
Learning Deep Time-index Models for Time Series Forecasting

Gerald Woo 1 2 Chenghao Liu 1 Doyen Sahoo 1 Akshat Kumar 2 Steven Hoi 1

Abstract
Deep learning has been actively applied to time
series forecasting, leading to a deluge of new
methods, belonging to the class of historical-
value models. Yet, despite the attractive prop-
erties of time-index models, such as being able
to model the continuous nature of underlying
time series dynamics, little attention has been
given to them. Indeed, while naive deep time-
index models are far more expressive than the
manually predefined function representations of
classical time-index models, they are inadequate
for forecasting, being unable to generalize to un-
seen time steps due to the lack of inductive bias.
In this paper, we propose DeepTime, a meta-
optimization framework to learn deep time-index
models which overcome these limitations, yield-
ing an efficient and accurate forecasting model.
Extensive experiments on real world datasets in
the long sequence time-series forecasting setting
demonstrate that our approach achieves compet-
itive results with state-of-the-art methods, and
is highly efficient. Code is available at https:
//github.com/salesforce/DeepTime.

1. Introduction
Time series forecasting has important applications across
business and scientific domains, such as demand fore-
casting (Carbonneau et al., 2008), capacity planning and
management (Kim, 2003), and anomaly detection (Laptev
et al., 2017). There are two typical approaches to time
series forecasting – historical-value, and time-index models.
Historical-value models predict future time step(s) as a func-
tion of past observations, ŷt+1 = f(yt,yt−1, . . .) (Benidis
et al., 2020), while time-index models, a less studied
approach, are defined to be models whose predictions are

1Salesforce Research Asia 2School of Computing and Infor-
mation Systems, Singapore Management University. Correspon-
dence to: Gerald Woo <gwoo@salesforce.com>, Chenghao Liu
<chenghao.liu@salesforce.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Time

Train	set Test set

Input Output

(a) Historical-value Models

Time

Train	set Test	set

Input

Output

(b) Time-index Models

Figure 1. Visual comparison between the two paradigms of
historical-value, and time-index models. After the models are
trained on the training set, forecasts are made over the test set,
which may be arbitrarily long. Historical-value models make
predictions conditioning on an input lookback window, whereas
time-index models do not make use of new incoming information
during the test phase.

purely functions of the corresponding time-index features
at future time-step(s), ŷt+1 = f(τt+1) (see Figure 1 for
a visual comparison). Historical-value models have been
widely used due to their simplicity. However, they can only
model temporal relationships at the data sampling frequency.
This is an issue since time series observations available
to us tend to have a much lower resolution (sampled at
a lower frequency) than the underlying dynamics (Gong
et al., 2015; 2017), leading historical-value models to be
prone to capturing spurious correlations. On the other
hand, time-index models intrinsically avoid this problem,
directly modeling the mapping from time-index features
to predictions in continuous space and learning signal
representations which change smoothly and correlate with
each other in continuous space.

Classical time-index models (Taylor & Letham, 2018;
Hyndman & Athanasopoulos, 2018; Ord et al., 2017) rely
on predefined function forms to generate predictions. They
optionally follow the structural time-series formulation
(Harvey & Shephard, 1993), yt = g(τt) + s(τt) + h(τt),
where g, s, h represent trend, periodic, and holiday com-
ponents respectively. For example, g could be predefined
as a linear, polynomial, or even a piece-wise linear function.
While these functions are simple and easy to learn, they

1

https://github.com/salesforce/DeepTime
https://github.com/salesforce/DeepTime

Learning Deep Time-index Models for Time Series Forecasting

0 100 200 300 400 500 600 700
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Reconstruction
Ground Truth
Forecast

Figure 2. Ground truth time series and predictions from a vanilla
deep time-index model. The reconstruction of historical training
data as well as forecast over the horizon is visualized. Observe
that it overfits to historical data and is unable to extrapolate. This
model corresponds to +Local in Table 4 of our ablations.

have limited capacity, are unable to fit more complex time
series, and such predefined function forms may be too
stringent of an assumption which may not hold in practice.
While it is possible to perform model selection across
various function forms, this requires either strong domain
expertise, or computationally heavy cross-validation across
a large set of parameters.

Deep learning gives a seemingly natural solution to this
problem faced by classical time-index models – parameter-
ize f(τt) as a neural network, and learn the function form in
a purely data-driven manner. While neural networks are ex-
tremely expressive with a strong capability to approximate
complex functions, we argue that when trained via standard
supervised learning, they face the debilitating problem of
an inability to extrapolate across the forecast horizon, i.e.
unable to generalize to future time step(s). This is visualized
in Figure 2, where a deep time-index model is able to fit the
training data well in the interval [0, T ′], but it is unable to
produce meaningful forecasts for the interval [T ′, T]. This
arises due to the lack of extrapolation capability of neural
networks when used in time-index models. While classical
time-index models have limited expressitivity, the strong
inductive biases (e.g. linear trend, periodicity) instructs
their predictions over unseen time steps. On the other hand,
vanilla deep time-index models do not have such inductive
biases, and thus, while they do learn an appropriate function
form over the training data, achieving extremely good
reconstruction loss, they have little to no generalization
capabilities over unseen time steps.

We now raise the question – how do we achieve the best
of both worlds – to retain the flexibility and expressiveness
of the neural network, as well as to learn inductive bias to
guarantee extrapolation capability over unseen time steps
from time series data? We present a solution, DeepTime,
a meta-optimization framework to learn deep time-index
models for time series forecasting. Our framework splits the
learning process of deep time-index models into two stages,
the inner, and outer learning process. The inner learning
process acts as the standard supervised learning process,

fitting parameters to recent time steps. The outer learning
process enables the deep time-index model to learn a strong
inductive bias for extrapolation from data. We summarize
our contributions as follows:

• We introduce the use of deep time-index models for
time series forecasting, proposing a meta-optimization
framework to address their shortcomings, making them
viable for forecasting.

• We introduce a specific function form for deep time-
index models by leveraging implicit neural represen-
tations (Sitzmann et al., 2020b), and a novel concate-
nated Fourier features module to efficiently learn high
frequency patterns in time series. We also specify an
efficient instantiation of the meta-optimization proce-
dure via a closed-form ridge regressor (Bertinetto et al.,
2019).

• We conduct extensive experiments on the long se-
quence time series forecasting (LSTF) setting, demon-
strating DeepTime to be extremely competitive with
state-of-the-art baselines. At the same time, DeepTime
is highly efficient in terms of runtime and memory.

2. Related Work
Neural Forecasting Neural forecasting (Benidis et al.,
2020) methods have seen great success in recent times. One
related line of research are Transformer-based methods for
LSTF (Li et al., 2019; Zhou et al., 2021; Xu et al., 2021;
Woo et al., 2022; Zhou et al., 2022) which aim to not only
achieve high accuracy, but to overcome the vanilla atten-
tion’s quadratic complexity. Fully connected methods (Ore-
shkin et al., 2020; Challu et al., 2022) have also shown
success, with (Challu et al., 2022) introducing hierarchical
interpolation and multi-rate data sampling for the LSTF task.
Bi-level optimization in the form of meta-learning and the
use of differentiable closed-form solvers has been explored
in time series forecasting (Grazzi et al., 2021), for the pur-
pose of adapting to new time series datasets, where tasks
are defined to be the entire time series.

Time-index Models Time-index models take as input
time-index features such as datetime features to predict
the value of the time series at that time step. They have
been well explored as a special case of regression analy-
sis (Hyndman & Athanasopoulos, 2018; Ord et al., 2017),
and many different predictors have been proposed for the
classical setting,including linear, polynomial, and piecewise
linear trends, and dummy variables indicating holidays. Of
note, Fourier terms have been used to model periodicity,
or seasonal patterns, and is also known as harmonic re-
gression (Young et al., 1999). Prophet (Taylor & Letham,
2018) is a popular classical approach which uses a struc-

2

Learning Deep Time-index Models for Time Series Forecasting

tural time series formulation, specialized for business fore-
casting. Another classical approach of note are Gaussian
Processes (Rasmussen, 2003; Corani et al., 2021) which
are non-parametric models, often requiring complex ker-
nel engineering. (Godfrey & Gashler, 2017) introduced an
initial attempt at using time-index based neural networks
to fit a time series for forecasting. Yet, their work is more
reminiscent of classical methods, manually specifying peri-
odic and non-periodic activation functions, analogous to the
representation functions.

Implicit Neural Representations INRs have recently
gained popularity in the area of neural rendering (Tewari
et al., 2021). They parameterize a signal as a continuous
function, mapping a coordinate to the value at that coordi-
nate. A key finding was that positional encodings (Milden-
hall et al., 2020; Tancik et al., 2020) are critical for ReLU
MLPs to learn high frequency details, while another line
of work introduced periodic activations (Sitzmann et al.,
2020b). Meta-learning on via INRs have been explored for
various data modalities, typically over images or for neu-
ral rendering tasks (Sitzmann et al., 2020a; Tancik et al.,
2021; Dupont et al., 2021), using both hypernetworks and
optimization-based approaches. (Yüce et al., 2021) show
that meta-learning on INRs is analogous to dictionary learn-
ing. In time series, (Jeong & Shin, 2022) explored using
INRs for anomaly detection, opting to make use of periodic
activations and temporal positional encodings.

3. DeepTime
In this section, we first formally describe the time series fore-
casting problem, and how to use time-index models for this
problem setting. Next, we introduce the model architecture
specifics for deep time-index models. Finally, we intro-
duce the generic form of our meta-optimization framework,
then specifically, how to use of a differentiable closed-form
ridge regression module to perform the meta-optimization
efficiently. Pseudocode of DeepTime is available in Ap-
pendix A.

Problem Formulation In time series forecasting, we con-
sider a time series dataset (y1,y2, . . . ,yT), where yt ∈ Rm

is the m-dimension observation at time t. Consider a train-
test split such that the range (1, . . . , T ′) is considered to be
the training set and the range (T ′ + 1, . . . , T) is the test set,
where T − T ′ ≥ H . The goal is to construct point forecasts
over a horizon of length H , over the test set, Ŷt:t+H =
[ŷt; . . . ; ŷt+H−1],∀t = T ′ +1, T ′ +2, . . . , T ′ −H +1. A
time-index model, f : R → Rm, f : τt 7→ ŷt, achieves this
by minimizing a reconstruction loss L : Rm×Rm → R over
the training set, where τt is a time-index feature for which
values are known for all time steps. Then, we can query it
over the test set to obtain forecasts, Ŷt:t+H = f(τt:t+H).

3.1. Deep Time-index Model Architecture

INRs (Sitzmann et al., 2020b) are a class of coordinate-
based models, mapping coordinates to values, which
have been extensively studied. Time-index models are
a case of 1d coordinate-based models, thus, we leverage
this existing class of models, which are essentially a
stack of multi-layered perceptrons as our proposed deep
time-index model architecture. Visualized in Figure 3a, a
K-layered, ReLU (Nair & Hinton, 2010) INR is a function
fθ : Rc → Rm where:

z(0) = τ

z(k+1) = max(0,W (k)z(k) + b(k)), k = 0, . . . ,K − 1

fθ(τ) = W (K)z(K) + b(K) (1)

where τ ∈ Rc are time-index features. MLPs have shown
to experience difficulty in learning high frequency functions,
this problem known as “spectrial bias” (Rahaman et al.,
2019; Basri et al., 2020). Coordinate-based methods suffer
from this issue in particular when trying to represent high
frequency content present in the signal. Tancik et al. (2020)
introduced a random Fourier features layer which allows
INRs to fit to high frequency functions, by modifying
z(0) = γ(τ) = [sin(2πBτ), cos(2πBτ)]T , where each
entry in B ∈ Rd/2×c is sampled from N (0, σ2) with d is
the hidden dimension size of the INR and σ2 is the scale
hyperparameter. [·, ·] is a row-wise stacking operation.

Concatenated Fourier Features While the random
Fourier features layer endows INRs with the ability to
learn high frequency patterns, one major drawback is the
need to perform a hyperparameter sweep for each task and
dataset to avoid over or underfitting. We overcome this
limitation with a simple scheme of concatenating multiple
Fourier basis functions with diverse scale parameters, i.e.
γ(τ) = [sin(2πB1τ), cos(2πB1τ), . . . , sin(2πBSτ),
cos(2πBSτ)]

T , where elements in Bs ∈ Rd/2×c are sam-
pled from N (0, σ2

s), and W (0) ∈ Rd×Sd. We perform an
analysis in Section 5.3 and show that the performance of
our proposed concatenated Fourier features (CFF) does not
significantly deviate from the setting with the optimal scale
parameter obtained from a hyperparameter sweep.

3.2. Meta-optimization Framework

Explained in Section 1, vanilla deep time-index models
are unable to perform forecasting due to their failure in
extrapolating beyond observed time-indices. Formally, the
original hypothesis class of time-index model is denoted
HINR = {f(τ ; θ) | θ ∈ Θ}, where Θ is the parameter space.
The original hypothesis class is too expressive, providing
no guarantees that training on the lookback window leads
to good extrapolation. To solve this, our meta-optimization
framework learns an inductive bias for the deep time-index

3

Learning Deep Time-index Models for Time Series Forecasting

Concat Fourier	Features

𝜏!

𝑦!

(a) Deep Time-index
Model Architecture

𝑓(𝜏; 𝜃, 𝜙)

𝑗 ∈ [𝑡 − 𝐿, 𝑡 − 1]

𝑓(𝜏, 𝜃!∗, 𝜙)

𝑖 ∈ [𝑡, 𝑡 + 𝐻 − 1]

𝝓 update

𝜽 update𝜃!∗ = argmin
#

)ℒ(𝒚-!$% , 𝒚!$%)
%

Lookback:	𝒀!&':!

Inner	Loop

𝜙∗ = argmin)))ℒ(𝒚-!$*, 𝒚!$*)
*!

Horizon:	𝒀!:!$+

Outer	Loop

(b) Meta-optimization Framework

Figure 3. Left: Our proposed deep time-index model has a simple overall architecture, comprising a concatenated Fourier features, and
several layers of MLPs. Right: The meta-optimization framework aims to learn meta parameters of deep time-index models by following
a bi-level optimization problem formulation (Equations (2) and (3)). The inner loop is optimized over the lookback window, yielding the
optimal base parameters for a locally stationary distribution, θ∗t . Each lookback window has it’s own optimal base parameters, which are
then used to predict the immediate following forecast horizon. This composes the outer loop, which optimizes the meta parameters over
the entire time series, yielding an inductive bias which enables extrapolation over forecast horizons, given the optimal base parameters.

model from data. Firstly, rather than using the entire train-
ing set in a naive supervised learning setting, whereby older
training points provide no additional benefit in learning a
time-index model for extrapolation, we split the time series
into lookback window and forecast horizon pairs. Let the
L time steps preceding the forecast horizon at time step t,
be the lookback window, Yt−L:t = [yt−L; . . . ;yt−1]

T ∈
RL×m. Next, consider the case where we split the model pa-
rameters into two, possibly overlapping subsets, ϕ ∈ Φ and
θ ∈ Θ, known as the meta and base parameters, respectively,
where Φ is the parameter space of the meta parameters. The
meta parameters are responsible for learning the inductive
bias from multiple lookback window and forecast horizon
pairs from the training data, while the base parameters aim
to learn and adapt quickly to the lookback window at test
time. Thus, we aim to encode an inductive bias in ϕ, learned
to enable extrapolation across the forecast horizon when
the base parameters adapt corresponding lookback window,
resulting in HMeta = {f(τ ; θ, ϕ∗) | θ ∈ Θ}. This is
achieved by formulating the bi-level optimization problem:

ϕ∗ = argmin
ϕ

T−H+1∑
t=L+1

H−1∑
i=0

L(f(τt+i; θ
∗
t , ϕ),yt+i)

(2)

s.t. θ∗t = argmin
θ

−1∑
j=−L

L(f(τt+j ; θ, ϕ),yt+j) (3)

Illustrated in Figure 3b, Equation (2) represents the outer
loop, and Equation (3), the inner loop. The first summation
in the outer loop over index t represents iterating over the
time steps of the dataset, and the second summation over
index i represents each time step of the forecast horizon.
The summation in the inner loop over index j represents
each time step of the lookback window.

Fast and Efficient Meta-optimization Following the
above generic formulation of the meta-optimization frame-
work to learn deep time-index models, we now describe a
specific instantiation of the framework which enables both
training and forecasting at test time to be fast and efficient.
Similar bi-level optimization problems have been explored
(Ravi & Larochelle, 2017; Finn et al., 2017) and one naive
approach is to directly backpropagate through inner gradient
steps. However, such methods are highly inefficient, have
many additional hyperparameters, and are instable during
training (Antoniou et al., 2019). Instead, to achieve speed
and efficiency, we specify that the base parameters consist
of only the last layer of the INR, while the rest of the INR
are meta parameters. Thus, the inner loop optimization only
applies to this last layer. This transforms the inner loop op-
timization problem into a simple ridge regression problem
for the case of mean squared error loss, having a simple
analytic solution to replace the otherwise complicated non-
linear optimization problem (Bertinetto et al., 2019).

Formally, for a K-layered model, ϕ =
{W (0), b(0), . . . ,W (K−1), b(K−1), λ} are the meta
parameters and θ = {W (K)} are the base parame-
ters, following notation from Equation (1). Then let
gϕ : R → Rd be the meta learner where gϕ(τ) = z(K).
For a lookback-horizon pair, (Yt−L:t,Yt:t+H), the features
of the lookback window obtained from the meta learner
is denoted Zt−L:t = [gϕ(τt−L); . . . ; gϕ(τt−1)]

T ∈ RL×d,
where [·; ·] is a column-wise concatenation operation. The
inner loop thus solves the optimization problem:

W
(K)∗
t = argmin

W
||Zt−L:tW − Yt−L:t||2 + λ||W ||2

= (ZT
t−L:tZt−L:t + λI)−1ZT

t−L:tYt−L:t (4)

Now, let Zt:t+H = [gϕ(τt); . . . ; gϕ(τt+H−1)]
T ∈ RH×d

4

Learning Deep Time-index Models for Time Series Forecasting

be the features of the forecast horizon. Then, our predictions
are Ŷt:t+H = Zt:t+HW

(K)∗
t . This closed-form solution

is differentiable, which enables gradient updates on the
parameters of the meta learner, ϕ. A bias term can be in-
cluded for the closed-form ridge regressor by appending
a scalar 1 to the feature vector gϕ(τ). The end result of
training DeepTime on a dataset is the restricted hypothesis
class HDeepTime =

{
gϕ∗(τ)TW (K) | W (K) ∈ Rd×m

}
.

Finally, we propose to use relative time-index features,
τt+i = i+L

L+H−1 for i = −L,−L + 1, . . . ,H − 1, i.e. a
[0, 1]-normalized time-index.

4. Theoretical Analysis
In the following, we derive a generalization bound of
DeepTime under the PAC-Bayes framework (Amit & Meir,
2018). Give a long time series, suppose we can split it
into n instances (each has a length L lookback window
and length H forecast horizon) for training. Then the k-
th instance is denoted Sk = {zk−L, . . . , zk, . . . , zk+H−1},
where zt = (τt,yt). The PAC-Bayes framework for our pro-
posed meta-optimization framework considers a Bayesian
setting of DeepTime, having prior and posterior distributions
of the meta and base parameters. The generalization bound
is presented below, with the detailed proof in Appendix D.

Theorem 4.1. (Generalization Bound) Let Q, Q be arbi-
trary distribution of ϕ, θ, which are defined in Equation (2)
and Equation (3), and P, P be the prior distribution of ϕ, θ.
Then for any c1, c2 > 0 and any δ ∈ (0, 1], with probability
at least 1− δ, the following inequality holds uniformly for
all hyper-posterior distributions Q,

er(Q) ≤ c1c2
(1− e−c1)(1− e−c2)

· 1
n

n∑
k=1

êr(Q,Sk)

+
c1

1− e−c1
·
KL(Q||P) + log 2

δ

nc1

+
c1c2

(1− e−c2)(1− e−c1)
·
KL(Q||P) + log 2n

δ

(H + L)c2
(5)

where er(Q) and êr(Q,Sk) are the generalization error
and training error of DeepTime, respectively.

Theorem 4.1 states that the expected generalization error
of DeepTime is bounded by the empirical error plus two
complexity terms. The first term represents the complexity
between the meta distributions, Q,P , as well as between
instances, converging to zero if we observe an infinitely long
time-series (n → ∞). The second term represents the com-
plexity between the base distributions, Q,P , and of each
instance, or equivalently, the lookback window and forecast
horizon. This term converges to zero when there are a suffi-
cient number of time steps in each instance (H + L → ∞).

5. Experiments
We evaluate DeepTime on both synthetic, and real-world
datasets. We ask the following questions: (i) Is DeepTime,
trained on a family of functions following the same paramet-
ric form, able to perform extrapolation on unseen functions?
(ii) How does DeepTime compare to other forecasting mod-
els on real-world data? (iii) What are the key contributing
factors to the good performance of DeepTime?

5.1. Experiments on Synthetic Data

We first consider DeepTime’s ability to extrapolate on the
following functions specified by some parametric form: (i)
the family of linear functions, y = ax + b, (ii) the family
of cubic functions, y = ax3 + bx2 + cx + d, and (iii)
sums of sinusoids,

∑
j Aj sin(ωjx+φj). Parameters of the

functions (i.e. a, b, c, d, Aj , ωj , φj) are sampled randomly
(further details in Appendix E) to construct distinct tasks.
A total of 400 time steps are sampled, with a lookback
window length of 200 and forecast horizon of 200. Figure 4
demonstrates that DeepTime is able to perform extrapolation
on unseen test functions/tasks after being trained via our
meta-optimization formulation. It demonstrates an ability
to approximate and adapt, based on the lookback window,
linear and cubic polynomials, and even sums of sinusoids.
Next, we evaluate DeepTime on real-world datasets, against
state-of-the-art baselines.

5.2. Experiments on Real-world Data

Experiments are performed on 6 real-world datasets – Elec-
tricity Transformer Temperature (ETT), Electricity Consum-
ing Load (ECL), Exchange, Traffic, Weather, and Influenza-
like Illness (ILI) with full details in Appendix F. We evaluate
the performance of our proposed approach using two met-
rics, the mean squared error (MSE) and mean absolute error
(MAE) metrics. The datasets are split into train, valida-
tion, and test sets chronologically, following a 70/10/20
split for all datasets except for ETTm2 which follows a
60/20/20 split, as per convention. The univariate bench-
mark selects the last index of the multivariate dataset as the
target variable, following previous work (Xu et al., 2021).
Preprocessing on the data is performed by standardization
based on train set statistics. Hyperparameter selection is
performed on only one value, the lookback length multi-
plier, L = µ ∗H , which decides the length of the lookback
window. We search through the values µ = [1, 3, 5, 7, 9],
and select the best value based on the validation loss. Fur-
ther implementation details on DeepTime are reported in
Appendix G, and detailed hyperparameters are reported in
Appendix H. Reported results for DeepTime are averaged
over three runs, and standard deviation is reported in Ap-
pendix J.

5

Learning Deep Time-index Models for Time Series Forecasting

0 50 100 150 200 250 300 350 400
10

5

0

5

10

15

20 Ground Truth
Forecast

(a) Linear

0 50 100 150 200 250 300 350 400
60

40

20

0

20

40

60

(b) Cubic

0 50 100 150 200 250 300 350 400
6

4

2

0

2

4

6

(c) Sum of Sinusoids

Figure 4. Predictions of DeepTime on three unseen functions for each function class. The orange line represents the split between
lookback window and forecast horizon.

Table 1. Multivariate forecasting benchmark on long sequence time-series forecasting. Best results are highlighted in bold, and second
best results are underlined.

Methods DeepTime NS Transformer N-HiTS ETSformer FEDformer Autoformer Informer LogTrans GP

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.192 0.274 0.176 0.255 0.189 0.280 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.442 0.422
192 0.225 0.302 0.280 0.339 0.245 0.305 0.253 0.319 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 0.605 0.505
336 0.277 0.336 0.334 0.361 0.295 0.346 0.314 0.357 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 0.731 0.569
720 0.383 0.409 0.417 0.413 0.401 0.426 0.414 0.413 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 0.959 0.669

E
C

L

96 0.137 0.238 0.169 0.273 0.147 0.249 0.187 0.304 0.183 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.503 0.538
192 0.152 0.252 0.182 0.286 0.167 0.269 0.199 0.315 0.195 0.308 0.222 0.334 0.296 0.386 0.266 0.368 0.505 0.543
336 0.166 0.268 0.200 0.304 0.186 0.290 0.212 0.329 0.212 0.313 0.231 0.338 0.300 0.394 0.280 0.380 0.612 0.614
720 0.201 0.302 0.222 0.321 0.243 0.340 0.233 0.345 0.231 0.343 0.254 0.361 0.373 0.439 0.283 0.376 0.652 0.635

E
xc

ha
ng

e 96 0.081 0.205 0.111 0.237 0.092 0.211 0.085 0.204 0.139 0.276 0.197 0.323 0.847 0.752 0.968 0.812 0.136 0.267
192 0.151 0.284 0.219 0.335 0.208 0.322 0.182 0.303 0.256 0.369 0.300 0.369 1.204 0.895 1.040 0.851 0.229 0.348
336 0.314 0.412 0.421 0.476 0.371 0.443 0.348 0.428 0.426 0.464 0.509 0.524 1.672 1.036 1.659 1.081 0.372 0.447
720 0.856 0.663 1.092 0.769 0.888 0.723 1.025 0.774 1.090 0.800 1.447 0.941 2.478 1.310 1.941 1.127 1.135 0.810

Tr
af

fic

96 0.390 0.275 0.612 0.338 0.402 0.282 0.607 0.392 0.562 0.349 0.613 0.388 0.719 0.391 0.684 0.384 1.112 0.665
192 0.402 0.278 0.613 0.340 0.420 0.297 0.621 0.399 0.562 0.346 0.616 0.382 0.696 0.379 0.685 0.390 1.133 0.671
336 0.415 0.288 0.618 0.328 0.448 0.313 0.622 0.396 0.570 0.323 0.622 0.337 0.777 0.420 0.733 0.408 1.274 0.723
720 0.449 0.307 0.653 0.355 0.539 0.353 0.632 0.396 0.596 0.368 0.660 0.408 0.864 0.472 0.717 0.396 1.280 0.719

W
ea

th
er

96 0.166 0.221 0.173 0.223 0.158 0.195 0.197 0.281 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.395 0.356
192 0.207 0.261 0.245 0.285 0.211 0.247 0.237 0.312 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.450 0.398
336 0.251 0.298 0.321 0.338 0.274 0.300 0.298 0.353 0.339 0.380 0.359 0.359 0.578 0.523 0.797 0.652 0.508 0.440
720 0.301 0.338 0.414 0.410 0.351 0.353 0.352 0.388 0.403 0.428 0.419 0.419 1.059 0.741 0.869 0.675 0.498 0.450

IL
I

24 2.425 1.086 2.294 0.945 1.862 0.869 2.527 1.020 2.203 0.963 3.483 1.287 5.764 1.677 4.480 1.444 2.331 1.036
36 2.231 1.008 1.825 0.848 2.071 0.969 2.615 1.007 2.272 0.976 3.103 1.148 4.755 1.467 4.799 1.467 2.167 1.002
48 2.230 1.016 2.010 0.900 2.346 1.042 2.359 0.972 2.209 0.981 2.669 1.085 4.763 1.469 4.800 1.468 2.961 1.180
60 2.143 0.985 2.178 0.963 2.560 1.073 2.487 1.016 2.545 1.061 2.770 1.125 5.264 1.564 5.278 1.560 3.108 1.214

Results We compare DeepTime to the following base-
lines for the multivariate setting, N-HiTS (Challu et al.,
2022), ETSformer (Woo et al., 2022), Fedformer (Zhou
et al., 2022) (we report the best score for each setting from
the two variants they present), Autoformer (Xu et al., 2021),
Informer (Zhou et al., 2021), LogTrans (Li et al., 2019),
Non-stationary (NS) Transformer (Liu et al., 2022), and
Gaussian Process (GP) (Rasmussen, 2003). For the uni-
variate setting, we include additional univariate forecasting
models, N-BEATS (Oreshkin et al., 2020), DeepAR (Salinas
et al., 2020), Prophet (Taylor & Letham, 2018), and ARIMA.
Baseline results are obtained from the respective papers. Ta-
ble 1 and Table 7 (in Appendix I for space) summarizes the
multivariate and univariate forecasting results respectively.
DeepTime achieves state-of-the-art performance on 20 out
of 24 settings in MSE, and 17 out of 24 settings in MAE

on the multivariate benchmark, and also achieves competi-
tive results on the univariate benchmark despite its simple
architecture compared to the baselines comprising complex
fully connected architectures and computationally intensive
Transformer architectures.

5.3. Empirical Analysis and Ablation Studies

We first perform empirical analyses informed by the in-
sights from our theoretical analysis. Theorem 4.1 states
that generalization error is bounded by training error, and
two complexity terms. Figure 5 and Table 2 analyse the
test error (which approximates generalization error) as num-
ber of instances, n, and lookback window length, L, vary.
For the first complexity term, controlled by denominator
n, observed in Figure 5, test error decreases as n increases.
For the second complexity term, controlled by the length

6

Learning Deep Time-index Models for Time Series Forecasting

0 2000 4000 6000 8000
Number of Instances

0.20

0.25

0.30

0.35

0.40

0.45

M
SE

H=96
H=192
H=336
H=720

Figure 5. Analysis on the number of instances, n. MSE is mea-
sured as number of instances increases for multiple horizon lengths.
Analysis is performed based on the ETTm2 dataset.

Table 2. Analysis on the lookback window length, based on a mul-
tiplier on horizon length, L = µ ∗ H . Results presented on the
ETTm2 dataset. Best results are highlighted in bold.

Horizon 96 192 336 720

µ MSE MAE MSE MAE MSE MAE MSE MAE

1 0.192 0.287 0.255 0.332 0.294 0.354 0.383 0.409
3 0.172 0.264 0.228 0.304 0.277 0.336 0.371 0.403
5 0.168 0.259 0.225 0.302 0.275 0.337 0.389 0.420
7 0.166 0.257 0.223 0.300 0.279 0.343 0.440 0.451
9 0.165 0.258 0.223 0.301 0.285 0.350 0.409 0.434

of lookback and horizon, since H is an experimental set-
ting, we set perform a sensitivity analysis on the lookback
length, setting L = µ ∗H . Similarly, test error decreases
as L increases, plateauing and even increasing slightly as
L grows extremely large. We expect test error to plateau
as the associated term goes to zero. As the number of in-
stances available for training decreases as L grows large,
the increase in test error can be attributed to a decrease in n.

In Table 3 we perform an ablation study on various backbone
architectures, while retaining the differentiable closed-form
ridge regressor. We observe a degradation when the random
Fourier features layer is removed, due to the spectral bias
problem which neural networks face (Rahaman et al., 2019;
Tancik et al., 2020). DeepTime outperforms the SIREN
variant of INRs which is consistent with observations INR
literature. DeepTime also outperforms the RNN variant
which is the model proposed in (Grazzi et al., 2021). This
is a direct comparison between IMS historical-value models
and time-index models, and highlights the benefits of a
time-index models.

We perform an ablation study to understand how various
training schemes and input features affect the performance
of DeepTime. Table 4 presents these results. First, we ob-
serve that our meta-optimization formulation is a critical
component to the success of DeepTime. We note that Deep-
Time without meta-optimization may not be a meaningful
baseline since the model outputs are always the same re-
gardless of the input lookback window. Including datetime
features helps alleviate this issue, yet we observe that the
inclusion of datetime features generally lead to a degrada-
tion in performance. In the case of DeepTime, we observed

Table 3. Ablation study on backbone models. DeepTime refers to
our proposed approach, an INR with random Fourier features sam-
pled from a range of scales. MLP refers to replacing the random
Fourier features with a linear map from input dimension to hidden
dimension. SIREN refers to an INR with periodic activations as
proposed by Sitzmann et al. (2020b). RNN refers to an autoregres-
sive recurrent neural network (inputs are the time-series values,
yt). All approaches include differentiable closed-form ridge re-
gressor. Further model details can be found in Appendix L.2.

Methods DeepTime MLP SIREN RNN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.186 0.284 0.236 0.325 0.233 0.324
192 0.225 0.302 0.265 0.338 0.295 0.361 0.275 0.337
336 0.277 0.336 0.316 0.372 0.327 0.386 0.344 0.383
720 0.383 0.409 0.401 0.417 0.438 0.453 0.431 0.432

that the inclusion of datetime features lead to a much lower
training loss, but degradation in test performance – this is a
case of meta-learning memorization (Yin et al., 2020) due
to the tasks becoming non-mutually exclusive (Rajendran
et al., 2020). We also observe that the meta-optimization
formulation is indeed superior to training a model from
scratch for each lookback window. Finally, while we ex-
pect full MAML to always outperform the fast and efficient
meta-optimization, in reality, there are many complications
in such gradient-based bi-level optimization methods – they
are difficult to optimize, and instable during training. Re-
stricting the base parameters to only the last layer of the INR
provides a useful prior which enables stable optimization
and high generalization without facing these problems.

Additional sensitivity analysis on our proposed concatenated
Fourier features, can be found in Appendix K, showing
that it performs no worse than an extensive hyperparameter
sweep on standard random Fourier features layer.

5.4. Computational Efficiency

Finally, we analyse DeepTime’s efficiency in both runtime
and memory usage, with respect to both lookback window
and forecast horizon lengths. The main bottleneck in com-
putation for DeepTime is the matrix inversion operation in
the ridge regressor, canonically of O(n3) complexity. This
is a major concern for DeepTime as n is linked to the length
of the lookback window. As mentioned in (Bertinetto et al.,
2019), the Woodbury formulation,

W ∗ = ZT (ZZT + λI)−1Y

is used to alleviate the problem, leading to an O(d3) com-
plexity, where d is the hidden size hyperparameter, fixed
to some value (see Appendix H). Figure 6 demonstrates
that DeepTime is highly efficient, even when compared
to efficient Transformer models, recently proposed for the
long sequence time series forecasting task, as well as fully
connected models.

7

Learning Deep Time-index Models for Time Series Forecasting

Table 4. Ablation study on variants of DeepTime. Starting from the original version, we add (+) or remove (-) some component from
DeepTime. Datetime refers to datetime features. RR stands for the differentiable closed-form ridge regressor, removing it refers to
replacing this module with a simple linear layer trained via gradient descent across all training samples (i.e. without meta-optimization
formulation). Local refers to training an INR from scratch via gradient descent for each lookback window (RR is not used here, and there
is no training phase). + Finetune refers to training an INR via gradient descent for each lookback window on top of having a training
phase. Full MAML refers to performing gradient steps for the inner loop and backpropagating through them for the outer loop as in (Finn
et al., 2017). Further details on the variants can be found in Appendix L.1.

Methods DeepTime + Datetime - RR
- RR

+ Local
+ Local

+ Finetune
+ Finetune

Full MAML+ Datetime + Datetime + Datetime

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.226 0.303 3.072 1.345 3.393 1.400 0.251 0.331 0.250 0.327 3.028 1.328 3.242 1.365 0.235 0.326
192 0.225 0.302 0.309 0.362 3.064 1.343 3.269 1.381 0.322 0.371 0.323 0.366 3.043 1.341 3.385 1.391 0.295 0.361
336 0.277 0.336 0.341 0.381 2.920 1.309 3.442 1.401 0.370 0.412 0.367 0.396 2.950 1.331 3.367 1.387 0.348 0.392
720 0.383 0.409 0.453 0.447 2.773 1.273 3.400 1.399 0.443 0.449 0.455 0.461 2.721 1.253 3.476 1.407 0.491 0.484

48 96 168 336 720 1440
Lookback Window

0.02
0.04
0.06
0.08
0.10
0.12

Ti
m

e
(s

)

DeepTime
ETSformer (K=1)
Autoformer
Informer
N-BEATS
N-HiTS

48 96 168 336 720 1440
Forecast Horizon

0.02
0.04
0.06
0.08
0.10

Ti
m

e
(s

)

(a) Runtime Analysis

48 96 168 336 720 1440
Lookback Window

0

2

4

6

M
em

or
y

(G
B)

DeepTime
ETSformer (K=1)
Autoformer
Informer
N-BEATS
N-HiTS

48 96 168 336 720 1440
Forecast Horizon

0
1
2
3
4
5
6
7

M
em

or
y

(G
B)

(b) Memory Analysis

Figure 6. Computational efficiency benchmark on the ETTm2 multivariate dataset, on a batch size of 32. Runtime is measured for
one iteration (forward + backward pass). Left: Runtime/Memory usage as lookback length varies, horizon is fixed to 48. Right:
Runtime/Memory usage as horizon length varies, lookback length is fixed to 48. Further model details can be found in Appendix M.

6. Discussion
In this paper, we proposed DeepTime, a deep time-index
model learned via a meta-optimization framework, to auto-
matically learn a function form from time series data, rather
than manually defining the representation function as per
classical methods. DeepTime resolves issues arising for
vanilla deep time-index models by splitting the learning
process into inner and outer learning processes, where the
outer learning process enables the deep time-index model
to learn a strong inductive bias for extrapolation from data.
We propose a fast and efficient instantiation of the meta-
optimization framework, using a closed-form ridge regres-
sor. We also enhance deep time-index models with a novel
concatenated Fourier features module to efficiently learn
high frequency patterns in time series. Our extensive em-
pirical analysis shows that DeepTime, while being a much
simpler model architecture compared to prevailing state-of-
the-art methods, achieves competitive performance across

forecasting benchmarks on real world datasets. We perform
substantial ablation studies to identify the key components
contributing to the success of DeepTime, and also show that
it is highly efficient.

Limitations & Future Work Despite having veri-
fied DeepTime’s effectiveness, we expect some under-
performance in cases where the lookback window contains
significant anomalies, or an abrupt change point. Next,
while out of scope for our current work, a limitation that
DeepTime faces is that it does not consider holidays and
events. We leave the consideration of such features as a
potential future direction, along with the incorporation of
exogenous covariates and datetime features, whilst avoiding
the incursion of the meta-learning memorization problem.
Finally, time-index models are a natural fit for missing value
imputation, as well as other time series intelligence tasks
for irregular time series – this is another interesting future
direction to extend deep time-index models towards.

8

Learning Deep Time-index Models for Time Series Forecasting

References
Amit, R. and Meir, R. Meta-learning by adjusting priors

based on extended pac-bayes theory. In International
Conference on Machine Learning, pp. 205–214. PMLR,
2018.

Antoniou, A., Edwards, H., and Storkey, A. How to train
your MAML. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=HJGven05Y7.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion, 2016. URL https://arxiv.org/abs/1607.
06450.

Basri, R., Galun, M., Geifman, A., Jacobs, D., Kasten, Y.,
and Kritchman, S. Frequency bias in neural networks for
input of non-uniform density. In International Conference
on Machine Learning, pp. 685–694. PMLR, 2020.

Benidis, K., Rangapuram, S. S., Flunkert, V., Wang,
B., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-
Schneider, M., Salinas, D., Stella, L., et al. Neural
forecasting: Introduction and literature overview. arXiv
preprint arXiv:2004.10240, 2020.

Bertinetto, L., Henriques, J. F., Torr, P., and Vedaldi, A.
Meta-learning with differentiable closed-form solvers. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HyxnZh0ct7.

Carbonneau, R., Laframboise, K., and Vahidov, R. Appli-
cation of machine learning techniques for supply chain
demand forecasting. European Journal of Operational
Research, 184(3):1140–1154, 2008.

Catoni, O. Pac-bayesian supervised classification: the
thermodynamics of statistical learning. arXiv preprint
arXiv:0712.0248, 2007.

Challu, C., Olivares, K. G., Oreshkin, B. N., Garza, F.,
Mergenthaler, M., and Dubrawski, A. N-hits: Neural hi-
erarchical interpolation for time series forecasting. arXiv
preprint arXiv:2201.12886, 2022.

Chevillon, G. Direct multi-step estimation and forecasting.
Journal of Economic Surveys, 21(4):746–785, 2007.

Corani, G., Benavoli, A., and Zaffalon, M. Time series
forecasting with gaussian processes needs priors. In Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pp. 103–117. Springer,
2021.

Dupont, E., Teh, Y. W., and Doucet, A. Generative
models as distributions of functions. arXiv preprint
arXiv:2102.04776, 2021.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks.
In Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pp. 1126–1135. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
finn17a.html.

Godfrey, L. B. and Gashler, M. S. Neural decomposition
of time-series data for effective generalization. IEEE
transactions on neural networks and learning systems, 29
(7):2973–2985, 2017.

Gong, M., Zhang, K., Schoelkopf, B., Tao, D., and Geiger, P.
Discovering temporal causal relations from subsampled
data. In International Conference on Machine Learning,
pp. 1898–1906. PMLR, 2015.

Gong, M., Zhang, K., Schölkopf, B., Glymour, C., and Tao,
D. Causal discovery from temporally aggregated time
series. In Uncertainty in artificial intelligence: proceed-
ings of the... conference. Conference on Uncertainty in
Artificial Intelligence, volume 2017. NIH Public Access,
2017.

Grazzi, R., Flunkert, V., Salinas, D., Januschowski, T.,
Seeger, M., and Archambeau, C. Meta-forecasting by
combining global deeprepresentations with local adapta-
tion. arXiv preprint arXiv:2111.03418, 2021.

Harvey, A. C. and Shephard, N. 10 structural time
series models. In Econometrics, volume 11 of
Handbook of Statistics, pp. 261–302. Elsevier, 1993.
doi: https://doi.org/10.1016/S0169-7161(05)80045-8.
URL https://www.sciencedirect.com/
science/article/pii/S0169716105800458.

Hyndman, R. J. and Athanasopoulos, G. Forecasting: prin-
ciples and practice. OTexts, 2018.

Jeong, K.-J. and Shin, Y.-M. Time-series anomaly detec-
tion with implicit neural representation. arXiv preprint
arXiv:2201.11950, 2022.

Kim, K.-j. Financial time series forecasting using sup-
port vector machines. Neurocomputing, 55(1-2):307–319,
2003.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. Modeling long-
and short-term temporal patterns with deep neural net-
works. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pp.
95–104, 2018.

9

https://openreview.net/forum?id=HJGven05Y7
https://openreview.net/forum?id=HJGven05Y7
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=HyxnZh0ct7
https://openreview.net/forum?id=HyxnZh0ct7
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://www.sciencedirect.com/science/article/pii/S0169716105800458
https://www.sciencedirect.com/science/article/pii/S0169716105800458

Learning Deep Time-index Models for Time Series Forecasting

Laptev, N., Yosinski, J., Li, L. E., and Smyl, S. Time-
series extreme event forecasting with neural networks at
uber. In International conference on machine learning,
volume 34, pp. 1–5, 2017.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X.,
and Yan, X. Enhancing the locality and breaking the mem-
ory bottleneck of transformer on time series forecasting.
ArXiv, abs/1907.00235, 2019.

Liu, Y., Wu, H., Wang, J., and Long, M. Non-stationary
transformers: Exploring the stationarity in time series
forecasting. In Oh, A. H., Agarwal, A., Belgrave, D.,
and Cho, K. (eds.), Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.
net/forum?id=ucNDIDRNjjv.

Marcellino, M., Stock, J. H., and Watson, M. W. A com-
parison of direct and iterated multistep ar methods for
forecasting macroeconomic time series. Journal of econo-
metrics, 135(1-2):499–526, 2006.

McAllester, D. A. Pac-bayesian model averaging. In Pro-
ceedings of the twelfth annual conference on Computa-
tional learning theory, pp. 164–170, 1999.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405–421. Springer,
2020.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Icml, 2010.

Ord, K., Fildes, R. A., and Kourentzes, N. Principles of
business forecasting. Wessex Press Publishing Co., 2017.

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio,
Y. N-beats: Neural basis expansion analysis for inter-
pretable time series forecasting. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1ecqn4YwB.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. On the spec-
tral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Rajendran, J., Irpan, A., and Jang, E. Meta-learning requires
meta-augmentation. Advances in Neural Information
Processing Systems, 33:5705–5715, 2020.

Rasmussen, C. E. Gaussian processes in machine learn-
ing. In Summer school on machine learning, pp. 63–71.
Springer, 2003.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In ICLR, 2017.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski,
T. Deepar: Probabilistic forecasting with autoregressive
recurrent networks. International Journal of Forecasting,
36(3):1181–1191, 2020.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Sitzmann, V., Chan, E., Tucker, R., Snavely, N., and Wet-
zstein, G. Metasdf: Meta-learning signed distance func-
tions. Advances in Neural Information Processing Sys-
tems, 33:10136–10147, 2020a.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit neural representations with periodic
activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020b.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Taieb, S. B., Hyndman, R. J., et al. Recursive and direct
multi-step forecasting: the best of both worlds, volume 19.
Citeseer, 2012.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Bar-
ron, J., and Ng, R. Fourier features let networks learn
high frequency functions in low dimensional domains.
Advances in Neural Information Processing Systems, 33:
7537–7547, 2020.

Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srini-
vasan, P. P., Barron, J. T., and Ng, R. Learned initial-
izations for optimizing coordinate-based neural represen-
tations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2846–
2855, 2021.

Taylor, S. J. and Letham, B. Forecasting at scale. The
American Statistician, 72(1):37–45, 2018.

Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P.,
Tretschk, E., Wang, Y., Lassner, C., Sitzmann, V., Martin-
Brualla, R., Lombardi, S., et al. Advances in neural
rendering. arXiv preprint arXiv:2111.05849, 2021.

Woo, G., Liu, C., Sahoo, D., Kumar, A., and Hoi, S. Ets-
former: Exponential smoothing transformers for time-
series forecasting. arXiv preprint arXiv:2202.01381,
2022.

Xu, J., Wang, J., Long, M., et al. Autoformer: Decompo-
sition transformers with auto-correlation for long-term
series forecasting. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

10

https://openreview.net/forum?id=ucNDIDRNjjv
https://openreview.net/forum?id=ucNDIDRNjjv
https://openreview.net/forum?id=r1ecqn4YwB
https://openreview.net/forum?id=r1ecqn4YwB

Learning Deep Time-index Models for Time Series Forecasting

Yin, M., Tucker, G., Zhou, M., Levine, S., and Finn,
C. Meta-learning without memorization. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=BklEFpEYwS.

Young, P. C., Pedregal, D. J., and Tych, W. Dynamic har-
monic regression. Journal of forecasting, 18(6):369–394,
1999.

Yüce, G., Ortiz-Jiménez, G., Besbinar, B., and Frossard,
P. A structured dictionary perspective on implicit neural
representations. arXiv preprint arXiv:2112.01917, 2021.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proceedings
of AAAI, 2021.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. Fedformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. arXiv preprint
arXiv:2201.12740, 2022.

11

https://openreview.net/forum?id=BklEFpEYwS
https://openreview.net/forum?id=BklEFpEYwS

Learning Deep Time-index Models for Time Series Forecasting

A. DeepTime Pseudocode

Algorithm 1 PyTorch-Style Pseudocode of Closed-Form Ridge Regressor
mm: matrix multiplication, diagonal: returns the diagonal elements of a matrix, add : in-place addition
linalg.solve computes the solution of a square system of linear equations with a unique solution.

X: inputs, shape: (n samples, n dim)
Y: targets, shape: (n samples, n out)
lambd: scalar value representing the regularization coefficient

n samples, n dim = X.shape

add a bias term by concatenating an all−ones vector
ones = torch.ones(n samples, 1)
X = cat([X, ones], dim=−1)

if n samples >= n dim:
standard formulation
A = mm(X.T, X)
A.diagonal().add (softplus(lambd))
B = mm(X.T, Y)
weights = linalg.solve(A, B)

else:
Woodbury formulation
A = mm(X, X.T)
A.diagonal().add (softplus(lambd))
weights = mm(X.T, linalg.solve(A, Y))

w, b = weights[:−1], weights[−1:]
return w, b

Algorithm 2 PyTorch-Style Pseudocode of DeepTIMe
rearrange: einops style tensor operations
mm: matrix multiplication

x: input time−series, shape: (lookback len, multivariate dim)
lookback len: scalar value representing the length of the lookback window
horizon len: scalar value representing the length of the forecast horizon
inr: implicit neural representation

time index = linspace(0, 1, lookback len + horizon len) # shape: (lookback len + horizon len)
time index = rearrange(time index, 't −> t 1') # shape: (lookback len + horizon len, 1)
time reprs = inr(time index) # shape: (lookback len + horizon len, hidden dim)

lookback reprs = time reprs[:lookback len]
horizon reprs = time reprs[−horizon len:]
w, b = ridge regressor(lookback reprs, x)
w.shape = (hidden dim, multivariate dim), b.shape = (1, multivariate dim)
preds = mm(horizon reprs, w) + b
return preds

12

Learning Deep Time-index Models for Time Series Forecasting

B. Categorization of Forecasting Methods

Table 5. Categorization of time-series forecasting methods over the dimensions of time-index vs historical-value methods, and DMS vs
IMS methods.

Time-index Historical-value

D
M

S

DeepTime N-HiTS
Prophet FEDformer

Gaussian process ETSformer
Time-series regression Autoformer

Informer
N-BEATS

IM
S -

DeepAR
LogTrans
ARIMA

ETS

Multi-step Forecasts Forecasting over a horizon (multiple time steps) can be achieved via two strategies, direct multi-step,
or iterative multi-step (Marcellino et al., 2006; Chevillon, 2007; Taieb et al., 2012), or even a mixture of both, but this has
been less explored:

• Direct Multi-step (DMS): A DMS forecaster directly predicts forecasts for the entire horizon. For example, to achieve
a multi-step forecast of H time steps, a DMS forecaster simply outputs H values in a single forward pass.

• Iterative Multi-step (IMS): An IMS forecaster iteratively predicts one step ahead, and consumes this forecast to make
a subsequent prediction. This is performed iteratively, until the desired length is achieved.

C. Further Discussion on DeepTime as a Time-index Model
We first reiterate our definitions of time-index and historical-value models from Section 1. Time-index models are models
whose predictions are purely functions of current time-index features. To perform forecasting (i.e. make predictions over
some forecast horizon), time-index models make the predictions ŷt+h = f(τt+h) for h = 0, . . . ,H − 1. Historical-value
models predict the time-series value of future time step(s) as a function of past observations, and optionally, covariates.

Time-index Models

ŷt = f(τt)

Historical-value Models

ŷt+1 = f(yt,yt−1, . . . ,zt+1, zt, . . .)

Thus, forecasts are of the form, ŷt+h = A(f,Yt−L:t)(τt+h), and as can be seen, while the inner loop optimization step is a
function of past observations, the adapted time-index model it yields is purely a function of time-index features.

Next, we further discuss some subtleties of how time-index models interact with past observations. Some confusion
regarding DeepTime’s categorization as a time-index model may arise from the above simplified equation for predictions,
since forecasts are now a function the lookback window due to the closed-form solution of W (K)∗

t . In particular, that
Equations (1) and (4) indicate that forecasts from DeepTime are in fact linear in the lookback window. However, we highlight
that this is not in contradiction with our definition of historical-value and time-index models. Here, we differentiate between
the model, f ∈ H, and the learning algorithm, A, which is specified in Equation (3) (the inner loop optimization). The
learning algorithm A : H×RL×m → H takes as input a model from the hypothesis class H and, past observations, returning
a model minimizing the loss function L. A time-index model is thus, still only a function of time-index features, while the
learning algorithm is a function of past observations, i.e. f, f0 ∈ H, f : Rc → Rm, f = A(f0,Yt−L:t). DeepTime as a
forecaster, is a deep time-index model endowed with a meta-optimization framework. In order to perform forecasting, it
has to perform an inner loop optimization defined by the learning algorithm, as highlighted in Equation (3). For the special
case where we use the closed-form ridge regressor, the inner loop learning algorithm reduces to a form which is linear in the
lookback window. Still, the deep time-index model is only a function of time-index features.

13

Learning Deep Time-index Models for Time Series Forecasting

D. Generalization Bound for our Meta-optimization Framework
In this section, we derive a generalization bound for DeepTime under the PAC-Bayes framework (McAllester, 1999;
Shalev-Shwartz & Ben-David, 2014). Our formulation follows Amit & Meir (2018) which introduces a meta-learning
generalization bound. We assume that all instances share the same hypothesis space H, sample space Z and loss function
ℓ : H × Z → [0, 1]. We observes n instances in the form of sample sets S1, . . . ,Sn. The number of samples in each
instance is H + L. Each instance Sk is assumed to be generated i.i.d from an unknown sample distribution DH+L

k .
Each instance’s sample distribution Dk is i.i.d. generated from an unknown meta distribution, E. Particularly, we have
Sk = (zk−L, . . . , zk, . . . , zk+H−1), where zt = (τt,yt). Here, τt is the time coordinate, and yt is the time-series value.
For any forecaster h(·) parameterized by θ, we define the loss function ℓ(hθ, zt). We also define P as the prior distribution
over H and Q as the posterior over H for each instance. In the meta-learning setting, we assume a hyper-prior P , which is a
prior distribution over priors, observes a sequence of training instances, and then outputs a distribution over priors, called
hyper-posterior Q. We restate Theorem 4.1 in the following:

Theorem D.1. (Generalization Bound) Let Q, Q be arbitrary distribution of ϕ, θ, which are defined in Equation (2) and
Equation (3), and P, P be the prior distribution of ϕ, θ. Then for any c1, c2 > 0 and any δ ∈ (0, 1], with probability at least
1− δ, the following inequality holds uniformly for all hyper-posterior distributions Q,

er(Q) ≤ c1c2
(1− e−c1)(1− e−c2)

· 1
n

n∑
k=1

êr(Q,Sk)

+
c1

1− e−c1
·
KL(Q||P) + log 2

δ

nc1

+
c1c2

(1− e−c2)(1− e−c1)
·
KL(Q||P) + log 2n

δ

(H + L)c2
(6)

where er(Q) and êr(Q,Sk) are the generalization error and training error of DeepTime, respectively.

Proof. Our proof contains two steps. First, we bound the error within observed instances due to observing a limited number
of samples. Then we bound the error on the instance environment level due to observing a finite number of instances. Both
of the two steps utilize Catoni’s classical PAC-Bayes bound (Catoni, 2007) to measure the error. Here, we give Catoni’s
classical PAC-Bayes bound.

Theorem D.2. (Catoni’s bound (Catoni, 2007)) Let X be a sample space, P (X) a distribution over X , Θ a hypothesis
space. Given a loss function ℓ(θ,X) : Θ×X → [0, 1] and a collection of M i.i.d random variables (X1, . . . , XM) sampled
from P (X). Let π be a prior distribution over hypothesis space. Then, for any δ ∈ (0, 1] and any real number c > 0, the
following bound holds uniformly for all posterior distributions ρ over hypothesis space,

P

(
E

Xi∼P (X),θ∼ρ
[ℓ(θ,Xi)] ≤

c

1− e−c

[1

M

M∑
m=1

E
θ∼ρ

[ℓ(θ,Xm)] +
KL(ρ||π) + log 1

δ

Mc

]
,∀ρ

)
≥ 1− δ.

We first utilize Theorem D.2 to bound the generalization error in each of the observed instances. Let k be the index of
instance, we have the definition of expected error and empirical error as follows,

er(Q,Dk) = E
P∼Q

E
h∼Q(Sk,P)

E
z∼Dk

ℓ(h, z), (7)

êr(Q,Sk) = E
P∼Q

E
h∼Q(Sk,P)

1

H + L

k+H−1∑
j=k−L

ℓ(h, zj). (8)

Then, according to Theorem D.2, for any δk ∼ (0, 1] and c2 > 0, we have

P

(
er(Q,Dk) ≤

c2
1− e−c2

êr(Q,Sk) +
c2

1− e−c2
·
KL(Q||P) + log 1

δk

(H + L)c2

)
≥ 1− δk. (9)

14

Learning Deep Time-index Models for Time Series Forecasting

Next, we bound the error due to observing a limited number of instances from the environment. Similarly, we have the
definition of expected instance error as follows

er(Q) = E
D∼E

E
S∼DH+L

E
P∼Q

E
h∼Q(S,P)

E
z∼D

ℓ(h, z)

= E
D∼E

E
S∼DH+L

er(Q, D). (10)

Then we have the definition of error across the n instances,

1

n

n∑
k=1

E
P∼Q

E
h∼Q(Sk,P)

E
z∼Dk

ℓ(h, z) =
1

n

n∑
k=1

er(Q,Dk). (11)

Then Theorem D.2 says that the following holds for any δ0 ∼ (0, 1] and c1 > 0, we have

P

(
er(Q) ≤ c1

1− e−c1

1

n

n∑
k=1

er(Q,Dk) +
c1

1− e−c1
·
KL(Q||P) + log 1

δ0

nc1

)
≥ 1− δ0. (12)

Finally, by employing a union bound argument (Lemma 1, Amit & Meir (2018)), we could bound the probability of the
intersection of the events in Equation (12) and Equation (9) For any δ > 0, set δ0 = δ

2 and δk = δ
2n for k = 1, . . . , n,

P

(
er(Q) ≤ c1c2

(1− e−c1)(1− e−c2)
· 1
n

n∑
k=1

êr(Q,Sk) +
c1

1− e−c1
·
KL(Q||P) + log 2

δ

nc1

+
c1c2

(1− e−c2)(1− e−c1)
·
KL(Q||P) + log 2n

δ

(H + L)c2

)
≥ 1− δ. (13)

15

Learning Deep Time-index Models for Time Series Forecasting

E. Synthetic Data
The training set for each synthetic data experiment consists 1000 functions/tasks, while the test set contains 100 functions/-
tasks. We ensure that there is no overlap between the train and test sets.

Linear Samples are generated from the function y = ax+ b for x ∈ [−1, 1]. This means that each function/task consists
of 400 evenly spaced points between -1 and 1. The parameters of each function/task (i.e. a, b) are sampled from a normal
distribution with mean 0 and standard deviation of 50, i.e. a, b ∼ N (0, 502).

Cubic Samples are generated from the function y = ax3 + bx2 + cx+ d for x ∈ [−1, 1] for 400 points. Parameters of
each task are sampled from a continuous uniform distribution with minimum value of -50 and maximum value of 50, i.e.
a, b, c, d ∼ U(−50, 50).

Sums of sinusoids Sinusoids come from a fixed set of frequencies, generated by sampling ω ∼ U(0, 12π). We fix the
size of this set to be five, i.e. Ω = {ω1, . . . , ω5}. Each function is then a sum of J sinusoids, where J ∈ {1, 2, 3, 4, 5} is
randomly assigned. The function is thus y =

∑J
j=1 Aj sin(ωrjx+ φj) for x ∈ [0, 1], where the amplitude and phase shifts

are freely chosen via Aj ∼ U(0.1, 5), φj ∼ U(0, π), but the frequency is decided by rj ∈ {1, 2, 3, 4, 5} to randomly select
a frequency from the set Ω.

The predictions from DeepTime in Figure 4 demonstrate some noise, likely stemming from the model’s capability to learn
high frequency features due to the use of implicit neural representations with random Fourier features. Since the synthetic
data are all low frequency, smoothly changing functions, the noise is likely to be artifacts from the concatenated Fourier
features layer, which should go away if the scale parameter of the Fourier features are carefully fine-tuned. However, the
power of our proposed concatenated Fourier features layer is that the model is able to fit to both high and low frequency
features without tuning, though at the expense of some noise as seen in the figure.

F. Datasets
ETT1 (Zhou et al., 2021) - Electricity Transformer Temperature provides measurements from an electricity transformer
such as load and oil temperature. We use the ETTm2 subset, consisting measurements at a 15 minutes frequency.

ECL2 - Electricity Consuming Load provides measurements of electricity consumption for 321 households from 2012 to
2014. The data was collected at the 15 mintue level, but is aggregated hourly.

Exchange3 (Lai et al., 2018) - a collection of daily exchange rates with USD of eight countries (Australia, United Kingdom,
Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to 2016.

Traffic4 - dataset from the California Department of Transportation providing the hourly road occupancy rates from 862
sensors in San Francisco Bay area freeways.

Weather5 - provides measurements of 21 meteorological indicators such as air temperature, humidity, etc., every 10 minutes
for the year of 2020 from the Weather Station of the Max Planck Biogeochemistry Institute in Jena, Germany.

ILI6 - Influenza-like Illness measures the weekly ratio of patients seen with ILI and the total number of patients, obtained by
the Centers for Disease Control and Prevention of the United States between 2002 and 2021.

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://github.com/laiguokun/multivariate-time-series-data
4https://pems.dot.ca.gov/
5https://www.bgc-jena.mpg.de/wetter/
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

16

https://github.com/zhouhaoyi/ETDataset
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/multivariate-time-series-data
https://pems.dot.ca.gov/
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Learning Deep Time-index Models for Time Series Forecasting

G. DeepTime Implementation Details
Optimization We train DeepTime with the Adam optimizer (Kingma & Ba, 2014) with a learning rate scheduler following
a linear warm up and cosine annealing scheme. Gradient clipping by norm is applied. The ridge regressor regularization
coefficient, λ, is trained with a different, higher learning rate than the rest of the meta parameters. We use early stopping
based on the validation loss, with a fixed patience hyperparameter (number of epochs for which loss deteriorates before
stopping). All experiments are performed on an Nvidia A100 GPU.

Model The ridge regression regularization coefficient is a learnable parameter constrained to positive values via a softplus
function. We apply Dropout (Srivastava et al., 2014), then LayerNorm (Ba et al., 2016) after the ReLU activation function in
each INR layer. The size of the random Fourier feature layer is set independently of the layer size, in which we define the
total size of the random Fourier feature layer – the number of dimensions for each scale is divided equally.

H. DeepTime Hyperparameters

Table 6. Hyperparameters used in DeepTime.

Hyperparameter Value

O
pt

im
iz

at
io

n

Epochs 50
Learning rate 1e-3
λ learning rate 1.0
Warm up epochs 5
Batch size 256
Early stopping patience 7
Max gradient norm 10.0

M
od

el

Layers 5
Layer size 256
λ initialization 0.0
Scales [0.01, 0.1, 1, 5, 10, 20, 50, 100]
Fourier features size 4096
Dropout 0.1
Lookback length multiplier, µ µ ∈ {1, 3, 5, 7, 9}

I. Univariate Forecasting Benchmark

Table 7. Univariate forecasting benchmark on long sequence time-series forecasting. Best results are highlighted in bold, and second best
results are underlined.

Methods DeepTime N-HiTS ETSformer Fedformer Autoformer Informer N-BEATS DeepAR Prophet ARIMA GP

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.065 0.186 0.066 0.185 0.080 0.212 0.063 0.189 0.065 0.189 0.088 0.225 0.082 0.219 0.099 0.237 0.287 0.456 0.211 0.362 0.125 0.273
192 0.096 0.234 0.087 0.223 0.150 0.302 0.102 0.245 0.118 0.256 0.132 0.283 0.120 0.268 0.154 0.310 0.312 0.483 0.261 0.406 0.154 0.307
336 0.138 0.285 0.106 0.251 0.175 0.334 0.130 0.279 0.154 0.305 0.180 0.336 0.226 0.370 0.277 0.428 0.331 0.474 0.317 0.448 0.189 0.338
720 0.186 0.338 0.157 0.312 0.224 0.379 0.178 0.325 0.182 0.335 0.300 0.435 0.188 0.338 0.332 0.468 0.534 0.593 0.366 0.487 0.318 0.421

E
xc

ha
ng

e 96 0.086 0.226 0.093 0.223 0.099 0.230 0.131 0.284 0.241 0.299 0.591 0.615 0.156 0.299 0.417 0.515 0.828 0.762 0.112 0.245 0.165 0.311
192 0.173 0.330 0.230 0.313 0.223 0.353 0.277 0.420 0.273 0.665 1.183 0.912 0.669 0.665 0.813 0.735 0.909 0.974 0.304 0.404 0.649 0.617
336 0.539 0.575 0.370 0.486 0.421 0.497 0.426 0.511 0.508 0.605 1.367 0.984 0.611 0.605 1.331 0.962 1.304 0.988 0.736 0.598 0.596 0.592
720 0.936 0.763 0.728 0.569 1.114 0.807 1.162 0.832 0.991 0.860 1.872 1.072 1.111 0.860 1.890 1.181 3.238 1.566 1.871 0.935 1.002 0.786

17

Learning Deep Time-index Models for Time Series Forecasting

J. DeepTime Standard Deviation

Table 8. DeepTime main benchmark results with standard deviation. Experiments are performed over three runs.

(a) Multivariate benchmark.

Metrics MSE (SD) MAE (SD)

E
T

T
m

2 96 0.166 (0.000) 0.257 (0.001)
192 0.225 (0.001) 0.302 (0.003)
336 0.277 (0.002) 0.336 (0.002)
720 0.383 (0.007) 0.409 (0.006)

E
C

L

96 0.137 (0.000) 0.238 (0.000)
192 0.152 (0.000) 0.252 (0.000)
336 0.166 (0.000) 0.268 (0.000)
720 0.201 (0.000) 0.302 (0.000)

E
xc

ha
ng

e 96 0.081 (0.001) 0.205 (0.002)
192 0.151 (0.002) 0.284 (0.003)
336 0.314 (0.033) 0.412 (0.020)
720 0.856 (0.202) 0.663 (0.082)

Tr
af

fic

96 0.390 (0.001) 0.275 (0.001)
192 0.402 (0.000) 0.278 (0.000)
336 0.415 (0.000) 0.288 (0.001)
720 0.449 (0.000) 0.307 (0.000)

W
ea

th
er

96 0.166 (0.001) 0.221 (0.002)
192 0.207 (0.000) 0.261 (0.000)
336 0.251 (0.000) 0.298 (0.001)
720 0.301 (0.001) 0.338 (0.001)

IL
I

24 2.425 (0.058) 1.086 (0.027)
36 2.231 (0.087) 1.008 (0.011)
48 2.230 (0.144) 1.016 (0.037)
60 2.143 (0.032) 0.985 (0.016)

(b) Univariate benchmark.

Metrics MSE (SD) MAE (SD)

E
T

T
m

2 96 0.065 (0.000) 0.186 (0.000)
192 0.096 (0.002) 0.234 (0.003)
336 0.138 (0.001) 0.285 (0.001)
720 0.186 (0.002) 0.338 (0.002)

E
xc

ha
ng

e 96 0.086 (0.000) 0.226 (0.000)
192 0.173 (0.004) 0.330 (0.003)
336 0.539 (0.066) 0.575 (0.027)
720 0.936 (0.222) 0.763 (0.075)

18

Learning Deep Time-index Models for Time Series Forecasting

K. Random Fourier Features Scale Hyperparameter Sensitivity Analysis

Table 9. Comparison of CFF against the optimal and pessimal scales as obtained from the hyperparameter sweep. We also calculate the
change in performance between CFF and the optimal and pessimal scales, where a positive percentage refers to a CFF underperforming,
and negative percentage refers to CFF outperforming, calculated as % change = (MSECFF −MSEScale)/MSEScale.

CFF Optimal Scale (% change) Pessimal Scale (% change)

Metrics MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.164 (1.20%) 0.257 (-0.05%) 0.216 (-23.22%) 0.300 (-14.22%)
192 0.225 0.302 0.220 (1.87%) 0.301 (0.25%) 0.275 (-18.36%) 0.340 (-11.25%)
336 0.277 0.336 0.275 (0.70%) 0.336 (-0.22%) 0.340 (-18.68%) 0.375 (-10.57%)
720 0.383 0.409 0.364 (5.29%) 0.392 (4.48%) 0.424 (-9.67%) 0.430 (-4.95%)

Table 10. Results from hyperparameter sweep on the scale hyperparameter. Best scores are highlighted in bold, and worst scores are
highlighted in bold red.

Scale Hyperparam 0.01 0.1 1 5 10 20 50 100

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.216 0.300 0.189 0.285 0.173 0.268 0.168 0.262 0.166 0.260 0.165 0.258 0.165 0.259 0.164 0.257
192 0.275 0.340 0.264 0.333 0.239 0.317 0.225 0.301 0.225 0.303 0.224 0.302 0.224 0.304 0.220 0.301
336 0.340 0.375 0.319 0.371 0.292 0.351 0.275 0.337 0.277 0.336 0.282 0.345 0.278 0.342 0.280 0.344
720 0.424 0.430 0.405 0.420 0.381 0.412 0.364 0.392 0.375 0.408 0.410 0.430 0.396 0.423 0.406 0.429

We perform a comparison between the optimal and pessimal scale hyperparameter for the vanilla random Fourier features
layer, against our proposed CFF. We first report the results on each scale hyperparameter for the vanilla random Fourier
features layer in Table 10. As with the other ablation studies, the results reported in Table 10 is based on performing a
hyperparameter sweep across lookback length multiplier, and selecting the optimal settings based on the validation set, and
reporting the test set results. Then, the optimal and pessimal scales are simply the best and worst results based on Table 10.
Table 9 shows that CFF achieves extremely low deviation from the optimal scale across all settings, yet retains the upside of
avoiding this expensive hyperparameter tuning phase. We also observe that tuning the scale hyperparameter is extremely
important, as CFF obtains up to a 23.22% improvement in MSE over the pessimal scale hyperparameter.

L. Ablation Studies Details
In this section, we list more details on the models compared to in the ablation studies section. Unless otherwise stated, we
perform the same hyperparameter tuning for all models in the ablation studies, and use the same standard hyperparameters
such as number of layers, layer size, etc.

L.1. Ablation study on variants of DeepTime

Datetime Features As each dataset comes with a timestamps for each observation, we are able to construct datetime
features from these timestamps. We construct the following features:

1. Quarter-of-year

2. Month-of-year

3. Week-of-year

4. Day-of-year

5. Day-of-month

6. Day-of-week

7. Hour-of-day

19

Learning Deep Time-index Models for Time Series Forecasting

8. Minute-of-hour

9. Second-of-minute

Each feature is initially an integer value, e.g. month-of-year can take on values in {0, 1, . . . , 11}, which we subsequently
normalize to a [0, 1] range. Depending on the data sampling frequency, the appropriate features can be chosen. For the
ETTm2 dataset, we used all features except second-of-minute since it is sampled at a 15 minute frequency.

RR Removing the ridge regressor module refers to replacing it with a simple linear layer, Linear : Rd → Rm, where
Linear(x) = Wx+ b, x ∈ Rd,W ∈ Rm×d, b ∈ Rm. This corresponds to a straight forward INR, which is trained across
all lookback-horizon pairs in the dataset.

Local For models marked “Local”, we similarly remove the ridge regressor module and replace it with a linear layer. Yet,
the model is not trained across all lookback-horizon pairs in the dataset. Instead, for each lookback-horizon pair in the
validation/test set, we fit the model to the lookback window via gradient descent, and then perform prediction on the horizon
to obtain the forecasts. A new model is trained from scratch for each lookback-horizon window. We perform tuning on an
extra hyperparameter, the number of epochs to perform gradient descent, for which we search through {10, 20, 30, 40, 50}.

Finetune Models marked “Finetune” are similar to “Local”, except that they have been trained on the training set first,
and for each lookback-horizon pair in the test set, they are “finetuned” on the lookback window.

Full MAML “Full MAML” indicates the setting for which MAML is performed on the entire deep time-index model,
by backpropagating through inner loop gradient steps as per Finn et al. (2017), rather than our proposed fast and efficient
meta-optimization framework. Inner loop optimization is performed using the Adam optimizer, and is tuned over lookback
length multiplier values of {1, 3, 5, 7, 9}, and inner loop iterations of {1, 5, 10}.

L.2. Ablation study on backbone models

For all models in this section, we retain the differentiable closed-form ridge regressor, to identify the effects of the backbone
model used.

MLP The random Fourier features layer is a mapping from coordinate space to latent space γ : Rc → Rd. To remove the
effects of the random Fourier features layer, we simply replace it with a with a linear map, Linear : Rc → Rd.

SIREN We replace the random Fourier features backbone with the SIREN model which is introduced by (Sitzmann et al.,
2020b). In this model, periodical activation functions are used, i.e. sin(x), along with specified weight initialization scheme.

RNN We use a 2 layer LSTM with hidden size of 256. Inputs are observations, yt, in an IMS fashion, predicting the next
time step, yt+1.

M. Computational Efficiency Experiments Details
Trans/In/Auto/ETS-former We use a model with 2 encoder and 2 decoder layers with a hidden size of 512, as specified
in their original papers.

N-BEATS We use an N-BEATS model with 3 stacks and 3 layers (relatively small compared to 30 stacks and 4 layers
used in their orignal paper7), with a hidden size of 512. Note, N-BEATS is a univariate model and values presented here
are multiplied by a factor of m to account for the multivariate data. Another dimension of comparison is the number of
parameters used in the model. Demonstrated in Table 11, fully connected models like N-BEATS, their number of parameters
scales linearly with lookback window and forecast horizon length, while for Transformer-based and DeepTime, the number
of parameters remains constant.

7https://github.com/ElementAI/N-BEATS/blob/master/experiments/electricity/generic.gin

20

https://github.com/ElementAI/N-BEATS/blob/master/experiments/electricity/generic.gin

Learning Deep Time-index Models for Time Series Forecasting

N-HiTS We use an N-HiTS model with hyperparameters as sugggested in their original paper (3 stacks, 1 block in
each stack, 2 MLP layers, 512 hidden size). For the following hyperparameters which were not specified (subject to
hyperparameter tuning), we set the pooling kernel size to [2, 2, 2], and the number of stack coefficients to [24, 12, 1]. Similar
to N-BEATS, N-HiTS is a univariate model, and values were multiplied by a factor of m to account for the multivariate data.

Table 11. Number of parameters in each model across various lookback window and forecast horizon lengths. The models were instantiated
for the ETTm2 multivariate dataset (this affects the embedding and projection layers in Autoformer). Values for N-HiTS in this table are
not multiplied by m since it is a global model (i.e. a single univariate model is used for all dimensions of the time-series).

Methods Autoformer N-HiTS DeepTime

L
oo

kb
ac

k
48 10,535,943 927,942 1,314,561
96 10,535,943 1,038,678 1,314,561

168 10,535,943 1,204,782 1,314,561
336 10,535,943 1,592,358 1,314,561
720 10,535,943 2,478,246 1,314,561

1440 10,535,943 4,139,286 1,314,561
2880 10,535,943 7,461,366 1,314,561
5760 10,535,943 14,105,526 1,314,561

H
or

iz
on

48 10,535,943 927,942 1,314,561
96 10,535,943 955,644 1,314,561

168 10,535,943 997,197 1,314,561
336 10,535,943 1,094,154 1,314,561
720 10,535,943 1,315,770 1,314,561

1440 10,535,943 1,731,300 1,314,561
2880 10,535,943 2,562,360 1,314,561
5760 10,535,943 4,224,480 1,314,561

21

