentarily. Finally, denote a collection of the approximates induced by ZL−1 ×Z0 as

Ŷ = {ŷz : z ∈ ZL−1 ×Z0}.

Step 2: bounding the approximation error D(ỹ, ŷz). We now show that under BM , there always exists ŷz := ŷz(ỹ) ∈
Ŷ such that

D(ỹ, ŷz) <
129

1− γ

√
Lη

K
. (184)

To this end, we first decompose the approximation error as follows:

min
ŷz∈Ŷ

D(ỹ, ŷz)

= min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=0

(
ỹku,t(s, a)− ŷku,t(s, a; z)

)∣∣∣∣∣
≤ max

z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−LMτ−1∑
u=0

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣︸ ︷︷ ︸
=:D1

+ min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣︸ ︷︷ ︸
=:D2

• Bounding D1. This term appears only when t > LMτ . Since ŷku,t(s, a; z) = 0 for all u < t− LMτ regardless of z
by construction,∣∣∣∣∣

K∑
k=1

t−LMτ−1∑
u=0

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣ ≤
K∑

k=1

∑
u∈Uk

0,t−LMτ (s,a)

ω̃k
u,t(s, a)∥P (s, a)− P k

u+1(s, a)∥1∥V k
u ∥∞

(i)

≤ 2

1− γ

K∑
k=1

∑
u∈Uk

0,t−LMτ (s,a)

ω̃k
u,t(s, a)

(ii)

≤ 2

1− γ
(1− η)

1
K

∑K
k=1 Nk

t−LMτ,t(s,a)

(iii)

≤ 2

1− γ
e−η 1

4µavg(s,a)LMτ

(iv)

≤ 2η

(1− γ)K
,

where (i) holds since ∥P (s, a)∥1, ∥P k
u (s, a)∥1 ≤ 1 and ∥V k

u−1∥∞ ≤ 1
1−γ (cf. (31)), (ii) follows from (68d)

in Lemma C.6, (iii) holds due to BM , and (iv) holds because L ≥ 64 log K
η ≥ 4

ηµavg(s,a)Mτ log K
η given that

ηµavg(s, a)Mτ ≥ 1/16.
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• Bounding D2. Since x̂k
u(s, a) = xk

u(s, a) when BM holds, in view of (183), we have

min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣
≤ min

z∈ZL−1×Z0

K∑
k=1

∑
u∈Uk

t−LMτ,t(s,a)

∣∣ω̃k
u,t(s, a)− ω̂k

u,t(s, a; z)
∣∣ ∥P (s, a)− P k

u+1(s, a)∥1∥V k
u ∥∞

≤ 2

1− γ
min

z∈ZL−1×Z0

 L∑
l=1

ϕ(t)−(l−1)M−1∑
h=ϕ(t)−lM

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a)

∣∣∣∣∣
l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑl′

∣∣∣∣∣
 ,

where the last inequality holds since ∥P (s, a)∥1, ∥P k
u (s, a)∥1 ≤ 1 and ∥V k

u−1∥∞ ≤ 1
1−γ (cf. (31)).

Note that for any given {zl(s, a)}l∈[L], under BM , there exists ẑ⋆ = (ẑ⋆1 , . . . , ẑ
⋆
l , . . . , ẑ

⋆
L) ∈ ZL−1 × Z0 such that

|ẑ⋆l − zl(s, a)| ≤ η
K exp(−1/4ηµavg(s, a)Mτ) for l < L and |ẑ⋆L − zL(s, a)| ≤ η

K . Also, recall that zl(s, a), ẑ⋆l ≤
exp(−1/4ηµavg(s, a)Mτ) for l < L and zL(s, a), ẑ

⋆
L ≤ 1. Then, for any l ≤ L it follows that:∣∣∣∣∣

l∏
l′=1

zl′(s, a)−
l∏

l′=1

ẑ⋆l′

∣∣∣∣∣ ≤ (∣∣∣
l∏

l′=1

zl′(s, a)− ẑ⋆1

l∏
l′=2

zl′(s, a)
∣∣∣+ · · ·+

∣∣∣zl l−1∏
l′=1

ẑ⋆l′ −
l∏

l′=1

ẑ⋆l′
∣∣∣)

≤ exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

) l∑
l′=1

η

K

≤ exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

)Lη
K

.

Then, applying the above bound and (182b) in Lemma E.5,

min
z∈ZL−1×Z0

∣∣∣∣∣
K∑

k=1

t−1∑
u=t−LMτ

ỹku,t(s, a)− ŷku,t(s, a; z)

∣∣∣∣∣
≤ 2

1− γ

L∑
l=1

ϕ(t)−(l−1)M−1∑
h=ϕ(t)−lM

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a)

∣∣∣∣∣
l∏

l′=1

zl′(s, a)−
l∏

l′=1

ẑ⋆l′

∣∣∣∣∣
≤ 2

1− γ

Lη

K

L∑
l=1

exp
(
− 1

4
(l − 1)ηµavg(s, a)Mτ

) ϕ(t)−(l−1)M−1∑
h=ϕ(t)−lM

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a)

≤ 2

1− γ

Lη

K

1

1− exp(−1/4ηµavg(s, a)Mτ)
(16ηµavg(s, a)Mτ)

(i)

≤ 2

1− γ

Lη

K

8

ηµavg(s, a)Mτ
16ηµavg(s, a)Mτ ≤ 256Lη

(1− γ)K
,

where (i) holds since 1/4ηµavg(s, a)Mτ ≤ 1 and e−x ≤ 1− 1
2x for any 0 ≤ x ≤ 1.

By combining the bounds obtained above and using the fact that 4ηL
K ≤ 1 and L ≤ 64 log (TK), we can conclude that

min
ŷz∈Ŷ

D(ỹ, ŷz) ≤
2η

(1− γ)K
+

256Lη

(1− γ)K
≤ 129

1− γ

√
Lη

K
.

Step 3: concentration bound over Y . We now show that for all elements in Ŷ = {ŷz : z ∈ ZL−1 ×Z0} satisfy∣∣∣∣∣
K∑

k=1

t−1∑
u=0

ŷku,t(s, a; z)

∣∣∣∣∣ < 624

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
(185)
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with probability at least 1 − δ
|S||A|T . It suffices to establish (185) for a fixed z ∈ ZL−1 × Z0 with probability at least

1− δ
|S||A|T |Y| , where

|Ŷ| = |ZL−1 ×Z0| ≤ (4Kµavg(s, a)Mτ)L ≤ (K/η)L ≤ (TK)L. (186)

For any fixed z = (ẑ1, · · · , ẑL) ∈ ZL−1 × Z0, since ω̂k
u,t(s, a; z) = x̂k

u(s, a)
∏l(u,t)

l=1 ẑl only depends on the events
happened until u, which is independent to a transition at u + 1. Thus, we can apply Freedman’s inequality to bound the
sum of ŷku,t(s, a; z) since

E[ŷku,t(s, a; z)|Yu] = 0, (187)

where Yu denotes the history of visited state-action pairs and updated values of all agents until u, i.e., Yu =
{(skv , akv), V k

v }k∈[K],v≤u. Before applying Freedman’s inequality, we need to calculate the following quantities. First,

Bt(s, a) := max
k∈[K],0≤u<t

|ŷku,t(s, a; z)| ≤ x̂k
u(s, a)

l(u,t)∏
l=1

ẑl∥P (s, a)− P k
u+1(s, a)∥1∥V k

u ∥∞ ≤ 18η

(1− γ)K
, (188)

where the last inequality follows from ∥P (s, a)∥1, ∥P k
u (s, a)∥1 ≤ 1, ∥V k

u−1∥∞ ≤ 1
1−γ (cf. (31)), ẑl ≤ 1, and (182a) in

Lemma E.5. Next, we can bound the variance as

Wt(s, a) :=

t−1∑
u=t−LMτ

K∑
k=1

E[(ŷku,t(s, a; z))2|Yu]

=

L∑
l=1

ϕ(t)−(l−1)M−1∑
h=max{0,ϕ(t)−lM}

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(x̂k
u(s, a)

l∏
l′=1

ẑl′)
2VarP (s,a)(V

k
u )

(i)

≤ 2

(1− γ)2

L∑
l=1

(
l∏

l′=1

ẑ2l′

)
ϕ(t)−(l−1)M−1∑

h=max{0,ϕ(t)−lM}

K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a)

(x̂k
u(s, a))

2

(ii)

≤ 2

(1− γ)2

L∑
l=1

(
l∏

l′=1

ẑ2l′

)
64η2µavg(s, a)Mτ

K

(iii)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2

L∑
l=1

exp (−1/2(l − 1)ηµavg(s, a)Mτ)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2
1

1− exp(−1/2ηµavg(s, a)Mτ)

(iv)

≤ 128η2µavg(s, a)Mτ

K(1− γ)2
4

ηµavg(s, a)Mτ
=

512η

K(1− γ)2
:= σ2, (189)

where (i) holds due to the fact that ∥VarP (V )∥∞ ≤ ∥P∥1(∥V ∥∞)2 + (∥P∥1∥V ∥∞)2 ≤ 2
(1−γ)2 because ∥V ∥∞ ≤ 1

1−γ

(cf. (31)) and ∥P∥1 ≤ 1, (ii) follows from (182c) in Lemma E.5, (iii) holds due to the range of Z and Z0 is bounded
by exp(−1/4ηµavg(s, a)Mτ) and 1, respectively, and (iv) holds since e−x ≤ 1 − 1

2x for any 0 ≤ x ≤ 1 and
1/2ηµavg(s, a)Mτ ≤ 1 .

Now, by substituting the above bounds of Wt and Bt into Freedman’s inequality (see Theorem B.1) and setting m = 1, it
follows that for any s ∈ S, a ∈ A, t ∈ [T ] and ŷz ∈ Ŷ ,∣∣∣∣∣

K∑
k=1

t−1∑
u=0

ŷku,t(s, a; z)

∣∣∣∣∣ ≤
√
8max {Wt(s, a),

σ2

2m
} log 4m|S||A|T |Ŷ|

δ
+

4

3
Bt(s, a) log

4m|S||A|T |Ŷ|
δ

≤
√
4096

η

K(1− γ)2
log

4|S||A|T |Ŷ|
δ

+
24η

K(1− γ)
log

4|S||A|T |Ŷ|
δ
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(i)

≤ 78

(1− γ)

√
ηL

K
log

4|S||A|T 2K

δ
, (190)

with at least probability 1 − δ

|S||A|T |Ŷ|
, where (i) holds because |Ŷ| ≤ (TK)L given that ηµavg(s, a)Mτ ≤ 1/4, and

4ηL
K log 4|S||A|T 2K

δ ≤ 1. Therefore, it follows that (185) holds.

Step 4: putting things together. We now putting all the results obtained in the previous steps together to achieve
the claimed bound. Under BM , there always exists ŷz := ŷz(ỹ) ∈ Ŷ such that (184) holds. Hence, setting

q = 2064
(1−γ)

√
η
K log (TK) log 4|S||A|T 2K

δ ,

K∑
k=1

t−1∑
u=0

ỹku,t(s, a) ≤
∣∣∣∣∣

K∑
k=1

t−1∑
u=0

ŷku,t(s, a; z)

∣∣∣∣∣+D(ỹ, ŷz)

≤ 78

(1− γ)

√
ηL

K
log

4|S||A|T 2K

δ
+

129

1− γ

√
Lη

K

≤ 2064

(1− γ)

√
η

K
log (TK) log

4|S||A|T 2K

δ
, (191)

where the second line holds due to (185) and (184), and the last line holds due to L ≤ 64 log (TK). By taking a union
bound over all (s, a) ∈ S ×A and t ∈ [T ], we complete the proof.

E.6.1. PROOF OF LEMMA E.5

For notational simplicity, let h be the largest integer among h ∈ (h0, ϕ(t)− (l − 1)M) such that

K∑
k=1

Nk
h0τ,(h−1)τ (s, a) ≤ 2Kµavg(s, a)Mτ. (192)

Then, the following holds:

K∑
k=1

Nk
h0τ,hτ

(s, a) =

K∑
k=1

Nk
(h−1)τ,hτ

(s, a) +

K∑
k=1

Nk
h0τ,(h−1)τ

(s, a)

≤ Kτ + 2Kµavg(s, a)Mτ. (193)

Also, for the following proofs, we provide an useful bound as follows:

K∑
k′=1

(1− η)−Nk′
hτ,(h+1)τ (s,a)

K
≤
∑K

k′=1 e
ηNk′

hτ,(h+1)τ (s,a)

K
≤ 1 + 2η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

≤ exp

(
2η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

)
, (194)

which holds since 1 + x ≤ ex ≤ 1 + 2x for any x ∈ [0, 1] and ηNk′

hτ,(h+1)τ (s, a) ≤ ητ ≤ 1.

According to (181), for any integer u ∈ [hτ, t − (l − 1)Mτ), x̂k
u(s, a) is clipped to zero. Now, we prove the bounds in

Lemma E.5 respectively.

Proof of (182a). For u ∈ [h0τ, hτ),

x̂k
u(s, a) =

ϕ(u)−1∏
h=h0

(∑K
k′=1(1− η)−Nk′

hτ,(h+1)τ (s,a)

K

)
η(1− η)−Nk

ϕ(u)τ,u+1(s,a)

K
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(i)

≤
ϕ(u)−1∏
h=h0

(∑K
k′=1(1− η)−Nk′

hτ,(h+1)τ (s,a)

K

)
3η

K

(ii)

≤ exp

(
2η

K

K∑
k′=1

Nk′

h0τ,(h−1)τ
(s, a)

)
3η

K

(iii)

≤ exp(4ηµavg(s, a)Mτ)
3η

K

(iv)

≤ 9η

K
, (195)

where (i) holds since (1+η)x ≤ eηx and ηNk
ϕ(u)τ,u+1(s, a) ≤ ητ ≤ 1, (ii) holds due to (194) and the fact that ϕ(u) ≤ h−1,

(iii) follows from the definition of h in (192), and (iv) holds because 4ηµavg(s, a)Mτ ≤ 1.

Proof of (182b). By the definition of h, it follows that

ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

x̂k
u(s, a) =

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

xk
u(s, a).

Using the following relation for each h:

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

xk
u(s, a)

=

 h−1∏
h′=h0

∑K
k′=1(1− η)−Nk′

h′τ,(h′+1)τ
(s,a)

K

 K∑
k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a) η(1− η)−Nk

hτ,u+1(s,a)

K

=

 h−1∏
h′=h0

∑K
k′=1(1− η)−Nk′

h′τ,(h′+1)τ
(s,a)

K

 K∑
k=1

(1− η)−Nk
hτ,(h+1)τ (s,a) − 1

K

=

 h∏
h′=h0

∑K
k′=1(1− η)−Nk′

h′τ,(h′+1)τ
(s,a)

K

−

 h−1∏
h′=h0

∑K
k′=1(1− η)−Nk′

h′τ,(h′+1)τ
(s,a)

K

 ,

and applying (194), we can complete the proof as follows:

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

xk
u(s, a) ≤

h−1∏
h′=h0

exp

(
2η
∑K

k′=1 N
k′

h′τ,(h′+1)τ (s, a)

K

)
− 1

≤ exp

2η
∑K

k′=1 N
k′

h0τ,hτ
(s, a)

K

− 1

(i)

≤ exp (4ηµavg(s, a)Mτ + 2ητ)− 1

(ii)

≤ 16ηµavg(s, a)Mτ,

where (i) follows from (193), and (ii) holds because ex ≤ 1 + 2x for any x ∈ [0, 1] and 2ητ ≤ 4ηµavg(s, a)Mτ ≤ 1/2.

Proof of (182c). Similarly,

ϕ(t)−(l−1)M−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(x̂k
u(s, a))

2 =

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(xk
u(s, a))

2.
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Using the following relation for each h:

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(xk
u(s, a))

2

=

 h−1∏
h′=h0

∑K
k′=1(1− η)−Nk′

h′τ,(h′+1)τ
(s,a)

K

2
K∑

k=1

∑
u∈Uk

hτ,(h+1)τ
(s,a) η

2(1− η)−2Nk
hτ,u+1(s,a)

K2

≤

 h−1∏
h′=h0

∑K
k′=1(1− η)−Nk′

h′τ,(h′+1)τ
(s,a)

K

2
K∑

k=1

η((1− η)−2Nk
hτ,(h+1)τ (s,a) − 1)

K2

≤ η

K

(
h−1∏

h′=h0

exp

(
2η

∑K
k′=1 N

k′

h′τ,(h′+1)τ (s, a)

K

))2(
exp

(
4η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

)
− 1

)

=
η

K
exp

(
4η

∑K
k′=1 N

k′

h0τ,hτ
(s, a)

K

)(
exp

(
4η

∑K
k′=1 N

k′

hτ,(h+1)τ (s, a)

K

)
− 1

)

=
η

K

(
exp

(
4η

∑K
k′=1 N

k′

h0τ,(h+1)τ (s, a)

K

)
− exp

(
4η

∑K
k′=1 N

k′

h0τ,hτ
(s, a)

K

))
, (196)

where the inequality is derived similarly to (194) under the condition 2ητ ≤ 1, we can complete the proof as follows:

h−1∑
h=h0

∑
u∈Uk

hτ,(h+1)τ
(s,a)

K∑
k=1

(xk
u(s, a))

2 ≤ η

K

exp

4η

∑K
k′=1 N

k′

h0τ,hτ
(s, a)

K

− 1


(i)

≤ η

K
(exp (8ηµavg(s, a)Mτ + 4ητ)− 1)

(ii)

≤ 64η2µavg(s, a)Mτ

K
, (197)

where (i) follows from (193), and (ii) holds because ex ≤ 1 + 4x for any x ∈ [0, 2] and 4ητ ≤ 8ηµavg(s, a)Mτ ≤ 1.

E.7. Proof of Lemma C.9

The proof follows a similar structure to that of Lemma C.5. We omit common parts of the proofs and refer to Appendix E.3
to check the detailed derivations. First, we decompose the error term as follows:

E3
t (s, a) = γ

K∑
k=1

∑
u∈Uk

0,(ϕ(t)−β)τ
(s,a)

ω̃k
u,t(s, a)P (s, a)(V ⋆ − V k

u )

︸ ︷︷ ︸
=:E3a

t (s,a)

+ γ

K∑
k=1

∑
u∈Uk

(ϕ(t)−β)τ,t
(s,a)

ω̃k
u,t(s, a)P (s, a)(V ⋆ − V k

u ).

︸ ︷︷ ︸
=:E3b

t (s,a)

(198)

We shall bound these two terms separately.

• Bounding E3a
t (s, a). First, the bound of E3a

t (s, a) is derived as follows:

|E3a
t (s, a)| ≤ γ

K∑
k=1

∑
u∈Uk

0,(ϕ(t)−β)τ
(s,a)

ω̃k
u,t(s, a)∥P (s, a)∥1∥V ⋆ − V k

u ∥∞
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(i)

≤ 2

1− γ
(1− η)

1
K

∑K
k=1 Nk

(ϕ(t)−β)τ,t(s,a)

(ii)

≤ 2

1− γ
(1− η)

µavgβτ

4 , (199)

where (i) holds due to Lemma C.6 (cf. (68d)), and (ii) follows fromapplying Lemma C.7 that with probability at least
1− δ,

K∑
k=1

Nk
(ϕ(t)−β)τ,t(s, a) ≥

Kβτµavg

4

holds for all (s, a) ∈ S ×A and 0 ≤ u < v ≤ T as long as βτ ≥ tth.

• Bounding E3b
t (s, a). Combining (141) and Lemma E.3 to bound ∥V ⋆ − V k

u ∥∞, we bound E3b
t (s, a) as follows:

|E3b
t (s, a)| ≤ γ

K∑
k=1

∑
u∈Uk

(ϕ(t)−β)τ,t
(s,a)

ω̃k
u,t(s, a)

∥∥V ⋆ − V k
u

∥∥
∞

≤ γ
K∑

k=1

ϕ(t)−1∑
h=ϕ(t)−β

∑
u∈Uk

hτ,(h+1)τ
(s,a)

ω̃k
u,t(s, a)((1 + 2ητ)∥∆hτ∥∞ + σlocal)

≤ σlocal +
1 + γ

2
max

ϕ(t)−β≤h<ϕ(t)
∥∆hτ∥∞ (200)

where we denote σlocal :=
8γη

√
τ−1

1−γ

√
log 2|S||A|TK

δ for notational simplicity, and the last inequality follows from

Lemma C.6 (cf. (68c)) and the assumption that η ≤ 1−γ
4γτ .

Now we have the bounds of E3a
t (s, a) and E3b

t (s, a) separately obtained above. By combining the bounds in (198), we
can claim the advertised bound, which completes the proof.
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