
SEGA: Structural Entropy Guided Anchor View
for Graph Contrastive Learning

Junran Wu 1 * Xueyuan Chen 1 * Bowen Shi 1 Shangzhe Li 1 Ke Xu 1 2

Abstract
In contrastive learning, the choice of “view” con-
trols the information that the representation cap-
tures and influences the performance of the model.
However, leading graph contrastive learning meth-
ods generally produce views via random corrup-
tion or learning, which could lead to the loss
of essential information and alteration of seman-
tic information. An anchor view that maintains
the essential information of input graphs for con-
trastive learning has been hardly investigated. In
this paper, based on the theory of graph infor-
mation bottleneck, we deduce the definition of
this anchor view; put differently, the anchor view
with essential information of input graph is sup-
posed to have the minimal structural uncertainty.
Furthermore, guided by structural entropy, we
implement the anchor view, termed SEGA, for
graph contrastive learning. We extensively vali-
date the proposed anchor view on various bench-
marks regarding graph classification under unsu-
pervised, semi-supervised, and transfer learning
and achieve significant performance boosts com-
pared to the state-of-the-art methods.

1. Introduction
Self-supervised learning has gained popularity recently and
achieved great success in deep learning, e.g., BERT (Devlin
et al., 2019) and MoCo (He et al., 2020). Compared with
supervised learning, self-supervised learning gets equal or
even better performance with limited or no-labeled data
which saves much annotation time and plenty of resources.
As one of the empirical self-supervised learning meth-
ods, contrastive learning develops rapidly and recently has

*Equal contribution 1State Key Lab of Software Develop-
ment Environment, Beihang University, Beijing, 100191, China
2Zhongguancun Laboratory, Beijing 100094, China. Correspon-
dence to: Shangzhe Li <shangzheli@buaa.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

been applied to various domains because of the scarcity of
datasets with labels. Meanwhile, graph neural networks
(GNNs) have become ubiquitous for graphs because of their
ability to model structural information (Li et al., 2022b;
Zhang et al., 2022). Therefore, graph contrastive learn-
ing (You et al., 2020; Suresh et al., 2021; Yang & Hong,
2022), based on the success of contrastive learning in com-
puter vision and natural language processing, has attracted
plenty of research interest after its presentation.

In contrastive learning, the choice of view controls the infor-
mation that the representation captures. Researchers have
found that the quality of views influences the performance
of contrastive learning models (Tian et al., 2020) and focus
on the generation of effective views that lead to better per-
formance for graphs through the data augmentation (Suresh
et al., 2021; You et al., 2021). Despite the effectiveness of
these graph views on various tasks, the proposed data aug-
mentations via random corruption or learning suffer from
structural damage and artificially introduced noise, which
could alter the fundamental property of input graphs. Unlike
images, data augmentation on graphs is much harder to pro-
vide high-quality contrastive samples due to the rich struc-
tural information of various contexts in the graph data (Feng
et al., 2022). So far, little attention has been paid to the an-
chor view for graph contrastive learning that maintains the
essential information of input graphs regarding graph clas-
sification. Therefore, we are eager to provide high-quality
contrastive samples by settling the two questions: (1) What
is the anchor view holding essential information? (2) How
to generate the anchor view for graph contrastive learning?

Recently, the information bottleneck theory that encour-
ages model to capture minimal but sufficient information,
that is essential information, has been applied to learn
graph representation, called Graph Information Bottleneck
(GIB) (Wu et al., 2020). In light of GIB, we conclude
that the anchor view with essential information of input
graph is supposed to have the minimal structural uncer-
tainty (i.e., G∗ = minH(G)). Now, with the definition of
target anchor view, the last question is its instantiation for
graph contrastive learning. Thus, a metric for graph struc-
tural uncertainty measurement is needed. Recently, based on
the classic uncertainty metric, Shannon entropy (Shannon,

1

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Graph Augmentation

Projection
Head

g(·)

hT

hG’

zT

zG’

Maximize
Information

Input Graph 𝑮

SEGA

Anchor View: T

e.g. Edge Dropping 𝑮 ' GNN

All-nodes Tree

COMBINE(·)

Undefined Height Tree

DROP(·)

Given height k

Coding Tree
Representation Learning

hT

min
∀"∶$%&'() " *+

ℋ" 𝐺GIB:			max
,
𝐼 𝑓 𝐺 ; 𝑌 − 	𝛽𝐼 𝐺; 𝑓 𝐺

Projection
Head

Figure 1. Graph contrastive learning framework with SEGA. The anchor view with essential information for graph contrastive
learning is realized with the graph information bottleneck and structural entropy. The essential information of given graph is decoded to
corresponding coding tree by structural entropy minimization. Under the architecture of contrastive learning, the model is trained to
maximize the consensus between the coding tree representation hT and the augmentation-based graph embedding hG′ .

1948), researchers proposed the structural entropy to mea-
sure the uncertainty of graph structures (Li & Pan, 2016).
This theory implies that under intuition, people fear uncer-
tainty and usually follow the choices that minimize such
non-determinism. According to the structural information
theory, the essential information embedded in the corre-
sponding graph can be decoded by minimizing its structural
uncertainty, that is to say, minimizing the structural entropy.

Here, in view of the definition of the anchor view given
above, we propose its instantiation, termed SEGA (see Fig-
ure 1), guided by structural entropy minimization for graph
contrastive learning. Specifically, an optimization algorithm
is first introduced for structural entropy minimization, in
which the coding trees of corresponding graphs are gener-
ated for essential information extraction. Then, based on the
message-passing scheme in GNNs, an encoder is proposed
to obtain the essential information held by the transformed
coding trees. Contrasted with the effective views in previ-
ous works, extensive experiments, including unsupervised,
semi-supervised, and transfer learning, are conducted on
various benchmarks regarding graph classification. Supe-
rior performance can be observed in comparison with those
state-of-the-art (SOTA) methods. The contributions of this
work can be summarized as follows:

• Based on the theory of graph information bottleneck,
to the best of our knowledge, we are the first to figure
out the anchor view with essential information of input
graphs for graph contrastive learning.

• Guided by structural entropy minimization, we present
an instantiation, termed SEGA, to implement the pro-
posed anchor view for graph contrastive learning.

• We extensively evaluate the proposed anchor view on
various benchmarks under the setting of unsupervised,
semi-supervised, and transfer learning, and obtain su-
perior performance compared to the SOTA methods.

2. Related Works
Graph Contrastive Learning. Great success has been
achieved by graph contrastive learning when facing the la-
bel scarcity in real-world network data (You et al., 2020;
Suresh et al., 2021; You et al., 2021; Feng et al., 2022;
You et al., 2022). However, unlike the data augmentation
on images that do not require rich domain knowledge, the
graph augmentation is far less intuitive and hard to analyze,
which makes it difficult to produce high-quality contrast
samples (Feng et al., 2022; You et al., 2022). Hence, the
study of the graph contrastive view is a key issue in graph
contrastive learning. Recently, based on the data augmen-
tation on images, plenty of efforts have been devoted to ex-
ploring various augmentations on graphs (You et al., 2020;
2021; Suresh et al., 2021; You et al., 2022; Li et al., 2022a).
While effective, none of them try to identify the essential
information from graphs. Furthermore, the proposed data
augmentations via random perturbation or learning suffer
from structure damage and noisy information (You et al.,
2020; Suresh et al., 2021). Recently, besides the view ex-
ploration, GraphLoG (Xu et al., 2021) and OEPG (Yang &
Hong, 2022) are built upon the generic graph contrastive
learning methods to discover the global semantic structure
underlying the whole dataset. Although they present excel-
lent performance, in this work, we are devoted to the domain
of view generation, which is orthogonal to the works for
dataset semantic structure exploration; put differently, ex-

2

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

tensive works for contrastive view generation can work with
the framework of GraphLoG and OEPG to produce more
superior performance.

Structural Entropy. Information entropy, as the basis of
Information Theory, stems from the demand for informa-
tion measuring in communication systems (Shannon, 1948).
Considering measuring the information in graphs, lots of
metrics were proposed. The entropy of graphs can be mea-
sured with p(G) at the global level (Mowshowitz & Dehmer,
2012). For a signal graph, various works aim to measure
the structural entropy of nodes. A local measurement of
graph entropy was first proposed based on distance (Ray-
chaudhury et al., 1984). Subsequently, extensive researches
attempted to measure the structural information of graph
from different angles, such as Von Neumann entropy (Braun-
stein et al., 2006), parametric graph entropy (Dehmer, 2008),
Gibbs entropy (Bianconi, 2009). However, these definitions
all destructure the graph into an unstructured probability
distribution and then apply Shannon entropy to define the in-
formation of the graph. Thus, these metrics can not serve as
the measurement of structural information that is crucial for
graphs and the key to the success of GNNs. Recently, based
on coding trees, structural entropy was proposed to evalu-
ate the complexity of the hierarchical structure of a graph
(Li & Pan, 2016). Considering the measurement of graph
information with fixed hierarchical manners, k-dimensional
structural entropy was further defined and can be used to
decode the essential information of graphs (Li et al., 2018;
Wu et al., 2022a;b).

3. Notations and Preliminaries
Some preliminary concepts and notations are introduced
here. In this work, G = {G1, G2, · · · , GM} refers to a set
of graphs, and each graph can be represented as a two tuple
G = (V, E), where V and E are the sets of nodes and edges.

Graph representation learning. In this work, GNNs with
message-passing scheme are adopted as the encoders. A
GNN aims to learn an embedding vector hv ∈ R for each
node and a vector hG ∈ R for the entire graph G. A node
representation hv is initialized as h(0)

v = Xv, and will be
iteratively updated by an encoder. For an L-layer GNN, each
node presentation will be updated using L−hop information
from surrounding nodes. The l-layer of a GNN (Gilmer
et al., 2017) can be expressed as

h(l)
v = f

(l)
U (h(l-1)

v , f
(l)
M ({(h(l-1)

v , h(l-1)
u)|u ∈ N(v)})), (1)

where N(v) is the neighborhood node set for v, h(l)
v is the

node representation of v in the l-th layer, f (l)
U denotes the up-

date function in the l-th layer, and f
(l)
M refers to the trainable

message-passing function in the l-th layer. hv can be re-
ferred to a summary of neighborhood nodes, like a subgraph.

Thus, after L iterations, the entire graph representation can
be formalized as follows:

hG = fR({hv|v ∈ V}), (2)

where fR is the readout function which pools the final set
of node representations.

Graph contrastive learning. In a generic contrastive learn-
ing model for graph classification, two corresponding views
of the same graph Gi are generally generated by two data
augmentation operators and serve as a positive pair. Let G̃1

i

and G̃2
i be the two augmented views; then, a GNN-based

encoder is adopted to model the structural information un-
derlying the given graph. In the pre-training phase, a pro-
jection head is further employed to map the two views into
an embedding space for contrasting. The released feature
vectors h1

i and h2
i are designed to identify themselves from

the others. Correspondingly, the NT-Xent loss (Chen et al.,
2020) helps to achieve the goal of graph contrastive learning
that maximizes the consensus of two correlated views:

Li = − log
esim(h1

i ,h
2
i)/τ∑N

j=1,j ̸=i e
sim(h1

i ,h
2
j)/τ

, (3)

where N denotes the batch size, τ is the temperature param-
eter, and sim(h1, h2) is generally implemented by a cosine
similarity function h1⊤h2

||h1||·||h2|| .

4. Methodology
In this section, we first introduce our theoretical motivation
and try to give the definition of the anchor view with essen-
tial information. Based on the structural information theory,
we then present an instantiation of the anchor view for graph
contrastive learning.

4.1. The Anchor View Holding Essential Information

Based on the idea of information bottleneck, GIB (Wu et al.,
2020) presents a statement that motivates us to think about
the anchor view that maintains the essential information
of input graphs. Specifically, through maximizing the mu-
tual information (MI) between the output and target (i.e.,
max I(f(G);Y)) while stinting such information between
the input and output (i.e., min I(G; f(G)), models are ca-
pable of learning minimal but sufficient information for a
given task. Therefore, the formal description of essential
information is given by

Definition 4.1. The essential information learned from
the input graphs is supposed to be the minimal sufficient
information required for a downstream prediction task.

In computer vision, researchers empirically gave a similar
answer for contrastive learning; put differently, compressing
the mutual information between views while maintaining

3

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

the integrity of information related to downstream tasks
(Tian et al., 2020), which further convinces us to build the
target anchor view via the GIB. Formally, the objective of
graph information bottleneck can be written as

GIB: max I(f(G);Y)− βI(G; f(G)), (4)

where (G, Y) ∼ PG×Y and β > 0.

Here, we give the definition of the target view:

Definition 4.2. The anchor view for graph contrastive learn-
ing is supposed to have minimal but sufficient information
for downstream tasks and help the other view learn such
information during training.

In the light of GIB, to acquire the essential information,
the anchor view for graph contrastive learning should have
minimal but sufficient information for downstream tasks.
However, unfortunately, the first part of GIB requires the
target-relevant information of the given task (i.e., Y), and
as we know, it is impossible under the architecture of self-
supervised training. 1 In this context, the other part that does
not require such target-related information sheds light on
the path of the target anchor view exploration. Therefore,
minimizing the mutual information between the learned rep-
resentation and input graph (i.e., min I(G; f(G))) suggests
the essential information that graph contrastive learning
should conquer. Formally, we have

GIB: max I(f(G);Y)− βI(G; f(G)),

⇒ min I(G; f(G)). (5)

Here, we first give a property that the target anchor view
should own:

Definition 4.3. The anchor view with essential information
is supposed to be a substructure of the given graph to avoid
artificially introduced noise.

In computer vision, to obtain the essential information, data
augmentation via random perturbation has been ubiquitously
adopted, and the accompanying induced noise is also ap-
proved for robust representation learning (Tian et al., 2020).
However, unlike the data augmentation on images that does
not require rich domain knowledge, the graph augmentation
is far less intuitive and hard to analyze, which makes it diffi-
cult to produce high-quality contrast samples (Feng et al.,
2022; You et al., 2022). Thus, we argue that the anchor view
with essential information of given graphs should avoid the
artificially introduced noise from random perturbation. Now,
let G∗ be the target anchor view of a graph G, the mutual
information between G and G∗ can be formulated as

I(G∗;G) = H(G∗)−H(G∗|G), (6)

1Based on the property of structural entropy, the information
for downstream tasks within the proposed anchor view G∗ is still
more than views from augmentations. Details refer to Theorem 4.6.

where H(G∗) is the entropy of G∗ and H(G∗|G) is the
conditional entropy of G∗ conditioned on G. 2

Theorem 4.4. According to Definition 4.3, the information
in G∗ is a subset of information in G (i.e.,H(G∗) ⊆ H(G));
thus, we have:

H(G∗|G) = 0. (7)

The detailed proof of Theorem 4.4 is shown in Appendix
A. Here, the mutual information between G and G∗ can be
rewritten as

I(G∗;G) = H(G∗). (8)

Accordingly, to acquire the anchor view with essential in-
formation, we need to optimize:

min I(G; f(G))⇒ min H(G∗). (9)

Besides information measuring,H(G∗) also reveal the un-
certainty of G∗ based on the definition of Shannon entropy
(Shannon, 1948). Correspondingly, the definition of the
anchor view with essential information for graph contrastive
learning is given by:

Definition 4.5. The anchor view with essential information
of input graph is supposed to have the minimal structural
uncertainty.

Remark. In this paper, base on GIB theory (Wu et al.,
2020), we conclude that the anchor view with essential in-
formation is supposed to satisfy H(G∗), and we interpret
it from the topological perspective as the view with mini-
mal structural uncertainty. First, this is because topological
structures are ubiquitous in complex network systems, while
node features may not be always available. For example, in
the social network datasets adopted in this study, only topo-
logical structures are available and node features are absent.
Furthermore, current research on contrastive views mainly
focuses on data augmentation methods based on topologi-
cal structures such as edge perturbation, node dropout and
subgraph extraction in GraphCL (You et al., 2020); learning
edge dropout in AD-GCL (Suresh et al., 2021); and learning
node selection in RGCL (Li et al., 2022a). Therefore, we
hope to explore contrastive views with essential information
from a more general angle, that is topological structure.

Next, we will elaborate on the instantiation of the defined
anchor view by introducing structural information theory.

4.2. Instantiation of Anchor View

In this subsection, we are going to introduce a practical
instantiation, a structural entropy guided anchor view (i.e.,
SEGA), for essential information decoding.

2We omit the graph encoder f for simplicity.

4

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Despite the broader applicability of Shannon entropy, in
this work, we need the metric of structural uncertainty
for graphs, which has also been asked by Brooks in the
“Three great challenges for half-century-old computer sci-
ence” (Brooks Jr, 2003). The question is how to define
the underlying information of a graph so that the essential
information of the graph could be decrypted, while Shannon
wondered the feasibility of communication graph analysis
via a structural theory of information (Shannon, 1953). Re-
cently, structural entropy defined on graphs was proposed
to measure the uncertainty of the graph structure (Li & Pan,
2016). According to this structural information theory, a
graph is encoded by a coding tree. 3 The structural entropy
of graph G = (V, E) on a coding tree T is defined as

HT (G) = −
∑
vτ∈T

gvτ
vol(V)

log
vol(vτ)

vol(v+τ)
, (10)

where vτ is a nonroot node in T and represents a node
subset Vτ ⊂ V based on its covered leaf nodes, gvτ is the
number of edges with exactly one vertex in Vτ , v+τ refers
to the immediate predecessor of vτ , and vol(V), vol(vτ)
and vol(v+τ) are the sums of degrees of vertices in V , vτ
and v+τ , respectively. Thus, to decode the essential infor-
mation of graph G with minimal structural uncertainty, we
need to realize the optimal coding tree T with minimum
entropy (i.e., minT HT (G)). Besides the optimal coding
tree, considering that a real-world network generally has a
natural structure with a fixed hierarchy, a coding tree with
the corresponding fixed height is preferred. In this con-
text, k-dimensional structural entropy is used to decode the
optimal coding tree with a certain height k:

Hk(G) = min
∀T :Height(T)=k

{HT (G)}. (11)

Now, in light of the structural information theory, we know
that the essential information of input graph can be decoded
by minimizing its structural entropy. Moreover, the target
anchor view for graph contrastive learning with minimum
but sufficient information is the coding tree of the graph
through k-dimensional structural entropy minimization.
Theorem 4.6. Given the target anchor view G∗ and a gen-
eral data augmentation function t, we have

I(G∗;Y) ≥ I(t(G);Y). (12)

Proof. Suppose the encoder f is implemented by a
GNN. The optimal encoder f∗ is the best model which
GNN can find. According to the definition f∗ =
argmaxfI(f(G);G), f∗ should be injective. Given the
target anchor view G∗, G∗ ⇒ f∗(G∗) is an injective deter-
ministic mapping. Thus, for any random variable Q,

I(f∗(G∗);Q) = I(G∗;Q). (13)

3A detailed description and illustration for coding tree T on
given graph G can be found in Appendix B.

When there is Q = Y , we will have,

I(f∗(G∗);Y) = I(G∗;Y). (14)

In light of the property of structural information theory (Li
& Pan, 2016), structural entropy decodes the essential struc-
ture of the original system while measuring the structural
information to support the semantic analysis of the system.
Thus, we have

I(f∗(G∗);Y) = I(f∗(G);Y). (15)

Now, introducing the data processing inequality (Thomas &
Joy, 2006) for data augmentation,

I(f∗(G);Y) = I(G;Y)

≥ I(t(G);Y) = I(f∗(t(G));Y). (16)

Combining above equations, we can have

I(G∗;Y) = I(f∗(G∗);Y)

= I(f∗(G);Y)

≥ I(f∗(t(G));Y) = I(t(G);Y), (17)

which concludes the proof.

Theorem 4.6 guarantees a lower bound of the mutual infor-
mation between the learned representations and the labels
of the downstream task; put differently, the learned essential
information with the anchor view G∗ is more than views
from augmentations.

For structural entropy minimization, we aim to decrypt the
coding tree with fixed height k from a graph. Given a graph
G = (V, E), a coding tree T can be build, in which vr is
the root node of T and V are the leaf nodes of T . For the
coding tree T , there are two function definitions.

Algorithm 1 Structural uncertainty minimization
Input: the given height k > 1, and the candidate graph
G = (V, E)
Output: a coding tree T that meets the height bar

1: Build a coding tree T with a root node vr and all nodes
in V as its children;

2: // Stage 1: Construct a full-height binary coding tree
from bottom to top;

3: while |vr.children| > 2 do
4: COMBINE(v1c , v

2
c) ← argmax(v1

c ,v
2
c)
{HT (G) −

HTCOMBINE(v1
c ,v2

c)(G)|v1c , v2c ∈ vr.children};
5: end while
6: // Stage 2: Squeeze T to meet the height bar;
7: while Height(T) > k do
8: DROP(vτ) ← argminvτ {HTDROP(vτ)(G) −

HT (G)|vτ ∈ T & vτ ̸= vr & vτ /∈ V};
9: end while

10: return T ;

5

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Definition 4.7. Given any two child nodes of vr, v1c and v2c ,
there is a function COMBINE(v1c , v

2
c) for T to add a new

node vi between vr and (v1c , v
2
c):

vi.children = {v1c , v2c}, (18)
vr.children = {vi} ∪ vr.children. (19)

Definition 4.8. Given a pair of nodes (vτ , v+τ) in T , there
is a function DROP(vτ) for T to drop node vτ and fuse the
children of vτ into v+τ :

v+τ .children = v+τ .children ∪ vτ .children. (20)

Based on the two defined operators, Algorithm 1 shows the
realization of structural uncertainty minimization. Specif-
ically, given a coding tree including only root node and
leaf nodes, a full-height binary coding tree grows from bot-
tom to top. In this process, two child nodes of root are
combined to form a new division in each iteration, which
aims to minimize the structural entropy. TCOMBINE(v1

c ,v
2
c)

denotes the coding tree that has combined the two children
(i.e., v1c and v2c) of the root node. Then, considering the
height limitation, the well developed coding tree needs to
be squeezed. During each iteration, an inner-node from T
will be dropped until its height meets the bar. In particular,
each dropped node should ensure that T has the minimized
structural entropy after each iteration. TDROP(vτ) is the cod-
ing tree that has dropped the inner node vτ . In the end, a
fixed height coding tree T = (VT , ET) will be obtained,
in which VT = (VT

0 , . . . ,VT
k) and VT

0 = V . The running
process of Algorithm 1 is illustrated in Appendix B.

Anchor view representation learning. Having the algo-
rithm for structural uncertainty minimization, we are capa-
ble of producing the anchor view with essential information
for graph contrastive learning. To further integrate the cod-
ing tree into the architecture of contrastive learning, we give
an encoder for the anchor view representation learning. In
light of the graph convolution scheme in GNNs, the cod-
ing tree encoder is designed to iteratively transfer messages
from bottom to top. Specifically, based on the hierarchical
structure of the coding tree and the initial node feature of
leaves, the non-leaf nodes update their hidden representa-
tion by aggregating the hidden features from their children.
Formally, the i-th layer of the encoder can be written as,
xi
v = MLPi

(∑
u∈L(v) x

(i−1)
u

)
, where xi

v is the feature of

v in the i-th layer of coding tree T , x0
v is the input feature

of leaf nodes, and L(v) refers to the children of v.

5. Experiments
In this section, we are devoted to evaluating SEGA with
extensive experiments 4. Note that the proposed anchor view

4The code of SEGA is available at https://github.com/
Wu-Junran/SEGA.

is orthogonal to previous works for graph augmentations,
and this also reveals that our method has a superior collabo-
rative capability with previous methods. Therefore, we first
validate SEGA via contrasting with the well-known rules
for graph augmentations from GraphCL (the first graph con-
trastive learning method with augmentations) (You et al.,
2020). Then, thorough orthogonal experiments are per-
formed to show the superiority of SEGA against SOTA
competitors. Further ablation studies are conducted to make
an in-depth analysis of SEGA.

5.1. Contrastive Learning with Simple Rules

Datasets. For unsupervised and semi-supervised learning,
various benchmarks are adopted from TUDataset (Mor-
ris et al., 2020), including COLLAB, REDDIT-BINARY,
REDDIT-MULTI-5K, IMDB-BINARY, GITHUB, NCI1,
MUTAG, PROTEINS and DD. For transfer learning,
ZINC15 (Sterling & Irwin, 2015) dataset is adopted for
biochemical pre-training. In particular, a subset with two
million unlabeled molecular graphs are sampled from the
ZINC15. For protein domain, following Hu et al. (2020),
306K unlabeled protein ego-networks are utilized for pre-
training. We employ the eight ubiquitous benchmarks from
the MoleculeNet dataset (Wu et al., 2018) as the biochemi-
cal downstream experiments. The protein downstream task
is to predict 40 fine-grained biological functions of 8 species.
Further details are shown in Appendix C.

Learning protocol. Following the learning setting in
GraphCL (You et al., 2020), the corresponding learning
protocols are adopted for a fair comparison. (a) In unsu-
pervised representation learning, all data is used for model
pre-training and the learned graph embeddings are then
fed into a non-linear SVM classifier to perform 10-fold
cross-validation. (b) In transfer learning, we first pre-train
the model on ZINC15 and PPI306K. Then, we finetune
and evaluate the model on MoleculeNet dataset and PPI
using the scaffold split scheme (Chen et al., 2012). (c) In
semi-supervised learning, there exist two learning settings.
For datasets with a public training/validation/test split, pre-
training is performed only on training dataset, finetuning is
conducted with 10% of the training data, and final evaluation
results are from the validation/test sets. For datasets without
such splits, all samples are employed for pre-training while
finetuning and evaluation are performed over 10 folds.

Configuration. To keep in line with GraphCL (You et al.,
2020), the same GNN architectures are employed with their
original hyper-parameters under individual experiment set-
tings. Specifically, in unsupervised learning, GIN (Xu et al.,
2019) with 32 hidden units and 3 layers is set up. In addi-
tion, the same data augmentations on graphs with the default
augmentation strength 0.2 are adopted. In transfer learning,
GIN is used with 5 layers and 300 hidden dimensions. In

6

https://github.com/Wu-Junran/SEGA
https://github.com/Wu-Junran/SEGA

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Table 1. Average accuracies (%) ± Std. of compared methods via unsupervised learning. Bold indicates the best performance over all
methods. A.A. refers to the average accuracy over eight benchmarks. A.R. implies the abbreviation of average rank. The results of
baselines are derived from the published works and - indicates the data missing in the such works.

NCI1 PROTEINS DD MUTAG COLLAB RED-B RED-M5K IMDB-B A.A. A.R.
GL - - - 81.66±2.11 - 77.34±0.18 41.01±0.17 65.87±0.98 - 6.5
WL 80.01±0.50 72.92±0.56 - 80.72±3.00 - 68.82±0.41 46.06±0.21 72.30±3.44 - 5.3
DGK 80.31±0.46 73.30±0.82 - 87.44±2.72 - 78.04±0.39 41.27±0.18 66.96±0.56 - 4.3
node2vec 54.89±1.61 57.49±3.57 - 72.63±10.20 - - - - - 7.7
sub2vec 52.84±1.47 53.03±5.55 - 61.05±15.80 - 71.48±0.41 36.69±0.42 55.26±1.54 - 8.5
graph2vec 73.22±1.81 73.30±2.05 - 83.15±9.25 - 75.78±1.03 47.86±0.26 71.10±0.54 - 5.3
MVGRL - - - 75.40±7.80 - 82.00±1.10 - 63.60±4.20 - 6.7
InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87 74.02 2.9
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 75.71 2.9
SEGA 79.00±0.72 76.01±0.42 78.76±0.57 90.21±0.66 74.12±0.47 90.21±0.65 56.13±0.30 73.58±0.44 77.25 1.3

Table 2. Average test ROC-AUC (%) ± Std. over different 10 runs of SEGA along with all baselines on nine downstream benchmarks.
The results of baselines are derived from the corresponding works. Bold indicates the best performance among all baselines. Avg. shows
the average ROC-AUC over all datasets.

BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE PPI Avg.
No Pre-Train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 64.8±1.0 66.72
Infomax 68.8±0.8 75.3±0.6 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 64.1±1.5 69.60
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 65.7±1.3 69.76
AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 65.2±1.6 69.38
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 64.4±1.3 70.17
GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 67.88±0.85 70.44
SEGA 71.86±1.06 76.72±0.43 65.23±0.91 63.68±0.34 84.99±0.94 76.60±2.45 77.63±1.37 77.07±0.46 68.73±0.54 73.61

semi-supervised learning, ResGCN with 128 hidden units
and 5 layers is set up for pre-training and finetuning.

As for the anchor view representation learning, the number
of tree encoder layer is consistent with the tree height, which
ranges from 2 to 5 and the MLP in each iteration has 2 layers.
The encoder hidden dimensions are fixed for all layers to
keep in line with GraphCL under individual experiment
setting. Additional details are shown in the Appendix D.

Unsupervised learning. The compared methods in un-
supervised learning have three categories. The published
hyper-parameters of these methods are adopted. The first set
is three SOTA kernel-based methods that include GL (Sher-
vashidze et al., 2009), WL (Shervashidze et al., 2011), and
DGK (Yanardag & Vishwanathan, 2015). The second set is
four heuristic self-supervised methods, including node2vec
(Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018),
graph2vec (Annamalai Narayanan & Jaiswal, 2017), and
InfoGraph (Sun et al., 2020). The final compared methods
are MVGRL (Hassani & Khasahmadi, 2020) and GraphCL
(You et al., 2020) for unsupervised learning.

The classification accuracies of SEGA contrasted with sim-
ple augmentation rules under the setting of unsupervised
learning are shown in Table 1, and a significant performance
improvement from the appearance of the target anchor view
can be witnessed as opposed to the baselines. Specifically,
in light of the last column for average rank, SEGA acquires
the highest position among the ten methods. Moreover, as

can be seen from the column for average accuracy, SEGA
outperforms InfoGraph and GraphCL with a 3.22% and
1.54% accuracy gain. In particular, except for the perfor-
mance on NCI1, SEGA obtains the best performance on the
other seven benchmarks, and we still can observe that SEGA
obtains the highest accuracy over all eight benchmarks un-
der the scenario without kernel-based methods. Thus, we
can conclude that better performance can consistently be
achieved when contrasting with the proposed anchor view.

Transfer learning. The baseline methods under the setting
of transfer learning include EdgePred, AttrMsking, Cont-
exPred (Hu et al., 2020), Infomax (Velickovic et al., 2019)
and GraphCL (You et al., 2020). A model without pre-train,
termed ‘No Pre-Train’, is also adopted for comparison.

The results of SEGA, along with baselines under the setting
of transfer learning on nine benchmarks, are shown in Ta-
ble 2. To summarize, the proposed anchor view, SEGA,
obtains superior performance compared to previous works.
Specifically, SEGA achieves the best performance on seven
out of nine benchmarks, and a 3.17% performance gain
is obtained in terms of average ROC-AUC compared to
GraphCL. Thus, we can conclude that the proposed anchor
view servers as a good contrastive branch to help the graph
encoder model essential information of given graphs and
improve generalization and performance.

Semi-supervised learning. Five baselines are adopted for
semi-supervised learning, including a naive GCN without

7

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Table 3. Average accuracies (%) ± Std. of compared methods via semi-supervised representation learning with 10% labels. Bold indicates
the best performance over all methods. A.A. is short for average accuracy. The results of baselines are derived from the published works.

NCI1 PROTEINS DD COLLAB RED-B RED-M5K GITHUB A.A.
No Pre-Train 73.72±0.24 70.40±1.51 73.56±0.41 73.71±0.27 86.63±0.27 51.33±0.44 60.87±0.17 70.03
GAE 74.36±0.24 70.51±0.17 74.54±0.68 75.09±0.19 87.69±0.40 53.58±0.13 63.89±0.52 71.38
ContextPred 73.00±0.30 70.23±0.63 74.66±0.51 73.69±0.37 84.76±0.52 51.23±0.84 62.35±0.73 69.99
Infomax 74.86±0.26 72.27±0.40 75.78±0.34 73.76±0.29 88.66±0.95 53.61±0.31 65.21±0.88 72.02
GraphCL 74.63±0.25 74.17±0.34 76.17±1.37 74.23±0.21 89.11±0.19 52.55±0.45 65.81±0.79 72.38
SEGA 75.09±0.22 74.65±0.54 76.33±0.43 75.18±0.22 89.40±0.23 53.73±0.28 66.01±0.66 72.92

Table 4. Orthogonal experiment results (%) of SEGA with SOTAs in unsupervised representation learning. Bold indicates the best
performance within each specific opeartion. A.A. shows the average accuracy over all datasets. The results of baselines are derived from
the published works and - indicates the data missing in the such works.

NCI1 PROTEINS DD MUTAG COLLAB RED-B RED-M5K IMDB-B IMDB-M A.A.
AD-GCL-FIX 69.67±0.51 73.59±0.65 74.49±0.52 89.25±1.45 73.32±0.27 85.52±0.79 53.00±0.82 71.57±1.01 49.04±0.53 71.05
SEGA-AD-GCL-FIX 70.38±0.76 74.61±0.81 75.84±0.64 89.89±0.69 75.03±0.36 87.74±0.39 54.29±0.54 72.32±0.49 50.83±0.34 72.33(↑1.28)
JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±3.08 - 74.75
SEGA-JOAO 76.19±0.77 75.44±0.54 78.27±1.32 87.70±1.31 72.82±0.35 86.79±1.31 56.17±0.67 71.74±1.26 - 75.64(↑0.89)
JOAOv2 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25 - 75.01
SEGA-JOAOv2 78.04±0.19 75.94±0.88 78.37±1.26 88.53±2.45 72.76±0.27 87.98±0.29 56.15±0.29 72.12±0.79 - 76.24(↑1.23)
AutoGCL 82.00±0.29 75.80±0.36 77.57±0.60 88.64±1.08 70.12±0.68 88.58±1.49 56.75±0.18 73.30±0.40 - 76.59
SEGA-AutoGCL 81.84±0.53 76.43±0.67 78.31±1.37 89.03±1.01 72.68±0.23 89.88±1.21 57.43±0.37 73.95±0.87 - 77.44(↑0.85)
RGCL 78.14±1.08 75.03±0.43 78.86±0.48 87.66±1.01 70.92±0.65 90.34±0.58 56.38±0.40 71.85±0.84 - 76.15
SEGA-RGCL 79.42±0.82 75.87±0.45 79.54±1.14 88.79±1.87 73.14±0.37 90.75±0.84 57.28±0.42 72.75±0.66 - 77.19(↑1.04)

pre-training (You et al., 2020), GAE (Kipf & Welling, 2016),
Infomax (Velickovic et al., 2019), ContextPred (Hu et al.,
2020) and GraphCL (You et al., 2020).

The classification accuracies of SEGA and compared meth-
ods under the setting of semi-supervised learning are shown
in Table 3, and SEGA outperforms these compared methods
across all benchmarks. Despite the least performance im-
provement, the effectiveness of our proposed anchor view
still has been validated in semi-supervised learning.

5.2. Orthogonal to SOTAs

As mentioned above, the proposed anchor view is orthog-
onal to previous works for graph augmentations; thus, we
further evaluate SEGA in collaboration with these aug-
mented views in unsupervised learning setting, including
AD-GCL (Suresh et al., 2021), JOAO (You et al., 2021),
AutoGCL (Yin et al., 2022) and RGCL (Li et al., 2022a).
Detailed settings for orthogonal experiments are shown in
Section D.4.

The orthogonal results are shown in Table 4, and we can see
that a general performance improvement is achieved with
the SEGA. Despite several specific failures, 0.85%∼1.28%
average accuracy gains confirm the effectiveness of SEGA
as an anchor view for graph contrastive learning.

5.3. Ablation Study

Here, we make an in-depth analysis about the performance
of SEGA under the setting of unsupervised learning.

RED-M5K IMDB-B COLLAB PROTEINS DD NCI1 RED-B MUTAG
50

55

60

65

70

75

80

85

90

A
cc

ur
ac

y(
%

)

RBBT
SEGA

Figure 2. Performance comparison between RBBT and SEGA.

Guidance from structural entropy. Besides the superior
performance of SEGA, we further evaluate the effectiveness
of Algorithm 1 for structural uncertainty minimization. In
unsupervised learning, we produce the anchor view without
guidance from structural entropy but adopt a random coding
tree, i.e., a randomly balanced binary tree (RBBT) with a
height of two. We also fix the height of the guided anchor
view to two for fair comparison. The results are shown
in Figure 2 and the structural entropy-guided anchor view
surpasses the random coding tree on all eight benchmarks.

The height k of graph’s natural hierarchy. In experimen-
tal setup, the height k of coding tree ranges from 2 to 5.
Here, we delve deeper into the optimal height k of graph’s
natural hierarchy. The specific performance of SEGA under
each height k via unsupervised learning is shown in Fig-

8

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

2 3 4 5

NCI1

77.5

78.0

78.5

79.0

79.5

A
cc

ur
ac

y(
%

)

2 3 4 5

PROTEINS

74.50

74.75

75.00

75.25

75.50

75.75

76.00

76.25

76.50

2 3 4 5

COLLAB

73.00

73.25

73.50

73.75

74.00

74.25

74.50

2 3 4 5

IMDB-B

72.25

72.50

72.75

73.00

73.25

73.50

73.75

74.00

2 3 4 5

DD

77.0

77.5

78.0

78.5

79.0

A
cc

ur
ac

y(
%

)

2 3 4 5

RED-B

88

89

90

91

92

2 3 4 5

RED-M5K

54.5

55.0

55.5

56.0

56.5

2 3 4 5

MUTAG

88

89

90

91

92

Figure 3. The natural hierarchy of graph.

ure 3. As can be seen, the optimal height k with the highest
accuracy varies among datasets. Except for NCI1 and DD,
the other six benchmarks achieve the best performance with
shallow layers (less than 5), and the rising trend of NCI1
and DD also implies the great potential of SEGA.

6. Conclusion
In this work, we try to explore an anchor view that main-
tains the essential information of input graphs for graph
contrastive learning. In the light of the graph information
bottleneck, we attempt to give the definition of the expected
anchor view. Moreover, based on the structural information
theory, we present a practical instantiation, called SEGA, to
implement this anchor view for graph contrastive learning.
Contrasted with extensive views in previous works, SEGA
shows superior performance on tasks regarding graph classi-
fication compared to SOTAs. An anchor view that maintains
the essential information for node classification sheds light
on our future research direction.

Acknowledgements
This research was supported by NSFC (Grant No.
61932002).

References
Aids antiviral screen data. Accessed: 2017-09-27,
https://wiki.nci.nih.gov/display/
NCIDTPdata/AIDS+Antiviral+Screen+Data.

Tox21 data challenge. Accessed: 2017-09-27, https:
//tripod.nih.gov/tox21/challenge, 2014.

Adhikari, B., Zhang, Y., Ramakrishnan, N., and Prakash,
B. A. Sub2vec: Feature learning for subgraphs. In Pacific-
Asia Conference on Knowledge Discovery and Data Min-
ing, pp. 170–182. Springer, 2018.

Annamalai Narayanan, Mahinthan Chandramohan, R. V. L.
C. Y. L. and Jaiswal, S. graph2vec: Learning distributed
representations of graphs. In Proceedings of the 13th
International Workshop on Mining and Learning with
Graphs (MLG), 2017.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler,
H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S.,
Eppig, J. T., et al. Gene ontology: tool for the unification
of biology. Nature Genetics, 25(1):25–29, 2000.

Bemis, G. W. and Murcko, M. A. The properties of known
drugs. 1. molecular frameworks. Journal of Medicinal
Chemistry, 39(15):2887–2893, 1996.

Bianconi, G. Entropy of network ensembles. Physical
Review E, 79(3):036114, 2009.

Braunstein, S. L., Ghosh, S., and Severini, S. The lapla-
cian of a graph as a density matrix: a basic combinatorial
approach to separability of mixed states. Annals of Com-
binatorics, 10(3):291–317, 2006.

Brooks Jr, F. P. Three great challenges for half-century-old
computer science. Journal of the ACM (JACM), 50(1):
25–26, 2003.

Chen, B., Sheridan, R. P., Hornak, V., and Voigt, J. H. Com-
parison of random forest and pipeline pilot naive bayes
in prospective qsar predictions. Journal of Chemical
Information and Modeling, 52(3):792–803, 2012.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, pp. 1597–1607. PMLR, 2020.

Consortium, G. O. The gene ontology resource: 20 years
and still going strong. Nucleic Acids Research, 47(D1):
D330–D338, 2019.

Dehmer, M. Information processing in complex networks:
Graph entropy and information functionals. Applied
Mathematics and Computation, 201(1-2):82–94, 2008.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
4171–4186. Association for Computational Linguistics,
2019.

Feng, S., Jing, B., Zhu, Y., and Tong, H. Adversarial graph
contrastive learning with information regularization. In
Proceedings of the ACM Web Conference 2022, pp. 1362–
1371, 2022.

9

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://tripod.nih.gov/tox21/challenge
https://tripod.nih.gov/tox21/challenge

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Gardiner, E. J., Holliday, J. D., O’Dowd, C., and Willett,
P. Effectiveness of 2d fingerprints for scaffold hopping.
Future Medicinal Chemistry, 3(4):405–414, 2011.

Gayvert, K. M., Madhukar, N. S., and Elemento, O. A data-
driven approach to predicting successes and failures of
clinical trials. Cell Chemical Biology, 23(10):1294–1301,
2016.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, pp. 1263–1272. PMLR, 2017.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. SIGKDD, pp. 855–864, 2016.

Hassani, K. and Khasahmadi, A. H. Contrastive multi-view
representation learning on graphs. In ICML, pp. 4116–
4126. PMLR, 2020.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9729–
9738, 2020.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande,
V., and Leskovec, J. Strategies for pre-training graph
neural networks. International Conference on Learning
Representations (ICLR), 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
NIPS Workshop on Bayesian Deep Learning, 2016.

Klopfenstein, D., Zhang, L., Pedersen, B. S., Ramı́rez, F.,
Warwick Vesztrocy, A., Naldi, A., Mungall, C. J., Yunes,
J. M., Botvinnik, O., Weigel, M., et al. Goatools: A
python library for gene ontology analyses. Scientific
Reports, 8(1):1–17, 2018.

Kuhn, M., Letunic, I., Jensen, L. J., and Bork, P. The
sider database of drugs and side effects. Nucleic Acids
Research, 44(D1):D1075–D1079, 2016.

Landrum, G. Rdkit documentation. Release, 1(1-79), 2013.

Li, A. and Pan, Y. Structural information and dynamical
complexity of networks. IEEE Transactions on Informa-
tion Theory, 62(6):3290–3339, 2016.

Li, A. L., Yin, X., Xu, B., Wang, D., Han, J., Wei, Y., Deng,
Y., Xiong, Y., and Zhang, Z. Decoding topologically
associating domains with ultra-low resolution hi-c data
by graph structural entropy. Nature Communications, 9
(1):3265, 2018.

Li, S., Wang, X., Zhang, A., Wu, Y., He, X., and Chua,
T.-S. Let invariant rationale discovery inspire graph con-
trastive learning. In International Conference on Machine
Learning, pp. 13052–13065. PMLR, 2022a.

Li, S., Wu, J., Jiang, X., and Xu, K. Chart gcn: Learning
chart information with a graph convolutional network for
stock movement prediction. Knowledge-Based Systems,
248:108842, 2022b.

Martins, I. F., Teixeira, A. L., Pinheiro, L., and Falcao,
A. O. A bayesian approach to in silico blood-brain barrier
penetration modeling. Journal of Chemical Information
and Modeling, 52(6):1686–1697, 2012.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P.,
and Neumann, M. Tudataset: A collection of benchmark
datasets for learning with graphs. ICML 2020 Workshop
on Graph Representation Learning and Beyond, 2020.

Mowshowitz, A. and Dehmer, M. Entropy and the complex-
ity of graphs revisited. Entropy, 14(3):559–570, 2012.

Novick, P. A., Ortiz, O. F., Poelman, J., Abdulhay, A. Y.,
and Pande, V. S. Sweetlead: an in silico database of
approved drugs, regulated chemicals, and herbal isolates
for computer-aided drug discovery. PloS One, 8(11):
e79568, 2013.

Ramsundar, B., Eastman, P., Walters, P., and Pande, V.
Deep learning for the life sciences: applying deep learn-
ing to genomics, microscopy, drug discovery, and more.
O’Reilly Media, 2019.

Raychaudhury, C., Ray, S., Ghosh, J., Roy, A., and Basak, S.
Discrimination of isomeric structures using information
theoretic topological indices. Journal of Computational
Chemistry, 5(6):581–588, 1984.

Richard, A. M., Judson, R. S., Houck, K. A., Grulke, C. M.,
Volarath, P., Thillainadarajah, I., Yang, C., Rathman, J.,
Martin, M. T., Wambaugh, J. F., et al. Toxcast chemi-
cal landscape: paving the road to 21st century toxicol-
ogy. Chemical Research in Toxicology, 29(8):1225–1251,
2016.

Shannon, C. The lattice theory of information. Transactions
of the IRE professional Group on Information Theory, 1
(1):105–107, 1953.

Shannon, C. E. A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379–423, 1948.

Sheridan, R. P. Time-split cross-validation as a method
for estimating the goodness of prospective prediction.
Journal of Chemical Information and Modeling, 2013.

10

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K.,
and Borgwardt, K. Efficient graphlet kernels for large
graph comparison. In Artificial Intelligence and Statistics,
pp. 488–495. PMLR, 2009.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12(9), 2011.

Sterling, T. and Irwin, J. J. Zinc 15–ligand discovery for ev-
eryone. Journal of Chemical Information and Modeling,
55(11):2324–2337, 2015.

Subramanian, G., Ramsundar, B., Pande, V., and Denny,
R. A. Computational modeling of β-secretase 1 (bace-
1) inhibitors using ligand based approaches. Journal of
Chemical Information and Modeling, 56(10):1936–1949,
2016.

Sun, F.-Y., Hoffman, J., Verma, V., and Tang, J. Info-
graph: Unsupervised and semi-supervised graph-level
representation learning via mutual information maximiza-
tion. ICLR, 2020.

Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial
graph augmentation to improve graph contrastive learning.
Advances in Neural Information Processing Systems, 34,
2021.

Thomas, M. and Joy, A. T. Elements of information theory.
Wiley-Interscience, 2006.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and
Isola, P. What makes for good views for contrastive
learning? Advances in Neural Information Processing
Systems, 33:6827–6839, 2020.

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio,
Y., and Hjelm, R. D. Deep graph infomax. ICLR (Poster),
2(3):4, 2019.

Wu, J., Chen, X., Xu, K., and Li, S. Structural entropy
guided graph hierarchical pooling. In International Con-
ference on Machine Learning, pp. 24017–24030. PMLR,
2022a.

Wu, J., Li, S., Li, J., Pan, Y., and Xu, K. A simple yet
effective method for graph classification. In Proceedings
of the Thirty-First International Joint Conference on Ar-
tificial Intelligence, IJCAI 2022, Vienna, Austria, July
23-29, 2022. ijcai.org, 2022b.

Wu, T., Ren, H., Li, P., and Leskovec, J. Graph information
bottleneck. Advances in Neural Information Processing
Systems, 33:20437–20448, 2020.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical Science, 9(2):513–530, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

Xu, M., Wang, H., Ni, B., Guo, H., and Tang, J. Self-
supervised graph-level representation learning with local
and global structure. In ICML, pp. 11548–11558. PMLR,
2021.

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
SIGKDD, pp. 1365–1374, 2015.

Yang, L. and Hong, S. Omni-granular ego-semantic propa-
gation for self-supervised graph representation learning.
In International Conference on Machine Learning, pp.
25022–25037. PMLR, 2022.

Yin, Y., Wang, Q., Huang, S., Xiong, H., and Zhang, X. Au-
togcl: Automated graph contrastive learning via learnable
view generators. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8892–8900,
2022.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations. Ad-
vances in Neural Information Processing Systems, 33:
5812–5823, 2020.

You, Y., Chen, T., Shen, Y., and Wang, Z. Graph contrastive
learning automated. In ICML, pp. 12121–12132. PMLR,
2021.

You, Y., Chen, T., Wang, Z., and Shen, Y. Bringing your
own view: Graph contrastive learning without prefabri-
cated data augmentations. WSDM ’22, pp. 1300–1309,
New York, NY, USA, 2022. Association for Computing
Machinery.

Zhang, C., Zhu, H., Peng, X., Wu, J., and Xu, K. Hierar-
chical information matters: Text classification via tree
based graph neural network. In Proceedings of the 29th
International Conference on Computational Linguistics,
pp. 950–959, 2022.

Zitnik, M., Sosič, R., Feldman, M. W., and Leskovec, J.
Evolution of resilience in protein interactomes across the
tree of life. Proceedings of the National Academy of
Sciences, 116(10):4426–4433, 2019.

11

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

A. Proof ofH(G∗|G) = 0

ℋ(𝐺!) ℋ(𝐺")

ℋ(𝐺!, 𝐺")

ℋ(𝐺!|𝐺") ℋ(𝐺"|𝐺!)I(𝐺!; 𝐺")

(a) MI with data augmentations.

ℋ(𝐺∗)

ℋ(𝐺)

ℋ(𝐺|𝐺∗)
I(𝐺∗; 𝐺)

ℋ(𝐺∗|𝐺)

ℋ(𝐺, 𝐺∗)

(b) MI with the anchor view.

Figure A.1. Mutual information with data augmentations and the target anchor view.

In this section, we present the proof of the statementH(G∗|G) = 0. First, we repeat the property that the target anchor view
should own:

Definition A.1. The anchor view with essential information is supposed to be a substructure of the given graph to avoid
artificially introduced noise.

Before the proof, Figure A.1 first shows the mutual information of graphs with data augmentations and the target anchor
view (i.e., comply with Definition A.1). Figure A.1a suggests that the mutual information with data augmentations is the
common part of two views. While Figure A.1b reveals that the mutual information with the target anchor view is the
information within the essential part.

Theorem A.2. Suppose the target anchor view G∗ of the corresponding graph G owns the property in Definition A.1, the
mutual information between G∗ and G is

I(G∗;G) = H(G∗)−H(G∗|G)

= H(G∗). (21)

Proof. According to the definition of Shannon entropy, i.e.,H(X) = −
∑
x∈X

P (x) logP (x), we follow the formulation of

graph mutual information in Sun et al. (2020) that X is a set of node representations drawn from an empirical probability
distribution of graph G, so the conditional entropy can be written as

H(G∗|G) = H(X∗|X)

=
∑
x∈X

P (x)H(X∗|X = x)

=−
∑
x∈X

P (x)
∑

x∗∈X∗

P (x∗|x) logP (x∗|x)

=−
∑
x∈X

∑
x∗∈X∗

P (x∗, x) logP (x∗|x)

=−
∑
x∗,x

P (x∗, x) logP (x∗|x). (22)

Considering that G∗ complies with the Definition A.1b, the illustration of probability distribution of G∗ and G is shown
Figure A.1b. Here, let us firstly discuss that

12

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

• when x ∈ X and x /∈ X∗, we have P (x∗, x) = 0.

Therefore, we can transform Equation 22 to

H(X∗|X) = −
∑
x∗,x

P (x∗, x) logP (x∗|x)

= −
∑
x∗,x∗

P (x∗, x∗) logP (x∗|x∗)

−
∑

x∗,x/∈X∗

P (x∗, x) logP (x∗|x)

= −
∑

x∗∈X∗

∑
x∗∈X∗

P (x∗, x∗) logP (x∗|x∗)

= −
∑

x∗∈X∗

P (x∗)
∑

x∗∈X∗

P (x∗|x∗) logP (x∗|x∗)

=
∑

x∗∈X∗

P (x∗)H(X∗|X∗ = x∗)

= H(X∗|X∗)

= 0. (23)

Therefore, given ∀x ∈ X , we haveH(G∗|G) = H(X∗|X) = 0. Accordingly, we have

I(G∗;G) = H(G∗). (24)

B. Illustrations for Algorithm 1

𝑣!

(a) Original Graph G. (b) Initial Coding Tree of G.

Figure A.2. The original graph G and the initialized coding tree with only root node and vertices from G as leaves.

Here, we present several figures to clearly reveal the running process of function COMBINE(·) and DROP(·) needed
by Algorithm 1. Moreover, the growing process of a coding tree with a fixed height 2 from its original graph is further
presented in Figure A.5. First, as shown in Figure A.2, we give a simple undirected graph G = {V, E} for structural entropy
minimization and the corresponding initialized coding tree T from G. Here, we present the definition of coding tree.

Coding Tree. A coding tree of a simple undirected graph G = {V, E} is defined as a rooted tree T that has the following
properties:

• The root node vr is associated with the vertices set V of G. vr is termed as the codeword of V , that is c(V) = vr. V is
termed as the marker of vr, that is M(vr) = V .

• Every node vτ ∈ T is a codeword of a subset Ṽ ⊂ V; put differently, c(Ṽ) = vτ and M(vτ) = Ṽ .

13

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

• For every node vτ ∈ T , suppose that v+1 , v
+
2 , · · · , v

+
N are all the immediate successors of vτ in T; then all M(v+i) are

disjointed, and M(vτ) =
⋃N

i=1 M(v+i).

• For every leaf node vlτ ∈ T , M(vlτ) is a singleton {v} for some vertex v ∈ V , and for every vertex v ∈ V , there is a
unique leaf node vlτ ∈ T such that M(vlτ) = v and c(v) = vlτ .

B.1. Illustration of COMBINE

The process of COMBINE(·) is illustrated in Figure A.3. Specifically, let v1c and v1c be any two child nodes of root node vr,
then, a virtual node vi is inserted between the root node and the two children, in which v1c and v1c become the children of vi
and vi directly dissolves into the children cluster of vr.

𝑣!

𝑣!

𝑣"# 𝑣"$
𝑣"# 𝑣"$

COMBINE(𝑣"#, 𝑣"$)

𝑣%

Figure A.3. An illustration of COMBINE(·).

B.2. Illustration of DROP

The process of DROP(·) is illustrated in Figure A.4. Specifically, given an inner node vτ of the coding tree, then, vτ is
removed from the tree and its children are adopted by its parent node.

𝑣! 𝑣!

𝑣"
DROP(𝑣")

Figure A.4. An illustration of DROP(·).

B.3. Illustration of Algorithm 1

The running process of Algorithm 1 is illustrated in Figure A.5 and we set the target height of coding tree to 2. The input
graph and the initialized coding tree are shown in Figure A.5a, in which the coding tree is initialized with a root node vr
and all vertices from input graph as leaves. Figure A.5b shows the process of Stage 1. Through iteratively combining two
children of the root node, which can achieve the maximal structural entropy reduction after combination, a full-height binary
coding tree is weaved from bottom to top. Figure A.5c reveals the process of State 2. Each time, an inner node that achieves
the minimal structural entropy restoration is dropped. Finally, a coding tree with height of 2 can be harvested as a view for
graph contrastive learning.

14

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

𝑣!

(a) Input and Line 1 of Algorithm 1.

𝑣!

𝑣!

𝑣!

𝑣"# 𝑣"$
𝑣"# 𝑣"$

COMBINE(𝑣"#, 𝑣"$) COMBINE(")

𝑣%

(b) Stage 1 (Line 2-5): Construct a full-height binary coding tree from bottom to top.

𝑣! 𝑣! 𝑣!

𝑣"
DROP(𝑣") DROP(")

(c) Stage 2 (Line 6-9): Squeeze full-height binary coding tree to fixed height 2.

Figure A.5. An illustration of the running process of Algorithm 1.

Complexity analysis. Given a graph G = (V,E), |V | = n and |E| = m, the runtime complexity of Algorithm 1 is
O(hmax(m log n+n)), in which hmax is the height of coding tree T after the first stage. In general, the coding tree T tends
to be balanced in the process of structural entropy minimization, thus, hmax will be around log n. Furthermore, a graph
generally has more edges than nodes, i.e., m≫ n, thus the runtime of Algorithm 1 almost scales linearly in the number of
edges.

C. Summary of Datasets
C.1. Datasets for Unsupervised and Semi-supervised Learning

A wide variety of datasets from different domains for a range of graph property prediction tasks are used for our experiments.
Here, we present detailed descriptions of the 10 benchmarks utilized in this paper. Table A.1 shows statistics for datasets.

Social Network Datasets. IMDB-BINARY and IMDB-MULTI are derived from the collaboration of a movie set. In these
two datasets, every graph consists of actors or actresses, and each edge between two nodes represents their cooperation
in a certain movie. Each graph is derived from a prespecified movie, and its label corresponds to the genre of this movie.
Similarly, COLLAB is also a collaboration dataset but from a scientific realm, which includes three public collaboration
datasets (i.e., Astro Physics, High Energy Physics and Condensed Matter Physics). Many researchers from each field form
various ego networks for the graphs in this benchmark. The label of each graph is the research field to which the nodes
belong. REDDIT-BINARY and REDDIT-MULTI-5K are balanced datasets, where each graph corresponds to an online
discussion thread and nodes correspond to users. An edge is drawn between two nodes if at least one of them responds to
another’s comment. The task is to classify each graph into the community or subreddit to which it belongs.

15

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Small Molecules. NCI1 is a dataset made publicly available by the National Cancer Institute (NCI) and is a subset of
balanced datasets containing chemical compounds screened for their ability to suppress or inhibit the growth of a panel of
human tumor cell lines; this dataset possesses 37 discrete labels. MUTAG has seven kinds of graphs that are derived from 188
mutagenic aromatic and heteroaromatic nitro compounds. PTC includes 19 discrete labels and reports the carcinogenicity of
344 chemical compounds for male and female rats.

Bioinformatic Datasets. DD contains graphs of protein structures. A node represents an amino acid and edges are
constructed if the distance of two nodes is less than 6Å. A label denotes whether a protein is an enzyme or non-enzyme.
PROTEINS is a dataset where the nodes are secondary structure elements (SSEs), and there is an edge between two nodes if
they are neighbors in the given amino acid sequence or in 3D space. The dataset has 3 discrete labels, representing helixes,
sheets or turns.

Table A.1. Statistics for datasets of diverse nature from the benchmark TUDataset.
Dataset #Graphs #Classes Avg. #Nodes Avg. #Edges

Social Networks
COLLAB 5,000 3 74.49 2457.78
REDDIT-BINARY 2,000 2 429.63 497.75
REDDIT-MULTI-5K 4,999 5 508.52 594.87
IMDB-BINARY 1,000 2 19.77 96.53
IMDB-MULTI 1,500 3 13.00 65.94
GITHUB 12,725 2 113.79 234.64

Small Molecules
NCI1 4,110 2 29.87 32.30
MUTAG 188 2 17.93 19.79

Bioinformatics
PROTEINS 1,113 2 39.06 72.82
DD 1,178 2 284.32 715.66

C.2. Details of Molecular Datasets

Input graph representation. For simplicity, we use a minimal set of node and bond features that unambiguously describe
the two-dimensional structure of molecules. We use RDKit (Landrum, 2013) to obtain these features.

• Node features:

– Atom number: [1, 118]
– Chirality tag: {unspecified, tetrahedral cw, tetrahedral ccw, other}

• Edge features:

– Bond type: {single, double, triple, aromatic}
– Bond direction: {–, endupright, enddownright}

Downstream task datasets. 8 binary graph classification datasets from MoleculeNet (Wu et al., 2018) are used to evaluate
model performance.

• BBBP (Martins et al., 2012). Blood-brain barrier penetration (membrane permeability), involves records of whether a
compound carries the permeability property of penetrating the blood-brain barrier.

• Tox21 (Tox, 2014). Toxicity data on 12 biological targets, which has been used in the 2014 Tox21 Data Challenge and
includes nuclear receptors and stress response pathways.

• ToxCast (Richard et al., 2016). Toxicology measurements based on over 600 in vitro high-throughput screenings.

16

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

Table A.2. Datasets statistics summary.

Dataset Category Utilization #Tasks #Graphs Avg.Node Avg.Degree
ZINC15 Biochemical Molecules Pre-Training 2,000,000 26.63 57.72
PPI-306K Protein-Protein Intersection Networks Pre-Training 306,925 39.82 729.62
BBBP Biochemical Molecules Finetuning 1 2,039 24.06 51.90
Tox21 Biochemical Molecules Finetuning 12 7,831 18.57 38.58
ToxCast Biochemical Molecules Finetuning 617 8,576 18.78 38.52
SIDER Biochemical Molecules Finetuning 27 1,427 33.64 70.71
ClinTox Biochemical Molecules Finetuning 2 1,477 26.15 55.76
MUV Biochemical Molecules Finetuning 17 93,087 24.23 52.55
HIV Biochemical Molecules Finetuning 1 41,127 25.51 54.93
BACE Biochemical Molecules Finetuning 1 1,513 34.08 73.71
PPI Protein-Protein Intersection Networks Finetuning 40 88,000 49.35 890.77

• SIDER (Kuhn et al., 2016). Database of marketed drugs and adverse drug reactions (ADR), grouped into 27 system
organ classes and also known as the Side Effect Resource.

• ClinTox (Novick et al., 2013; Gayvert et al., 2016). Qualitative data classifying drugs approved by the FDA and those
that have failed clinical trials for toxicity reasons.

• MUV (Gardiner et al., 2011). Subset of PubChem BioAssay by applying a refined nearest neighbor analysis, designed
for validation of virtual screening techniques.

• HIV (HIV). Experimentally measured abilities to inhibit HIV replication.

• BACE (Subramanian et al., 2016). Qualitative binding results for a set of inhibitors of human β-secretase 1.

Details of Dataset Splitting For molecular prediction tasks, following Ramsundar et al. (2019), we cluster molecules by
scaffold (molecular graph substructure) (Bemis & Murcko, 1996), and recombine the clusters by placing the most common
scaffolds in the training set, producing validation and test sets that contain structurally different molecules. Prior work has
shown that this scaffold split provides a more realistic estimate of model performance in prospective evaluation compared to
random split (Chen et al., 2012; Sheridan, 2013). The split for train/validation/test sets is 80%:10%:10%.

C.3. Details of Protein Datasets

Input graph representation. The protein subgraphs only have edge features.

• Edge features (These edge features indicate whether a particular type of relationship exists between a pair of proteins):

– Neighborhood: {True, False}, if a pair of genes are consistently observed in each other’s genome neighborhood
– Fusion: {True, False}, if a pair of proteins have their respective orthologs fused into a single protein-coding gene

in another organism
– Co-occurrence: {True, False}, if a pair of proteins tend to be observed either as present or absent in the same

subset of organisms
– Co-expression: {True, False}, if a pair of proteins share similar expression patterns
– Experiment: {True, False}, if a pair of proteins are experimentally observed to physically interact with each other
– Database: {True, False}, if a pair of proteins belong to the same pathway, based on assessments by a human

curator
– Text: {True, False}, if a pair of proteins are mentioned together in PubMed abstracts

Datasets. A dataset containing protein subgraphs from 50 species is used (Zitnik et al., 2019). The original PPI networks
do not have node attributes, but contain edge attributes that correspond to the degree of confidence for 7 different types
of protein-protein relationships. The edge weights range from 0, which indicates no evidence for the specific relationship,

17

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

to 1000, which indicates the highest confidence. The weighted edges of the PPI networks are thresholded such that the
distribution of edge types across the 50 PPI networks are uniform. Then, for every node in the PPI networks, subgraphs
centered on each node were generated by: (1) performing a breadth first search to select the subgraph nodes, with a search
depth limit of 2 and a maximum number of 10 neighbors randomly expanded per node, (2) including the selected subgraph
nodes and all the edges between those nodes to form the resulting subgraph.

The entire dataset contains 394,925 protein subgraphs derived from 50 species. Out of these 50 species, 8 species (arabidopsis,
celegans, ecoli, fly, human, mouse, yeast, zebrafish) have proteins with GO protein annotations. The dataset contains
88,000 protein subgraphs from these 8 species, of which 57,448 proteins have at least one positive coarse-grained GO
protein annotation and 22,876 proteins have at least one positive fine-grained GO protein annotation. For the self-supervised
pre-training dataset, we use a subset 306,925 protein subgraphs.

Fine-grained protein functions is defined as Gene Ontology (GO) annotations that are leaves in the GO hierarchy, and
coarse-grained protein functions is defined as GO annotations that are the immediate parents of leaves (Ashburner et al.,
2000; Consortium, 2019). For example, a fine-grained protein function is “Factor XII activation”, while a coarse-grained
function is “positive regulation of protein”. The former is a specific type of the latter, and is much harder to derive
experimentally. The GO hierarchy information is obtained using GOATOOLS (Klopfenstein et al., 2018). The supervised
pre-training dataset and the downstream evaluation dataset are derived from the 8 labeled species. The 40-th most common
fine-grained protein label only has 121 positively annotated proteins, while the 40-th most common coarse-grained protein
label has 9386 positively annotated proteins. This illustrates the extreme label scarcity of the downstream tasks.

Dataset splitting. In the PPI network, species split simulates a scenario where we have only high-level coarse-grained
knowledge on a subset of proteins (prior set) in a species of interest (human in our experiments), and want to predict
fine-grained biological functions for the rest of the proteins in that species (test set). For species split, we use 50% of the
protein subgraphs from human as test set, and 50% as a prior set containing only coarse-grained protein annotations. The
protein subgraphs from 7 other labelled species (arabidopsis, celegans, ecoli, fly, mouse, yeast, zebrafish) are used as train
and validation sets, which are split 85% : 15%. The effective split ratio for the train/validation/prior/test sets is 69% : 12% :
9.5% : 9.5%.

D. Detailed Experiment Setup
D.1. Settings for Unsupervised Learning

Following the learning setting in SOTA works, the corresponding learning protocols are adopted for a fair comparison.
In unsupervised representation learning (Sun et al., 2020), all data is used for model pre-training and the learned graph
embeddings are then fed into a non-linear SVM classifier to perform 10-fold cross-validation. Experiments are performed
for 5 times each of which corresponds to a 10-fold evaluation as (Sun et al., 2020), with mean and standard deviation of
accuracies (%) reported. As for graph representation learning, models are trained 20 epochs and tested every 10 epochs.
Hidden dimension is chosen from {32, 64}, and batch size is chosen from {32, 128}. An Adam optimizer (Kingma & Ba,
2015) is employed to minimize the contrastive lose with {0.01, 0.005, 0.001} learning rate.

Data Augmentations on Graphs. Follow the data augmentations in GraphCL (You et al., 2020), there are four types of
general data augmentations for graph-structured data:

• Node dropping. Given the graph G, node dropping will randomly discard certain portion of vertices along with their
connections. The underlying prior enforced by it is that missing part of vertices does not affect the semantic meaning
of G. Each node’s dropping probability follows a default i.i.d. uniform distribution (or any other distribution).

• Edge perturbation. It will perturb the connectivities in G through randomly dropping certain ratio of edges. It implies
that the semantic meaning of G has certain robustness to the edge connectivity pattern variances. We also follow an
i.i.d. uniform distribution to drop each edge.

• Attribute masking. Attribute masking prompts models to recover masked vertex attributes using their context
information, i.e., the remaining attributes. The underlying assumption is that missing partial vertex attributes does not
affect the model predictions much.

• Subgraph. This one samples a subgraph from G using random walk. It assumes that the semantics of G can be much

18

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

preserved in its (partial) local structure.

D.2. Setting for Semi-supervised Learning

Configuration. ResGCN with 128 hidden units and 5 layers is set up in semi-supervised learning. In addition, the
same data augmentations on graphs with the default augmentation strength 0.2 are adopted. For all datasets we perform
experiments with 10% label rate for 5 times, each of which corresponds to a 10-fold evaluation as (You et al., 2020), with
mean and standard deviation of accuracies (%) reported. For pre-training, learning rate is tuned in {0.01, 0.001, 0.0001}
and epoch number in {20, 40, 60, 80, 100} where grid search is performed. For fine-tuning, we following the default setting
in (You et al., 2020), that is, learning rate is 0.001, hidden dimension is 128, bath size is 128, and the pre-trained models are
trained 100 epochs.

Learning protocols. Following the learning setting in SOTA works, the corresponding learning protocols are adopted
for a fair comparison. In semi-supervised learning (You et al., 2020), there exist two learning settings. For datasets with a
public training/validation/test split, pre-training is performed only on training dataset, finetuning is conducted with 10% of
the training data, and final evaluation results are from the validation/test sets. For datasets without such splits, all samples
are employed for pre-training while finetuning and evaluation are performed over 10 folds.

D.3. Setting for Transfer Learning

Pre-training dataset. ZINC15 (Sterling & Irwin, 2015) dataset is adopted for biochemical pre-training. In particular, a
subset with two million unlabeled molecular graphs are sampled from the ZINC15. For protein domain, following Hu et al.
(2020), 306K unlabeled protein ego-networks are utilized for pre-training.

Pre-training details. In the graph encoder setting in Hu et al. (2020), GIN (Xu et al., 2019) with five convolutional layers
is adopted for message passing. In particular, the hidden dimension is fixed to 300 across all layers and a pooling readout
function that averages graph nodes is hired for NT-Xent loss calculation with the scale parameter τ = 0.1. The hidden
representations at the last layer are injected into the average pooling function. An Adam optimizer (Kingma & Ba, 2015)
is employed to minimize the integrated losses produced by the 5-layer GIN encoder. The batch size is set as 256, and all
training processes will run 100 epochs.

Fine-tuning dataset. We employ the eight ubiquitous benchmarks from the MoleculeNet dataset (Wu et al., 2018) as
the biochemical downstream experiments. These benchmarks include a variety of molecular tasks like physical chemistry,
quantum mechanics, physiology, and biophysics. The protein downstream task is to predict 40 fine-grained biological
functions of 8 species. For dataset split, the scaffold split scheme (Chen et al., 2012) is adopted for train/validation/test set
generation.

Fine-tuning details. For downstream tasks, a linear layer is stacked after the pre-trained graph encoders for final property
prediction. The downstream model still employs the Adam optimizer for 100 epochs fine-tuning. All experiments on each
dataset are performed for ten runs with different seeds, and the results are the averaged ROC-AUC scores (%) ± standard
deviations. The learning rate is selected from {0.01, 0.001, 0.0001} and is symmetric for both the encoder and augmenter
during self-supervision on the pre-train dataset. To be in line with (You et al., 2020), the number of training epochs for
pre-training is chosen among {20, 40, 60, 80, 100} based on the validation performance on the fine-tune datasets.

D.4. Settings for Orthogonal Experiment

AD-GCL. In cooperation with AD-GCL (Suresh et al., 2021), we faithfully follow the original setting while switching
the anchor view from the original graph to the proposed anchor view. Note that, in the evaluation stage, the linear SVM
is adopted to keep in line with the results in the main text of AD-GCL, which is different from the setting of GraphCL.
In particular, the key hyperparameter λ that prevents AD-GCL from very aggressive perturbation is fixed to 5, that is the
AD-GCL-FIX in the original work.

JOAO(v2). In cooperation with JOAO(v2) (You et al., 2021), the same experimental setting is adopted from the published
paper while recalling one of the two views and assigning the proposed anchor view to that place. Naturally, JOAO(v2) only
needs to search the other view from data augmentations. Similarly, GIN is adopted for graph encoding while non-linear SVM

19

SEGA: Structural Entropy Guided Anchor View for Graph Contrastive Learning

is employed for evaluation. The hyperparameter γ controlling the trade-off between the contrastive loss and view distance is
tuned in the range of {0.01, 0.1, 1}. In particular, JOAO is pre-trained with 20 epochs, while JOAOv2 is pre-trained with
double epochs since multiple projection heads are applied.

AutoGCL. We adopt the naive training strategy proposed in AutoGCL to make a fair comparison. Specifically, we retain
one of the two graph generators and assign our proposed anchor view to the blank position. In particular, AutoGCL extends
the layer number of graph encoder from 3 to 5 and the hidden size from 32 to 128. Moreover, AutoGCL is pre-trained with
30 epochs rather than 20 epochs.

RGCL. In cooperation with RGCL (Li et al., 2022a), we faithfully follow the experiment settings revealed in their codes
while replacing one of the two rationale-augmented views with SEGA. Note that, the tuned hyper-parameters in RGCL
includes learning rate, sampling ratio ρ, loss temperature τ , and loss balance λ. In particular, RGCL is pre-trained 40 epochs
in total and evaluated every 5 epochs.

20

