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Abstract
This paper focuses on continual meta-learning,
where few-shot tasks are heterogeneous and se-
quentially available. Recent works use a mix-
ture model for meta-knowledge to deal with the
heterogeneity. However, these methods suffer
from parameter inefficiency caused by two rea-
sons: (1) the underlying assumption of mutual
exclusiveness among mixture components hin-
ders sharing meta-knowledge across heteroge-
neous tasks. (2) they only allow increasing mix-
ture components and cannot adaptively filter out
redundant components. In this paper, we pro-
pose an Adaptive Compositional Continual Meta-
Learning (ACML) algorithm, which employs a
compositional premise to associate a task with
a subset of mixture components, allowing meta-
knowledge sharing among heterogeneous tasks.
Moreover, to adaptively adjust the number of mix-
ture components, we propose a component spar-
sification method based on evidential theory to
filter out redundant components. Experimental
results show ACML outperforms strong baselines,
showing the effectiveness of our compositional
meta-knowledge, and confirming that ACML can
adaptively learn meta-knowledge.

1. Introduction
Meta-learning is an effective paradigm to deal with low-
resource learning tasks where only a few labeled samples
are available (Vanschoren, 2018; Hospedales et al., 2020),
and has gained tremendous attention in recent years. The
key idea of meta-learning is to inductively transfer meta-
knowledge (i.e., the experience of how to learn) among
different tasks to improve data efficiency and enhance
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model generalization (Raghu et al., 2020). Traditional meta-
learning assumes all tasks are homogeneous and available
instantly (Finn et al., 2017; 2018), which can be unrealis-
tic in real-world scenarios. In this paper, we focus on a
more practical and challenging setting, namely continual
meta-learning where few-shot tasks are heterogeneous and
arrive sequentially over time (Finn et al., 2019; Denevi et al.,
2019). Such a heterogeneous and continual setting fits better
for the real world and thus can be of practical significance
to different domains, such as recommendation (Zhang et al.,
2019) and personalization (Wu et al., 2022).

Despite the great potential of continual meta-learning in
practical applications, there are two key challenges to be
tackled in this setting: (i) how to capture the incremental
meta-knowledge from the new tasks (Lee et al., 2017), (ii)
how to avoid forgetting the learned meta-knowledge from
previous tasks when dealing with the new heterogeneous
tasks, i.e.,catastrophic forgetting (Kirkpatrick et al., 2017).
Existing works (Jerfel et al., 2019; Yao et al., 2019; Zhang
et al., 2021) mainly tackle these two challenges using a
mixture model for meta-knowledge, where each component
of the mixture model handles a task cluster, i.e., a set of
homogeneous tasks. In order to learn incremental meta-
knowledge and avoid catastrophic forgetting when facing a
new task, they learn a new component for the mixture model
if the task is dissimilar from previous tasks, otherwise, they
update an existing component to which the task corresponds.

However, these works suffer from the parameter-inefficiency
issue for two reasons. (1) They implicitly assume differ-
ent components in the mixture meta-knowledge distribution
are mutually exclusive. As heterogeneous tasks (i.e., tasks
from different clusters) still have common information, the
one-to-one mapping between tasks and mixture components
overlooks the sharing of meta-knowledge among hetero-
geneous tasks, leading to meta-knowledge redundancy in
different components. (2) They increase mixture compo-
nents by some priors (e.g., Chinese Restaurant Prior) (Jerfel
et al., 2019; Zhang et al., 2021) or a simple judgment on
the similarities among tasks (Yao et al., 2019; 2020). These
methods cannot adaptively adjust the actually required com-
ponents from the data, because they only allow adding new
meta-knowledge components but not removing redundant
components. Consequently, one needs to maintain a large
number of meta-knowledge components and face the param-
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Figure 1. The difference in incremental meta-knowledge between the existing works and ours. Previous methods maintain the mutual
exclusive mixture meta-knowledge and only increase the number of components to add new meta-knowledge (the red dashed grid),
which can lead to redundant components. Our algorithm provides tasks with a compositional meta-knowledge and employs an evidential
sparsification to filter out the redundant meta-knowledge.

eter inefficiency issue (seen Fig. 1).

In this paper, we propose an Adaptive Compositional Con-
tinual Meta-Learning algorithm, abbreviated as ACML.
Specifically, in order to allow meta-knowledge sharing
among different clusters of tasks, we break the one-to-one
mapping between a task and a meta-knowledge component;
instead, we assume a task is composed of multiple aspects,
each of which can be described by a different component.
Accordingly, we build a one-to-many mapping between a
task and meta-knowledge components. For example, in the
image classification task, one component could learn how
to detect colors and another component could learn how
to capture object shapes. The meta-knowledge distribution
for a task is therefore compositional, and different clus-
ters of tasks are enabled to share the meta-knowledge via
the overlapped components. This is achieved by an Indian
Buffet Process (IBP) prior (Griffiths & Ghahramani, 2011)
on the mixture components of meta-knowledge. Notwith-
standing, it also faces the problem that we can only add
new components but not remove redundant ones to meet
the actual needs of available tasks. Filtering out the redun-
dant components is necessary but non-trivial as components
are mutually dependent in the one-to-many relationship be-
tween a task and meta-knowledge components. Therefore,
we propose a component sparsification method based on the
Evidential Theory (Dempster, 2008), which is a post hoc
method after the update of meta-knowledge. In specific, we
calculate the support and doubt degree for each component
and remove the components which do not receive support
from the tasks. Our contributions are summarized as:

• We propose a compositional meta-knowledge distri-
bution via IBP, which enables meta-knowledge to be
shared among heterogeneous tasks.

• We propose a post hoc evidential sparsification method
to remove redundant meta-knowledge components.

• We conduct extensive experiments on four real-world

datasets and the results show that our ACML outper-
forms the-state-of-art baselines under the heteroge-
neous continual learning setting.

2. Related Work
Meta-Learning. Meta-learning (Vanschoren, 2018;
Hospedales et al., 2020) focuses on a few-shot setting.
Recent works include metric-based (Snell et al., 2017;
Oreshkin et al., 2018), model-based (Ha et al., 2016;
Munkhdalai & Yu, 2017), optimization-based methods
(Finn et al., 2017; 2018) and their Bayesian variants (Ravi
& Beatson, 2018; Gordon et al., 2019; Iakovleva et al.,
2020). However, most of them construct a globally-shared
meta-knowledge, which can not fit the heterogeneous data
distribution in the real world (Jerfel et al., 2019). To solve
this problem, some works (Jerfel et al., 2019; Zhang et al.,
2021) maintain a mixture of meta-knowledge, where a
cluster of similar tasks is associated with a component
of the meta-knowledge. This impedes the sharing of
meta-knowledge between different clusters of tasks. In
contrast, we break the one-to-one mapping between tasks
and meta-knowledge components and build a one-to-many
mapping based on the compositional premise to achieve
more efficient parameter learning.

Continual Learning. Continual learning (Delange et al.,
2021) typically overcomes the catastrophic forgetting issue
via replay (Hu et al., 2019; Titsias et al., 2019), regulariza-
tion (Benjamin et al., 2018; Pan et al., 2020) or incremental
model selection (Kumar et al., 2021; Kessler et al., 2021).
Moreover, there are some efforts in exploring compositional
generalization in continual learning (Mendez & EATON,
2021) and meta-learning (Conklin et al., 2021; Requeima
et al., 2019; Bronskill et al., 2020). They further guide many
recent works focusing on continual meta-learning (Finn
et al., 2019; Zhuang et al., 2020) to extend meta-knowledge
when encountering new tasks, via increasing the number of
mixture components (Yao et al., 2019) or adding a novel
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block to construct the mate-path (Yao et al., 2020). The Chi-
nese Restaurant Process (CRP) has been used to determine
the prior number of meta-knowledge components (Jerfel
et al., 2019; Zhang et al., 2021). However, these methods
only allow an increase of meta-knowledge components, and
can not filter out redundant meta-knowledge. This would
lead to parameter inefficiency and large computational con-
sumption. In this paper, we employ an IBP prior to deciding
whether to increase the number of components and more
importantly, propose a post hoc sparsification method based
on the Evidential Theory to filter the redundant component
after the update of meta-knowledge.

Sparsification Method In recent years, a number of meth-
ods have been proposed to sparse the multi-modal space.
Most of them (Martins & Astudillo, 2016; Laha et al., 2018)
use a softmax alternative to sparse the large output space.
Itkina et al. (2020) point out that the above methods are
aggressive, and develop a post hoc evidential sparsification
for conditional variational auto-encoder, based on the con-
clusion in (Denœux, 2019) that most existing classifiers
can be seen as converting features into mass function and
merging them to the final result. Following Itkina et al.
(2020), Chen et al. (2021) present an evidential softmax
method. However, these methods operate on mutual exclu-
siveness, which is different from the mutual dependency
among the meta-knowledge components. Moreover, our
evidential sparsification method provides a novel view of
how to apply the evidential theory to continual learning.

3. Background
3.1. Bayesian Continual Meta-Learning

We focus on continual meta-learning. At each time step t,
the meta-learning model receives a task τt which is sampled
from a task distribution p(τ). The task is associated with a
dataset Dt, which is split into two sub-datasets, namely a
support set DSt = {xi, yi}Nti=1 for training and a query set
DQt = {xi, yi}Mt

i=1 for validation. Following previous works
(Yap et al., 2021), we assume p(τ) follows a non-stationary
distribution, i.e., the task distribution shifts over time. Given
sequentially arriving tasks from the non-stationary distri-
bution, the goal of continual meta-learning is to adapt the
meta-learning model to new tasks and avoid forgetting the
learned knowledge from previous tasks.

One critical issue of continual meta-learning is the catas-
trophic forgetting problem when adapting models to se-
quential tasks from non-stationary distribution (Lee et al.,
2017). To overcome the issue in the non-stationary task
flow, some Bayesian meta-learning methods (Yap et al.,
2021; Zhang et al., 2021) have been developed. They regard
meta-knowledge as a latent variable and learn the posterior
of meta-knowledge with the constraint of the prior in an

online way following the principle of Variational Continual
Learning (VCL) (Nguyen et al., 2018):

p(θt|D1:t) ∝ p(Dt|θt)p(θt|D1:t−1), (1)

where θt is the meta-knowledge and used as the initializa-
tion following MAML (Finn et al., 2017). Note that VCL
uses the posterior of meta-knowledge at (t− 1)-th step as
the prior of meta-knowledge at t-th step to serve as a reg-
ularization in order to alleviate the catastrophic forgetting
problem. Moreover, the likelihood function at t-the step, i.e.,
p(Dt|θt), is defined in a probabilistic way (Gordon et al.,
2019; Iakovleva et al., 2020):

p(Dt|θt) =
∫
p(Dt|ϕt)p(ϕt|θt)dϕt, (2)

where ϕt is the task-specific parameter. Since the likelihood
function is non-Gaussian, the exact posterior inference of
meta-knowledge is intractable. To learn such intractable
posterior, some approximate inference methods (e.g., vari-
ational inference (Kingma & Welling, 2013)) are applied.
More details of inference are in Appendix A.

3.2. Evidential Theory

Evidential theory (i.e., The Dempster–Shafer (DS) theory)
(Shafer, 1976; Yager & Liu, 2008) is a generalization of
Bayesian theory (Dempster, 2008), which works on a dis-
crete set of hypotheses (or equivalently, components of the
mixture meta-knowledge distribution in this paper) and re-
laxes the constriction of exclusiveness in Bayesian theory.
Such an relaxation fits well with the one-to-many relation-
ship between tasks and components in our model.

Mathematically, let Z = {z1, z2, z3, ..., zK} be a finite
set, the element of which zk is a binary variable indi-
cating whether the current task is associated with the k-
th component or not. The bayesian theory assumes be-
lief is apportioned to each component in the finite set Z:∑K
k=1 p(zk) = 1, p(zk) + p(zk) = 1, where zk denotes

all the components in Z other than zk. Note that it im-
plicitly assumes that components are mutually exclusive.
In contrast, the evidential theory relaxes such constriction
and allows belief to be assigned to a set of components by
working over the power set of Z, denoted by 2Z . The
power set 2Z represents any possible subset of Z, i.e.,
2Z = {∅, {z1}, {z1, z2}, ..., Z}. Evidential theory defines
a mass function on Z to construct the belief assignment,
which is a mapping m: 2Z → [0, 1] and satisfies the follow-
ing constraints:

m(∅) = 0,
∑
A⊆Z

m(A) = 1, (3)

where ∅ is an empty set and A is a subset of Z. Note that
such a mass function is non-additive, since each subset to
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which belief is assigned, is not mutually exclusive. To merge
mass functions deduced from different observations, Demp-
ster (2008) proposes a Dempster’s rule to help construct the
fused mass function. The basic definition and more details
about Dempster’s rule are provided in Appendix B.

4. Adaptive Compositional Continual
Meta-Learning

In this section, we present our Adaptive compositional Con-
tinual Meta-Learning algorithm (ACML). The overall frame-
work of ACML is provided in Fig. 2.

4.1. Compositional Continual Meta-Learning

We first introduce the probabilistic framework of ACML.
ACML relaxes the constraint that a task is associated with
only a single component of meta-knowledge as such re-
striction of one-to-one mapping prevents the sharing of
meta-knowledge among heterogeneous tasks. In contrast,
we build a one-to-many mapping between a task and meta-
knowledge components, which leads to a compositional
distribution of meta-knowledge per task. The likelihood
function at time t is:

p(Dt|θt) =
∫
p(Dt|θt, zt)p(zt)dzt

=

∫ [ ∫
p(Dt|ϕt)p(ϕt|θt, zt)dϕt

]
p(zt)dzt, (4)

where zt is the indicating vector consisting of binary ele-
ments, each element of which indicates whether the current
task is associated with a meta-knowledge component or
not. In this way, a subset of meta-knowledge components
rather than a single component is leveraged to infer the task-
specific parameter p(ϕt|θt, zt), which is then used to tackle
the few-shot tasks p(Dt|ϕt). Such a compositional premise,
in which the meta-knowledge associated with a certain task
consists of several components, enables the sharing of meta-
knowledge among different clusters of tasks via the overlap
components, relaxing the restriction of mutual exclusiveness
in the conventional mixture meta-learning models.

4.2. Indian Buffet Process Prior

In the non-stationary regime, one important requirement is
to capture incremental information when a newer task is
encountered. Thus, the fixed meta-knowledge is not appro-
priate. To capture the incremental meta-knowledge and fit
the compositional premise, we employ the Indian Buffet Pro-
cess (IBP) (Griffiths & Ghahramani, 2011) to make a prior
decision on the mixture components. Specifically, the num-
ber of mixture components at time t consists of two parts:
Kt = Kt−1+Jt, whereKt−1 is the number of mixture com-
ponents at the previous time step and Jt ∼ Possion

(
α
t

)
is

the number of new components controlled by the hyperpa-
rameter α for capturing incremental knowledge. Therefore,

the IBP prior for zt is formulated based on a stick-breaking
process (Teh et al., 2004):

vt,k ∼ Beta(α, 1), πt,k =

k∏
i=1

vt,i, zt,k ∼ Bern(πt,k), (5)

for k = 1, . . . ,Kt,Beta(·) andBern(·) represent the Beta
distribution and the Bernoulli distribution respectively, and
zt,k is a binary value indicating whether the k-th component
is associated to the task or not. Based on the IBP prior, the
generative process of ACML is:

θt,k ∼ N (µt,k,σt,k), ϕt|θt, zt ∼ p(ϕt|θt, zt), (6)

for k = 1, . . . ,Kt, where θt,k is the meta-knowledge of
the k-th component, and the task-specific parameters ϕt are
inferred based on a subset of meta-knowledge components
determined by zt. With the help of IBP prior, the com-
ing tasks can reuse the meta-knowledge learned from the
previous tasks and extend the meta-knowledge by adding
additional components to fit well with the incremental re-
quirement. The graphical model of our ACML is provided
in Fig. 7 of the Appendix D. We introduce how to infer the
posteriors of latent variables in the next section.

4.3. Structured Variational Inference

The exact inference is intractable because of non-conjugacy,
thus, the approximation is required. In our work, we em-
ploy the variational inference (Blei et al., 2017) to approx-
imate the posteriors. We capture the dependency among
latent variables via structured mean-field variational infer-
ence (Hoffman & Blei, 2015). The variational distributions
of latent variables are defined as:

q(vt, zt,θt,ϕt|Dt)

= q(ϕt|θt, zt,Dt)
Kt∏
k=1

q(θt,k)q(zt,k|vt,k)q(vt,k), (7)

where we use Gaussian distributions to approximate the
posteriors of ϕt and θt,k, and use Bernoulli and Beta dis-
tributions to approximate the posteriors of zt,k and vt,k,
respectively. The parameters of these variational distribu-
tions are denoted as ψt. With the variational distributions,
the training objective function, i.e, the evidence lower bound
(ELBO) of the observation, at the current time t can be de-
rived as follows:

L(ψt;Dt) = −Eq(vt,zt,θt,ϕt|Dt) [log p(Dt|ϕt)] (8)

+

K∑
k=1

[
KL(q(vt,k)∥p(vt,k)) + KL(q(zt,k|vt,k)∥p(zt,k|vt,k))

+ KL(q(θt,k)||p(θt,k))

]
+KL(q(ϕt|θt,zt,Dt)||p(ϕt|θt,zt)),

where KL(·||·) is the Kullback–Leibler divergence. Note
that the expectation of likelihood in Eq. (8) can be computed
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Figure 2. The ACML framework. The dashed line represents the parameter inference process and the solid line represents the data
generation process. In this example, our proposed ACML maintains a mixture meta-knowledge distribution with three components from
Dt−1, and then creates an additional component θ4 to capture the incremental information from Dt. Note that the redundant component
θ3 is filtered out by the evidential sparsification method. Afterward, ACML associates a task with multiple meta-knowledge components
to infer the task-specific parameter.

with Monte Carlo method by sampling from the variational
distributions. However, it is not straightforward to sample
from Bernoulli and Beta distributions while enabling back-
propagation of gradients. To address this problem, we em-
ploy the implicit reparameterization (Figurnov et al., 2018)
to enable the parameterization trick (Kingma & Welling,
2013) in these two distributions. The KL-terms can be com-
puted in closed-form expressions. Details of the definition
of variational distribution, the sampling gradient computa-
tion for the likelihood term, and the closed form expression
for KL-terms are provided in Appendix D.

4.4. Evidential sparsification for Adaptive compositional
Meta-Knowledge

The IBP prior cannot adaptively adjust the actually required
components from the tasks, since they only increase the
number of components as existing methods (Jerfel et al.,
2019; Zhang et al., 2021) did. This would lead to redundant
components when meeting a large number of tasks. How-
ever, it is non-trivial to identify useless meta-knowledge
components, since the one-to-many relationship between a
task and components assumes the non-exclusiveness among
components, conflict with the common mutually-exclusive
assumption in many existing sparsification methods (Itkina
et al., 2020; Chen et al., 2021).

Therefore, we propose an evidential sparsification method
for compositional meta-knowledge, which is a post hoc
method after the update of meta-knowledge. Fig. 6 in Ap-
pendix C provides an intuitive explanation. Specifically,
based on the evidential theory (Denœux, 2019; Itkina et al.,
2020), we calculate a wt,k as the evidence weight indi-
cating how much the k-th meta-knowledge component in
the mixture distribution is useful to solve the task τt. Ac-
cording to Eq. (7), since the variational beta distribution
Beta(vt,k;αt,k, βt,k) determines the probability of the k-th
component being selected for the task τt after the update of

meta-knowledge, the wt,k is formulated as:

wt,k = eαt,k − γ · eβt,k , (9)

where αt,k and βt,k are two parameters in the beta distri-
bution and γ is the hyperparameter to adjust the sparsity
of meta-knowledge. Note that this procedure only uses
parameters of the beta distributions, without the need to
memorize any task data. Following (Denœux, 2019), we
assume the evidence weight of {zk} and its complementary
set{zk} equal to the positive part and the negative part of
wt,k, respectively:

w+
t,k := max(0, wt,k), w−

t,k := max(0,−wt,k). (10)

According to (Denoeux, 2008), the support degree and the
doubt degree do not by themselves provide 100% certainty
due to unknown information in the real world so the belief
denoting the unknown information cannot point to any sub-
set of components other than the universal set Z. Therefore,
we define two mass functions for the support and doubt
degrees, denoting the extent of certainty for the usefulness
of {zk} and {zk} respectively:

m+
t,k({zk}) = 1− e−w

+
t,k , m+

t,k(Z) = e−w
+
t,k ; (11)

m−
t,k({zk}) = 1− e−w

−
t,k ,m−

t,k(Z) = e−w
−
t,k . (12)

To reach a unified measure of how much a meta-knowledge
component is useful for all occurring tasks, we need to
merge all the mass functions. Finally, the merged mass
function is as follows according to the evidential theory:

m({zk}) = m+
1,1({zk})⊕ ...⊕m

−
t,Kt

({zk}) =

CC+C−

e−w−
k

ew+
k − 1 +

∏
l ̸=k

(1− e−w
−
l )

 , (13)
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where C, C+ and C− are the normalization terms 1. Note
that there are 2 × t × Kt mass functions to be merged.
To reduce the computational complexity, according to the
computation rule in Dempster’s rule, w+

k =
∑T
t=0 w

+
t,k and

w−
k =

∑T
t=0 w

−
t,k, where T is the current time. The detailed

derivation of Eq. (13) is in Appendix C. In the merged mass
function, the components with a zero belief would be seen
as redundant since they can not contribute to any existing
tasks. These components (m({zk}) = 0) are removed to
reduce parameter redundancy.

To sum up, when encountering a new task, our ACML first
determines whether to add new meta-knowledge compo-
nents based on the IBP prior and then leverage the struc-
tured variational inference to update the meta-knowledge.
Afterward, the evidential sparsification method is employed
to adaptively filter out redundant components. The filtered
meta-knowledge is used to infer the task-specific parameter
ϕt for a task during evaluation:

p(ϕt|θt, zt) = (14)∑Kt
k=1 1{m({zk}) ̸= 0}1{zt,k ̸= 0}p(ϕt,k|θt,k;λt,k)∑Kt

k=1 1{m({zk}) ̸= 0}1{zt,k ̸= 0}
.

4.5. Discussion

In contrast to recent works (Jerfel et al., 2019; Zhang et al.,
2021), our work has two major differences that enhance
the performance and confirm our contributions: (1) Dif-
ferent from the one-to-one matching between a task and a
meta-knowledge component, our algorithm constructs a one-
to-many matching via compositional meta-knowledge. It
enables multiple task clusters to share meta-knowledge com-
ponents, which improves the parameter efficiency. (2) Our
algorithm employs evidential sparsification to adaptively
filter out redundant components. Compared to those only
using CPR as a prior, our method can meet the actual need
of the arriving tasks, leading to higher parameter efficiency.
The complexity analysis is shown in Appendix E.

5. Experiments
In what follows, we design experiments for three research
questions to examine the effectiveness of ACML, which
guides the remainder of the paper: (RQ1) Can our ACML
achieve a better performance than the state-of-the-art base-
lines under the continual non-stationary setting? (RQ2)
How does the number of components affect the perfor-
mance? (RQ3) What is the impact of evidential sparsi-
fication on performance?

Experiments are conducted under continual non-stationary
settings. We compare against the following baselines:

1There normalization terms can be omitted.

(1) Train-On-Everything (TOE): an intuitive method
that re-initializes the meta-knowledge at each time t and
trains on all the arriving data D1:t; (2) Train-From-
Scratch (TFS): another intuitive method that also re-
initializes the meta-knowledge at each time t but trains
only on the current data Dt; (3) Follow the Meta Leader
(FTML)(Finn et al., 2019): a method utilizing the Follow
the Leader algorithm (Kalai & Vempala, 2005) to mini-
mize the regret of meta-learner. (4) Online Structured
Meta-Learning (OSML)(Yao et al., 2020): a method via
conducting a pathway to extract meta-knowledge from a
meta-hierarchical graph; (5) Dirichlet Process Mixture
Model (DPMM)(Jerfel et al., 2019): an algorithm that
employs CRP to conduct a mixture meta-knowledge us-
ing point estimation; (6) Bayesian Online Meta-Learning
with Variational Inference (BOMVI)(Yap et al., 2021):
a method that uses Bayesian meta-learning to address the
catastrophic forgetting issue; (7) Variational Continual
Bayesian Meta-Learning (VC-BML)(Zhang et al., 2021):
a state-of-the-art method that aims to conduct a mixture
meta-knowledge via a Bayesian method.

Following exiting works (Yap et al., 2021; Zhang et al.,
2021), we conduct the experiments on four datasets: VGG-
Flowers(Nilsback & Zisserman, 2008), miniImagenet(Ravi
& Larochelle, 2017), CIFAR-FS(Bertinetto et al., 2018), and
Omniglot(Lake et al., 2011). Tasks sampled from different
datasets correspond to different task distribution, so that
the continual non-stationary environment can be created
via chronologically sampling tasks from different datasets.
Specifically, the sampled task is a 5-way 5-shot task, and
5 classes are sampled randomly from a dataset for a task.
In our experiment, we sequentially meta-train the model
on tasks sampled from the meta-training dataset of these
four datasets, which means that the model is first trained on
the tasks sampled from VGG-Flowers dataset, and then pro-
ceeds to the next dataset. The performance is evaluated on
the test set after tuning hyper-parameters on the validation
set. More details about experimental and hyperparameter
settings are in Appendix F. Our code is publicly available 2.

5.1. RQ1: Overall Performance Comparison

To examine the effectiveness of ACML, we present the mean
meta-test accuracy on all the learned datasets at each meta-
training stage in Tab. 1, and the details on each training
stage are in Appendix F.4.1. Our ACML achieves the best
performance at each meta-training stage (i.e., VGG-Flowers,
miniImagenet, CIFAR-FS and Omniglot). Particularly, at
the final stage (i.e., Omniglot), our ACML achieves an av-
erage performance improvement from nearly 2% (versus
VC-BML) to 10% (versus FTML). This comparison result
illustrates that ACML is more effective to capture incre-

2https://github.com/BinWu-Cs/AC-CML
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Table 1. Mean meta-test accuracy (%) with 95% confidence interval of the learned dataset at each meta-training stage. The best
performance is marked with boldface.

Algorithms VGG-Flowers miniImagenet CIFAR-FS Omniglot

FTML 76.84± 1.75 60.74± 1.85 66.71± 1.86 61.89± 1.49
OSML 79.61± 1.50 66.15± 1.73 68.24± 1.73 65.65± 1.40
DPMM 78.97± 1.52 66.55± 1.77 67.18± 1.86 68.26± 1.47
BOMVI 77.05± 1.80 60.44± 1.86 59.57± 1.77 69.04± 1.54

VC-BML 83.71± 1.58 68.09± 1.58 69.87± 1.74 69.48± 1.51

ACML 85.11± 1.46 69.45± 1.54 70.72± 1.61 71.46± 1.39

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Index of Components

0.2
0.4
0.6
0.8
1.0

Po
st

er
io

r o
f P

i VGG-Flowers miniImagenet CIFAR-FS Omniglot

Figure 3. Each column represents the posterior probability π of the Bernoulli distribution of different components in the compositional
meta-knowledge on different datasets.

Table 2. Mean meta-test accuracy (%) with 95% confidence interval under the sequential task setting, where the performance represents
the average accuracy across the whole training tasks sequence on different dataset. The best performance is marked with boldface.

Algorithms VGG-Flowers miniImagenet CIFAR-FS Omniglot

FTML 57.29± 2.28 31.92± 1.58 39.21± 1.75 82.03± 1.42
OSML 56.07± 2.10 32.41± 1, 36 40.75± 1.85 82.89± 1.42
DPMM 64.21± 2.06 36.68± 1.46 47.47± 1.88 88.39± 1.48
BOMVI 64.71± 1.78 38.44± 1.41 48.19± 1.88 90.49± 1.62

VC-BML 65.28± 2.19 38.65± 1.83 47.07± 1.75 89.97± 1.11

ACML 66.27± 2.01 40.04± 1.48 48.97± 1.71 91.13± 0.20

mental knowledge as well as addressing the catastrophic
forgetting issue. Moreover, the comparison between the
performance of ACML and the baselines (i.e., DPMM and
VC-CML), which maintain the mutually exclusive meta-
knowledge components, confirming that our compositional
meta-knowledge helps to improve performance via meta-
knowledge sharing among tasks.

To further illustrate the association between tasks and meta-
knowledge, we show each component’s posterior of the
Bernoulli distribution. As in Fig. 3, the probabilities of
the Bernoulli distribution of each component are distinct.
Moreover, the components are dynamically changing. For
example, the fifth component is added at the miniImagenet
stage and is filtered as redundant components since it only
receives support from the miniImagenet and the support is
not strong. As for the first component, although it is not
strongly relevant to the final dataset, it remains because it
contributes to the first three datasets. It further confirms that
our method can add new components by IBP prior to capture
the incremental information, and filters the redundant one

using evidential sparsification.

Besides, we consider another more challenging setting,
where tasks from different datasets are mixed and randomly
arrive one by one. Such a setting only allows accessibility
for only one task each time, where the catastrophic for-
getting issue is more severe. Tab. 2 shows the average
accuracy results of tasks that belong to each dataset, to show
the performance on different task distributions. Our ACML
achieves the best performance on all four datasets with a per-
formance improvement from nearly 1% to 9%, even in such
a challenging setting. It further confirms that our algorithm
is still effective on the long task sequence.

5.2. RQ2: The Impact of the Number of Components

To examine the effect of the number of meta-knowledge
components in our ACML, we control the increased rate via
α in IBP and the sparsification rate γ in evidential sparsifica-
tion to limit the number of components (details are available
in Appendix F.3). We conduct experiments with different
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Figure 4. The evolution of meta-test accuracies (%) of ACML with different numbers of components when training on different datasets.
TOE and TFS are two baselines for comparison.
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Figure 5. The comparison between ACML and VC-BML with different numbers of components on each training stage.

Table 3. The meta-test accuracy (%) with 95% confidence interval
before sparsification and after sparsification on each training stage

original sparse

Omniglot 99.31± 0.25 99.43± 0.21
CIFAR-FS 85.99± 1.07 86.53± 1.05

miniImagenet 76.07± 1.40 75.91± 1.38
VGG-Flowers 71.41± 1.48 71.22± 1.36

numbers of components (i.e., from 1 to 4) to test their effec-
tiveness. The evolution of meta-test accuracy when training
on different datasets is shown in Fig. 4. TOE has the best
performance on most stages because it has access to all
the available data. With the component number increasing,
ACML has a better performance in both the learned and the
new datasets. It further demonstrates that more components
can capture the incremental meta-knowledge and alleviate
the forgetting issue. However, when the component num-
ber increases from 3 to 4, the performance does not see a
large improvement. This result reveals that the only ever-
increasing number of components is not always helpful to

alleviate the forgetting issue, and confirms the necessity of
filtering the redundant components.

5.3. RQ3: The Effectiveness of Evidential Specification

To examine the impact of the evidential sparsification
method, we compare performance before and after sparsifi-
cation. The mean meta-test accuracy at each meta-training
stage is shown in Tab. 3, and more results are shown in
Appendix F.4.2. Compared to the full meta-knowledge, the
sparse meta-knowledge at each time can achieve a com-
parative and even better performance in some stages (i.e.,
Omniglot and CIFAR-FS). This confirms that our method
can reduce redundancy and computational cost without hurt-
ing model performance. We also observe that the datasets
where the sparse meta-knowledge outperforms the original
meta-knowledge are located in the initial stages, i.e., Om-
niglot and CIFAR-FS). We analyze it due to the fact that, in
the beginning, the capacity of the components is adequate
to deal with the existing occurring tasks, especially for the
simple tasks (i.e., Omniglot). The sparsification is helpful
to remove the redundant components that might be distrac-
tions or even noise to the occurring tasks. Moreover, we
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conduct experiments on different numbers of components
with the appropriate γ. The results in Fig. 5 show that
our model can outperform the SOTA baselines even with
less number of components. For example, our ACML with
three components achieves a competitive performance and
even has a better performance, compared to VC-CML with
four components. It confirms that our algorithm can filter
out the redundant meta-knowledge component and is more
parameter-efficiency.

6. Conclusion
This paper focuses on continual meta-learning, where tasks
from a non-stationary distribution are sequentially avail-
able. We propose ACML, an Adaptive Compositional Meta-
Learning algorithm that allows heterogeneous tasks to share
meta-knowledge, which improves effectively the parameter
efficiency. Moreover, an IBP prior is employed to determine
whether to increase the number of components in the mix-
ture meta-knowledge distribution, and an evidential sparsity
method is proposed to adaptively filter out the redundant
components so as to meet the actual need of all available
tasks. The conducted experiments show the effectiveness of
compositional meta-knowledge and confirm that our algo-
rithm can learn the required meta-knowledge from tasks.

One limitation comes from the space complexity since our
model still needs to increase the number of mixture com-
ponents to cover more meta-knowledge. The proposed evi-
dential sparsity method can help alleviate the required space
complexity to a certain dedgree.
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A. Variational Inference for Meta-Learning
Following MAML (Finn et al., 2017), many Bayesian vari-
ant (Ravi & Beatson, 2018; Gordon et al., 2019; Iakovleva
et al., 2020) are proposed. To fit well with the bi-level opti-
mization architecture, most of them consider a hierarchical
bayesian inference (Amit & Meir, 2018), where the Evi-
dence Lower Bound (ELBO) of likelihood can be derived
as follows:

log

[
T∏
i=1

p(Di)

]
(15)

= log

[∫
p(θ)

[
T∏
i=1

∫
p(Di|ϕi)p(ϕi|θ)dϕi

]
dθ

]

≥Eq(θ;ψ)

[
log

(
T∏
i=1

∫
p(Di|ϕi)p(ϕi|θ)dϕi

)]
−DKL(q(θ;ψ)||p(θ))

≥Eq(θ;ψ)
[ T∑
i=1

Eq(ϕi;λi) [log p(Di|ϕi)]

−DKL(q(ϕi;λ)||p(ϕi|θ))
]
−DKL(q(θ;ψ)||p(θ)),

where θ and ϕ = {ϕi} are the global parameter and task-
specific parameter, respectively. Note that the low bound is
derived based on the Jensen’s equation and the variational
distributions of θ and ϕ, i.e., q(θ;ψ) and q(ϕi;λi), are
introduced to approximate the intractable posterior. Then,
the bi-level optimization is transformed as:

ϕ∗, λ∗ =argmax
ψ,λ

Eq(θ;ψ)
[ T∑
i=1

Eq(ϕi;λi) [log p(Di|ϕi)]

−DKL(q(ϕi;λ)||p(ϕi|θ))
]

−DKL(q(θ;ψ)||p(θ)), (16)

where the goal of the optimization is to seek the optimal
variational distribution of θ and ϕ, parameterized by ψ and
λ, respectively.

B. Introduction in Evidential Theory
B.1. The Basic Definition

Evidential theory (Denœux, 2019) works on a discrete
set of hypotheses (or equivalently, components of meta-
knowledge in this paper). Let Z = {z1, z2, z3, ...,zK}
be a finite set, the element of which zk is a binary vari-
able indicating whether the current task is associated with
k-th component or not, and the power set of Z, denoted
by 2Z = {∅, {z1}, {z1, z2}, ..., Z}. A mass function on Z
is a mapping m: 2Z → [0, 1] and satisfies the following

constraints:

m(∅) = 0,
∑
A⊆Z

m(A) = 1, (17)

where ∅ is an empty set and A is a subset of Z. The mass
function m(·) represents the support to each potential sub-
set of components, and any subset A is called focal set if
m(A) > 0. As a particular case, the vacuous mass function
(i.e., m(Z) = 1) indicates that it does not focus on any sub-
set in the case of complete ignorance. One mass function is
said simple when:

m(A) = s, m(Z) = 1− s, w = − ln(1− s), (18)

whereA is a single strict subsetA ⊂ Z, s ∈ [0, 1] represents
the support degree ofA, andw denotes the evidential weight
of A.

Given a mass function, there are two corresponding func-
tions, called belief and plausibility function, respectively,
which are defined as follows:

Bel(A) =
∑
B⊆A

m(B), (19)

Pl(A) =
∑

C∩A ̸=∅

m(C) = 1−Bel(Ā), (20)

where Ā denotes the complemented set of A. Bel(A) can
be interpreted as the total support degree to A, while the
1 − Pl(A) can be interpreted as the total doubt degree to
A. Besides, when the plausibility function is restricted to
singletons, i.e., a single element zk of Z, then it is called
contour function Pl : zk → [0, 1].

B.2. Dempster’s Rule

Given two mass functions m1 and m2, their combination is
defined according to Dempster’s rule:

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B) ·m2(C), (21)

where κ is the degree of conflict between two evidences,
which is defined as:

κ =
∑

B∩A=∅

m1(B) ·m2(C). (22)

Note that Dempster’s rule for the combination of mass func-
tions is commutative and associative. Based on Dempster’s
rule for the combination between two mass functions, the
combination of two corresponding contour functions pl1
and pl2 can be computed as:

(pl1 ⊕ pl2(zk)) =
pl1(zk) · pl2(zk)

1− κ
. (23)
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And if both mass functions are simple with the same strict
subset, their fusion can be defined as:

Aw1 ⊕Aw1 = Aw1+w2 , (24)

where both Aw1 and Aw2 represent the simple mass func-
tions with a single strict subset and their evidential weights
are w1 and w2, respectively.

C. The Computational Details of Fusing Mass
Function

We try to combine all the positive mass functions and all the
negative mass functions, respectively. And then the two can
be fused to produce the final result.

C.1. The Fusion Across Time

Before positive fusion and negative fusion, we need to merge
evidence supporting the same focal elements at different
times. Since the simple mass functions have the same focal
set, their fusion can be calculated following Eq. 24 and the
weight is:

w+
k =

t∑
i=0

w+
i,k, w−

k =

t∑
i=0

w−
i,k (25)

where w+
i,k and w−

i,k are the evidential weight of the positive
and negative mass function at time i. respectively. In this
way, the evidence supporting the same focal element from
different time can be merged first:

m+
k ({zk}) = 1− exp(−w+

k ), m
+
k (Z) = exp(−w+

k );
(26)

m−
k ({zk}) = 1− exp(−w−

k ), m
−
k (Z) = exp(−w−

k ).
(27)

C.2. The Fusion of m+

As we define above, all the positive mass functions have the
only two focal elements, {zk} and Z. Then the combination
of them can be computed according to the Dempster’s rule:

m+({zk}) ∝ [1− exp(−w+
k )]
∏
l ̸=k

exp(−w+
k )

= [exp(w+
k )− 1]

K∏
l=1

exp(−w+
k ), (28)

m+(Z) ∝
K∏
k=1

exp(−w+
k ). (29)

As the fused mass function constraint to the sum of one, the
results can be computed by normalizing the terms. So that

the sum of all terms is:

m+(Z) +

K∏
l=1

m+({zk}) (30)

∝

(
K∏
k=1

exp(−w+
k )

)

+

K∑
k=1

{
[exp(w+

k )− 1]

K∏
l=1

exp(−w+
k )

}

=

(
K∏
k=1

exp(−w+
k )

)
·

[(
K∑
k=1

exp(w+
k )

)
−K + 1

]
.

And the terms can be normalized as:

m+({zk}) (31)

=
[exp(w+

k )− 1]
∏K
l=1 exp(−w

+
k )(∏K

k=1 exp(−w
+
k )
)
·
[(∑K

k=1 exp(w
+
k )
)
−K + 1

]
=

exp(w+
k )− 1(∑K

k=1 exp(w
+
k )
)
−K + 1

,

m+(Z) (32)

=

∏K
k=1 exp(−w

+
k )(∏K

k=1 exp(−w
+
k )
)
·
[(∑K

k=1 exp(w
+
k )
)
−K + 1

]
=

1(∑K
k=1 exp(w

+
k )
)
−K + 1

.

C.3. The Fusion of m−

Different from the positive mass functions, the negative
mass functions have the only two focal elements, {zk}
and Z. To compute the combination of all negative mass
functions, we need to compute the conflict firstly:

κ− =

K∏
k=1

(
1− exp(−w−

k )
)
. (33)

Thus, for any strict subsetA of Z, its belief can be computed
as:

m−(A) (34)

=

[∏
zk /∈A

(
1− exp(−w−

k )
)]
·
[∏

zk∈A exp(−w
−
k )
]

1−
∏K
k=1

(
1− exp(−w−

k )
) .

And the mass belief of the complete set Z is:

m−(Z) =

∏K
k=1 exp(−w

−
k )

1−
∏K
k=1

(
1− exp(−w−

k )
) . (35)
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Continual 
Setting

Dempster’s rule
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Merged Result
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Figure 6. An intuitive explanation of our proposed evidential sparsification method. The tasks from the previous and current provide
support and doubt information with uncertainty for meta-knowledge components. Such information can be merged by Dempster’s rule to
provide a unified relationship between the occurring tasks and the components. The components not receiving support are removed (i.e.,
the component K − 1 in the figure).

For further fusion of the positive and negative mass func-
tions, we need to compute pl−(zk), which can be defined
as:

pl−({zk}) =
∏K
k=1 pl

−
k ({zk})

1−
∏K
k=1

(
1− exp(−w−

k )
) , (36)

where the plausibility of negative mass function is:

pl−l ({zk}) =

{
exp(−w−

l ) if k = l

1 otherwise
. (37)

Thus, the result of the fused plausibility is:

pl−({zk}) =
exp(−w−

k )

1−
∏K
k=1

(
1− exp(−w−

k )
) . (38)

C.4. The Final Fusion

To clarify the following derivation, we assume that:

C+ =
1(∑K

k=1 exp(w
+
k )
)
−K + 1

, (39)

C− =
1

1−
∏K
k=1

(
1− exp(−w−

k )
) . (40)

Similarly, to combine the positive and negative mass func-
tion, we need to compute the conflict between them at first:

κ =

K∑
k=1

m+({zk})

∑
zk /∈A

m−(A)

 (41)

=

K∑
k=1

{
m+({zk}) ·

[
1− pl−({zk})

]}
=

K∑
k=1

{
C+

[
exp(w+

k )− 1
]
·
[
1− C−(exp(−w−

k ))
]}
,

where A ⊆ Z. To make the following derivation clarified,
let:

C =
1

1− κ
(42)

=
1

1−
∑K
k=1

{
C+

[
ew

+
k − 1

]
·
[
1− C−(e−w

−
k )
]} .

Then for any k ∈ {1, 2, ...,K}, the mass belief of each
singleton can be computed as:

m({zk}) (43)

=C

{
m+({zk}) ·

[∑
zk∈A

m−(A)

]
(44)

+m+(Z) ·m−({zk})
}

=C
{
m+({zk}) · pl−({zk}) +m+(Z) ·m−({zk})

}
,

where A ⊆ Z. Combining Eq. 31, Eq. 32 Eq. 34 and Eq.
38, , the final result of the mass singleton belief is:

m({zk}) (45)

=C

{
C+

[
ew

+
k − 1

]
· C−[e−w

−
k ]

+ C+ · C−
[
e−w

−
k ·
∏
l ̸=k

(
1− e−w

−
l

)]}

=CC+C−
{
e−w

−
k

[
ew

+
k − 1 +

∏
l ̸=k

(1− e−w
−
l )

]}
.

D. Details of Inference
In this section, we present the details of our structured varia-
tional inference for our proposed ACML. The pseudo-code
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Figure 7. The probability model of ACML. The solid line denotes
the generative process, and the white circle and the grey circle
denote the latent variant and the observed variant, respectively.

and the probability model are shown in Alg.1 and Fig. 7,
respectively.

D.1. Variational Distribution

Because of the intractability of posterior, we introduce the
variational distribution to approximate the true posterior
(seen in Eq. (7)). The variational distributions are parame-
terized as:

q(vt,k) = Beta(αt,k, βt,k), (46)
q(zt,k|πt,k) = Bern(πt,k), where πt,k = vt,k, (47)

q(θt,k) = N (µt,k, σ
2
t,k1), (48)

q(ϕt|θt,zt,Dt) =

∑K
k=1 1{zt,k ̸= 0}q(ϕt,k|θt,k;λt,k)∑K

k=1 1{zt,k ̸= 0}
,

(49)

where λt,k = SGDJ(θ
∗
t,k,DSt , ϵ), and SGDJ(·) rep-

resents the stochastic gradient descent with J steps.
That is, the required variational parameters are ψt =
{αt,k, βt,k, µt,k, σt,k, λt,k} for all k = 1, ...,Kt. Note that
we replace

∏k
i=1 vt,i with vt,k in the posterior, to remove

the implicit order constraint in the prior. So that the opti-
mization aims to search for the optimal variational parameter
to maximize the ELBO in Eq. 8.

We summarize the meta-training process of our proposed
ACML. Note that we assume the algorithm uses a single
batch for simplicity, and it can be easily extended to the
mini-batch setting. The pseudo-code is in Alg.1.

D.2. Reparameterization

The variational posterior is obtained by optimizing the
ELBO using structured variational inference. To make infer-
ence tractable, we utilize three reparameterizations, to infer
the Gaussian distribution, beta distribution and Bernoulli
distribution, respectively.

D.2.1. THE VARIATIONAL GAUSSIAN DISTRIBUTION
REPARAMETERIZATION

As we mentioned above, the variational distributions of
meta-knowledge from each clusters are diagonal Gaussian

θt,k ∼ N (µt,k, σt,k). We employ the reparameterization,
which can represent the meta-knowledge using a determinis-
tic function θt,k = g(ε;µt,k, σt,k), where ϵ ∼ N (0, I). To
apply the reparameterization, we define the standardization
function and its inverse as:

Sψ(θ) =
θ − µ
σ

= ε ∼ q(ε), where q(ε) = N (0, I),

θ = S−1
ϕ (ε) = ε · σ + µ. (50)

Note that we omit the subscripts for clarity and the remain-
der of this section omits them as well. Then we can represent
the objective in ELBO w.r.t q(θ) as follows:

Eqψ(θ)[f(θ)] = Eq(ε)[f(S−1
ψ (ε))]. (51)

This allows us to compute the gradient of the expectation in
another way:

∇ψEqψ(θ)[f(θ)] = Eq(ε)[∇ψf(S−1
ψ (ε))]

= Eq(ε)[∇θf(S−1
ψ (ε))∇ψS−1

ψ (ε)], (52)

D.2.2. THE VARIATIONAL BETA DISTRIBUTION
REPARAMETERIZATION

There is no simple inverse of the standardization function
when using the reparameterization for Beta distribution,
which makes it impossible to apply the explicit reparam-
eterization directly. Instead, there are two ways to tackle
the problem: the implicit reparameterization and the Ku-
maraswamy reparameterization.

Implicit reparameterization. This way also utilizes the
reparameterization to tackle the intractable gradient in Beta
distribution:

∇γEqγ(vk)[f(vk)] = Eq(ε)[∇γf(vk)] (53)

= Eq(ε)[∇vkf(vk)∇γvk],

without the inverse of the standardization function, the term
∇γvk is difficult to compute. Inspired by (Figurnov et al.,
2018), we employ the implicit reparameterization to com-
pute the gradient, the idea of which is to differentiate the
standardization function Sγ(vk) = ε using the chain rule
instead of searching its inverse:

∇vkSγ(vk)∇γ(vk) +∇γSγ(vk) = 0, (54)

∇γvk = −(∇vkSγ(vk))−1∇γSγ(vk). (55)

Note that the standardization function can be the CDF of
the Beta distribution and ε ∼ Unif [0, 1]. Then the implicit
gradient is:

∇γvk =
∇γF (vk; γ)

−(∇vkF (vk; γ))
=
∇γF (vk; γ)
−p(vk; γ)

, (56)

where p(vk; γ) is the PDF of the Beta distribution.
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Algorithm 1 The meta-training process of ACML.
Input: Task distribution p(τ), data distribution p(D|τ),

the initial number of component K0, concentration parameter α,
the number of inner update step J , the inner learning rate ϵ,
and the outer learning rate ζ

1: for t=1,.. do
2: Determine the added number: Jt = Possion(αt )
3: Determine the number of component: Kt = Kt−1 + Jt
4: Initialize the variational beta distribution: αt,k, βt,k,∀k = 1, ...,Kt

5: Initialize the variational distribution of meta-knowledge: µk, σk,∀k = 1, ..,Kt

6: while not converge do
7: Sample vt,k ∼ q(vt,k;αt,k, βt,k),∀k = 1, ...,Kt

8: Compute the ELBO according to Eq. 8
9: Compute the gradient: ∇µt,k,∇σt,k,∀k = 1, ...,Kt via explicit reparameterization according to Eq. 52

10: Compute the gradient: ∇αt,k,∇βt, k,∀k = 1, ...,Kt via implicit reparameterization according to Eq. 56
11: Update the variational parameters: αt,k ← αt,k − ζ∇αt,k,∀k = 1, ...,Kt

12: Update the variational parameters: βt,k ← βt,k − ζ∇βt,k,∀k = 1, ...,Kt

13: Update the variational parameters: µt,k ← µt,k − ζ∇µt,k,∀k = 1, ...,Kt

14: Update the variational parameters: σt,k ← σt,k − ζ∇σt,k,∀k = 1, ...,Kt

15: end while
16: Update prior: p(vt,k)← q(vt,k),∀k = 1, ...,Kt

17: Compute the evidential weight w+
t,k, w

−
t,k,∀k = 1, ...,Kt according to Eq. 10

18: Compute the mass function according to Eq. 13
19: Remove the components without support information according to Eq. 14
20: end for

Kumaraswamy distribution. The Beta distribution of vk
also can be reparameterized using a Kumaraswamy distri-
bution (Nalisnick & Smyth, 2017). The Kumaraswamy
distribution can be defined as:

p(vk;α, β) = αβvα−1
k (1− vαk )

β−1, (57)

and then the inverse of standardization function can be com-
puted as:

Sγ(vk) = (1− ε1/β)1/α, where ε ∼ Unif [0, 1]. (58)

The KL-Divergence between the Kumaraswamy distribution
and the Beta distribution in ELBO can be written as:

DKL (q(vk;αk, βk)||p(v;α, β)) (59)

=
αk − α
αk

(
−γ −Ψ(βk)−

1

βk

)
+ logαkβk

+ log [B(α, β)]− βk
1− βk

+ (β − 1)βk

∞∑
m=1

1

m+ αkβk
B

(
m

αk
, βk

)
, (60)

where γ is the Euler constant, Ψ(·) is the digamma function,
and B(·, ·) is the beta function. Following the existing work
(Nalisnick & Smyth, 2017), the above the infinite term in
the formula can be approximated using a infinite sum of the
first 11 terms.

D.2.3. THE VARIATIONAL BERNOULLI DISTRIBUTION
REPARAMETERIZATION

As the Bernoulli distribution is one of the classic discrete
distributions, the sampling requires performing an argmax
operation. But the argmax operation is not differentiable.

We employ the Concrete distribution (Maddison et al., 2017),
also named Gumbel-softmax distribution (Jang et al., 2017),
to address the above issue. Then, we can sample a random
variable as follows:

xj = σ

 log(πk) + log
(

uk
1−uk

)
λ

 , u ∼ U(0, 1), (61)

where λ ∈ (0,∞) is a temperature hyper-parameter, σ(·) is
the sigmoid function, πk is the parameter of the Bernoulli
distribution and uk is sampled from a uniform distribution
U . To guarantee a lower bound on the ELBO, both posterior
and prior Bernoulli distribution need to be replaced with
concrete distribution:

DKL [q(zt|πk,t)∥p(zt|πk,t)]
≥DKL [q(zt|πk,t, λ)∥p(zt|πk,t, λ)] . (62)

E. The Analysis of Complexity
We discuss the computational cost of our proposed ACML
as follows, including the time complexity and space com-
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Table 4. The convolution neural network architecture in ACML
and baselines.

Layers Output Size

Input image 28× 28× 3
The first convolution layers 14× 14× 64
The second convolution layers 7× 7× 64
The third convolution layers 3× 3× 64
The forth convolution layers 1× 1× 64

plexity.

For time complexity, the de facto bi-level optimization mech-
anism in meta-learning requires O(n2) when updating one
meta-knowledge component, where an algorithm with time
complexity O(n) is a linear time algorithm. If without any
sparsification or constraint on the number of components, it
will see an unlimited increase as the existing work (Jerfel
et al., 2019; Zhang et al., 2021), and thus the time complex-
ity will be up to O(n3). If with our evidential sparsification,
the number of components will be limited to a small constant
C with an appropriate hyperparameter γ in Eq. 9, so that
the time complexity will be down to O(C ∗ n2) ≈ O(n2).

Similarly, as each component of meta-knowledge contains
the parameter of the model, its space complexity is O(n).
And the total space complexity of models without spar-
sification will be up to O(n2) for the unlimited number
of meta-knowledge components when encountering many
tasks. But our algorithm can alleviate this issue using the
evidential sparsification to reduce down to O(n) with an
appropriate hyperparameter γ.

F. Details of Experiment
F.1. The details of baselines

For a fair comparison, we use the widely-applied network
architecture following (Yap et al., 2021; Zhang et al., 2021).
In what follows, we describe the details of the baselines:

TOE: Training-On-Everything method (TOE) is an intuitive
method, that re-initializes the meta-knowledge and trains
them on all the having arrived datasets at each time. We
use the same Bayesian meta-learning architecture as our
algorithm. The difference between TOE and ACML is that
ACML is only trained on the current dataset at each time
instead of all the having arrived dataset in TOE and ACML
does not re-initialize the meta-knowledge at each time as
what TOE do.

TFS: Train-From-Scratch (TFS) is another intuitive method,
which also re-initializes meta-knowledge but only trains
them on the current dataset. Similarly, it also uses the same
Bayesian meta-learning architecture as our algorithm. The

difference between TFS and ACML is that our algorithm
maintains the posterior meta-knowledge at last time as the
prior at the current time instead of re-initializing them as
TFS.

FTML: Follow the Meta Leader (FTML) proposed by (Finn
et al., 2019) uses the Follow the Leader algorithm to fill the
gap between meta-learning and online learning. However,
it assumes that all the having arrived datasets are available,
which is memory-consuming and conflicts with the con-
tinual meta-learning. For a fair comparison, we only train
FTML on the current dataset as same as our algorithm.

OSML: Online Structured Meta-Learning (OSML) (Yao
et al., 2020) maintains a meta-hierarchical graph with dif-
ferent knowledge blocks and conducts a meta-knowledge
pathway for the encountered new task. However, it em-
ploys a well pre-trained convolution network to initialize
the model in the original paper. As ACML and other base-
lines are randomly initialized, it would be unfair to use
the original initializing way. Therefore, we also randomly
initialize the OSML model.

DPMM: Dirichlet Process Mixture Model (DPMM) (Jerfel
et al., 2019) employs a Chinese Restaurant Process to con-
duct the mixture meta-knowledge with a dynamic number
of components. Note that it is not a Bayesian method and
employs the point estimation to update the meta-knowledge.

BOMVI: Bayesian Online Meta-Learning with Variational
Inference (BOMVI) (Yap et al., 2021) is a state-of-the-art
algorithm, which conducts a meta-knowledge distribution to
address the catastrophic forgetting issue in continual meta-
learning. Similarly, it also employs variational inference to
update the meta-knowledge.

VC-BML: Variation Continual Bayesian Meta-Learning
(VC-BML) (Zhang et al., 2021) is another state-of-the-art
algorithm, which also employs a truncated Chinese Restau-
rant Process to conduct the mixture meta-knowledge. Differ-
ent from DPMM, it uses the Bayesian inference to conduct
the mixture distribution of meta-knowledge and places an
upper bound on the number of components to reduce the
computational consumption.

All the baselines and our proposed ACML follow the exper-
imental setting as described in Sec. F.3.

F.2. The datasets

VGG-Flowers: VGG-Flowers(Nilsback & Zisserman,
2008) consists of 102 flower categories. Also, we randomly
choose 66 categories for meta-training, 16 categories for
validation and the remained 20 categories for meta-test.

miniImagenet: miniImagenet(Ravi & Larochelle, 2017)
is designed for few-shot learning, which consists of 100
different classes. Similarly, we also split the dataset into
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Table 5. Some important hyper-parameters used in our experiments.

Hyper-parameter VGG-Flowers miniImagenet CIFAR-FS Omniglot

The number of outer update step 2000 2000 2000 2000
The outer learning rate 0.001 0.001 0.001 0.001
The number of outer update step 3 3 3 1
The inner learning rate 0.05 0.1 0.1 0.1

Table 6. Performance of our ACML and the baselines on each datasets at each meta-training stage. The best performance on each dataset
is marked with boldface and the second best is marked with underline.

Meta-Training
Stage Algorithms VGG-Flowers miniImagenet CIFAR-FS Omniglot Average

VGG-Flowers

FTML 76.84± 1.75 - - - 76.84± 1.75
OSML 79.61± 1.50 - - - 79.61± 1.50
DPMM 78.97± 1.52 - - - 78.97± 1.52
BOMVI 77.05± 1.80 - - - 77.05± 1.80

VC-BML 83.71± 1.58 - - - 83.71± 1.58
ACML 85.11± 1.46 - - - 85.11± 1.46

miniImagenet

FTML 76.51± 1.92 44.97± 1.77 - - 60.74± 1.85
OSML 76.19± 1.68 56.11± 1.77 - - 66.15± 1.73
DPMM 76.65± 1.79 56.45± 1.74 - - 66.55± 1.77
BOMVI 75.75± 1.97 45.12± 1.74 - - 60.44± 1.86

VC-BML 76.47± 1.41 59.71± 1.75 - - 68.09± 1.58
ACML 81.71± 1.42 57.19± 1.66 - - 69.45± 1.54

CIFAR-FS

FTML 75.11± 1.84 54.89± 1.66 70.13± 2.07 - 66.71± 1.86
OSML 78.29± 1.63 57.36± 1.54 69.07± 2.01 - 68.24± 1.73
DPMM 75.60± 1.76 55.79± 1.75 70.15± 2.07 - 67.18± 1.86
BOMVI 74.08± 1.60 47.55± 1.84 57.07± 1.86 - 59.57± 1.77

VC-BML 79.04± 1.54 59.17± 1.74 71.40± 1.93 - 69.87± 1.74
ACML 79.29± 1.48 58.98± 1.65 73.89± 1.69 - 70.72± 1.61

Omniglot

FTML 63.04± 2.01 37.27± 1.69 47.95± 1.99 99.31± 0.28 61.89± 1.49
OSML 70.68± 1.83 40.67± 1.50 51.89± 2.04 99.35± 0.24 65.65± 1.40
DPMM 65.20± 1.67 48.53± 1.63 60.15± 2.30 99.16± 0.29 68.26± 1.47
BOMVI 73.19± 1.86 46.28± 1.62 58.99± 2.14 97.71± 0.53 69.04± 1.54

VC-BML 71.02± 1.76 48.53± 1.82 59.14± 2.01 99.21± 0.47 69.48± 1.52
ACML 71.92± 1.86 50.07± 1.66 64.50± 1.83 99.36± 0.22 71.46± 1.39

three datasets (i.e., 64 classes for meta-training, 16 classes
for validation and 20 classes for meta-test) following the
existing works.

CIFAR-FS: CIFAR-FS(Bertinetto et al., 2018) dataset used
in our experiment is adapted from the CIFAR-100 dataset
(Krizhevsky et al., 2009) for few-shot learning, which con-
sists of 100 classes. Following the existing works (Yap
et al., 2021; Zhang et al., 2021), we also randomly split the
datasets, where 64 classes are used for meta-training, 16
classes are used for validation and the remained 20 classes
are used for meta-test, respectively.

Omniglot: Omniglot(Lake et al., 2011) is a widely-used
dataset, which contains 1,623 different handwritten char-

acters from 50 different alphabets. Following the previous
works (Yap et al., 2021; Zhang et al., 2021), we randomly
split the dataset into three subsets, 1,100 characters for meta-
training, 100 characters for validation and the remaining 423
characters for meta-test.

To simulate the online non-stationary setting, we assume
the above datasets are available sequentially. Moreover, we
focus 5-way 5-shot task, which conducts the low-resource
environment. For each dataset, we form the streaming tasks
via randomly sampling 5 classes with replacement as a task.
And we randomly sample 5 examples for each class in a
support set and 15 examples for each class in a query set.

In our experiment, we also consider another more challeng-
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Table 7. Performance of our ACML and the baselines on each datasets at each meta-training stage. The best performance (without
’original’) on each dataset is marked with boldface and the second best (without ’original’) is marked with underline.

Meta-Training
Stage Algorithms Omniglot CIFAR-FS miniImagenet VGG-Flowers Average

Omniglot

FTML 99.25± 0.24 - - - 99.25± 0.24
OSML 98.20± 0.39 - - - 98.20± 0.39
DPMM 97.15± 0.48 - - - 97.15± 0.48
BOMVI 97.35± 0.73 - - - 97.35± 0.73

VC-BML 99.28± 0.48 - - - 99.28± 0.48
ACML 99.43± 0.21 - - - 99.43± 0.21
original 99.31± 0.25 - - - 99.31± 0.25

CIFAR-FS

FTML 96.12± 0.76 67.08± 1.87 - - 81.60± 1.32
OSML 96.09± 0.53 66.20± 2.02 - - 81.15± 1.28
DPMM 93.31± 0.80 60.88± 2.03 - - 77.10± 1.42
BOMVI 97.68± 0.43 56.29± 2.00 - - 76.99± 1.22

VC-BML 97.72± 0.38 72.80± 1.74 - - 85.26± 1.06
ACML 97.66± 0.39 75.39± 1.71 - - 86.53± 1.05
original 98.15± 0.39 73.82± 1.75 - - 85.99± 1.07

miniImagenet

FTML 96.63± 0.58 68.60± 1.79 54.68± 1.9 - 73.30± 1.42
OSML 95.04± 0.79 69.20± 1.72 55.13± 1.81 - 73.12± 1.44
DPMM 95.01± 0.67 64.93± 2.14 55.49± 1.74 - 71.81± 1.52
BOMVI 97.01± 0.70 59.25± 1.76 46.21± 1.66 - 67.49± 1.37

VC-BML 96.29± 0.58 69.05± 1.68 59.25± 1.86 - 74.86± 1.37
ACML 97.10± 0.46 70.67± 1.97 59.97± 1.70 - 75.91± 1.38
original 96.74± 0.69 71.35± 1.72 60.13± 1.80 - 76.07± 1.40

VGG-Flowers

FTML 93.69± 0.83 58.27± 1.81 45.75± 1.52 80.32± 1.77 69.51± 1.48
OSML 91.79± 1.14 59.05± 1.80 46.51± 1.64 81.71± 1.69 69.77± 1.57
DPMM 93.21± 1.03 61.55± 1.82 45.01± 1.56 80.71± 1.72 70.12± 1.53
BOMVI 97.13± 0.54 58.77± 1.89 47.24± 1.81 75.59± 2.04 69.68± 1.57

VC-BML 92.80± 0.82 58.36± 1.87 47.09± 1.78 82.92± 1.46 70.29± 1.48
ACML 94.07± 0.84 58.76± 1.64 48.74± 1.47 83.31± 1.50 71.22± 1.36
original 93.25± 0.81 58.94± 1.82 49.29± 1.74 84.16± 1.56 71.41± 1.48

ing setting, where tasks from different datasets are mixed
and arrive one by one. In this setting, we conduct different
tasks stream with a length of 100, and then train the model
on each task one by one and evaluate the performance on
each dataset.

F.3. The details of experiment setting

For each task, we employ the same convolution network
following the previous works (Yap et al., 2021; Zhang et al.,
2021), which is shown in Tab. 4. For our model, we use the
Adam optimizer as the outer optimizer and the SGD opti-
mizer as the inner optimizer. For the Monte Carlo sampling
used in our algorithm, we set the number of sampling as 5.
For the initial number of components in the compositional
meta-knowledge, we set it as 4. All the important hyper-
parameters can be seen in Tab. 5. We ran our algorithm on
NVIDIA Tesla V100 32GB GPU. It took about 54 hours to
train.

In practice, since the additional meta-knowledge compo-
nents can easily lead to large computational consumption,
we set the α of IBP as 1. It ensures that the expectation of
the number of additional components at the beginning is 1
and decreases with time. As for the hyperparameter γ in our
evidential sparsification method, it controls the sparsifica-
tion rate. Instead of searching for an appropriate value, we
can simply filter out the components with the lowest value
in the final mass function in practice, which equals filtering
the zero value with an appropriate γ.

F.4. Additional Experimental Result

In what follows, we present the full result on the streaming
datasets (i.e., VGG-Flowers, miniImagenet, CIFAR-FS and
Omniglot), and change the order of datasets to verify the
generality of our algorithm.

20



Adaptive Compositional Continual Meta-Learning

F.4.1. META-TEST ACCURACIES ON EACH DATASET AT
DIFFERENT META-TRAINING STAGE

We only show the average result at each meta-training stage
and the performance on each dataset at the last meta-training
stage in the main text. We additionally show the full results
in Tab. 6. Although ACML can not achieve the best perfor-
mance on all having arriving datasets at some meta-training
stages (i.e., CIFAR-FS and miniImage), it outperforms all the
baselines on the average results, which confirms the effec-
tiveness of ACML. Additionally, ACML can not only main-
tain the performance on the old datasets, but also achieve
better results on the new datasets, which illustrates that it
can alleviate better catastrophic forgetting than other base-
lines. Note that ACML achieves the best performance on
the current datasets at each stage (especially compared to
VC-BML, where it assumes that each component is mutu-
ally exclusive), which shows that our proposed model can
resolve the conflict between the learned meta-knowledge
and the incremental meta-knowledge, and it is expected that
the compositional can utilize the shared meta-knowledge to
improve the performances.

Tab. 6 also shows the detailed results of ACML before and
after evidential sparsification. The results show that ACML
still achieves a comparative performance on most datasets
at each meta-training stage, compared to before evidential
sparsification. It further confirms the effectiveness of our
proposed evidential sparsification.

F.4.2. ADDITIONAL EXPERIMENTAL IN DIFFERENT
ORDER

To further confirm the generality of our model, we change
the order of datasets in the streaming tasks. We conduct
the experiments on a new order, where the model is trained
chronologically on Omniglot, CIFAR-FS , miniImagenet
and VGG-Flowers. The results are shown in Tab. 7. The
result on the streaming tasks with a different order shows
that ACML still outperforms other baselines, which further
confirms the generality of ACML.
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